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Abstract. We develop Stein’s method for the half-normal distribution and apply
it to derive rates of convergence in distributional limit theorems for three statistics
of the simple symmetric random walk: the maximum value, the number of returns
to the origin and the number of sign changes up to a given time n. We obtain
explicit error bounds with the optimal rate n−1/2 for both the Kolmogorov and the
Wasserstein metric. In order to apply Stein’s method, we compare the character-
izing operator of the limiting half-normal distribution with suitable characteriza-
tions of the discrete approximating distributions, exploiting a recent technique by
Goldstein and Reinert (2013).

1. Introduction

This article concerns the rate of convergence issue for three limit theorems in
the surroundings of the one-dimensional simple symmetric random walk (SRW).
By this we mean the discrete time stochastic process (Sn)n≥0 defined by S0 := 0
and Sn :=

∑n
j=1Xj, n ≥ 1, where X1, X2, . . . , are iid random variables with

P (X1 = 1) = P (X1 = −1) = 1/2. It has been known for a long time that various
statistics of the process (Sn)n≥0 exhibit a quite counter intuitive distributional be-
haviour, see e.g. Chapter 3 of Feller (1968) for some qualitative limit theorems.
As to quantitative results, in Döbler (2012a) a rate of convergence for the arcsine
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law was proved using Stein’s method for Beta distributions (see also Goldstein and
Reinert (2013) for an improvement of this result with respect to the computation
of an explicit constant of convergence and also Döbler (2014) for a further improve-
ment of this constant).
Here, we will focus on limit theorems which state convergence towards the distri-
bution µ of Y := |Z|, where Z ∼ N(0, 1) is standard normally distributed. This
distribution is commonly known as the (standard) half-normal distribution. The
technique of proof will be to compare the Stein characterization of Y with a suit-
able characterization for the approximating discrete distribution, as was proposed
by Goldstein and Reinert (2013) and also used in Döbler (2012a). Generally, this
technique is promising, whenever a concrete formula for the probability mass func-
tion of the discrete distribution is at hand, which yields a Stein characterization
similar to the one for the limiting distribution. Note that even though the prob-
ability mass function and, hence, the discrete distribution must be known for this
approach to be applicable, it might still be of interest to approximate by an easier to
handle absolutely continuous distribution. In fact, already the de Moivre-Laplace
theorem gives an approximation to the known binomial by the normal distribution.
In the case of Y = |Z| a suitable Stein characterization is easily found, using the
density approach of Stein’s method (see Chatterjee and Shao (2011); Eichelsbacher
and Löwe (2010); Chen et al. (2011), for instance). Although we could simply
quote the theory and general bounds on the solution to the Stein equation from
Chen et al. (2011) or Chatterjee and Shao (2011), for example, we prefer deriving
our own bounds, which usually yield better constants.

The rate of convergence results in this paper are always with respect to a cer-
tain probability metric, which is defined via test functions. Thus, if µ and ν are
two probability measures on (R,B) and H is some class of measurable test functions
that are integrable with respect to µ and ν, then we define the distance

dH(µ, ν) := sup
h∈H

∣

∣

∣

∫

R

hdµ−
∫

R

hdν
∣

∣

∣
.

For example, if W is the class of Lipschitz continuous functions on R with Lipschitz
constant not greater than 1 and if µ and ν both have first moments, then dW (µ, ν)
is the Wasserstein distance between µ and ν. On the other hand, if K is the class
of functions hz := 1(−∞,z], z ∈ R, then we obtain the Kolmogorov distance

dK(µ, ν) = sup
z∈R

∣

∣

∣
µ
(

(−∞, z]
)

− ν
(

(−∞, z]
)

∣

∣

∣
,

which is particularly natural from a statistician’ s point of view. For real-valued
random variables X and Y we write dH(X,Y ) for dH

(

L(X),L(Y )
)

.

Now, we introduce the statistics of (Sn)n≥0, which converge in distribution to Y .
First, consider the number Kn of times that the random walk returns to the origin
up to time n, i.e.

Kn :=
∣

∣{1 ≤ k ≤ n = 2m : Sk = 0}
∣

∣ . (1.1)

The variable Kn is sometimes called the local time or occupation time at 0 by time
n. From Theorem 7, Section 5 of Feller (1949) (see also Equation (5.31) there) it

is known that Kn/
√
n

D→ Y as n → ∞ (see also Equation (1) of Chung and Hunt
(1949)). Note that intuition might lead us to the (false) conclusion that the number
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of returns to the origin should roughly grow linearly with the time n. Here is a
theorem which gives error bounds for this distributional convergence.

Theorem 1.1. Let n = 2m be an even positive integer. Then, with W := Wn :=
Kn/

√
n

dW(W,Y ) ≤ 1√
n

(

2

π
+ 2

)

+
1

n

√

2

π
and

dK(W,Y ) ≤ 1√
n

(

3 + 2
√

2√
2π

+
3

4

)

+
3

2n
.

It should be mentioned that the rate n−1/2 for dK(W,Y ) was also given in Peköz
et al. (2013) but they did not compute an explicit constant. Next, consider

Mn := max
0≤k≤n

Sk ∈ {0, 1, . . . , n} . (1.2)

Then, Mn/
√
n

D→ Y as n → ∞. This follows by an application of the CLT to the
result of Theorem 1 in Section 7 of Chapter 3 in Feller (1968). We will prove the
following quantitative version of this result.

Theorem 1.2. Let n = 2m be an even positive integer. Then, with W := Wn :=
Mn/

√
n

dW (W,Y ) ≤ 1√
n

(

3 +
2

π

)

and

dK(W,Y ) ≤ 1√
n

(

4

√

2

π
+

1

2

)

+
2

n
.

Finally, consider the number Cn of sign changes by the random walk up to time
n := 2m+ 1, m ∈ N, i.e.

Cn := C2m+1 :=
∣

∣{1 ≤ k ≤ 2m : Sk−1 · Sk+1 < 0}
∣

∣ . (1.3)

Then, Theorem 2 in Section 5 of Chapter 3 in Feller (1968) states that

2C2m+1/
√

2m+ 1
D→ Y as m→ ∞. Again, we obtain a quantitative version of this

result.

Theorem 1.3. Let m be a positive integer and n := 2m+ 1.
Then, with W := Wm := 2C2m+1/

√
2m+ 1

dW (W,Y ) ≤ 1√
n

(

4 +
2

π

)

+

√

2

π

1

n
+

2
√

2

π

1

n3/2
and

dK(W,Y ) ≤ 1√
n

(2
√

2 + 4√
π

+
3

2

)

+
3

n
+

4√
π

1

n3/2
.

The rest of the paper is organized as follows. In Section 2 we develop Stein’s
method for the half-normal distribution of Y and review the technique by Goldstein
and Reinert (2013) of comparison with a discrete distribution. In Sections 3, 4 and
5 we present the proofs of Theorems 1.1, 1.2 and 1.3, respectively and in Section 6
we show the optimality of the obtained convergence rates. Finally, in Section 7 we
give proofs of some of the results from Section 2.
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2. Stein’s method for the half-normal distribution and for discrete dis-

tributions

Stein’s method is by now a well-established device for proving concrete error
bounds in distributional convergence problems. Since its introduction by Stein in
the seminal paper Stein (1972) on univariate normal approximation for sums of
random variables, satisfying a certain mixing condition, it has undergone remark-
able progress. On the one hand, the range of normal approximation problems that
can be tackled by means of the method has been largely extended, particularly due
to the development of certain coupling constructions (see Chen et al. (2011) for an
introduction and overview). On the other hand, the essential idea of characterizing
a given distribution by a certain differential or difference equation, was succes-
fully carried over to other prominent distributions, like, for instance, the Poisson
distribution (see e.g. Chen (1975) and Barbour et al. (1992)), the Gamma distri-
bution (see Luk (1994)), the exponential distribution (see e.g. Chatterjee et al.
(2011); Peköz and Röllin (2011); Fulman and Ross (2013)), the Beta distribution
(see Goldstein and Reinert (2013); Döbler (2012b, 2014)), the Laplace distribution
(see Pike and Ren (2014)) and, more generally, the recent article Gaunt (2014) on
the class of Variance-Gamma distributions. Furthermore, general techniques have
been proposed to develop Stein’s method for a distribution with a given density,
like for example the density approach (see Stein et al. (2004); Chatterjee and Shao
(2011); Eichelsbacher and Löwe (2010); Chen et al. (2011)) or the general approach
in Döbler (2014), which is adapted to a given exchangeable pair. For a nice recent
generalization of the density approach also see Ley et al. (2014).
Before we develop Stein’ s method for the half-normal distribution, let us make the
following remark. Note that since Y = |Z| and the random variable W in each
of the Theorems 1.2-1.3 is nonnegative, it would in principle be possible to apply
Stein’s method for the standard normal distribution for their proofs. Indeed, if H
is a given class of test functions on [0,∞) and if for h ∈ H we define the function g
on R by g(x) := h(|x|) and denote by G the class of all those functions g, when h
is running through H, we have that

dH(W,Y ) = sup
h∈H

∣

∣E[h(W )] − E[h(Y )]
∣

∣ = sup
g∈G

∣

∣E[g(W )] − E[g(Z)]
∣

∣

= sup
g∈G

∣

∣E
[

f̃ ′
g(W ) −Wf̃g(W )

]∣

∣ ,

where we denote by f̃g the standard solution to the standard normal Stein equation
corresponding to the test function g. Unfortunately, unless Lipschitz-continuous
test functions are considered, in general the bounds on the functions f̃g, g ∈ G, and
on their lower order derivatives, which could be derived from known results from
Stein’s method of normal approximation, are worse than the bounds we obtain for
the functions fh in Lemmas 2.2 and 2.3. As a consequence, following this route
would yield worse constants in Theorems 1.1-1.3 than we will obtain by considering
Stein’ s method for the half-normal distribution itself, at least as far as the Kol-
mogorov distance is concerned.
However, for some of our bounds, we actually will use results from Stein’s method
for the standard normal distribution observing that for x ≥ 0 the solution fh(x) to

the half-normal Stein equation (2.3) given by (2.5), (2.6) and f̃g(x) coincide, which
makes it possible to shorten the exposition of some of our proofs. In our opinion,
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this compromise eventually justifies developing a version of Stein’ s method for the
half-normal distribution instead of just applying existing results on normal approx-
imation.

We begin by developing Stein’s method for the half-normal distribution. Note that
µ is supported on [0,∞), since Y = |Z|, where Z ∼ N(0, 1). We denote by p and
F the (continuous) density function and distribution function of Y , respectively.
Thus, as a trivial computation shows, we have

p(x) = 2ϕ(x)1(0,∞)(x) =

√

2

π
e−x2/21(0,∞)(x) and (2.1)

F (x) = (2Φ(x) − 1)1(0,∞)(x) , (2.2)

where ϕ,Φ denote the (continuous) density function and distribution function of
Z, respectively. According to the density approach in Stein’s method, we have the
following result.

Proposition 2.1 (Stein characterization). A random variable X with values in
[0,∞) has the half-normal distribution µ if and only if

E
[

f ′(X)
]

= E
[

Xf(X)
]

− f(0)

√

2

π

for all functions f : [0,∞) → R, which are absolutely continuous on every compact
sub-interval of [0,∞) such that E|f ′(Y )| <∞.

As we do not explicitly need the result of Proposition 2.1, we omit the rather
standard proof. For a given measurable function h on [0,∞) with E|h(Y )| < ∞
Proposition 2.1 now motivates the following half-normal Stein equation

f ′(x) − xf(x) = h(x) − µ(h) , (2.3)

where we abbreviate µ(h) := E[h(Y )]. This equation is to be solved for the function
f on [0,∞). If f is a solution to (2.3) andW is a given nonnegative random variable,
then, taking expectations, we have the following identity:

E[h(W )] − E[h(Y )] = E
[

f ′(W ) −Wf(W )] (2.4)

As a matter of fact, the right hand side of (2.4) may often be bounded more easily
(even uniformly in the test functions h from some class H of functions) than the left
hand side, if one further tool is available. This additional tool may be a coupling,
like for example the exchangeable pairs coupling (see Chen et al. (2011)), or a
characterization for the distribution L(W ), as will be exploited in this paper.
We now introduce the standard solution fh to (2.3). Let fh : [0,∞) → R be defined
by

fh(x) :=
1

p(x)

∫ x

0

(

h(t) − µ(h)
)

p(t)dt

=
1

ϕ(x)

∫ x

0

(

h(t) − µ(h)
)

ϕ(t)dt (2.5)

= − 1

ϕ(x)

∫ ∞

x

(

h(t) − µ(h)
)

ϕ(t)dt . (2.6)

It is easily checked that fh indeed solves Equation (2.3) and that the solutions of

the homogeneous equation corresponding to (2.3) have the form cex2/2 for some
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constant c ∈ R. This particularly shows that if fh is bounded, then it is the only

bounded solution to (2.3) and also the only solution f with limx→∞ e−x2/2f(x) =
0. Note that the half-normal Stein equation (2.3) is the same as the standard
normal one (see e.g. Chen et al. (2011)) except that we only consider functions on
[0,∞), here. Thus, there should also be some correspondence between the solutions.
Indeed, if as above, for given h on [0,∞), we consider the function g on R given

by g(x) := h(|x|) and denote by f̃g the standard solution to the Stein equation for
the standard normal distribution L(Z) and the test function g, we obtain for each
x ≥ 0 that

f̃g(x) = − 1

ϕ(x)

∫ ∞

x

(

g(t) − E[g(Z)]
)

ϕ(t)dt

= − 1

ϕ(x)

∫ ∞

x

(

h(t) − E[h(Y )]
)

ϕ(t)dt

= fh(x) (2.7)

by (2.6). Thus, f̃g coincides with fh on [0,∞). This allows us to derive properties

of the solutions fh to (2.3) from those of the functions f̃g, which are well-studied.
For example note that, if h is Lipschitz on [0,∞) with Lipschitz constant L > 0,
then for x, y ∈ R

∣

∣g(x) − g(y)
∣

∣ =
∣

∣h(|x|) − h(|y|)
∣

∣ ≤ L
∣

∣|x| − |y|
∣

∣ ≤ L|x− y| . (2.8)

So, g is also Lipschitz with the same constant L.
In order to make good use of identity (2.4) one needs bounds on the solutions fh

and their lower order derivatives. The following lemma gives bounds for bounded
measurable or Lipschitz test functions h.

Lemma 2.2. Let h : [0,∞) → R be Borel-measurable.

(i) If h is bounded, then fh is Lipschitz and with z0.75 := Φ−1(3/4) we have

(a) ‖fh‖∞ ≤ ‖h−µ(h)‖∞

4ϕ(z0.75)
,

(b) ‖f ′
h‖∞ ≤ 2‖h− µ(h)‖∞ .

(ii) If h is Lipschitz, then fh is continuously differentiable with a Lipschitz con-
tinuous derivative and we have the bounds
(a) ‖fh‖∞ ≤ ‖h′‖∞ ,

(b) ‖f ′
h‖∞ ≤

√

2
π‖h′‖∞ ,

(c) ‖f ′′
h‖∞ ≤ 2‖h′‖∞ .

Proof : Assertion (a) of (i) is proved in Section 7. By (2.7) fh(x) coincides with

the solution f̃g(x) to the Stein equation for the standard normal distribution cor-
responding to the test function g(x) = h(|x|). Since

sup
x∈R

|g(x) − E[g(Z)]| = sup
x≥0

|h(x) − E[h(Y )]| , E[g(Z)] = E[h(Y )] and,

by (2.8), ‖g′‖∞ = ‖h′‖∞ bound (b) of (i) and the bounds in (ii) follow from well-
known bounds in the standard normal case (see Chen et al. (2011))).

�

Lipschitz test functions h with Lipschitz constant ‖h′‖∞ ≤ 1 yield the Wasser-
stein distance. The Kolmogorov distance, in contrast, is induced by the class of
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functions hz = 1(−∞,z], z ∈ R. Since we only compare distributions with sup-
port on [0,∞) we may restrict ourselves to the case z ≥ 0. We write fz := fhz .
Since the functions hz are uniformly bounded by 1, we immediately get bounds
on ‖fz‖∞ and ‖f ′

z‖∞ from Lemma 2.2 (i). But for this particular class of func-

tions, a special analysis indeed yields smaller constants. If we denote by f̃z the
standard solution to Stein’s equation for the standard normal distribution with re-
spect to the test function hz, where z ∈ R, we obtain from (2.7) for z ≥ 0 that

fz(x) = f̃z(x) − f̃−z(x) for each x ≥ 0. Indeed, letting gz(x) := hz(|x|), x ∈ R, we
have gz(x) = hz(x) − 1(−∞,−z)(x) which equals hz(x) − h−z(x) for every x 6= −z,
leading to this representation of fz. However, we were not able to use this repre-
sentation and known properties of the functions f̃z to derive the properties of fz

stated in the following lemma. This is why a complete proof is given in Section 7.

Lemma 2.3. For each x, y, z ≥ 0 we have:

(a) The function [0,∞) ∋ x 7→ xfz(x) ∈ R is increasing and
0 ≤ xfz(x) ≤ 2Φ(z) − 1 < 1.

(b) 0 < fz(x) ≤ 1
2 .

(c) ‖f ′
z‖∞ ≤ 1 and |f ′

z(x) − f ′
z(y)| ≤ 1 .

Remark 2.4. The bound in Lemma 2.3 (b) is not optimal. More precisely, computer
algebra systems suggest that

sup
z≥0

‖fz‖∞ = 0.456296... .

However, the bounds in Lemma 2.3 (c) are optimal, which is proved in Section 7.

In the following, we review the technique of finding a suitable Stein type charac-
terization for a discrete distribution on the integers by Goldstein and Reinert Gold-
stein and Reinert (2013). A finite integer interval is a set I of the form I = [a, b]∩Z

for some integers a ≤ b. Given a probability mass function p : Z → R with p(k) > 0
for k ∈ I and p(k) = 0 for k ∈ Z \ I, we consider the function ψ : I → R given by
the formula

ψ(k) :=
∆p(k)

p(k)
=
p(k + 1) − p(k)

p(k)
, (2.9)

where for a function f on the integers ∆f(k) := f(k + 1) − f(k) denotes the for-
ward difference operator. The next result, a version of Corollary 2.1 from Goldstein
and Reinert (2013), yields various Stein characterizations for the distribution corre-
sponding to p. For such a probability mass function p with support a finite integer
interval I = [a, b] ∩ Z, let F(p) denote the class of all real-valued functions f on Z

such that f(a− 1) = 0.

Proposition 2.5. Let p be a probability mass function which is supported on the
finite integer interval I = [a, b]∩Z and is positive there. Let c : [a−1, b]∩Z → R be
a function with c(k) 6= 0 for all k ∈ I. Then, in order that a given random variable
X with support I is distributed according to p it is necessary and sufficient that for
all functions g ∈ F(p) we have

E
[

c(X − 1)∆g(X − 1) +
[

c(X)ψ(X) + ∆c(X − 1)
]

g(X)
]

= 0 . (2.10)



178 C. Döbler

3. The number of returns to the origin

Recall the definition of Kn from (1.1). In this section we give the proof of
Theorem 1.1. It is known (see e.g. Feller (1968), Problem 9 in Chapter 3) that for
each r ∈ {0, 1, . . . ,m}

p(r) := P (Kn = r) =
1

2n−r

(

n− r

n/2

)

=
1

22m−r

(

2m− r

m

)

. (3.1)

Using (3.1) as well as the relation
(

n+ 1

k

)

=
n+ 1

n− k + 1

(

n

k

)

we obtain that

ψ(r) :=
p(r + 1) − p(r)

p(r)
=

2−(2m−r−1)
(

2m−r−1
m

)

− 2−(2m−r)
(

2m−r
m

)

2−(2m−r)
(

2m−r
m

)

= 2
m− r

2m− r
− 1 =

−r
2m− r

(3.2)

for all r ∈ {0, 1, . . . ,m}. We thus define c(r) := 2m − r for r = −1, 0, . . . ,m and
obtain

• ∆c(r − 1) = c(r) − c(r − 1) = 2m− r − (2m− r + 1) = −1
• c(r)ψ(r) = −r and
• γ(r) := c(r)ψ(r) + ∆c(r − 1) = −r − 1 = −(r + 1) .

Proposition 2.5 thus yields the following characterization of the distribution of Kn.

Lemma 3.1. A random variable X with support [0,m] ∩ Z has probability mass
function p if and only if for every function g ∈ F(p)

E
[

(2m−X + 1)∆g(X − 1) − (X + 1)g(X)
]

= 0 .

Letting g(k) := 1 for k ≥ 0 and g(k) := 0 for k < 0 we obtain that

E[Kn] = (2m+ 1)P (Kn = 0) − 1

= (2m+ 1)2−2m

(

2m

m

)

− 1 ≤ 2m2−2m

(

2m

m

)

≤ 2m√
πm

=

√

2

π

√
n , (3.3)

where the last inequality follows from Stirling’s formula.

Remark 3.2. It is not easy to obtain the above formula for E[Kn] directly from
the definition of the expected value, but some combinatorial tricks are needed.
Also note that bound (3.3) on E[Kn] is quite accurate. Furthermore, since Kn =
∑m

j=1 1Aj , where Aj := {S2j = 0}, we have E[Kn] =
∑m

j=1 2−2j
(

2j
j

)

and this is the

partial sum of the diverging series which is often used to prove recurrence of the
simple symmetric random walk. Thus, we see how the Stein characterization in
Lemma 3.1 gives us information about how fast this series diverges. This indicates
that a lot of information might be encoded in such a Stein identity.

Proof of Theorem 1.1: Let h be a Borel-measurable test function and consider the
corresponding standard solution f := fh to Stein’s equation (2.3) given by (2.5)
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and (2.6). We also let fh(x) := 0 for each x < 0 and define g(k) := fh(k/
√
n) for

k ∈ Z. Writing ∆yf(x) := f(x+ y) − f(x) we obtain from Lemma 3.1

E
[

Wf(W )
]

=
1√
n
E
[

Kng(Kn)
]

=
1√
n
E
[

(n−Kn + 1)∆g(Kn − 1) − g(Kn)
]

= E
[

(√
n−W + n−1/2

)

∆n−1/2f
(

W − n−1/2
)

]

− 1√
n
E
[

f(W )
]

=
√
nE
[

∆n−1/2f
(

W − n−1/2
)]

+ E1 , (3.4)

where

|E1| =
∣

∣

∣
E
[

(

n−1/2 −W
)

∆n−1/2f
(

W − n−1/2
)

]

− 1√
n
E
[

f(W )
]

∣

∣

∣

≤ ‖f ′‖∞
(

1

n
+

1√
n
E[W ]

)

+
‖f‖∞√

n

≤ ‖f ′‖∞√
n

(

1√
n

+

√

2

π

)

+
‖f‖∞√

n
(3.5)

by inequality (3.3) and because W = n−1/2Kn. Now, using (3.4) and the fact that
f = fh is a solution to the half-normal Stein equation (2.3) we obtain

∣

∣E[h(W )] − E[h(Y )]
∣

∣ =
∣

∣E
[

f ′(W ) −Wf(W )
]∣

∣

≤
∣

∣E
[

f ′(W ) −
√
n∆n−1/2f

(

W − n−1/2
)]∣

∣+ |E1|

=
√
n
∣

∣

∣
E
[

∫ W

W−n−1/2

(

f ′(W ) − f ′(t)
)

dt
]
∣

∣

∣
+ |E1|

= |E2| + |E1| , (3.6)

where,

E2 :=
√
nE
[

∫ W

W−n−1/2

(

f ′(W ) − f ′(t)
)

dt
]

. (3.7)

If h is Lipschitz, then we know from Lemma 2.2 (ii) that f ′ is also Lipschitz with
Lipschitz constant 2‖h′‖∞ and we can bound

|E2| ≤
√
n‖f ′′‖∞E

[

∫ W

W−n−1/2

(

W − t
)

dt
]

=
√
n‖f ′′‖∞

∫ n−1/2

0

udu

=
√
n‖f ′′‖∞

1

2n
=

‖f ′′‖∞
2
√
n

≤ ‖h′‖∞√
n

. (3.8)

More generally, if h is measurable and E|h(Y )| <∞, then, again using that f = fh

is a solution to (2.3) we conclude

E2 =
√
nE
[

∫ W

W−n−1/2

(

Wf(W ) − tf(t) + h(W ) − h(t)
)

dt
]

=
√
nE
[

∫ W

W−n−1/2

(

Wf(W ) − tf(t)
)

dt
]

+
√
nE
[

∫ W

W−n−1/2

(

h(W ) − h(t)
)

dt
]

=: E3 + E4 . (3.9)
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By the fundamental theorem of calculus we have

|E3| =
√
n
∣

∣

∣
E
[

∫ W

W−n−1/2

∫ W

t

(f(s) + sf ′(s))ds dt
]∣

∣

∣

≤
√
n‖f‖∞E

[

∫ W

W−n−1/2

(

W − t
)

dt
]

+
√
n‖f ′‖∞E

[

∫ W

W−n−1/2

∫ W

t

|s|ds dt
]

≤
√
n‖f‖∞

1

2n
+
√
n‖f ′‖∞E

[

max(n−1/2,W )

∫ W

W−n−1/2

(

W − t
)

dt
]

=
‖f‖∞
2
√
n

+
‖f ′‖∞
2
√
n
E
[

max(n−1/2,W )
]

≤ ‖f‖∞
2
√
n

+
‖f ′‖∞

2n
+

‖f ′‖∞
2
√
n

√

2

π
, (3.10)

where we have used the inequality max(x, y) ≤ x + y valid for x, y ≥ 0 and (3.3)
for the last step. Note that for Lipschitz h we have |h(W ) − h(t)| ≤ ‖h′‖∞|W − t|
and hence

|E4| ≤
√
n‖h′‖∞E

[

∫ W

W−n−1/2

(

W − t
)

dt
]

=
‖h′‖∞
2
√
n
,

which together with (3.10) yields a worse bound than the one obtained in (3.8), if
we plug in the bounds on f and f ′ from Lemma 2.2 (ii). If h is not Lipschitz, then
|E4| cannot be bounded that easily. Having in mind the Kolmogorov distance, we
restrict ourselves to the test functions hz = 1(−∞,z], z > 0. Note that for h = hz

we can write

|E4| = −E4 =
√
nE
[

∫

R

1{W−n−1/2≤t≤W}
(

h(t) − h(W )
)

dt
]

and that

1{W−n−1/2≤t≤W}
(

h(t) − h(W )
)

= 1{W−n−1/2≤t≤W}1{W−n−1/2≤t≤z<W}
= 1{W−n−1/2≤t≤z}1{W−n−1/2≤z<W}

≤ 1{W−n−1/2≤t≤W}1{W−n−1/2≤z<W} . (3.11)

Thus, using (3.11) we obtain

|E4| =
√
nE
[

∫

R

1{W−n−1/2≤t≤z}1{W−n−1/2≤z<W}dt
]

≤
√
nE
[

∫ W

W−n−1/2

1dt1{W−n−1/2≤z<W}

]

= P
(

W − n−1/2 ≤ z < W
)

= P
(

Kn − 1 ≤
√
nz < Kn

)

= P
(

Kn = 1 + ⌊
√
nz⌋
)

. (3.12)
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Now note that by unimodality of binomial coefficients for each r = 0, 1, . . . ,m we
can bound

P (Kn = r) =
1

22m−r

(

2m− r

m

)

≤ 1

22m−r

{

(

2m−r
m−r/2

)

, r even
(

2m−r
m−(r+1)/2

)

, r odd

≤
{

(π(m− r/2))−1/2, r even

(π(m− (r + 1)/2))−1/2, r odd

≤
√

2√
πm

, (3.13)

where the next to last inequality comes from

2−2k−1

(

2k + 1

k

)

≤ 2−2k

(

2k

k

)

≤ 1√
πk

by Stirling’s formula. Note that P (Kn = r) = 0 for r > m = n/2 and, hence,
P (Kn = 1 + ⌊√nz⌋) = 0 unless z ≤ 2−1n1/2 − n−1/2. Thus, from (3.13) we have
that for each z > 0

|E4| ≤
√

2√
πm

=
2√
πn

. (3.14)

Collecting terms we see from (3.6), (3.5), (3.8) and Lemma 2.2 (ii) that for h
Lipschitz on [0,

√
n] we have

∣

∣E[h(W )] − E[h(Y )]
∣

∣ ≤ ‖h′‖∞√
n

(

1√
n

√

2

π
+

2

π
+ 2

)

(3.15)

and letting h = hz for z ≥ 0 we see from (3.6), (3.5), (3.9), (3.10), (3.14) and
Lemma 2.3 that

∣

∣P (W ≤ z) − P (Y ≤ z)
∣

∣ ≤ 1√
n

(

3 + 2
√

2√
2π

+
3

4

)

+
3

2n
. (3.16)

Theorem 1.1 now follows from (3.15) and (3.16).
�

4. The maximum of the simple random walk

Recall the definition of Mn from (1.2), where n = 2m is an even positive integer.
In this section we give a proof of Theorem 1.2, which is a little bit more complicated
than the one of Theorem 1.1 given in the last section. This is so because in this
case the function ψ from (2.9) vanishes on the odd integers which is inconvenient
for our method of proof. So we will introduce an auxiliary variable V and use the
triangle inequality

dH(W,Y ) ≤ dH(W,V ) + dH(V, Y ) (4.1)

to prove the theorem.
For r = 0, 1, . . . , n = 2m let p(r) := P (Mn = r). Then, it is known (see Feller
(1968), Theorem 1 in Section 8 of Chapter 3) that

p(r) = P (Mn = r) = pn,r + pn,r+1 , (4.2)

where

pn,k := P (Sn = k) =

(

n
n+k

2

)

2−n
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is the probability that the random walk is in position k at time n. We use the
convention that

(

y
x

)

= 0 unless x is a nonnegative integer. Hence, if pn,k 6= 0, then
n and k must have the same parity and since we always assume that n is even, we
have pn,k = 0 whenever k is odd.

Remark 4.1. From (4.2) one can easily get that for z ≥ 0
∣

∣

∣
P (Mn ≤

√
nz) − (2Φ(z) − 1)

∣

∣

∣
=
∣

∣

∣
2
(

P (Sn ≤ z) − Φ(z)
)

+ P (Sn = 1 + ⌊
√
nz⌋)

∣

∣

∣
,

(4.3)

which, together with the Berry-Esseen Theorem for Bernoulli random variables,
yields the second part of Theorem 1.2, maybe with different constants. Using the
fact that

dW(µ, ν) =

∫

R

∣

∣F (x) −G(x)
∣

∣dx ,

where F and G are the distribution functions corresponding to the distributions µ
and ν, respectively, one might also be able to derive a bound comparable to the first
bound of Theorem 1.2 from (4.3) and a quantitative version of the mean CLT, see
Goldstein (2010), for instance. However, we prefer giving a full proof of Theorem
1.2 which does not rely on any external quantitative CLT results but is just based
on the Stein characterizations of the two distributions involved.

From (4.2) it easily follows that with ψ given by (2.9) for all r ∈ {0, 1, . . . , n}

ψ(r) :=
pn,r+2 − pn,r

pn,r + pn,r+1
=

{

pn,r+2−pn,r

pn,r
, r even

0, r odd .
(4.4)

This is why we introduce the auxiliary random variables

Nn :=

⌊

Mn + 1

2

⌋

and V := Vn :=
2Nn√
n
. (4.5)

Then, Nn only takes the values 0, 1, . . . ,m and for s ∈ {0, 1, . . . ,m} we obtain from
(4.2) that

q(s) := P (Nn = s) = P (Mn + 1 = 2s) + P (Mn + 1 = 2s+ 1)

= P (Mn = 2s− 1) + P (Mn = 2s) = 2P (Mn = 2s) = 2p(2s)

= 2

(

2m

m+ s

)

2−2m . (4.6)

Denoting by ̺ the corresponding difference quotient of the probability mass function
q we obtain for s = 0, 1, . . . ,m that

̺(s) :=
q(s+ 1) − q(s)

q(s)
=

2p(2s+ 2) − 2p(2s)

2p(2s)

=
p(2s+ 2) − p(2s)

p(2s)
=

(

2m
m+s+1

)

−
(

2m
m+s

)

(

2m
m+s

)

=

(

2m
m+s

)(

m−s
m+s+1 − 1

)

(

2m
m+s

) =
m− s

m+ s+ 1
− m+ s+ 1

m+ s+ 1

= − 2s+ 1

m+ s+ 1
. (4.7)
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So, we define the function c : [−1,m] → R by c(s) := m + s + 1. Then, for
s = 0, 1, . . . ,m

c(s)̺(s) = −2s− 1 = −(2s+ 1)

∆c(s− 1) = c(s) − c(s− 1) = m+ s+ 1 − (m+ s) = 1

γ(s) := c(s)̺(s) + ∆c(s− 1) = −2s− 1 + 1 = −2s .

Hence, Proposition 2.5 implies the following lemma.

Lemma 4.2. A random variable X with values in I := [0,m]∩Z has the probability
mass function q, if and only if for all functions g ∈ F(q)

E
[

(m+X)∆g(X − 1) − 2Xg(X)
]

= 0 .

Letting g(k) := 1 for k ≥ 0 and g(k) := 0 for k < 0, we see from Lemma 4.2 that

E[Nn] =
mP (Nn = 0)

2
=

2m2−2m
(

2m
m

)

2
= m2−2m

(

2m

m

)

≤
√

m

π
=

1√
2π

√
n

⇒ E[V ] =
2√
n
E[Nn] ≤

√

2

π
. (4.8)

The next lemma gives bounds on the distance from V to W .

Lemma 4.3. For each n = 2m we have

dW(V,W ) ≤ 1√
n

and dK(V,W ) ≤
√

2

π

1√
n
.

Proof : We have

Mn − 1

2
=
Mn + 1

2
− 1 < Nn ≤ Mn + 1

2
⇒− 1 < 2Nn −Mn ≤ 1

⇒− 1√
n
< V −W ≤ 1√

n
. (4.9)

Hence, if h is Lipschitz on [0,
√
n] with constant 1, then from (4.9) follows that

∣

∣

∣
E
[

h(V ) − h(W )
]

∣

∣

∣
≤ ‖h′‖∞E|V −W | ≤ 1√

n
,

which proves the first claim. As to the second claim, note that the Kolmogorov
distance is scale-invariant which implies that dK(V,W ) = dK(2Nn,Mn) and that
for z ∈ [0,∞)

∣

∣P (2Nn ≤ z) − P (Mn ≤ z)
∣

∣ =
∣

∣P (2Nn ≤ ⌊z⌋) − P (Mn ≤ ⌊z⌋)
∣

∣ .

Hence, we need only consider z ∈ N0. If z = 2k is even, then

{2Nn ≤ 2k} = {
⌊Mn + 1

2

⌋

≤ k} = {Mn ≤ 2k}

and, thus,
P (2Nn ≤ 2k) = P (Mn ≤ 2k) . (4.10)

On the other hand, if z = 2k + 1, then

{2Nn ≤ 2k + 1} = {2Nn ≤ 2k} = {Mn ≤ 2k} ⊆ {Mn ≤ 2k + 1}
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and

{Mn ≤ 2k + 1} \ {2Nn ≤ 2k + 1} = {Mn = 2k + 1} .
Hence,

∣

∣P (2Nn ≤ 2k + 1) − P (Mn ≤ 2k + 1)
∣

∣ = P (Mn = 2k + 1) = pn,2k+2

=

(

2m

m+ k + 1

)

2−2m ≤
(

2m

m

)

2−2m

≤ 1√
πm

=

√
2√
πn

, (4.11)

by Stirling’s formula. Thus, for every z ∈ R we have the bound

∣

∣P (2Nn ≤ z) − P (Mn ≤ z)
∣

∣ ≤
√

2

π

1√
n
,

proving the second claim of the lemma.
�

Having bounded the distance from V to W , we may now derive bounds on the
distance from V to Y in a similar way as in Section 3.

Lemma 4.4. For the distance from V to Y we have

dW(V, Y ) ≤ 1√
n

(

2 +
4

π

)

+ 2

√

2

π

1

n
and

dK(V, Y ) ≤ 1√
n

(

3

√

2

π
+

1

2

)

+
2

n
.

Proof : Let h be a Borel-measurable test function and consider the corresponding
standard solution f := fh to Stein’s equation (2.3) given by (2.5) and (2.6). We
also let fh(x) := 0 for each x < 0 and define g(k) := fh(2k/

√
n) for k ∈ Z. Writing

∆yf(x) := f(x+ y) − f(x) we obtain from Lemma 4.2

E
[

V f(V )
]

=
2√
n
E
[

Nng(Nn)
]

=
1√
n
E
[

(m+Nn)∆g(Nn − 1)
]

= E
[(

√
n

2
+
V

2

)

∆2n−1/2f
(

V − 2n−1/2
)

]

. (4.12)

Thus, since f solves Stein’s equation (2.3) we obtain from (4.12)
∣

∣

∣
E
[

h(V )
]

− E
[

h(Y )
]

∣

∣

∣
=
∣

∣

∣
E
[

f ′(V ) − V f(V )
]

∣

∣

∣

=
∣

∣

∣
E
[

f ′(V ) −
(

√
n

2
+
V

2

)

∆2n−1/2f
(

V − 2n−1/2
)

]
∣

∣

∣

=
∣

∣

∣
E
[

f ′(V ) −
√
n

2
∆2n−1/2f

(

V − 2n−1/2
)

]

− E1

∣

∣

∣
(4.13)

where

|E1| =
∣

∣

∣
E
[V

2
∆2n−1/2f

(

V − 2n−1/2
)

]∣

∣

∣
≤ 2n−1/2

2
‖f ′‖∞E[V ]

≤ ‖f ′‖∞
√

2

π

1√
n

(4.14)
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by inequality (4.8). Similarly to the proof of Theorem 1.1 in Section 3 we have

|E2| :=
∣

∣

∣
E
[

f ′(V ) −
√
n

2
∆2n−1/2f

(

V − 2n−1/2
)

]∣

∣

∣

=

√
n

2

∣

∣

∣
E
[

∫ V

V − 2√
n

(

f ′(V ) − f ′(t)
)

dt
]
∣

∣

∣

=

√
n

2

∣

∣

∣
E
[

∫ V

V − 2√
n

(

V f(V ) − tf(t) + h(V ) − h(t)
)

dt
]∣

∣

∣

≤
√
n

2

∣

∣

∣
E
[

∫ V

V − 2√
n

(

V f(V ) − tf(t)
)

dt
]∣

∣

∣
+

√
n

2

∣

∣

∣
E
[

∫ V

V − 2√
n

(

h(V ) − h(t)
)

dt
]∣

∣

∣

=: |E3| + |E4| . (4.15)

As for (3.8), if h is Lipschitz than by bound (c) from Lemma 2.2 (ii) we easily get

|E2| ≤ ‖f ′′‖∞
√
n

2

∫ V

V − 2√
n

(V − t)dt =

√
n

2
‖f ′′‖∞

2

n
≤ 2‖h′‖∞√

n
(4.16)

Similar computations as those in Section 3 yield

|E3| ≤
1√
n

(

‖f‖∞ + ‖f ′‖∞
( 2√

n
+ E[V ]

)

)

(4.17)

≤ 1√
n

(

‖f‖∞ + ‖f ′‖∞
( 2√

n
+

√

2

π

)

)

and

|E4| ≤
‖h′‖∞√

n
(4.18)

for Lipschitz continuous functions h. With a similar computation as the one leading
to (3.12) one can show that for h = hz, where z ≥ 0,

|E4| ≤ P
(

Nn =
⌊

√
nz

2

⌋

+ 1
)

≤ max
s=0,...,m

q(s) . (4.19)

But from (4.6) we see that

max
s=0,...,m

q(s) = q(0) ≤ 2√
πm

=

√

2

π

2√
n
, (4.20)

again by Stirling’s formula. From (4.18) and (4.20) we get that for each z ∈ R

|E4| ≤
√

2

π

2√
n
. (4.21)

Collecting terms, we see from (4.13), (4.14), (4.16) and Lemma 2.2 (ii) that for h
Lipschitz on [0,

√
n] we have
∣

∣

∣
E
[

h(V )
]

− E
[

h(Y )
]

∣

∣

∣
≤ ‖h′‖∞

(

1√
n

(

2 +
2

π

)

)

(4.22)

and from (4.13), (4.14), (4.15), (4.17), (4.21) and Lemma 2.3 we see that for each
z ∈ R we have the bound

∣

∣

∣
P (V ≤ z) − P (Y ≤ z)

∣

∣

∣
≤ 1√

n

(

3

√

2

π
+

1

2

)

+
2

n
. (4.23)
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The claims of the lemma now follow from (4.22) and (4.23), respectively.
�

Proof of Theorem 1.2: The claims of Theorem 1.2 now follow easily from Lemmas
4.3, 4.4 and from the triangle inequality (4.1).

�

5. The number of sign changes

Recall the definition of C2m+1 from (1.3). It is known (see Theorem 1 in Section
5 of Chapter 3 of Feller (1968), for example) that for s = 0, 1, . . . ,m

p(s) := P (C2m+1 = s) = 2p2m+1,2s+1 = 2

(

2m+ 1

m+ s+ 1

)

2−2m−1 . (5.1)

Thus, p is very similar to the probability mass function q of Nn from Section 4 (see
(4.6)). This allows for a proof of Theorem 1.3, which is completely analogous to the
proof of Lemma 4.4 and an analogue of Remark 4.1 is also valid, here. This is why
we omit the details of the proof but just give the suitable Stein characterization of
C2m+1, which easily follows from (5.1) and Proposition 2.5.

Lemma 5.1. A random variable X with values in I := [0,m]∩Z has the probability
mass function p, if and only if for all functions g ∈ F(p)

E
[

(m+ 1 +X)∆g(X − 1) − 2(X + 1)g(X)
]

= 0 .

6. Optimality of the rates

In this section we give an argument why the rate n−1/2 in Theorems 1.2-1.3 is
optimal for both the Kolmogorov and the Wasserstein distance. Let us explain this
by means of the example of the number of returns Kn. To see that the rate is
optimal for the Kolmogorov distance, it suffices to take z = 0 and observe that

∣

∣P (Kn ≤ 0) − P (Y ≤ 0)
∣

∣ = P (Kn = 0) = 2−2m

(

2m

m

)

∼ 1√
πm

=

√

2

π

1√
n

by Stirling’s formula. Hence, n−1/2 is optimal and the best constant is no less than
√

2
π . To show that the rate is also optimal with respect to the Wasserstein distance,

we consider the function h(x) := x which is 1-Lipschitz on R. By (3.3) we have

E[W ] =
1√
n
E[Kn] =

1√
2m

(2m+ 1)2−2m

(

2m

m

)

− 1

∼
√

2m√
πm

− 1√
n

+
1√

πm
√
n

=

√

2

π
− 1√

n
+

√

2

π

1

n
.

Since E[Y ] =
√

2
π this shows that

∣

∣E[W ] − E[Y ]
∣

∣ ∼ 1√
n
,

yielding the optimality of the rate n−1/2. In a similar fashion one may prove that
the convergence rates in Theorems 1.2 and 1.3 are best possible.
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7. Proofs from Section 2

In this section we give proofs of some of the results from Section 2. Most of them
are quite standard in Stein’s method, but in many cases we obtain better constants
than we would by quoting the general bounds from the literature, for example from
Chatterjee and Shao (2011). Recall the density function p and the distribution
function F of the half-normal distribution from (2.1) and (2.2), respectively. Also,
in this section, we let

ψ(x) :=
d

dx
log p(x) =

p′(x)

p(x)
= −x , x ≥ 0 (7.1)

denote the logarithmic derivative of the density function p. Note that ψ is a decreas-
ing function. This property suffices to prove more explicit bounds on the solution
to Stein’s equation in the general density approach than those currently given in
the literature (see Chen et al. (2011); Chatterjee and Shao (2011)).
We will several times make use of the following well-known Mill’s ratio inequality,
which is valid for x > 0:

x

1 + x2
ϕ(x) ≤ 1 − Φ(x) ≤ ϕ(x)

x
. (7.2)

Also, for a Borel-measurable test function h : [0,∞) → R such that E|h(Y )| < ∞
we let

h̃(x) := h(x) − E
[

h(Y )
]

.

Proof of Lemma 2.2: From (2.5) and (2.6) one immediately gets

|fh(x)| ≤ ‖h̃‖∞ min
(

M(x), N(x)
)

, (7.3)

where

M(x) :=
F (x)

p(x)
and N(x) :=

1 − F (x)

p(x)
. (7.4)

We have

M ′(x) =
p(x)2 − p′(x)F (x)

p(x)2
=

1

p(x)

(

p(x) − ψ(x)F (x)
)

and (7.5)

N ′(x) =
−1

p(x)

(

p(x) + ψ(x)
(

1 − F (x)
)

)

. (7.6)

Note that

p(x) = p(0) +

∫ x

0

p′(t)dt = p(0) +

∫ x

0

ψ(t)p(t)dt

≥ p(0) + ψ(x)

∫ x

0

p(t)dt = p(0) + ψ(x)F (x)

≥ ψ(x)F (x) .

Hence, from (7.5) we conclude that M is increasing on [0,∞). Similarly, one shows
thatN is decreasing. SinceN(0) > 0 = M(0) and limx→∞M(x) > limx→∞N(x) =
0 there is a unique point x ≥ 0 such that M(x) = N(x) and, clearly, at this point
the function min(M,N) attains its maximum value. But

M(x) = N(x) ⇔ F (x) = 1 − F (x) ⇔ F (x) =
1

2
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and, thus, x = m is the median of F . In our case of the half-normal distribution
we have F (x) = 2Φ(x) − 1 and so

m = Φ−1(3/4) =: z0.75 .

Since p(x) = 2ϕ(x) and F (m) = 1/2 we obtain from (7.3) that

‖fh‖∞ ≤ ‖h̃‖∞
4ϕ(z0.75)

, (7.7)

proving the first claim of (i). For the second claim note that since fh is a solution
to the half-normal Stein equation (2.3)

|f ′
h(x)| = |h̃(x) − ψ(x)fh(x)| ≤ ‖h̃‖∞ + ‖ψfh‖∞ . (7.8)

Using (7.3) and (7.2) we have that

|ψ(x)fh(x)| ≤ ‖h̃‖∞|ψ(x)|min
(

M(x), N(x)
)

≤ ‖h̃‖∞xN(x)

= ‖h̃‖∞
x(1 − Φ(x))

ϕ(x)
≤ ‖h̃‖∞ . (7.9)

Thus,

‖ψfh‖∞ ≤ ‖h̃‖∞
and (7.8) yields the second claim of (i).

�

Proof of Lemma 2.3: For z, x ≥ 0 we have the representation

fz(x) =
F (x ∧ z) − F (x)F (z)

p(x)

=

{

(1−F (z))F (x)
p(x) , x ≤ z

(1−F (x))F (z)
p(x) , x > z

=

{

(

1 − F (z)
)

M(x), x ≤ z

F (z)N(x), x > z .
(7.10)

In particular, fz is positive everywhere. To prove (a) note that

0 ≤ xfz(x) =

{

(

1 − F (z)
)

xM(x), x ≤ z

F (z)xN(x), x > z .
(7.11)

Now, using (7.6) we obtain

d

dx
xN(x) = N(x) + xN ′(x) =

(1 − x2)
(

1 − Φ(x)
)

− xϕ(x)

ϕ(x)

≥ 0

by (7.2). Thus, from (7.11) we see that xfz(x) is increasing on [z,∞). Similarly,
using (7.5) we have

d

dx
xM(x) = M(x) + xM ′(x) =

(1 + x2)
(

Φ(x) − 1
2

)

+ xϕ(x)

ϕ(x)

≥ 0

and xfz(x) is also increasing on [0, z]. Thus, using (7.2) again

0 ≤ xfz(x) ≤ lim
y→∞

yfz(y) = 2Φ(z) − 1 ,
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proving (a).
Since M is increasing and N is decreasing, we conclude that for each z ≥ 0

sup
x≥0

|fz(x)| = fz(z) =

(

1 − F (z)
)

F (z)

p(z)
=

(

1 − Φ(z)
)(

2Φ(z) − 1
)

ϕ(z)
=: g(z) . (7.12)

To show that g(z) ≤ 1
2 for each z ≥ 0, we define

D1(x) :=
1

2
ϕ(x) −

(

1 − Φ(x)
)(

2Φ(x) − 1
)

, x ≥ 0

and need to show that D1 ≥ 0. We have D1(0) = 1
2
√

2π
> 0 and limx→∞D1(x) = 0.

Thus, it suffices to show that D1 is a decreasing function on [0,∞). We have

D′
1(x) = −1

2
xϕ(x) + ϕ(x)

(

2Φ(x) − 1
)

− 2ϕ(x)
(

1 − Φ(x)
)

= ϕ(x)
(

−x
2

+ 4Φ(x) − 3
)

=: ϕ(x)D2(x) . (7.13)

Thus, we want to show that D2(x) ≤ 0 for x ≥ 0. Note that D2(0) = −1 and
limx→∞D2(x) = −∞. Furthermore,

D′
2(x) = −1

2
+ 4ϕ(x) (7.14)

D′′
2 (x) = −4xϕ(x) < 0, x > 0 . (7.15)

From (7.15) we conclude that D2 is strictly concave. Hence, there is a unique
x0 ∈ (0,∞) such that D2(x0) = supx≥0D2(x) and D′

2(x0) = 0. By (7.14) we have

D′
2(x0) = 0 ⇔ ϕ(x0) =

1

8

⇔ −1

2

(

log 2 + log π
)

− x2
0

2
= −3 log 2

⇔ x2
0 = 5 log 2 − log π = log

(32

π

)

⇔ x0 =

√

log
(32

π

)

= 1.52348 . . . . (7.16)

Since D2(x0) = −0.01701... < 0, the claim of (a) follows.
To prove (c) note that since fz solves Equation (2.3) for h = hz

f ′
z(x) = xfz(x) + 1(−∞,z](x) − F (z) . (7.17)

Hence, for x ≤ z by (7.5), (7.17), (7.2) and (a) it follows that

0 < f ′
z(x) = 2

(

1 − Φ(z)
)

+ xfz(x) (7.18)

≤ 2
(

1 − Φ(z)
)

+ zfz(z) (7.19)

= 2
(

1 − Φ(z)
)

+
(

2Φ(z) − 1
)z
(

1 − Φ(z)
)

ϕ(z)

≤ 2
(

1 − Φ(z)
)

+
(

2Φ(z) − 1
)

= 1 .
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Similarly, for x > z we have by (7.6), (7.17), (7.2) and (a) that

0 > f ′
z(x) = xfz(x) − 2Φ(z) + 1

≥ zfz(z) − 2Φ(z) + 1 (7.20)

= 1 − 2Φ(z) +
(

2Φ(z) − 1
)z
(

1 − Φ(z)
)

ϕ(z)

≥ 1 − 2Φ(z) +
(

2Φ(z) − 1
) z2

1 + z2
= −

(

2Φ(z) − 1
) 1

1 + z2

≥ 1 − 2Φ(z) > −1 ,

which already prove the first statement of (c). Furthermore, taking x = 0 and
letting z ↓ 0 in (7.18) shows the optimality of the first bound in (c). For the second
part of (c) note that by (7.19) and (7.20) for all x, y ≥ 0 we have

|f ′
z(x) − f ′

z(y)| ≤ 2
(

1 − Φ(z)
)

+ zfz(z) −
(

zfz(z) − 2Φ(z) + 1
)

= 1 .

Optimality of this bound follows by first taking x = 0 and then letting z ↓ 0 and
y → ∞.

�
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