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Abstract. The Mittag–Leffler process X = (Xt)t≥0 is introduced. This Markov
process has the property that its marginal random variables Xt are Mittag–Leffler
distributed with parameter e−t, t ∈ [0,∞), and the semigroup (Tt)t≥0 of X sat-

isfies Ttf(x) = E(f(xe−t

Xt)) for all x ≥ 0 and all bounded measurable functions
f : [0,∞) → R. Further characteristics of the process X are derived, for example
an explicit formula for the joint moments of its finite-dimensional distributions.
The Mittag–Leffler process turns out to be Siegmund dual to Neveu’s continuous-
state branching process. The main result states that the block counting process of
the Bolthausen–Sznitman n-coalescent, properly scaled, converges in the Skorohod
topology to the Mittag–Leffler process X as the sample size n tends to infinity. We
provide an equivalent version of this convergence result involving stable distribu-
tions.

1. Introduction and main results

Exchangeable coalescent processes with multiple collisions are Markov processes
with state space P, the set of partitions of N := {1, 2, . . .}. During each transition
blocks merge together to form a single block. These processes are characterized by
a measure Λ on the unit interval [0, 1]. For more information on these processes we
refer the reader to Pitman (1999) and Sagitov (1999). The Bolthausen–Sznitman
coalescent (Bolthausen and Sznitman (1998)) is the particular Λ-coalescent Π =
(Πt)t≥0 with Λ being the uniform distribution on [0, 1]. In this article we focus on
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the process Π(n) = (Π
(n)
t )t≥0 of the Bolthausen–Sznitman coalescent Π restricted

to a sample of size n ∈ N. We are in particular interested in the process N (n) :=

(N
(n)
t )t≥0, where N

(n)
t denotes the number of blocks of Π

(n)
t . The process N (n) is

called the block counting process of the Bolthausen–Sznitman n-coalescent. It is
well known that N (n) is a time-homogeneous Markov chain with generator Q =
(qij)1≤i,j≤n having entries qij := i/((i− j)(i− j + 1)) if i > j, qij := 1− i if i = j
and qij = 0 if i < j. For n ∈ N and t ∈ [0,∞) define

X
(n)
t :=

N
(n)
t

ne−t . (1.1)

We call X(n) := (X
(n)
t )t≥0 the scaled block counting process of the Bolthausen–

Sznitman n-coalescent. Similar power law scalings of the form nα occur for example
when studying the number of occupied boxes of certain urn models with infinitely
many boxes. For more details we refer the reader to Section 10 of the survey of

Gnedin et al. (2007). The scaling ne−t

in (1.1) is somewhat unusual since it in-
volves not only the parameter n but also the time parameter t. Clearly, X(n) is a
Markov process with state space E := [0,∞), however, since the scaling depends
on t, X(n) is time-inhomogeneous. Our main result (Theorem 1.1 below) provides
a distributional limiting result for X(n) as the sample size n tends to infinity. The
arising limiting Markov process X = (Xt)t≥0 we call the Mittag–Leffler process,
since the marginal random variable Xt turns out to be Mittag–Leffler distributed
with parameter e−t. Note that the distribution of Xt is uniquely determined by
its entire moments E(Xm

t ) = m!/Γ(1 + me−t), m ∈ N0 := {0, 1, 2, . . .}. For de-
tailed information on the Mittag–Leffler distribution and on the process X we refer
the reader to Section 2, where the existence of X is established and fundamental
properties of this process are derived. In order to wipe out possible confusion with
processes in the literature having similar names we mention that the process X
has nothing in common with the autoregressive Mittag–Leffler process studied for
example by Jayakumar (2003) and Jayakumar and Pillai (1993). These processes
are based on the (heavy-tailed) Mittag–Leffler distribution of the first type (see, for
example, Mainardi and Gorenflo (2000) and Pillai (1990) for some related works),
whereas the Mittag–Leffler distributed random variable Xt is of the second type
and has finite moments of all orders. Let us now present our main convergence
result.

Theorem 1.1. For the Bolthausen–Sznitman coalescent the scaled block counting

process X(n) = (X
(n)
t )t≥0 defined via (1.1) converges in DE [0,∞) as n → ∞ to the

Mittag–Leffler process X = (Xt)t≥0 introduced in Section 2.

Remark 1.2. 1. The proof of Theorem 1.1 is provided in Section 4. For an equivalent
formulation of Theorem 1.1 involving α-stable distributions we refer the reader to
Theorem 2.6.

2. Theorem 1.1 can be also stated logarithmically as follows. The process

(logN
(n)
t −e−t log n)t≥0 converges inDR[0,∞) to the process (logXt)t≥0 as n → ∞.

Neither X nor (logXt)t≥0 is a Lévy process. Note that the logarithmic block

counting process (logN
(n)
t )t≥0 plays an important role in the problem of whether

a coalescent process comes down from infinity, see, for example, Section 4 of Limic
(2012).
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3. Note that X(n) is time-inhomogeneous whereas the limiting process X is time-
homogeneous. Thus, Theorem 1.1 in particular states that X(n) is asymptotically
time-homogeneous.

The article is organized as follows. Section 2 is devoted to the Mittag–Leffler
process X. We prove the existence of this process and derive fundamental proper-
ties of X, among them representations for the semigroup of X (see (2.6)) and an
explicit formula for the joint moments (see Lemma 2.2) of the finite-dimensional
distributions of X. We also discuss the Siegmund dual of the process X, which
turns out to be Neveu’s continuous-state branching process, leading to an equiva-
lent formulation of Theorem 1.1 stated in Theorem 2.6. In Section 3 we provide
some fundamental formulas (see Lemma 3.1 and Lemma 3.2) for certain moments
of the block counting process N (n) of the Bolthausen–Sznitman n-coalescent. These
results rely on the spectral decomposition (Möhle and Pitters (2014)) of the gener-

ator of the block counting process. Lemma 3.1 in particular shows that N
(n)
t has

mean

E(N (n)
t ) =

Γ(n+ e−t)

Γ(n)Γ(1 + e−t)
n ∈ N, t ∈ [0,∞). (1.2)

For large n (1.2) is asymptotically equal to ne−t

(Γ(1+ e−t))−1 = ne−tE(Xt), which

indicates that ne−t

is the appropriate scaling in order to obtain a non-degenerate
limiting process for the scaled block counting process as n tends to infinity. In
the final Section 4 this argument is made rigorous leading to a proof of Theorem
1.1. First the convergence of the finite-dimensional distributions is verified and
afterwards the convergence in DE [0,∞) is established.

Recently Baur and Bertoin (2015) independently obtained closely related results
on essentially the same topic via fragmentation of recursive trees.

We leave it open for future work to establish convergence results in analogy to
Theorem 1.1 for the block counting process N (n) of more general coalescent pro-
cesses (that do not come down from infinity), for example for the β(a, b)-coalescent
with a ≥ 1 (and b > 0).

2. The Mittag–Leffler process

Before we come to the Mittag–Leffler process let us briefly mention some well
known results concerning the Mittag–Leffler distribution. Let η = η(α) be a random
variable being Mittag–Leffler distributed with parameter α ∈ [0, 1]. Note that η
has moments

E(ηm) =
Γ(1 +m)

Γ(1 +mα)
, m ∈ [0,∞),

and that the entire moments E(ηm), m ∈ N0, uniquely determine the distribution
of η. Clearly, η is standard exponentially distributed for α = 0 and P(η = 1) = 1
for α = 1.

If αn → α, then the moments of η(αn) converge to those of η(α), which implies
the convergence η(αn) → η(α) in distribution as n → ∞. Thus, the map α 7→ Pη(α)

is a continuous function from [0, 1] to the space P(E) of probability measures on
E := [0,∞) equipped with the topology of convergence in distribution.

For α ∈ (0, 1) the Mittag–Leffler distribution can be characterized in terms of
an exponential integral of a particular subordinator as follows. Let S = (St)t≥0



38 Martin Möhle

be a drift-free subordinator with killing rate k := 1/Γ(1 − α) and Lévy measure %
having density

u 7→ 1

Γ(1− α)

e−u/α

(1− e−u/α)α+1
, u ∈ (0,∞), (2.1)

with respect to Lebesgue measure on (0,∞). It is readily checked (see Lemma 5.1
in the appendix) that S has Laplace exponent

Φ(x) =
Γ(1 + αx)

Γ(1− α+ αx)
, x ∈ [0,∞). (2.2)

The distribution of the exponential integral I :=
∫∞
0

e−Stdt is uniquely determined
(see Carmona et al. (1997)) via its entire moments

E(Im) =
m!

Φ(1) · · ·Φ(m)
= m!

m∏
j=1

Γ(1 + (j − 1)α)

Γ(1 + jα)
=

Γ(1 +m)

Γ(1 +mα)
, m ∈ N.

Thus, I is Mittag–Leffler distributed with parameter α.

2.1. Existence of the Mittag–Leffler process. In this subsection we prove the exis-
tence of a particular Markov process X = (Xt)t≥0 having sample paths in DE [0,∞)
such that every Xt is Mittag–Leffler distributed with parameter e−t. Constructing
Markov processes with given marginal distributions has attained some interest in
the literature, mainly in the context of (semi)martingales. We exemplary refer the
reader to Madan and Yor (2002) and the references therein. Note however, that
the process X we are going to construct will be neither a supermartingale nor a
submartingale.

For t ∈ [0,∞) let ηt be a random variable being Mittag–Leffler distributed with
parameter e−t. Define p : [0,∞)× E × B(E) → [0, 1] via

p(t, x,B) := E(1B(xe−t

ηt)) = P(xe−t

ηt ∈ B). (2.3)

The definition of p is such that for all (t, x) ∈ [0,∞)×E the random variable xe−t

ηt
has distribution p(t, x, .). In particular, p(t, x, .) has moments∫

E

ymp(t, x,dy) = E((xe−t

ηt)
m) = xme−t Γ(1 +m)

Γ(1 +me−t)
, m ∈ [0,∞), (2.4)

and the entire moments
∫
E
ymp(t, x,dy), m ∈ N0, uniquely determine the distribu-

tion p(t, x, .). In order to verify the Chapman–Kolmogorov property

p(s+ t, x,B) =

∫
E

p(s, y,B) p(t, x, dy), s, t ∈ [0,∞), x ∈ E,B ∈ B(E), (2.5)

fix s, t ∈ [0,∞) and x ∈ E. For all B ∈ B(E) define µ1(B) := p(s + t, x,B) and
µ2(B) :=

∫
E
p(s, y,B) p(t, x, dy). Clearly, µ1 and µ2 are probability measures on

E. By (2.4), µ1 has moments∫
E

zm µ1(dz) =

∫
E

zmp(s+ t, x,dz) = xme−(s+t) Γ(1 +m)

Γ(1 +me−(s+t))
, m ∈ N0,
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and these moments uniquely determine µ1. By Fubini’s theorem and (2.4), µ2 has
moments ∫

E

zm µ2(dz) =

∫
E

zm
∫
E

p(s, y, dz) p(t, x,dy)

=

∫
E

(∫
E

zmp(s, y, dz)

)
p(t, x, dy)

=

∫
E

yme−s Γ(1 +m)

Γ(1 +me−s)
p(t, x, dy)

=
Γ(1 +m)

Γ(1 +me−s)

∫
E

yme−s

p(t, x, dy)

=
Γ(1 +m)

Γ(1 +me−s)
xme−se−t Γ(1 +me−s)

Γ(1 +me−se−t)

= xme−(s+t) Γ(1 +m)

Γ(1 +me−(s+t))
,

and these moments uniquely determine µ2. Since the moments of µ1 and µ2 co-
incide, it follows that µ1 = µ2 and the Chapman–Kolmogorov property (2.5) is
established. Thus, the family (Tt)t≥0 of linear operators Tt, defined via

Ttf(x) :=

∫
E

f(y) p(t, x, dy) = E(f(xe−t

ηt)), t ∈ [0,∞), f ∈ B(E), x ∈ E, (2.6)

defines a semigroup on B(E), the set of bounded measurable functions f : E → R
equipped with the supremum norm ‖f‖ := supx∈E |f(x)|. Note that (2.6) is also
well defined for some unbounded functions, for example for all polynomials f : E →
R. The semigroup (Tt)t≥0 on B(E) is clearly conservative, since Tt1 = 1 for all t ∈
[0,∞). We have ‖Ttf‖ = supx∈E |E(f(xe−t

ηt))| ≤ supx∈E E(|f(xe−t

ηt)|) ≤ ‖f‖ for
all t ∈ [0,∞) and all f ∈ B(E). Thus, ‖Tt‖ ≤ 1 for all t ∈ [0,∞), so the semigroup
(Tt)t≥0 is contracting. Moreover, (Tt)t≥0 is obviously positive meaning that each
operator Tt maps nonnegative functions (in B(E)) to nonnegative functions.

Let Ĉ(E) ⊆ B(E) denote the Banach space of continuous functions f : E → R
vanishing at infinity. Using the dominated convergence theorem it is easily seen

(see Lemma 5.3 in the appendix) that TtĈ(E) ⊆ Ĉ(E) for all t ∈ [0,∞). With
some more effort (see again Lemma 5.3) it can be shown by exploiting the theorem

of Heine that, for all f ∈ Ĉ(E), Ttf(x) → f(x) as t → 0 uniformly for all x ∈ E.

Therefore, (Tt)t≥0 is strongly continuous on Ĉ(E), thus a Feller semigroup on

Ĉ(E). Hence (see, for example, Ethier and Kurtz (1986, p. 169, Theorem 2.7))
there exists a Markov process X = (Xt)t≥0 corresponding to (Tt)t≥0 with initial
distribution P(X0 = 1) = 1 and sample paths in the space DE [0,∞) of right
continuous functions x : [0,∞) → E with left limits equipped with the Skorohod
topology. Note that E(f(Xs+t) |Xu, u ≤ s) = Ttf(Xs) for all f ∈ B(E) and all
s, t ∈ [0,∞) and that

P(Xs+t ∈ B |Xu, u ≤ s) = p(t,Xs, B), s, t ∈ [0,∞), B ∈ B(E).

From E(f(Xt)) = E(f(Xt) |X0 = 1) = Ttf(1) = E(f(ηt)), f ∈ B(E), t ∈ [0,∞), we
conclude that Xt has the same distribution as ηt, so Xt is Mittag–Leffler distributed
with parameter e−t. We therefore call X the Mittag–Leffler process.
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Clearly, Xt → X∞ in distribution as t → ∞, whereX∞ is standard exponentially
distributed. Thus, the stationary distribution of X is the standard exponential
distribution.

Remark 2.1. The Chapman–Kolmogorov property holds whenever the random vari-
able ηt introduced at the beginning of the construction in this subsection has mo-
ments of the form E(ηmt ) = h(m)/h(me−t) for some given function h : [0,∞) →
(0,∞) and if these moments uniquely determine the distribution of ηt. We have
carried out the construction for h(x) := Γ(1 + x) leading to the Mittag–Leffler
process.

More generally, one may use other functions h, for example h(x) := Γ(ax+b) for
some constants a, b ∈ (0,∞), leading to a construction of a wider class of Markov
processes X = (Xt)t≥0. In this case Xt has moments E(Xm

t ) = h(m)/h(me−t) =
Γ(am+ b)/Γ(ame−t + b), m ∈ [0,∞). Letting t → ∞ it follows that the stationary
distribution of X has moments h(m)/h(0) = Γ(am+ b)/Γ(b), m ∈ N0, and, hence,

density x 7→ (aΓ(b))−1xb/a−1e−x1/a

, x ∈ (0,∞), with respect to Lebesgue measure
on (0,∞).

A further simple example is h(x) := ax for some constant a ∈ (0,∞), leading to

the deterministic process X = (Xt)t≥0 with Xt = a1−e−t

for all t ∈ [0,∞).

2.2. Further properties of the Mittag–Leffler process. In this subsection we derive
some further properties of the Mittag–Leffler process X. The following lemma
provides a formula for the moments of the finite-dimensional distributions of X.

Lemma 2.2 (Moments of the finite-dimensional distributions of X). Let k ∈ N,
0 = t0 ≤ t1 < t2 < · · · < tk and m1, . . . ,mk ∈ [0,∞). For j ∈ {0, . . . , k} define

xj := xj(k) :=
∑k

i=j+1 mie
−(ti−tj). Note that xk = 0 and x0 =

∑k
i=1 mie

−ti . Then

E(Xm1
t1 · · ·Xmk

tk
) =

k∏
j=1

Γ(1 + xj +mj)

Γ(1 + xj−1)
(2.7)

and the entire moments E(Xm1
t1 · · ·Xmk

tk
), m1, . . . ,mk ∈ N0, uniquely determine

the distribution of (Xt1 , . . . , Xtk). In particular, E(Xm
t ) = Γ(1 +m)/Γ(1 +me−t),

m ∈ N0, t ∈ [0,∞), and, hence, E(Xt) = 1/Γ(1 + e−t) and Var(Xt) = E(X2
t ) −

(E(Xt))
2 = 2/Γ(1 + 2e−t)− 1/(Γ(1 + e−t))2, t ∈ [0,∞).

Proof : Induction on k. Clearly, (2.7) holds for k = 1, since Xt1 is Mittag–Leffler
distributed with parameter e−t1 . The induction step from k − 1 to k works as
follows. We have

E(Xm1
t1 · · ·Xmk

tk
) = E(E(Xm1

t1 · · ·Xmk
tk

|Xt1 , . . . , Xtk−1
))

= E(Xm1
t1 · · ·Xmk−1

tk−1
E(Xmk

tk
|Xtk−1

)).

Define fm(x) := xm for convenience. Using the formula (2.6) for the semigroup
operator Tt, the last conditional expectation is given by

E(Xmk
tk

|Xtk−1
) = (Ttk−tk−1

fmk
)(Xtk−1

) =
Γ(1 +mk)

Γ(1 +mke−(tk−tk−1))
Xmke

−(tk−tk−1)

tk−1
.
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We therefore obtain

E(Xm1
t1 · · ·Xmk

tk
)

=
Γ(1 +mk)

Γ(1 +mke−(tk−tk−1))
E(Xm1

t1 · · ·Xmk−2

tk−2
X

mk−1+mke
−(tk−tk−1)

tk−1
)

=
Γ(1 + xk +mk)

Γ(1 + xk−1)
E(Xm̃1

t1 · · ·Xm̃k−1

tk−1
),

where m̃j := mj for 1 ≤ j ≤ k − 2 and m̃k−1 := mk−1 + mke
−(tk−tk−1). By

induction,

E(Xm̃1
t1 · · ·Xm̃k−1

tk−1
) =

k−1∏
j=1

Γ(1 + yj + m̃j)

Γ(1 + yj−1)
,

where yj :=
∑k−1

i=j+1 m̃ie
−(ti−tj) for all j ∈ {0, . . . , k − 1}. The result follows since,

for 1 ≤ j ≤ k − 2,

yj =
k−2∑

i=j+1

mie
−(ti−tj) + (mk−1 +mke

−(tk−tk−1))e−(tk−1−tj)

=
k∑

i=j+1

mie
−(ti−tj) = xj

and yk−1 = 0 and, hence, yk−1 + m̃k−1 = m̃k−1 = mke
−(tk−tk−1) + mk−1 =

xk−1 +mk−1. �

Remark 2.3. The mean E(Xt) = 1/Γ(1+e−t) is increasing for t < t0 and decreasing
for t > t0, where t0 ≈ 0.772987 is the unique solution of the equation Ψ(1+e−t0) = 0
and Ψ := Γ′/Γ denotes the logarithmic derivative of the gamma function. The
process X has therefore neither non-increasing paths nor non-decreasing paths. In
particular, we are not in the context of Haas and Miermont (2011), where essentially
all considered processes have non-increasing paths.

Corollary 2.4. The Mittag–Leffler process X = (Xt)t≥0 is continuous in probabil-
ity, i.e. Xs → Xt in probability as s → t for every t ∈ [0,∞).

Proof : By Lemma 2.2, for all s, t ∈ [0,∞),

E(X2
s ) =

Γ(3)

Γ(1 + 2e−s)
→ Γ(3)

Γ(1 + 2e−t)
= E(X2

t ), s → t,

and

E(XsXt) =
Γ(2 + e−|t−s|)

Γ(1 + e−s + e−t)

Γ(2)

Γ(1 + e−|t−s|)
→ Γ(3)

Γ(1 + 2e−t)
= E(X2

t ), s → t.

It follows that E((Xs −Xt)
2) = E(X2

s )− 2E(XsXt) + E(X2
t ) → 0 as s → t. Thus,

for all ε > 0, P(|Xs −Xt| ≥ ε) ≤ E((Xs −Xt)
2)/ε2 → 0 as s → t. �

Remark 2.5. Note that (the Mittag–Leffler distributed random variable) Xt is not
infinitely divisible. Moreover, X does not have independent increments. In par-
ticular, X is not a Lévy process. The process (logXt)t≥0 is as well not a Lévy
process, since this process does not have independent increments either. This can
be also seen as follows. The Fourier transform φt(x) := E(eix logXt) = E(Xix

t ) =
Γ(1 + ix)/Γ(1 + ixe−t), x ∈ R, of logXt is not the t-th power of φ1(x).
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We leave a possible construction of the Mittag–Leffler process via Lévy processes
or subordinators, for example as a random time change and/or by taking the ab-
solute value of a certain Lévy process, for future work. For related functionals of
this type (local time processes, Bessel-type processes) we refer the reader to James
(2010) and the references therein.

We finally provide in this subsection some information on the generator A of
the Mittag–Leffler process X, but we will not use the generator A in our further
considerations. Suppose that f ∈ B(E) is infinitely often differentiable and that f
satisfies f(y) =

∑∞
k=0(f

(k)(x)/k!)(y − x)k for all x, y ∈ E. Then

Ttf(x)− f(x)

t
=

∞∑
k=1

f (k)(x)

k!

E((xe−t

ηt − x)k)

t
.

Let Ψ := Γ′/Γ denote the logarithmic derivative of the gamma function. Since

ak(x) := lim
t↘0

E((xe−t

ηt − x)k)

t
=

 xΨ(2)− x log x for k = 1,
(−x)k

k − 1
for k ∈ N \ {1},

(2.8)

the generator A of X satisfies

Af(x) =
∞∑
k=1

f (k)(x)

k!
ak(x)

with ak(x) defined via (2.8). Since f(xy) =
∑∞

k=0(f
(k)(x)/k!)(−x)k(1 − y)k it

follows that

Af(x) = a1(x)f
′(x) +

∫ 1

0

f(xy)− f(x) + x(1− y)f ′(x)

(1− y)2
dy.

The substitution h = x(1− y) yields

Af(x) = a1(x)f
′(x) + x

∫ x

0

f(x− h)− f(x) + hf ′(x)

h2
dh.

2.3. Duality to Neveu’s continuous state branching process. For every t ∈ [0,∞) and

y ∈ E the map x 7→ P(Xs+t ≤ y |Xs = x) = E(1[0,y](xe−t

ηt)) = P(xe−t

ηt ≤ y) is
non-increasing in x ∈ E, i.e. X is stochastically monotone. Via duality (Siegmund
(1976)) it follows that there exists a Markov process Y = (Yt)t≥0 with state space
E = [0,∞), which is dual to X with respect to the duality function H : E2 → {0, 1}
defined via H(x, y) := 1 if x ≤ y and H(x, y) := 0 otherwise. Note that Y has

transition mechanism P(Yt ≥ x |Y0 = y) = P(Xt ≤ y |X0 = x) = P(xe−t

ηt ≤ y),
t ∈ [0,∞), x, y ∈ E. The semigroup (St)t≥0 of Y is hence given by

Stg(y) = E(g(ye
t

/ηe
t

t )) = E(g(ye
t

ξt)), t ∈ [0,∞), g ∈ B(E), y ∈ E, (2.9)

where α := e−t and ξt := η−et

t = η
−1/α
t . It is well known (see, for example,

Feller (1971, p. 453)) that ξt is α-stable with Laplace transform λ 7→ E(e−λξt) =
e−λα

, λ ∈ [0,∞). Choosing g(y) := e−λy, y ∈ E, in (2.9) it follows that Yt,
conditional on Y0 = y, has Laplace transform E(e−λYt |Y0 = y) = Stg(y) =

E(g(yetξt)) = E(e−λyetξt) = e−(λyet )α = e−yλα

, λ ∈ [0,∞). Thus, we identify
Y as the continuous-state branching process (CSBP) of Neveu (1992) with Lam-
perti branching mechanism (see, for example, Bertoin and Le Gall (2000, Section
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3)) u 7→ u log u. In summary we have just verified that Neveu’s CSBP is the
Siegmund dual of the Mittag–Leffler process. Note that, for all m < α = e−t,

E(Y m
t |Y0 = y) = ymetE(ξmt ) = ymetΓ(1 − met)/Γ(1 − m). On the state space

[0,∞] (including the point ∞) Yt converges in distribution as t → ∞ to a random
variable Y∞ satisfying P(Y∞ = 0 |Y0 = y) = e−y and P(Y∞ = ∞|Y0 = y) = 1−e−y.

Alternatively one may derive this duality result via Möhle (2013, Proposition 2.2)
as follows. The set C1 of all non-negative, non-increasing, left-continuous functions
f : E → R satisfying f(0) = 1 and limx→∞ f(x) = 0 is a cone of X. Moreover,
each f ∈ C1 has a unique integral representation over E with respect to H, namely
f(x) =

∫
E
H(x, y)Qf (dy), x ∈ E, where the probability measure Qf on (E,B(E))

is (uniquely) defined via Qf ([x,∞)) := f(x), x ∈ E. Thus, Proposition 2.2 of
Möhle (2013) is applicable, which yields the existence of the desired dual Markov
process Y .

If η is Mittag–Leffler distributed with parameter α ∈ (0, 1], then (recall Feller
(1971, p. 453)) ξ := η−1/α is α-stable with Laplace transform λ 7→ E(e−λξ) =
e−λα

, λ ∈ [0,∞). This observation leads to the following equivalent formulation of
Theorem 1.1.

Theorem 2.6. For the Bolthausen–Sznitman coalescent, the stochastic process

Z(n) := (Z
(n)
t )t≥0, defined via Z

(n)
t := (X

(n)
t )−et = n/(N

(n)
t )e

t

for all n ∈ N and
t ∈ [0,∞), converges in DE [0,∞) as n → ∞ to the time-inhomogeneous process

Z = (Zt)t≥0 with initial distribution P(Z0 = 1) = 1 and defined via Zt := X−et

t for
all t ∈ [0,∞).

Theorem 2.6 follows from Theorem 1.1 by applying the continuous mapping

theorem to the sequence of processes X(n) = (X
(n)
t )t≥0, n ∈ N, and the continuous

map h : D(0,∞)[0,∞) → DE [0,∞), defined via h(x) := (x−et

t )t≥0 for all x =
(xt)t≥0 ∈ D(0,∞)[0,∞).

For every t ∈ [0,∞) the random variable Zt has the same distribution as ξt and
is hence α-stable with Laplace transform λ 7→ E(e−λZt) = e−λα

, λ ∈ [0,∞), where
α := e−t.

3. Moment calculations

In this section we provide formulas for certain moments of the block counting

process N (n) = (N
(n)
t )t≥0 of the Bolthausen–Sznitman n-coalescent. In the follow-

ing we use for x ∈ (0,∞) and m ∈ [0,∞) the notation [x]m := Γ(x + m)/Γ(x).
Note that for m ∈ N0 the symbol [x]m = x(x + 1) · · · (x + m − 1) coincides with
the ascending factorial. The following lemma provides an explicit formula for the

expectation of [N
(n)
t ]m.

Lemma 3.1. Fix n ∈ N and t ∈ [0,∞). For the Bolthausen–Sznitman coalescent

the random variable N
(n)
t satisfies for all m ∈ [0,∞)

E([N (n)
t ]m) = Γ(m+ 1)

n−1∏
j=1

j +me−t

j

= Γ(m+ 1)

(
n− 1 +me−t

n− 1

)
=

Γ(m+ 1)

Γ(1 +me−t)
[n]me−t .
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In particular,

E(N (n)
t ) =

n−1∏
j=1

j + e−t

j
=

(
n− 1 + e−t

n− 1

)

=
1

Γ(1 + e−t)
[n]e−t =

Γ(n+ e−t)

Γ(n)Γ(1 + e−t)

and

Var(N
(n)
t ) = 2

n−1∏
j=1

j + 2e−t

j
−

n−1∏
j=1

j + e−t

j
−

( n−1∏
j=1

j + e−t

j

)2

.

Proof : Fix n ∈ N and t ∈ [0,∞). The formula obviously holds for m = 0. Thus,

we can assume that m ∈ (0,∞). Clearly, E([N (n)
t ]m) =

∑n
j=1[j]mpnj(t), where

pnj(t) := P(N (n)
t = j). In the following s(., .) and S(., .) denote the Stirling numbers

of the first and second kind respectively. Plugging in

pnj(t) = (−1)n+j Γ(j)

Γ(n)

n∑
k=j

e−(k−1)ts(n, k)S(k, j)

(see Möhle and Pitters (2014, Corollary 1.3), Equation (1.3), corrected by an obvi-
ously missing sign factor (−1)k+j) it follows that

E([N (n)
t ]m) =

n∑
j=1

[j]m(−1)n+j Γ(j)

Γ(n)

n∑
k=j

e−(k−1)ts(n, k)S(k, j)

=
(−1)n

Γ(n)
et

n∑
k=1

s(n, k)(e−t)k
k∑

j=1

Γ(j +m)(−1)jS(k, j).

Since Γ(j +m)(−1)j = Γ(m)[m]j(−1)j = Γ(m)(−m)(−m − 1) · · · (−m − j + 1) =
Γ(m)(−m)j , where (x)j := x(x − 1) · · · (x − j + 1), the last sum simplifies to∑k

j=1 Γ(j +m)(−1)jS(k, j) = Γ(m)
∑k

j=1(−m)jS(k, j) = Γ(m)(−m)k. Thus,

E([N (n)
t ]m) =

(−1)n

Γ(n)
et

n∑
k=1

s(n, k)(e−t)kΓ(m)(−m)k

= Γ(m)
(−1)n

Γ(n)
et

n∑
k=1

s(n, k)(−me−t)k = Γ(m)
(−1)n

Γ(n)
et(−me−t)n

=
Γ(m)

Γ(n)
et[me−t]n = Γ(m+ 1)

n−1∏
j=1

j +me−t

j

= Γ(m+ 1)

(
n− 1 +me−t

n− 1

)
=

Γ(m+ 1)

Γ(1 +me−t)
[n]me−t .

Choosing m = 1 the formula for the mean of N
(n)
t follows immediately. The

formula for the variance of N
(n)
t follows from Var(N

(n)
t ) = E([N (n)

t ]2)− E(N (n)
t )−

(E(N (n)
t ))2. �

The following result (Lemma 3.2) is a generalization of Lemma 3.1. It will turn
out to be quite useful later in order to verify the main convergence result (Theorem
1.1).
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Lemma 3.2. Let k ∈ N, 0 = t0 ≤ t1 < t2 < · · · < tk and m1, . . . ,mk ∈ [0,∞).

For j ∈ {0, . . . , k} define xj := xj(k) :=
∑k

i=j+1 mie
−(ti−tj). Note that 0 = xk ≤

xk−1 ≤ · · · ≤ x2 ≤ x1 ≤ x0 =
∑k

i=1 mie
−ti . Then

E
( k∏

j=1

[N
(n)
tj + xj ]mj

)
= [n]x0

k∏
j=1

Γ(1 + xj +mj)

Γ(1 + xj−1)
. (3.1)

Proof : Induction on k. For k = 1 the assertion holds by Lemma 3.1. The induction
step from k − 1 to k (≥ 2) works as follows. We have

E
( k∏

j=1

[N
(n)
tj + xj ]mj

)
= E

(
E
( k∏

j=1

[N
(n)
tj + xj ]mj

∣∣∣∣N (n)
t1 , . . . , N

(n)
tk−1

))

= E
( k−1∏

j=1

[N
(n)
tj + xj ]mj

E([N (n)
tk

]mk
|N (n)

tk−1
)

)
, (3.2)

since xk = 0. The process N (n) = (N
(n)
t )t≥0 is time-homogeneous. Thus, for all

j ∈ {1, . . . , n},

E([N (n)
tk

]mk
|N (n)

tk−1
= j) = E([N (j)

tk−tk−1
]mk

)

=
Γ(1 +mk)

Γ(1 +mke−(tk−tk−1))
[j]

mke
−(tk−tk−1) ,

where the last equality holds by Lemma 3.1. Thus,

E([N (n)
tk

]mk
|N (n)

tk−1
) =

Γ(1 +mk)

Γ(1 +mke−(tk−tk−1))
[N

(n)
tk−1

]
mke

−(tk−tk−1) .

Plugging this into (3.2) yields

E
( k∏

j=1

[N
(n)
tj + xj ]mj

)

=
Γ(1 +mk)

Γ(1 +mke−(tk−tk−1))
E
(( k−1∏

j=1

[N
(n)
tj + xj ]mj

)
[N

(n)
tk−1

]
mke

−(tk−tk−1)

)

=
Γ(1 + xk +mk)

Γ(1 + xk−1)
E
( k−1∏

j=1

[N
(n)
tj + yj ]m̃j

)
,

where yj := xj and m̃j := mj for 0 ≤ j ≤ k−2, yk−1 := 0 and m̃k−1 := mk−1+xk−1.
By induction,

E
( k−1∏

j=1

[N
(n)
tj + yj ]m̃j

)
= [n]y0

k−1∏
j=1

Γ(1 + yj + m̃j)

Γ(1 + yj−1)
= [n]x0

k−1∏
j=1

Γ(1 + xj +mj)

Γ(1 + xj−1)
,

and (3.1) follows immediately, which completes the induction. �

4. Proof of Theorem 1.1

The σ-algebra generated by X
(n)
t coincides with the σ-algebra generated by

N
(n)
t . Thus, the Markov property of the block counting process N (n) carries over
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to the scaled block counting process X(n). Note however that the process X(n) is
time-inhomogeneous whereas N (n) is time-homogeneous.

As a warming up we first verify the convergence of the finite-dimensional dis-
tributions. Afterwards we turn to the convergence in DE [0,∞). Since the proof
of the convergence of the one-dimensional distributions turns out to be less techni-
cal, we start with a consideration of the one-dimensional distributions. Note that
the convergence of the one-dimensional distributions has already been obtained by
Pitman (2006), Theorem 5.19 in combination with Theorem 3.8.

Step 1. (Convergence of the one-dimensional distributions) Recall that S(., .)
denote the Stirling numbers of the second kind. Fix t ∈ [0,∞). Applying the
formula

xm =

m∑
i=0

(−1)m−iS(m, i)[x]i, m ∈ N0, (4.1)

it follows that

E((X(n)
t )m) =

1

nme−t E((N
(n)
t )m) =

m∑
i=0

(−1)m−iS(m, i)
E([N (n)

t ]i)

nme−t ,

n ∈ N, m ∈ N0. By Lemma 3.1, E([N (n)
t ]i) = (Γ(i + 1)/Γ(1 + ie−t))[n]ie−t =

E(Xi
t)[n]ie−t , leading to

E((X(n)
t )m) =

m∑
i=0

(−1)m−iS(m, i)E(Xi
t)
[n]ie−t

nme−t , n ∈ N,m ∈ N0.

Letting n → ∞ shows that limn→∞ E((X(n)
t )m) = E(Xm

t ) for all m ∈ N0. This
convergence of moments implies (see, for example, Billingsley (1995, Theorems

30.1 and 30.2)) the convergence X
(n)
t → Xt in distribution as n → ∞. Thus, the

convergence of the one-dimensional distributions holds.

Step 2. (Convergence of the finite-dimensional distributions) Let us now turn to
the convergence of the k-dimensional distributions, k ∈ N. Fix 0 = t0 ≤ t1 < t2 <
· · · < tk < ∞ and m1, . . . ,mk ∈ [0,∞). For j ∈ {0, . . . , k} define xj := xj(k) :=∑k

i=j+1 mie
−(ti−tj). Note that xk = 0 and that x0 =

∑k
i=1 mie

−ti . We have

k∏
j=1

(
X

(n)
tj +

xj

ne−tj

)mj

=
k∏

j=1

(N
(n)
tj + xj)

mj

nmje
−tj

=
1

nx0

k∏
j=1

(N
(n)
tj + xj)

mj .

Applying (4.1) it follows that

k∏
j=1

(
X

(n)
tj +

xj

ne−tj

)mj

=
1

nx0

k∏
j=1

( mj∑
ij=0

(−1)mj−ijS(mj , ij)[N
(n)
tj + xj ]ij

)

=
1

nx0

∑
i1≤m1,...,ik≤mk

( k∏
j=1

(−1)mj−ijS(mj , ij)

)( k∏
j=1

[N
(n)
tj + xj ]ij

)
.
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Taking expectation yields

E
( k∏

j=1

(
X

(n)
tj +

xj

ne−tj

)mj
)

=
∑

i1≤m1,...,ik≤mk

( k∏
j=1

(−1)mj−ijS(mj , ij)

)
1

nx0
E
( k∏

j=1

[N
(n)
tj + xj ]ij

)
.(4.2)

By Lemma 3.2, the last expectation is O(n
∑k

j=1 ije
−tj

) and

E(
k∏

j=1

[N
(n)
tj + xj ]mj ) = [n]x0

k∏
j=1

Γ(1 + xj +mj)

Γ(1 + xj−1)
= [n]x0E(X

m1
t1 · · ·Xmk

tk
),

where the last equality holds by Eq. (2.7) from Lemma 2.2. Thus, letting n → ∞
in (4.2) yields

lim
n→∞

E
( k∏

j=1

(
X

(n)
tj +

xj

ne−tj

)mj
)

= E(Xm1
t1 · · ·Xmk

tk
). (4.3)

In order to get rid of the disturbing fractions xj/n
e−tj

on the left hand side in (4.3)
one may use the binomial formula(

X
(n)
tj +

xj

ne−tj

)mj

=

mj∑
lj=0

(
mj

lj

)(
xj

ne−tj

)mj−lj

(X
(n)
tj )lj

and conclude from (4.3) by induction on m := m1 + · · ·+mk ∈ N0 that

lim
n→∞

E((X(n)
t1 )m1 · · · (X(n)

tk
)mk) = E(Xm1

t1 · · ·Xmk
tk

), m1, . . . ,mk ∈ N0. (4.4)

This convergence of moments implies (see, for example, Billingsley (1995, Problems

30.5 and 30.6)) the convergence (X
(n)
t1 , . . . , X

(n)
tk

) → (Xt1 , . . . , Xtk) in distribution
as n → ∞. Thus, the convergence of the finite-dimensional distributions holds.

Step 3. (Preparing the proof of the convergence in DE [0,∞)) Let M(E) denote

the set of all measurable functions f : E → R. Define En(s) := {j/ne−s

: j ∈
{1, . . . , n}} for all n ∈ N and all s ∈ [0,∞) and

T
(n)
s,t f(x) := E(f(X(n)

s+t) |X(n)
s = x), n ∈ N, s, t ∈ [0,∞), f ∈ M(E), x ∈ En(s).

Note that (T
(n)
s,t )s,t≥0 is the semigroup of the time-inhomogeneous Markov process

X(n). Let us verify that, for all s, t ∈ [0,∞), all polynomials p : E → R and all
compact sets K ⊆ E,

lim
n→∞

sup
x∈En(s)∩K

|T (n)
s,t p(x)− Ttp(x)| = 0. (4.5)

For m ∈ N0 let pm : E → R denote the m-th monomial defined via pm(x) := xm,
x ∈ E. Fix s, t ∈ [0,∞) and a compact set K ⊆ E. For n ∈ N, m ∈ N0 and
x ∈ En(s) we have

T
(n)
s,t pm(x) = E((X(n)

s+t)
m |X(n)

s = x)

=
E((N (n)

s+t)
m |N (n)

s = xne−s

)

nme−(s+t)
=

E((N (xne−s
)

t )m)

nme−(s+t)
,
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where the last equality holds since the block counting process N (n) = (N
(n)
t )t≥0 is

time-homogeneous. By (4.1) and Lemma 3.1 it follows that

T
(n)
s,t pm(x) =

m∑
i=0

(−1)m−iS(m, i)
E([N (xne−s

)
t ]i)

nme−(s+t)

=

m∑
i=0

(−1)m−iS(m, i)E(Xi
t)
[xne−s

]ie−t

nme−(s+t)
.

Since Ttpm(x) = E(pm(xe−t

Xt)) = E(Xm
t )xme−t

it follows that

T
(n)
s,t pm(x)− Ttpm(x)

= E(Xm
t )

(
[xne−s

]me−t

nme−(s+t)
− xme−t

)
+

m−1∑
i=0

(−1)m−iS(m, i)E(Xi
t)
[xne−s

]ie−t

nme−(s+t)
.

It is straightforward to check that this expression converges uniformly for all x ∈
En(s)∩K (even uniformly for all x in any compact subset of E) to zero as n → ∞.
Therefore, (4.5) holds for every monomial p := pm, m ∈ N0, and, by linearity, for
all polynomials p : E → R.

Step 4. (Convergence in DE [0,∞)) According to a time-inhomogeneous variant
of Ethier and Kurtz (1986, p. 167, Theorem 2.5) it suffices to verify that for all

s, t ∈ [0,∞) and all f ∈ Ĉ(E),

lim
n→∞

sup
x∈En(s)

|T (n)
s,t f(x)− Ttf(x)| = 0. (4.6)

Fix s, t ∈ [0,∞) and f ∈ Ĉ(E). Without loss of generality we may assume that

‖f‖ > 0. Let ε > 0. Since f ∈ Ĉ(E) and Ttf ∈ Ĉ(E), there exists a constant
x0 = x0(ε) ≥ 1 such that |f(x)| < ε and |Ttf(x)| < ε for all x > x0. Moreover, since

P(Xs+t ≤ x0 |Xs = x) = Tt1(−∞,x0](x) = P(xe−t

Xt ≤ x0) = P(Xt ≤ x0/x
e−t

) →
P(Xt ≤ 0) = 0 as x → ∞, we can choose a real constant L = L(ε) ≥ x0 sufficiently
large such that P(Xs+t ≤ x0 |Xs = x) < ε/‖f‖ for all x ≥ L. For all n ∈ N and all
x ∈ En(s) we have

|T (n)
s,t f(x)| ≤ E(|f(X(n)

s+t)| |X(n)
s = x)

= E(|f(X(n)
s+t)| 1{X(n)

s+t>x0}
|X(n)

s = x) + E(|f(X(n)
s+t)| 1{X(n)

s+t≤x0}
|X(n)

s = x)

≤ ε+ ‖f‖P(X(n)
s+t ≤ x0 |X(n)

s = x).

By Step 2, the convergence of the two-dimensional distributions holds. In partic-

ular, for every x ≥ 1, P(X(n)
s+t ≤ x0 |X(n)

s = bxne−sc/ne−s

) converges to P(Xs+t ≤
x0 |Xs = x) as n → ∞ pointwise for all x ≥ 1. Since the map x 7→ P(Xs+t ≤
x0 |Xs = x) = Tt1[0,x0](x) = E(1[0,x0](x

e−t

Xt)) = P(xe−t

Xt ≤ x0), x ≥ 1, is con-
tinuous, non-increasing and bounded, this convergence holds even uniformly for all
x ≥ 1. [The proof of this uniform convergence works essentially the same as the
proof that pointwise convergence of distribution functions holds even uniformly, if
the limiting distribution function is continuous.] Thus, there exists n0 = n0(ε) ∈ N
such that P(X(n)

s+t ≤ x0 |X(n)
s = x) ≤ P(Xs+t ≤ x0 |Xs = x) + ε/‖f‖ for all n > n0

and all x ∈ En(s)∩ [1,∞). For all n ∈ N with n > n0 and all x ∈ En(s)∩ [L,∞) it
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follows that

|T (n)
s,t f(x)| ≤ ε+ ‖f‖

(
P(Xs+t ≤ x0 |Xs = x) +

ε

‖f‖

)
= 2ε+ ‖f‖P(Xs+t ≤ x0 |Xs = x) ≤ 3ε.

Thus, for all n > n0,

sup
x∈En(s)∩[L,∞)

|T (n)
s,t f(x)− Ttf(x)|

≤ sup
x∈En(s)∩[L,∞)

|T (n)
s,t f(x)|+ sup

x∈En(s)∩[L,∞)

|Ttf(x)|

≤ 3ε+ ε = 4ε.

Thus it is shown that

lim
n→∞

sup
x∈En(s)∩[L,∞)

|T (n)
s,t f(x)− Ttf(x)| = 0.

Defining K := [0, L] it remains to verify that

lim
n→∞

sup
x∈En(s)∩K

|T (n)
s,t f(x)− Ttf(x)| = 0. (4.7)

By the Tschebyscheff-Markov inequality, for all y > 0 and all x ∈ En(s) ∩K,

Tt1(y,∞)(x) = P(Xs+t > y |Xs = x) ≤ 1

y
E(Xs+t |Xs = x)

=
1

y
E(Xt)x

e−t

≤ 1

y
E(Xt)L

e−t

.

Moreover, making again use of the Tschebyscheff-Markov inequality and using
Lemma 3.1, for all y > 0 and all x ∈ En(s) ∩K,

T
(n)
s,t 1(y,∞)(x) = P(X(n)

s+t > y |X(n)
s = x)

≤ 1

y
E(X(n)

s+t |X(n)
s = x) =

1

y
E(Xt)

[xne−s

]e−t

ne−(s+t)

≤ 1

y
E(Xt)

[Lne−s

]e−t

ne−(s+t)
∼ 1

y
E(Xt)L

e−t

, n → ∞.

Thus, we can choose a real constant y0 = y0(ε) ≥ x0 (which may depend on s, t
and L but not on n) sufficiently large such that

Tt1(y0,∞)(x) ≤ ε and T
(n)
s,t 1(y0,∞)(x) ≤ ε (4.8)

for all n ∈ N and all x ∈ En(s) ∩ K. With this choice of y0 we are now able to
verify (4.7) as follows. Since |f(y)| < ε for all y > x0 and, hence, for all y > y0, we
obtain for all n ∈ N and all x ∈ En(s)

|T (n)
s,t f(x)− Ttf(x)| ≤ 2ε+ |T (n)

s,t g(x)− Ttg(x)|,
where g := f1[0,y0]. By the Weierstrass approximation theorem we can approximate
the continuous function f uniformly on the compact interval [0, y0] by a polynomial
p. Hence, there exists a polynomial p such that ‖g − h‖ < ε, where h := p1[0,y0].
Thus, for all n ∈ N and all x ∈ En(s)

|T (n)
s,t f(x)− Ttf(x)| ≤ 4ε+ |T (n)

s,t h(x)− Tth(x)|

≤ 4ε+ |T (n)
s,t p(x)− Ttp(x)|+ |T (n)

s,t r(x)|+ |Ttr(x)|,
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where r := p− h = p− p1[0,y0] = p1(y0,∞). It is already shown in Step 3 that

lim
n→∞

sup
x∈En(s)∩K

|T (n)
s,t p(x)− Ttp(x)| = 0.

Thus it remains to treat |T (n)
s,t r(x)| and |Ttr(x)|. Applying the Hölder inequality

and using (4.8) we obtain

|T (n)
s,t r(x)|2 ≤ T

(n)
s,t p

2(x)T
(n)
s,t 1(y0,∞)(x) ≤ εT

(n)
s,t p

2(x)

for all n ∈ N and all x ∈ En(s) ∩ K. Thus it remains to show that T
(n)
s,t p

2(x) is
bounded uniformly for all x ∈ En(s) ∩K. We have

sup
x∈En(s)∩K

|T (n)
s,t p

2(x)| ≤ sup
x∈En(s)∩K

|T (n)
s,t p

2(x)− Ttp
2(x)|+ sup

x∈K
|Ttp

2(x)|.

Since p2 is a polynomial, the first expression converges to zero as n → ∞ by Step
3. The last supremum is obviously bounded, since Ttp

2 is continuous and hence
bounded on the compact set K, i.e. M := supx∈K |Ttp

2(x)| < ∞. Similarly, by the
Hölder inequality and (4.8), |Ttr(x)|2 ≤ Ttp

2(x)Tt1(y0,∞)(x) ≤ εTtp
2(x) ≤ εM for

all x ∈ En(s) ∩K. In summary, (4.7) is established. The proof is complete. �

5. Appendix

In this appendix we collect essentially two results. The first result (Lemma 5.1)
concerns the Laplace exponent of the subordinator S introduced at the beginning
of Section 2. The second result (Lemma 5.3) concerns some fundamental properties
of the semigroup (Tt)t≥0 defined via (2.6).

Lemma 5.1. Fix α ∈ (0, 1). The drift-free subordinator S = (St)t≥0 with killing
rate k := 1/Γ(1 − α) and Lévy measure % with density (2.1) has Laplace exponent
(2.2).

Proof : By the Lévy-Khintchine representation, the subordinator S has Laplace
exponent Φ(x) = k +

∫
(0,∞)

(1− e−xu) %(du), x ∈ [0,∞). Since % has density (2.1)

it follows that

Φ(x) = k +
1

Γ(1− α)

∫ ∞

0

(1− e−xu)
e−u/α

(1− e−u/α)α+1
du.

The substitution y = 1 − e−u/α (⇒ u = −α log(1 − y) and du/dy = α/(1 − y))
leads to

Φ(x) = k +
1

Γ(1− α)

∫ 1

0

(1− (1− y)αx)
α

yα+1
dy. (5.1)
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Partial integration with u(y) := 1 − (1 − y)αx and v(y) := −y−α turns the last
integral into∫ 1

0

(1− (1− y)αx)
α

yα+1
dy

=
[
(1− (1− y)αx)(−y−α)

]1
0
−
∫ 1

0

αx(1− y)αx−1(−y−α) dy

= −1 + αx

∫ 1

0

y−α(1− y)αx−1 dy

= −1 + αxB(1− α, αx) = −1 +
Γ(1− α)Γ(1 + αx)

Γ(1− α+ αx)
.

Plugging this into (5.1) and noting that k = 1/Γ(1 − α) yields Φ(x) = Γ(1 +
αx)/Γ(1− α+ αx), which is (2.2). �

Let E := [0,∞) and let Ĉ(E) denote the set of continuous functions f : E → R
vanishing at infinity. The following result is well known, we nevertheless mention it
since it will turn out to be useful to verify fundamental properties of the semigroup
(Tt)t≥0 defined via (2.6).

Lemma 5.2. Every f ∈ Ĉ(E) is uniformly continuous on E.

Proof : Let ε > 0. Since f vanishes at infinity, there exists x0 ∈ [0,∞) such that
|f(x)| < ε/2 for all x ∈ [x0,∞). By the theorem of Heine, f is uniformly continuous
on [0, x0 + 1]. Thus, there exists δ = δ(ε) ∈ (0, 1) such that |f(x) − f(y)| < ε for
all x, y ∈ [0, x0 + 1] with |x − y| < δ. If |x − y| < δ but x > x0 + 1 or y > x0 + 1,
then x ≥ x0 and y ≥ x0 and hence |f(x)− f(y)| ≤ |f(x)|+ |f(y)| < ε/2 + ε/2 = ε.
Thus, |f(x)− f(y)| < ε for all x, y ∈ E with |x− y| < δ. �

Lemma 5.3. For every t ∈ [0,∞) the operator Tt defined via (2.6) satisfies

TtĈ(E) ⊆ Ĉ(E). Moreover, for every f ∈ Ĉ(E), limt→0 Ttf(x) = f(x) uniformly

for all x ∈ E, so (Tt)t≥0 is a strongly continuous semigroup on Ĉ(E).

Proof : For t ∈ [0,∞), f ∈ Ĉ(E) and x ∈ E we have

Ttf(x) =

∫
E

f(xe−t

y)Pηt(dy) → 0, x → ∞,

by dominated convergence and, similarly,

Ttf(x)− Ttf(x0) =

∫
E

(f(xe−t

y)− f(xe−t

0 y))Pηt(dy) → 0, x → x0,

again by dominated convergence. Thus TtĈ(E) ⊆ Ĉ(E) for all t ∈ [0,∞).

In order to prove the second statement fix f ∈ Ĉ(E). Note that f is bounded,
i.e. ‖f‖ := supx∈E |f(x)| < ∞. For α ∈ [0, 1] let Zα denote a random variable

being Mittag–Leffler distributed with parameter α. Since Ttf(x) = E(f(xe−t

ηt)),
where ηt is Mittag–Leffler distributed with parameter α := e−t, we have to verify
that limα→1 E(f(xαZα)) = f(x) uniformly for all x ∈ E, where without loss of
generality we can assume that α ∈ [1/2, 1].

Fix ε > 0. Since f vanishes at infinity, there exists a constant x0 ∈ [1,∞) such
that |f(x)| < ε for all x ≥ x0. Define K := 4x2

0 (≥ x0 ≥ 1). In the following the
uniform convergence limα→1 E(f(xαZα)) = f(x) is verified by distinguishing the
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two situations x ∈ [K,∞) and x ∈ [0,K]. For x ∈ [K,∞) we essentially exploit the
fact that f vanishes at infinity. For x ∈ [0,K] the uniform continuity of f (Lemma
5.2) comes into play. Let us start with the case x ∈ [K,∞).

For all x ≥ K and all z ≥ 1/2 we have xαz ≥ xα/2 ≥
√
x/2 ≥

√
K/2 = x0 and,

hence, |f(xαz)| < ε. We therefore obtain uniformly for all x ≥ K

|E(f(xαZα))− f(x)| ≤
∫
E

|f(xαz)− f(x)|PZα(dz)

=

∫
[1/2,∞)

|f(xαz)− f(x)|︸ ︷︷ ︸
≤2ε

PZα(dz) +

∫
[0,1/2)

|f(xαz)− f(x)|︸ ︷︷ ︸
≤2‖f‖

PZα(dz)

≤ 2ε+ 2 ‖f‖P(Zα < 1/2) → 2ε

as α → 1, since Zα → Z1 ≡ 1 in distribution as α → 1.
Assume now that x ∈ [0,K]. By Lemma 5.2 the function f is uniformly contin-

uous on E. Thus, there exists a constant δ = δ(ε) > 0 such that |f(y)− f(x)| < ε
for all x, y ∈ E with |y − x| < δ. Since xα converges to x as α → 1 uniformly
on [0,K] we can choose α0 = α0(δ) = α0(ε) < 1 sufficiently close to 1 such that
|xα − x| < δ/2 for all α ∈ [α0, 1] and all x ∈ [0,K]. For all α ∈ [α0, 1], x ∈ [0,K]
and all z ∈ E with |z − 1| < γ := δ/(2K) we have

|xαz − x| ≤ |xαz − xα|+ |xα − x| = xα|z − 1|+ |xα − x|

< Kα|z − 1|+ δ

2
≤ K|z − 1|+ δ

2
< Kγ +

δ

2
= δ,

and, hence, |f(xαz)− f(x)| < ε. For all α ∈ [α0, 1] and all x ∈ [0,K] it follows that

|E(f(xαZα))− f(x)| ≤
∫
E

|f(xαz)− f(x)|PZα(dz)

=

∫
{|z−1|<γ}

|f(xαz)− f(x)|︸ ︷︷ ︸
≤ε

PZα(dz) +

∫
{|z−1|≥γ}

|f(xαz)− f(x)|︸ ︷︷ ︸
≤2‖f‖

PZα(dz)

≤ ε+ 2 ‖f‖P(|Zα − 1| ≥ γ) → ε

as α → 1, since Zα → Z1 ≡ 1 in probability as α → 1. In summary it is shown that
limα→1 E(f(xαZα)) = f(x) uniformly for all x ∈ E. Thus, limt→0 Ttf(x) = f(x)
uniformly for all x ∈ E. �
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