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Abstract. This work addresses the problem of estimating the parameters of the
general half-normal distribution. Namely, the problem of determining the mini-
mum risk equivariant (MRE) estimators of the parameters is explored. Simulation
studies are realized to compare the behavior of these estimators with maximum
likelihood and unbiased estimators. A natural Monte Carlo method to compute
conditional expectations is used to approximate the MRE estimation of the loca-
tion parameter because its expression involves two conditional expectations not
easily computables. The used Monte Carlo method is justified by a theorem of
Besicovitch on differentiation of measures, and has been slightly modified to solve
a sort of “curse of dimensionality” problem appearing in the estimation of this pa-
rameter. This method has been implicitly used in the last years in the context of
ABC (approximate Bayesian computation) methods.

1. Introduction

Let Z be a N(0, 1) random variable. The distribution of X := |Z| is the so-called
half-normal distribution. It will be denoted HN(0, 1) and its density function is

fX(x) =

√
2

π
exp

{
−1

2
x2

}
I[0,+∞[(x).
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A general half-normal distribution HN(ξ, η) is obtained from HN(0, 1) by a
location-scale transformation: HN(ξ, η) is the distribution of Y = ξ + ηX.

The classical paper Daniel (1959) introduces half-normal plots and the half-
normal distribution, a special case of the folded and truncated normal distributions
(see Johnson et al. (1994)). Bland and Altman (1999) and Bland (2005) propose a
so-called half-normal method to deal with relationships between measurement error
and magnitude, with applications in medicine. Pewsey (2002) uses the maximum
likelihood principle to estimate the parameters, and presents a brief survey on the
general half-normal distribution, its relations with other well-known distributions
and its usefulness in the analysis of highly skew data. Pewsey (2004) proposes
bias-corrected versions of the maximum likelihood estimators. Nogales and Pérez
(2015+) deals with the problem of unbiased estimation for the general half-normal
distribution.

Here we consider the problem of equivariant estimation of the location and scale
parameters, ξ and η, but first we provide a brief review of results for unbiased and
maximum likelihood estimation appearing in the literature.

The density function of HN(ξ, η) is

fY (y) =
1

η
fX

(
y − ξ

η

)
=

1

η

√
2

π
exp

{
−1

2

(
y − ξ

η

)2
}
I[ξ,+∞[(y).

It is readily shown that

E(Y ) = ξ + η

√
2

π
and Var(Y ) =

π − 2

π
η2.

Let us recall a lemma from (Nogales and Pérez (2015+)). We write Φ for the
standard normal cumulative distribution function.

Lemma 1.1. Let Xi = |Zi|, 1 ≤ i ≤ n, where Z1, . . . , Zn is a sample of the
standard normal distribution N(0, 1). Let cn := E(X1:n), where X1:n denotes the
minimun of X1, . . . , Xn.

(i) cn =
∫∞
0

(2− 2Φ(t))n dt.

(ii) For n ≥ 1, cn ≤ 1
n

√
π
2 ≤ Φ−1

(
1
2 + 1

2n

)
.

Let Y1, . . . , Yn be a sample of size n from a general half-normal distribution with
unknown parameters, ξ and η. Y1:n denotes the minimum of Y1, . . . , Yn. From
the factorization criterion, we obtain that (

∑n
i=1 Y

2
i ,
∑n

i=1 Yi, Y1:n) is a sufficient
statistic. Indeed, it is minimal sufficient, although not complete. With the notations
of the lemma, we write Yi = ξ + ηXi. Notice that Y1:n = mini Yi = ξ + ηX1:n and
E(Y1:n) = ξ + ηcn.

The next proposition (Nogales and Pérez (2015+)) yields unbiased estimators of
the location and scale parameters, ξ and η. Both estimators are L-statistics and
functions of the cited minimal sufficient statistic.

Proposition 1.2. Let Y1, . . . , Yn be a sample of size n from a general half-normal
distribution with unknown parameters, ξ and η.

(i) ξ̃ :=

√
2
πY1:n−cnȲ√

2
π−cn

is an unbiased estimator of the location parameter ξ.

(ii) η̃ := Ȳ−Y1:n√
2
π−cn

is an unbiased estimator of the scale parameter η whose distri-

bution does not depend on ξ.
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Remark 1.3. We also have that the sample mean Ȳ is an unbiased estimator of the

mean ξ + η
√

2
π . Moreover, an unbiased estimator of η2 is

π

π − 2
S2,

where S2 := 1
n−1

∑n
i=1(Yi − Ȳ )2 is the sample variance; notice that its distribution

does not depend on ξ. Ȳ and S2 also are functions of the sufficient statistic given
above. The reader is referred to Nogales and Pérez (2015+) for these and other
results about unbiased estimation of the parameters of the general half-normal
distribution. �

Remark 1.4. Pewsey (2002) provides maximum likelihood estimates for each of the
parameters ξ and η:

ξ̂ := Y1:n, η̂ :=

(
1

n

n∑
i=1

(Yi − Y1:n)
2

)1/2

A large sample based bias-correction is used in Pewsey (2004) to improve the per-

formance of the maximum likelihood estimators ξ̂ and η̂. �

2. A Monte Carlo method to approximate conditional expectations

In this section, we describe a natural Monte Carlo method to compute conditional
expectations based on a theorem of Besicovitch on differentiation of measures. It
will be used in the next section to approximate the minimum risk equivariant (MRE)
estimator of the location parameter ξ because its expression involves two conditional
expectations not easy to compute.

We first recall briefly a theorem of Besicovitch (1945) and Besicovitch (1946) for
differentiation of measures (see, for instance, Corollary 2.14 of Mattila (1995)). This
theorem extend to Radon measures the classical Lebesgue Differentiation Theorem.

Theorem 2.1 (Besicovitch (1945, 1946)). Let λ be a Radon measure on Rn, and
f : Rn → R a locally λ-integrable function. Then

lim
r↓0

1

λ(Br(x))

∫
Br(x)

f dλ = f(x)

for λ-almost all x ∈ Rn, where Br(x) denotes the ball of center x and radius r > 0
for the norm ‖ · ‖∞ on Rn.

Now let (Ω,A, P ) be a probability space, X : (Ω,A, P ) → Rn be an n-dimen-
sional random variable and Y : (Ω,A, P ) → R be a real random variable with finite
mean. The conditional expectation E(Y |X) is defined as a random variable on Rn

such that
∫
X−1(B)

Y dP =
∫
B
E(Y |X)dPX for any Borel set B in Rn, where PX

denotes the probability distribution of X.
Although the existence of the conditional expectation is guaranteed via the

Radon-Nikodym theorem, its computation is, generally, involved. Nevertheless,
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according to the previous result, for PX -almost every x ∈ Rn,

lim
ε↓0

1

PX(Bε(x))

∫
X−1(Bε(x))

Y (ω) dP (ω) =

lim
ε↓0

1

PX(Bε(x))

∫
Bε(x)

E(Y |X = x′) dPX(x′) = E(Y |X = x)

By the Strong Law of Large Numbers, for almost every sequence (ωi) in Ω, we
have

PX(Bε(x)) = lim
k

1

k

k∑
i=1

IBε(x)(X(ωi))

and∫
Bε(x)

E(Y |X = x′) dPX(x′) = lim
k

1

k

k∑
i=1

IBε(x)(X(ωi))Y (ωi)

where IA denotes the indicator function of A. Observe that, for every ε > 0, the
rate of convergence is 1/

√
n.

Hence, we have proved the following result:

Theorem 2.2. Let (Ω,A, P ) be a probability space, X : (Ω,A, P ) → Rn be an
n-dimensional random variable and Y : (Ω,A, P ) → R be a real random variable
with finite mean. Then, for PX-almost every x ∈ Rn and almost every sequence
(ωi) in Ω, we have

E(Y |X = x) = lim
ε↓0

lim
k

∑k
i=1 IBε(x)(X(ωi))Y (ωi)∑k

i=1 IBε(x)(X(ωi))
.”

This theorem yields a means of approximating the conditional expectation of Y
given X. The following simple example illustrates the method.

Example 2.3. Let (X,Y ) be a bivariate normal random variable with null mean
such that Var (X) = Var (Y ) = 1 and Cov (X,Y ) = 0.5. In this case, there is no
need for an approximation to the conditional expectation of Y given X = x because
it is x/2. The conditional distribution of Y given X = x is N( 12x,

1
2

√
3). Applying

the proposed method to evaluate E(Y |X = 1), given a small ε > 0, we may choose
a sample (xi, yi)1≤i≤k from the joint distribution of X and Y and approximate
E(Y |X = 1) by ∑k

i=1 I[1−ε,1+ε](xi)yi∑k
i=1 I[1−ε,1+ε](xi)

. (1)

Taking ε = 0.1, 0.01 and samples from the joint distribution ofX and Y with sample

sizes k large enough to obtain m = m(k) =
∑k

i=1 I[1−ε,1+ε](xi) = 100, 1000, 5000,
we obtained the approximations for E(Y |X = 1) summarized in Table 2.1 and
Figure 2.1; 100 replications of each simulation have been conducted to obtain the
table and the figure. Namely, taking m = 1000, for instance, the value 0.493947
appearing in the table as an approximation of E(Y |X = 1) when ε = 0.1 is the
mean of the 100 values of the quotient (1) obtained after 100 replications of the
experiment of choosing a k-sized sample (xi, yi)1≤i≤k of the joint distribution of
(X,Y ), k being large enough to get m = m(k) = 1000. Table 2.1 also includes
the “mean squared error” (MSE) calculated from these 100 values: the format
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m 100 1000 5000

ε = 0.1 0.505885 & 0.006395 0.493947 & 0.000815 0.497892 & 0.000128

ε = 0.01 0.503655 & 0.007165 0.499826 & 0.000716 0.499471 & 0.000150

Table 2.1. Approximation of E(Y |X = 1) & MSE as a function
of the number of simulations, m, for ε = 0.1, 0.01.

Figure 2.1. . Box plots of the approximations of E(Y |X = 1) as
a function of the number of simulations, m, for ε = 0.1 and ε =
0.01.

used for a typical entry in the table is E(Y |X = 1) ± MSE. The box-plot of the
figure describes the distribution of these 100 values (a dotted red line represents
the mean).

Remark 2.4. The described method of Monte Carlo approximation to the condi-
tional expectation E(Y |X = x) is based on the naive idea that one can approximate
it from a sample (xi, yi)1≤i≤n by the mean of the yi corresponding to points xi ly-
ing in a narrow neighborhood of x. From a probabilistic point of view, the method
has been justified by the mentioned theorem of Besicovitch on differentiation of
measures. When the joint density of X and Y is known, E(Y |X = x) is the mean
of the conditional distribution of Y given X = x, and the problem of compute a
conditional expectation is reduced to the problem of computing a mean. Notice
that the existence of a joint density is not required by the method and it could be
specially useful when densities are not available or are not easy to compute (see the
next example). �
Example 2.5. (Example 1, continuation) A similar simulation study has been per-
formed to approximate the conditional expectation E(V |U = 0.5), where V =
sin(X · Y ) and U = cos(X2 + Y 2); the obtained results are summarized in Table
2.2 and Figure 2.2.

Remark 2.6. In a classical statistical framework, we can provide additional guar-
antees on the method, since the obtained Monte Carlo approximation to the condi-
tional expectation E(Y |X = x) coincides with the value at the point x of the kernel
estimator (the Nadaraya-Watson estimator) of the regression curve y = E(Y |X =
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m 100 1000 5000

ε = 0.1 0.127650 & 0.001890 0.127280 & 0.000202 0.124169 & 0.000025

ε = 0.01 0.123063 & 0.001620 0.125869 & 0.000153 0.1252856 & 0.000031

Table 2.2. Approximation of E(V |U = 0.5) & S2 (S2 is the sam-
ple variance) as a function of the number of simulations, m, for
ε = 0.1, 0.01.

Figure 2.2. Box plots of the approximations of E(V |U = 0.5) as
a function of the number of simulations, m, for ε = 0.1 and ε =
0.01.

x) for the kernel K(x) = I[−1,1](x) (see Nadaraya (1989), p. 115). From this point
of view, ε plays the role of the bandwidth parameter. We refer to Härdle (1990) for
a detailed discussion on the important problem of the choice of the bandwidth. �
Remark 2.7. As it is pointed out to us by the referees, in a Bayesian setting a
similar idea has been in use in recent years to generate an approximate sample
from the posterior distribution given x assuming that the likelihood function is
easy to sample. This proceeds by sampling values θi from the prior distribution
and xi from the distribution of the data given θi, and accepting those parameters
θi such that xi is in the ball Bε(x) centered at x of radius ε > 0. In fact, from a
sample of size k we can approximate the posterior probability given x of a subset
T of the parameter space by ∑k

i=1 IBε(x)(xi)IT (θi)∑k
i=1 IBε(x)(xi)

.

We also can approximate the posterior mean given x of a function f of the parameter
by ∑k

i=1 IBε(x)(xi)f(θi)∑k
i=1 IBε(x)(xi)

. �

Remark 2.8. In this paper, the main application of the Monte Carlo method for
the approximation of conditional expectations is given in the next section to ap-
proximate the estimation of the location parameter of the general half-normal dis-
tribution, because it is defined in terms of a quotient of two not-easily-computable
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parameter-free conditional expectations given a (n − 1)-dimensional statistic U .
Some “curse of dimensionality problem” appears when n is large because, in this
case, it is not easy to find large samples of points lying in a small ball centered
at a point U(y). This is why we had to modify the Monte Carlo method for the
approximation of conditional expectations taking advantage of the underlying dis-
tribution of Y (the general half-normal distribution) and the invariance properties
of U . This could become an important scholium of the paper, as the ideas used
here could be useful to deal with the “curse of dimensionality problem” in similar
situations. �

3. Equivariant estimation of the location parameter of the general half-
normal distribution

In this section we consider the problem of determining the minimum risk equi-
variant estimator of the location parameter ξ of the general half-normal distribution
HN(ξ, η) when the scale parameter η is unknown. We cannot provide an explicit
expression for this estimator, since it is described in terms of two conditional ex-
pectations that had to be approximated by simulation.

To achieve this goal, an R program was developed based on the method of
computing conditional expectations described in the previous section. In fact, the
method has been slightly modified to solve a sort of “curse of dimensionality”
problem.

We consider the scale-location family of densities

f(ξ,η)(y1, ..., yn) =
1

ηn
f

(
y1 − ξ

η
, ...,

yn − ξ

η

)
,

where

f(y1, ..., yn) =

(
2

π

)n
2

exp

{
−1

2

n∑
i=1

y2i

}
I[0,+∞[(y1:n).

This family remains invariant under transformations of the form ga,b(y1, ..., yn) =
(a+ by1, ..., a+ byn), a ∈ R, b > 0.

To estimate the location parameter ξ when the scale parameter η is unknown, we
have the next result, a direct consequence of classical equivariant estimation theory
(see Lehmann (1983)). First, recall that an estimator T of the location parameter
is equivariant if T (a+ bx1, . . . , a+ bxn) = a+ bT (x1, . . . , xn), for all a ∈ R and all
b > 0.

Proposition 3.1. When the loss function W2(x; ξ, η) = η−2(x− ξ)2 is considered,

the MRE estimator ξ̊ of ξ is

ξ̊ = T ∗
0 − (ρ ◦ U)T ∗

1

where

T ∗
0 = Ȳ , T ∗

1 =
1

n

n∑
i=1

|Yi − Ȳ |

U =

(
Y1 − Yn

Yn−1 − Yn
, . . . ,

Yn−2 − Yn

Yn−1 − Yn
,
Yn−1 − Yn

|Yn−1 − Yn|

)
,

ρ =
Eξ=0,η=1(T

∗
0 T

∗
1 |U)

Eξ=0,η=1(T ∗
1
2|U)
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m 100 1000 5000

ε = 0.1 9.412753 & 2.307873 9.517691 & 1.881063 9.732626 & 0.158635

ε = 0.01 9.603969 & 0.687243 9.274164 & 3.501158 9.867600 & 0.027826

Table 3.3. Approximations of ξ̊ & MSE as a function of the
number of simulations, m, for ε = 0.1, 0.01.

Figure 3.3. Box plots of the approximations of ξ̊ & MSE as a
function of the number of simulations, m, for ε = 0.1 and ε = 0.01.

Remark 3.2. T ∗
0 can be replaced by any other equivariant estimator of ξ (i.e.,

satisfying T ∗
0 (a+by1, . . . , a+by1) = a+bT ∗

0 (y1, . . . , y1) for every a ∈ R, b > 0), and
T ∗
1 can be replaced by any positive estimator of η satisfying T ∗

1 (a+by1, . . . , a+by1) =
bT ∗

1 (y1, . . . , y1) for every a ∈ R, b > 0. �

A simulation study has been performed to investigate the behavior of the mini-

mum risk equivariant estimator ξ̊. In it, we used 100 simulations with sample sizes
n = 100, 1000, 5000 from the HN(10, 4) distribution, obtaining the results summa-
rized in Table 3.3 and Figure 3.3 (see below how we have made use of the method
of approximation of conditional expectations to obtain the values of the Tables 3.3
and 3.4).

To compare the behavior of the unbiased estimator ξ̃, the maximum likelihood

estimator ξ̂ and the minimum risk equivariant estimator ξ̊, we used 100 simulations
with sample sizes n = 100, 1000, 5000 from the HN(10, 4) distribution, obtaining
the results summarized in Table 3.4 and Figure 3.4.

Table 3.4 and Figure 3.4 illustrate the biased character of the maximum likeli-

hood estimator ξ̂ and the minimum risk equivariant estimator ξ̊.
Let us describe in more details the ideas used in these simulations. For a sample

y = (y1, . . . , yn), n = 100, 1000, 5000, of the distribution HN(10, 4), we have

ρ(U(y)) = lim
ε→0

Nε

Dε
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m = 100

m = 1000

m = 5000

Figure 3.4. Box plots of the approximations of ξ̃, ξ̂ and ξ̊ as
a function of the number of simulations, m = 100, 1000, 5000, for
ε = 0.1 and ε = 0.01.
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m 100 1000 5000

ξ̃
ε = 0.1 9.997350 & 0.003289 9.999356 & 0.000020 10.000823 & 0.000001
ε = 0.01 9.999662 & 0.003443 9.999989 & 0.000025 10.001050 & 0.000002

ξ̂
ε = 0.1 10.047256 & 0.005455 10.004383 & 0.000039 10.000823 & 0.000001
ε = 0.01 10.049128 & 0.005752 10.005005 & 0.000050 10.001050 & 0.000002

ξ̊
ε = 0.1 9.412753 & 2.307873 9.517691 & 1.881063 9.732626 & 0.158635
ε = 0.01 9.603969 & 0.687243 9.274164 & 3.501158 9.867600 & 0.027826

Table 3.4. Approximations of ξ̃ & MSE, ξ̂ & MSE and ξ̊ & MSE
as a function of the number of simulations, m, for ε = 0.1, 0.01.

where

Nε =

∫
Aε(y)

f(y′)dy′, Dε =

∫
Aε(y)

g(y′)dy′,

f(y′) = T ∗
0 (y

′)T ∗
1 (y

′) exp

{
−1

2
‖y′‖22

}
, g(y′) = T ∗

1 (y
′)2 exp

{
−1

2
‖y′‖22

}
,

Aε(y) = {y′ ∈ [0, 10]n : max
1≤i≤n−1

|Ui(y
′)− Ui(y)| ≤ ε}.

Now, take a sample S of Aε(y) and approximate Nε and Dε by

1

card (S)

∑
y′∈S

f(y′) and
1

card (S)

∑
y′∈S

g(y′),

respectively. So, ρ(U(y)) can be approximated by

C(y) :=

∑
y′∈S f(y′)∑
y′∈S g(y′)

and ξ̊(y) is approximated by D(y) := T ∗
0 (y)− C(y)T ∗

1 (y).
To approximate C(y), a first idea would be to divide the interval [0, 10] in mul-

tiple subintervals of small length ε > 0 and consider the grid in the interval [0, 10]n

formed by the n-power set of the ends of these subintervals (we have restricted
ourselves to the interval [0,10] because the functions f(y) and g(y) are almost null
when one of the coordinates of the vector y is greater than 10). The sample S
would then be formed by the grid nodes that are in Aε. The main problem with
this approach is that the size m of the sample S is very small: it becomes smaller as
n increases, because of the so-called “curse of dimensionality” problem. In order to
avoid this problem and obtain a sample size m large enough for S (given n, we take
m = 100n), we have used the following algorithm, a modification of the described
Monte Carlo method to approximate conditional expectations that hinges on the
use of the invariance of U under scale and location transformations. Namely:

Step A. Let n ∈ N and be y = (y1, . . . , yn) a n-sized sample of the distribution
HN(10, 4). For 1 ≤ i ≤ n − 2, let ai := yi−yn

yn−1−yn
and take 0 < ε <

min{0.1,min1≤i≤n−2 |ai|}.
Step A.1. At this stage we choose coordinatewise at random 100·n vectors v(j) =

(v
(j)
1 , . . . , v

(j)
n ), 1 ≤ j ≤ 100n, in Rn such that max1≤i≤n−1 |Ui(v

(j))−
Ui(y)| ≤ ε as follows:
A.1.1. Make j = 1.
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A.1.2. Take v
(j)
n−1, v

(j)
n at random in [0, 10] such that v

(j)
n−1−v

(j)
n has the

same sign as yn−1 − yn. (So, the last coordinates of U(v(j)) and
U(y) are the same).

A.1.3. For 1 ≤ i ≤ n−2 take v
(j)
i at random on the interval determined

by v
(j)
n + (v

(j)
n−1 − v

(j)
n )(ai − ε) and v

(j)
n + (v

(j)
n−1 − v

(j)
n )(ai + ε).

(So |Ui(v
(j))− Ui(y)| ≤ ε).

A.1.4. Make j = j + 1 a go back to Step A.1 until 100n vectors v(j) =

(v
(j)
1 , . . . , v

(j)
n ), 1 ≤ j ≤ 100n are obtained.

Step A.2. Since the vectors v(j) = (v
(j)
1 , . . . , v

(j)
n ), 1 ≤ j ≤ 100n, do not lie nec-

essarily in [0, 10]n (so neither in Aε(y)), we can make some random
location-scale transformations to put them into [0, 10]n. These trans-
formations do not modify the required fact that max1≤i≤n−1 |Ui(v

(j))−
Ui(y)| ≤ ε.

A.2.1. If v
(j0)
i0

< 0 for some i0, j0, we define u
(j)
i = v + v

(j)
i , 1 ≤

i ≤ n, 1 ≤ j ≤ 100n, where v is choosen at random between

−min1≤i≤n,1≤j≤100n v
(j)
i and 1 − min1≤i≤n,1≤j≤100n v

(j)
i . Oth-

erwise, u
(j)
i = v

(j)
i , 1 ≤ i ≤ n, 1 ≤ j ≤ 100n.

A.2.2. Each vector u(j) is divided by max1≤i≤n u
(j)
i and multiplied by

a random number choosen in [0, 10] to obtain the vector w(j).
A.2.3. Take S = {w(j) : 1 ≤ j ≤ 100n} and approximate C(y) by∑100n

j=1 f(w(j))∑100n
j=1 g(w(j))

and D(y) by T ∗
0 (y)− C(y)T ∗

1 (y).
Step B. Finally, following the process designed in Step A, we choose k := 100 ran-

dom samples y(i) of size n from theHN(10, 4) distribution and approximate

the mean and the mean squared error of ξ̊ by

1

k

k∑
i=1

D(y(i)) and
1

k

k∑
i=1

(D(y(i))− 10)2,

respectively, and we construct a box-plot with the values D(y(i)).

Remark 3.3. Notice that both ξ̂ and ξ̃ are equivariant estimators of the location

parameter ξ. So they have greater risk for the loss function W2 than ξ̊. Hence,

in the previous simulation study, the MSE of ξ̊ should have been smaller than the

MSE of ξ̂ and ξ̃. That has not been the case because, for the MRE estimator, we
have not real estimates of ξ, but approximations of these estimates obtained by a
modification of the Monte Carlo method of computing the conditional expectations
appearing as the numerator and denominator of a quotient. But this is a possible
issue to approximate minimum risk estimations of a location parameter, and a
possible way to avoid the “curse of dimensionality problem”. �

Remark 3.4. Although less interesting from the perspective of real applications,
for completeness we now consider the problem of estimating the scale parameter ξ
when the location parameter η is known, say η = η0. In this case, the joint density
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of Y1, . . . , Yn is

fξ(y1, . . . , yn) =
1

ηn0

√
2

π

n

exp

{
− 1

2η20

n∑
i=1

(yi − ξ)2

}
I[ξ,+∞[(y1:n),

where y1:n := min{y1, . . . , yn}. This family remains invariant under translations of
the form ga(y1, . . . , yn) = (y1 − a, . . . , yn − a).

The equivariant estimator of minimum mean squared error of the location pa-
rameter ξ is

T1 = Ȳ − η0√
2πn

exp
{
− n

2η2
0

(
Y1:n − Ȳ

)2}
Φ
[√

n
η0

(
Y1:n − Ȳ

)] .

In fact, for the loss function W ′
2(ξ, x) = (x − ξ)2, the MRE estimator of the

location parameter ξ is the Pitman estimator

T1(y1, . . . , yn) =

∫ +∞
−∞ uf0(y1 − u, ..., yn − u)du∫ +∞
−∞ f0(y1 − u, ..., yn − u)du

.

For y ∈ Rn, we write ȳ for the mean of y1, . . . , yn. After some algebraic manipula-
tions, we obtain:

∫ +∞

−∞
uf0(y1 − u, ..., yn − u)du =( √

2

η0
√
π

)n

exp

{
− 1

2η20

(
n∑

i=1

y2i − nȳ2

)}
η0√
n

×
[
− η0√

n
exp

{
− n

2η20
(y1:n − ȳ)2

}
+ ȳ

√
2πΦ

(√
n

η0
(y1:n − ȳ)

)]
and ∫ +∞

−∞
f0(y1 − u, ..., yn − u)du =( √

2

η0
√
π

)n

exp

{
− 1

2η20

(
n∑

i=1

y2i − nȳ2

)}
η0√
n

√
2πΦ

[√
n

η0
(y1:n − ȳ)

]
and the statement follows easily from these expressions. �

4. Equivariant estimation of the scale parameter of the general half-
normal distribution

Unlike what happens with the location parameter ξ, for the scale parameter η
an explicit expression for the MRE estimator is obtained.

Recall that an estimator T of the scale parameter η is equivariant if T (a +
bx1, . . . , a+ bxn) = bT (x1, . . . , xn), for all a ∈ R and all b > 0.
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Proposition 4.1. When using the loss function W1(x; ξ, η) = η−2(x − η)2, the
MRE estimator η̊ of η is

η̊ =

√
n− 1

2

Γ
(
n+1
2

)
Γ
(
n+2
2

) tn+1

([√
n(n+1)
n−1

Ȳ−Y1:n

S ,∞
[)

tn+2

([√
n(n+2)
n−1

Ȳ−Y1:n

S ,∞
[)S.

where tn denotes the Student’s t-distribution with n degrees of freedom, S2 is the
sample variance and Γ denotes Euler’s gamma function.

Proof : The MRE estimator of the scale parameter η, when using the loss function
W1, is

η̊(y) =

∫ +∞
0

vnf ′(vy′1, ..., vy
′
n−1)dv∫ +∞

0
vn+1f ′(vy′1, ..., vy

′
n−1)dv

,

where f ′ is the joint density when η = 1 of Y ′
i := Yi − Yn, 1 ≤ i ≤ n − 1, and

y′i := yi − yn, 1 ≤ i ≤ n− 1.
Notice that

f ′(y′1, ..., y
′
n−1) =

∫ +∞

−∞
f(y1 + t, ..., yn + t)dt

=

(
2

π

)n
2

exp

{
−1

2

n∑
i=1

y2i +
n

2
ȳ2

}∫ ∞

−y1:n

exp
{
−n

2
(t+ ȳ)2

}
dt

=
1√
n

(
2

π

)n
2

exp

{
−1

2
(n− 1)S2(y)

}∫ ∞

√
n(ȳ−y1:n)

exp

{
−1

2
u2

}
du.

Hence, for k ∈ N, applying Fubini’s Theorem after a suitable change of variables
in the inner integral,

Ik(y) :=

∫ ∞

0

vkf ′(vy′1, ..., vy
′
n−1)dv

=
1√
n

(
2

π

)n
2
∫ ∞

0

vk exp

{
−1

2
(n− 1)v2S2(y)

}∫ ∞

√
n(ȳ−y1:n)

exp

{
−1

2
u2

}
dudv

=
1√
n

(
2

π

)n
2
∫ ∞

√
n(ȳ−y1:n)

Jk(t, y)dt.

where

Jk(t, y) :=

∫ ∞

0

vk+1 exp

{
−1

2
v2(t2 + (n− 1)S2(y))

}
dv =

2k/2Γ
(
k+2
2

)
(t2 + (n− 1)S2(y))

k+2
2

.

where, for t ≥
√
n(ȳ − y1:n), we have made the change of variables w = 1

2v
2(t2 +

(n− 1)S2(y)).
So,

Ik(y) =
1√
n

(
2

π

)n
2

2k/2Γ

(
k + 2

2

)∫ ∞

√
n(ȳ−y1:n)

dt

(t2 + (n− 1)S2(y))
k+2
2

=
2

n+k
2 Γ

(
k+1
2

)
√
nπ

n−1
2 (n− 1)

k+1
2 S(y)k+1

tk+1

([√
n(k + 1)

n− 1

ȳ − y1:n
S(y)

,∞

[)
.
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n η̃ η̂ η̊

10 3.996009 & 1.052443 3.520680 & 0.952987 3.568520 & 0.929288

20 3.996575 & 0.526328 3.760888 & 0.458780 3.795590 & 0.450882

30 4.015727 & 0.324161 3.845478 & 0.294937 3.871677 & 0.291209

Table 4.5. Sample mean and MSE of the estimators calculated
using 1000 random samples of size n from the HN(10, 4) distribu-
tion.

Finally

η̊(y) =
In(y)

In+1(y)
=

√
n− 1

2

Γ
(
n+1
2

)
Γ
(
n+2
2

) tn+1

([√
n(n+1)
n−1

ȳ−y1:n

S(y) ,∞
[)

tn+2

([√
n(n+2)
n−1

ȳ−y1:n

S(y) ,∞
[)S(y).

�

Remark 4.2. A simulation study has been performed to compare the behavior of the
unbiased estimator η̃, the maximum likelihood estimator η̂ and the MRE estimator
η̊ using 1000 simulated random samples of size n = 10, 20, 30 from the HN(10, 4)
distribution. The results obtained for the means and the mean squared errors of
the three estimators are presented in Table 4.5 and Figure 4.5 (as before, a dotted
red line represents the mean).

Notice that both η̂ and η̃ are equivariant estimators of the scale parameter η.
So they have greater risk for the loss function W1 than η̊. Hence (see Table 4.5
and Figure 4.5), in the previous simulation study, the MSE of η̊ is smaller than the
MSE of η̂ and η̃. �

Remark 4.3. Although less interesting from the perspective of real applications, for
completeness we now consider the problem of estimating the scale parameter η when
the location parameter ξ is known, say ξ = ξ0. After the shift (y1, . . . , yn) 7→ (y1 −
ξ0, . . . , yn − ξ0), the statistical model remains invariant under the transformations
(dilations) of the form (y1, . . . , yn) 7→ (ay1, . . . , ayn), for a > 0. For the loss function
W ′

1(η, x) = (x− η)2/η2, the MRE estimator of the scale parameter η is

T2 =
Γ(n+1

2 )
√
2Γ(n+2

2 )

√√√√ n∑
i=1

(Yi − ξ0)2 =
B(n+1

2 , 1
2 )√

2π

√√√√ n∑
i=1

(Yi − ξ0)2,

where B denotes Euler’s beta function. In fact, for the loss function W ′
1, the MRE

estimator of η is

T2(y1, . . . , yn) =

∫ ∞

0

vnh1(v(y1 − ξ0), ..., v(yn − ξ0))dv∫ ∞

0

vn+1h1(v(y1 − ξ0), ..., v(yn − ξ0))dv

,

where

h1(y1, . . . , yn) =

(
2

π

)n
2

exp

{
−1

2

n∑
i=1

y2i

}
I[0,+∞[(y1:n).
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Figure 4.5. Box plots for the estimator η̊ for sample sizes n =
10, 20, 30 (above) and for the estimators η̃, η̂ y η̊ for sample sizes
n = 10, 20, 30, respectively (below).

To simplify the notation, we assume without loss of generality that ξ0 = 0. The
change of variable t = 1

2

∑n
i=1 y

2
i v

2 leads to, for k = n, n+ 1,

∫ ∞

0

vkh1(vy1, ..., vyn)dv = 2
n+k−1

2 π−n
2

(
n∑

i=1

y2i

)− k+1
2

Γ

(
k + 1

2

)
I[0,+∞[(y1:n),

and the assertion then follows easily.
Note also that, when ξ = ξ0,

1

n

n∑
i=1

(Yi − ξ0)
2

is the minimum variance unbiased estimator of η2. This is a consequence of the
Lehmann-Scheffé Theorem and the facts that

∑n
i=1(Yi − ξ0)

2 is a sufficient and
complete statistic and η−2

∑n
i=1(Yi − ξ0)

2 has a χ2(n) distribution. A little more
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work shows that

Γ(n2 )√
2Γ(n+1

2 )

√√√√ n∑
i=1

(Yi − ξ0)2 =
B(n2 ,

1
2 )√

2π

√√√√ n∑
i=1

(Yi − ξ0)2

is the minimum variance unbiased estimator of η. �
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