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Abstract. In this work, we prove functional laws of large numbers and central
limit theorem for an extension of the classical multivariate Hawkes process, which
assumes the clusters of the process are generated by different exciting functions.
Namely, by rescaling this process, we prove laws of large numbers for the processes
associated to the extension of this Hawkes process. Also, a central limit theorem
for this normalized process is proved and a type Donsker theorem is showed when
unpredictable marks of the process are considered.

1. Introduction

The classical Hawkes process (HP) is a counting process having clustering effect
and self-exciting temporal property. This process was firstly introduced by Hawkes
(1971a), but the seminal ideas are also found in Hawkes (1971a,b) and Hawkes
and Oakes (1974). Useful reviews on the topic are provided in Daley and Vere-
Jones (2003) and Zhu (2013c). Applications to finance, genetics, neuroscience and
seismology can be found in Carstensen et al. (2010), Embrechts et al. (2011), Gusto
and Schbath (2005), Ogata (1988, 1998) and Pernice et al. (2012). On the other
hand, the classical HP has been the subject of various studies such as large and
moderate deviations Zhu (2013b, 2014b) and central limit theorems Zhu (2013a).
Also, nonlinear versions of the HP has been considered in Zhu (2014b, 2013a).
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In Fierro et al. (2015) we introduced an extension of the standard Hawkes pro-
cess, which considers different cluster could have different exciting functions. In-
deed, this extension is defined as a superposition of a sequence {Nn}n∈N of count-
ing processes so that each Nn has an intensity depending on Nn−1 and an exciting
function γn eventually different for different n ∈ N. In applications, this process
has more flexibility for modeling. As a matter of fact, in seismology, main shocks
produce aftershocks with possibly different intensities and thus a model as we are
considering here could be more appropriate.

Asymptotical normality of this more general version of the HP has been proved by
Fierro et al. (2015) and large and moderate deviations for this process are considered
in Zhu (2014a). In this work, functional limit theorems for the multivariate HP with
different exciting functions are stated and proved. By mean of a scale change in time
and a suitable normalization of this process, we prove that it satisfies a functional
law of large numbers and a central limit theorem. Moreover a type of Donsker
theorem for this process with unpredictable marks is proved. Our results extend
some limit theorems by Bacry et al. (2013), who showed a functional law of large
numbers and a central limit theorem for the classical multivariate Hawkes process.
These extensions are nontrivial, due to different exciting functions do not allow to
state, as in Bacry et al. (2013), a renewal equation for the means of the process.
This forces us to carry out proofs which are essentially different, but it provides
alternatives which could eventually be applied to other results.

The paper is organized as follows. In Section 2, we define the multivariate HP
with different exciting functions, which is considered in this work. Also, some
crucial assumptions and results for proving the main theorems are stated in this
section. In Section 3, some functional laws of large numbers are stated. Section
4 is devoted for introducing the central limit theorem for a normalization of the
rescaled process. Two remarkable cases are summarized in Section 5, namely, those
corresponding to the classical multivariate HP and the process defined by a finite
number of exciting functions. Finally, in Section 6 we prove a type of Donsker
theorem for the process with unpredictable marks.

2. Preliminaries

For d ∈ N \ {0}, Rd stands for the Euclidean space endowed with its usual

norm, which we denote by ‖ · ‖. Let Rd×d
+ (respectively Rd

+) be the set of all

matrices (respectively vectors in Rd) with real and nonnegative entries. For each

γ ∈ Rd×d
+ , the norm of γ is defined by ‖γ‖ = sup{‖γx‖;x ∈ Rd, ‖x‖ = 1}. In what

follows, {γp}p∈N\{0} stands for a sequence of functions from R+, the set of all real

nonnegative numbers, into Rd×d
+ , such that

∥∥∫∞
0

γp(u) du
∥∥ < ∞, for each p ≥ 1.

Let (Ω,F , IF, IP) be stochastic basis satisfying the usual Dellacherie conditions,
where a sequence {Np}p∈N of IF-adapted multivariate counting processes, with-
out common jumps, is recursively defined as follows: a) N0 is a nonhomogeneous
Poisson process (NHPP) with intensity γ0 : R+ → Rd

+ such that for each t ≥ 0,∥∥∥∫ t

0
γ0(u) du

∥∥∥ < ∞ and b) for each p ≥ 1, Np is a counting process with predictable

intensity λp given by

λp
t =

∫ t

0

γp(t− s) dNp−1
s , t ≥ 0.
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For each p ∈ N, Λp = {Λp
t }t≥0 is defined as Λ0

t =
∫ t

0
γ0(s) ds and for p ≥ 1,

Λp
t =

∫ t

0
λp
s ds, (t ≥ 0). Let Mp = Np − Λp, for p ∈ N. It follows by induction

that for each p ∈ N and each t ≥ 0, ‖Λp
t ‖ < ∞, IP-a.s. Consequently, for each

p ∈ N, Mp is a d-dimensional local (IF, IP)-martingale and Np is a IP-nonexplosive
counting process. Let {Ht}t≥0 be the process defined as H =

∑∞
p=0 N

p. Hence, H

is a d-dimensional counting process with (IF, IP)-predictable intensity λ given by

λt = γ0(t) +
∞∑
p=1

λp
t , t ≥ 0.

Let H̃ =
∑∞

p=0 Λ
p and note that if for each t ≥ 0, ‖H̃t‖ < ∞, IP-a.s., then H is

IP-nonexplosive and H − H̃ is a d-dimensional local (IF, IP)-martingale.

Let f be a function from R+ to Rd×d
+ , and g be a function from R+ to E, where E

denotes Rd
+ or Rd×d

+ , two componentwise locally integrable functions. In the sequel,

f ∗ g denotes the convolution between f and g, i.e., (f ∗ g)(t) =
∫ t

0
f(t− s)g(s) ds,

for t ≥ 0.

Lemma 2.1. Let f and g be two measurable functions from R+ into Rd×d
+ and Rd

+,
respectively. Then, for each t ≥ 0, the following two conditions hold:

(1)

∫ t

0

(∫ u

0

f(u− s) dg(s)

)
du = (f ∗ g)(t), whenever g is componentwise in-

creasing and g(0) = 0.

(2)

∥∥∥∥∫ t

0

(f ∗ g)(u) du
∥∥∥∥ ≤

∥∥∥∥∫ ∞

0

f(u) du

∥∥∥∥ ∥∥∥∥∫ t

0

g(s) ds

∥∥∥∥.
Proof : It is skiped due to both conditions are easy to prove. �

Assumptions

(A1) There exists γ0 = (γ1
0, . . . , γ

d
0)

> ∈ Rd
+ such that, limn→∞

1
n

∫ nt

0
γ0(u) du =

tγ0, for each t ∈ [0, 1].
(A2) lim supk→∞

∥∥∫∞
0

γk(u) du
∥∥ < 1.

Notations Through this work, we maintain the following notations:

hp = γp ∗ · · · ∗ γ1,
h =

∑∞
p=1 hp,

m0 = γ0,
mp =

(∫∞
0

hp(u) du
)
γ0, for p ≥ 1, and

m =
∑∞

p=0 mp.

In the sequel, for any (IF, IP)-square integrable d-dimensional martingale M ,
〈M〉 stands for the predictable quadratic variation matrix associated to M . When
D is a d × d-diagonal matrix with corresponding entries a ∈ Rd in its diagonal,
we denote D = diag(a). As usual, D([0, 1],Rd) stands for the Skorohod space
of all right continuous and left hand limited function from [0, 1] to Rd. For any
x ∈ D([0, 1],Rd), we denote ∆x(t) = x(t)− x(t−), where x(t−) = lims↑t x(s). The
following continuity module at (x, δ) ∈ D([0, 1],Rd)× (0,∞) is defined as

ω(x, δ) = sup{‖x(v)− x(u)‖ : 0 ≤ u < v ≤ 1, v − u < δ}.
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For each n ∈ N\{0}, Hn and H̃n stand for the processes defined, for each t ≥ 0,

as Hn
t = Hnt/n and H̃n

t = H̃nt/n. We are interested in studying the asymptotic
properties of Hn, as n → ∞.

3. Laws of large numbers

Lemma 3.1. Let {An}n∈N be a sequence of componentwise increasing d-dimen-
sional processes starting at zero and A ∈ C([0, 1],Rd) such that for each t ∈ [0, 1],
limn→∞ IE(‖An

t −A(t)‖) = 0. Then,

lim
n→∞

IE

(
sup

0≤t≤1
‖An

t −A(t)‖
)

= 0.

Proof : It follows by a slight modification of Dini’s theorem. �

Lemma 3.2. Suppose assumptions (A1) and (A2) hold. Then, for each q ∈ (0, 2],

∞∑
p=0

sup
n≥1

IE

(
sup

0≤u≤1
‖Mp

nu/
√
n‖q
)

< ∞.

Proof : From (A2), there exists k0 ∈ N such that ρ , supk>k0

∥∥∫∞
0

γk(u) du
∥∥ < 1.

From Lemma 2.1, for n ≥ 1 and p > k0, we have

‖IE(Λp
n)‖ ≤ ρp−k0

∥∥∥∥∫ ∞

0

hk0(u) du

∫ n

0

γ0(u) du

∥∥∥∥ .
Hence the Jensen and Doob inequalities imply

sup
n≥1

IE

(
sup

0≤u≤1
‖Mp

nu/
√
n‖q
)

≤ sup
n≥1

IE

(
sup

0≤u≤1
‖Mp

nu/
√
n‖2
)q/2

≤ 2qCρ(p−k0)q/2,

where C =
∥∥∫∞

0
hk0(u) du

∥∥q/2 supn≥1

∥∥ 1
n

∫ n

0
γ0(u) du

∥∥q/2. Consequently
∞∑

p=k0

sup
n≥1

IE

(
sup

0≤u≤1
‖Mp

nu/
√
n‖q
)

≤ 2qC

1− ρq/2
< ∞,

which completes the proof. �

Theorem 3.3. Under condition (A1), for each p ≥ 1,

lim
n→∞

IE

(
sup

0≤t≤1

∥∥∥∥Λp
nt

n
− tmp

∥∥∥∥) = 0 and lim
n→∞

IE

(
sup

0≤t≤1

∥∥∥∥Np
nt

n
− tmp

∥∥∥∥) = 0. (3.1)

If, additionally, condition (A2) holds, then

lim
n→∞

∞∑
p=0

IE

(
sup

0≤t≤1

∥∥∥∥Λp
nt

n
− tmp

∥∥∥∥) = 0 and lim
n→∞

∞∑
p=0

IE

(
sup

0≤t≤1

∥∥∥∥Np
nt

n
− tmp

∥∥∥∥) = 0.

(3.2)
In particular,

lim
n→∞

IE

(
sup

0≤t≤1
‖H̃n

t − tm‖
)

= 0 and lim
n→∞

IE

(
sup

0≤t≤1
‖Hn

t − tm‖
)

= 0. (3.3)
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Proof : Since for each p ≥ 1, Λp = γp ∗Np−1, it follows by induction that

Λp =

p−1∑
j=0

(γp ∗ · · · ∗ γj+1) ∗M j + I ∗ hp ∗ γ0,

where I es the d× d-identity matrix. Hence for each t ∈ [0, 1], we have

1

n
Λp
nt − tmp = αn,p

t +

(
1

n
(I ∗ hp ∗ γ0)(nt)− tmp

)
, (3.4)

where

αn,p
t =

p−1∑
j=0

∫ t

0

(γp ∗ · · · ∗ γj+1)(nu)M
j
n(t−u) du.

Consequently

IE

(
sup

0≤t≤1
‖αn,p

t ‖
)

≤
√
d/n

p−1∑
j=0

IE

(
sup

0≤u≤1

∥∥M j
nu/

√
n
∥∥)

×
∥∥∥∥∫ ∞

0

(γp ∗ · · · ∗ γj+1)(u) du

∥∥∥∥ .
Hence

lim
n→∞

IE

(
sup

0≤t≤1
|αn,p

t |
)

= 0. (3.5)

Next we prove that for each t ∈ [0, 1],

lim
n→∞

1

n
(I ∗ hp ∗ γ0)(nt) = tmp. (3.6)

It is clear that (3.3) holds for t = 0, thus we assume t ∈ (0, 1]. We have

1

n
(I ∗ hp ∗ γ0)(nt)− tmp = −

∫ nt

0

hp(s)

(
1

n

∫ nt

nt−s

γ0(u) du

)
ds

+

(∫ nt

0

hp(s) ds

)(
1

n

∫ nt

0

(γ0(u)− γ0) du

)
−t

∫ ∞

nt

hp(u)γ0 du.

(3.7)

Condition (A1) and the Dominated Convergence Theorem (DCT), which is applied
componentwise, imply

lim
n→∞

∫ nt

0

hp(s)

(
1

n

∫ nt

nt−s

γ0(u) du

)
ds = 0

and since t > 0, (3.6) holds. This fact along with (3.4) and (3.5) imply that for
each t ∈ [0, 1],

lim
n→∞

IE

(∥∥∥∥Λp
nt

n
− tmp

∥∥∥∥) = 0
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and from Lemma 3.1, limn→∞ IE
(
sup0≤t≤1

∥∥∥Λp
nt

n − tmp

∥∥∥) = 0. Hence by the

Jensen and Doob inequalities, we have

IE

(
sup

0≤t≤1

∥∥∥∥Np
nt

n
− tmp

∥∥∥∥) ≤ 2d√
n
IE

(∥∥∥∥Λp
n

n

∥∥∥∥)1/2

+ IE

(
sup

0≤t≤1

∣∣∣∣Λp
nt

n
− tmp

∣∣∣∣)
and consequently (3.1) holds.

Next, we assume condition (A2). From (3.4) and Lemma 2.1, we have

IE

(
sup

0≤t≤1

∥∥∥∥Λp
nt

n
− tmp

∥∥∥∥) ≤ IE

(
sup

0≤t≤1
‖αn,p

t ‖
)

+

∥∥∥∥∫ ∞

0

hp(u) du

∥∥∥∥(∥∥∥∥ 1n
∫ n

0

γ0(u) du

∥∥∥∥+ ‖γ0‖
)
.

On the one hand,

∞∑
p=1

sup
n≥1

IE

(
sup

0≤t≤1
‖αn,p

t ‖
)

≤
∞∑
j=0

sup
n≥1

IE

(
sup

0≤u≤1

∥∥M j
nu/

√
n
∥∥)

× sup
j≥1

∞∑
p=j

‖
∫ ∞

0

(γp ∗ · · · ∗ γj)(u) du‖.

Lemma 3.2 and (A2) imply that
∑∞

p=1 supn≥1 IE
(
sup0≤t≤1 ‖α

n,p
t ‖

)
< ∞. From

(A1) and (A2), we have

∞∑
p=1

∥∥∥∥∫ ∞

0

hp(u) du

∥∥∥∥(sup
n≥1

∥∥∥∥ 1n
∫ n

0

γ0(u) du

∥∥∥∥+ ‖γ0‖
)

< ∞.

Hence, (3.1) and the DCT imply

lim
n→∞

∞∑
p=0

IE

(
sup

0≤t≤1

∥∥∥∥Λp
nt

n
− tmp

∥∥∥∥) = 0 (3.8)

and since
∞∑
p=0

IE

(
sup

0≤t≤1

∥∥∥∥Np
nt

n
− tmp

∥∥∥∥) ≤ 1√
n

∞∑
p=1

sup
n≥1

IE

(
sup

0≤u≤1
‖Mp

nu/
√
n‖
)

+

∞∑
p=0

IE

(
sup

0≤t≤1

∥∥∥∥Λp
nt

n
− tmp

∥∥∥∥) ,

(3.2) follows from Lemma 3.2 and (3.8). Finally, (3.3) is directly obtained from
(3.2) and therefore the proof is complete. �

4. A central limit theorem

Theorem 4.1. Let {Xn}n∈N be the sequence of processes defined, for t ∈ [0, 1], as
Xn

t =
√
n(Hn

t − tm). Additionally to (A2), suppose the following two conditions
holds:

(B1) limn→∞ sup0≤t≤1

∥∥∥ 1√
n

∫ nt

0
(γ0(u)− γ0) du

∥∥∥ = 0.

(B2) limn→∞
√
n
∫∞
n

h(u)γ0 du = 0.
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Then, {Xn}n∈N converges in law to a continuous d-dimensional martingale X,
starting at zero, with predictable quadratic variation matrix 〈X〉 given by 〈X〉t =
t
∑∞

j=0 Cjdiag(mj)C
>
j , where for each j ∈ N,

Cj =

(
I +

∞∑
p=1

∫ ∞

0

γj+p(u) du · · ·
∫ ∞

0

γj+1(u) du

)

Proof : Let

Y n
t =

1√
n

∞∑
j=0

M j
nt +

∞∑
p=1

p−1∑
j=0

√
n

(∫ 1

0

(γp ∗ · · · ∗ γj+1)(nu) du

)
M j

nt,

Dn
0,t =

∞∑
p=1

√
n

(
1

n

∫ nt

0

(hp ∗ γ0)(u) du− tmp

)
,

Dn
1,t =

∞∑
p=1

p−1∑
j=0

√
n

∫ t

0

(γp ∗ · · · ∗ γj+1)(nu)(M
j
n(t−u) −M j

nt) du and

Dn
2,t =

p−1∑
j=0

∞∑
p=1

√
n

∫ 1

t

(γp ∗ · · · ∗ γj+1)(nu)M
j
nt du.

We have

Xn
t = Y n

t +
1√
n

∫ nt

0

(γ0(u)− γ0) du+Dn
0,t +Dn

1,t −Dn
2,t.

It is clear that Dn
0,0 = 0 and from (3.7), for each t ∈ (0, 1], we have

Dn
0,t = −

∫ nt

0

h(s)

(
1√
n

∫ nt

nt−s

γ0(u) du

)
ds

+

(∫ nt

0

h(s) ds

)(
1√
n

∫ nt

0

(γ0(u)− γ0) du

)
+ t

√
n

∫ ∞

nt

h(u)γ0 du

and condition (B1) implies

lim
n→∞

1√
n

∥∥∥∥ sup
0≤t≤1

∫ nt

nt−s

γ0(u) du

∥∥∥∥ = lim
n→∞

1√
n

sup
0≤t≤1

∥∥∥∥∫ nt

0

(γ0(u)− γ0) du

∥∥∥∥ = 0.

Since for each x ∈ Rd
+, each component of

∫∞
0

h(s)xds is finite, from the DCT we
have

lim
n→∞

∫ nt

0

h(s)

(
1√
n

∫ nt

nt−s

γ0(u) du

)
ds = 0

and due to by (B2), limn→∞ sup0≤t≤1

∥∥t√n
∫∞
nt

h(u)γ0 du
∥∥ = 0, the sequence

{sup0≤t≤1 ‖Dn
0,t‖}n∈N\{0} converges to zero.
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For each δ ∈ (0, 1) we have

IE( sup
0≤t≤1

‖Dn
1,t‖) ≤

∞∑
j=0

sup
n≥1

IE

(
sup

|u′−u′′|≤δ

‖(M j
nu′ −M j

nu′′)/
√
n‖

)

×
∞∑

p=j+1

∥∥∥∥∫ ∞

0

(γp ∗ · · · ∗ γj+1)(u) du

∥∥∥∥
+ 2

∞∑
j=0

sup
n≥1

IE

(
sup

0≤u≤1
‖M j

nu/
√
n‖
)

×
∞∑

p=j+1

∥∥∥∥∫ ∞

nδ

(γp ∗ · · · ∗ γj+1)(u) du

∥∥∥∥ .
Since
∞∑
j=0

sup
n≥1

IE

(
sup

0≤u≤1
‖M j

nu/
√
n‖
)

< ∞ and sup
j≥1

∞∑
p=j

∥∥∥∥∫ ∞

0

(γp ∗ · · · ∗ γj)(u) du
∥∥∥∥ < ∞,

by the DCT, in order to prove that {IE(sup0≤t≤1 ‖Dn
1,t‖)}n∈N\{0} converges to zero,

it suffices to prove that for each j ≥ 1,

lim
δ→0

lim
n→∞

IE
(
ω(M j

n·/
√
n, δ)

)
= 0 (4.1)

and for each j ≥ 1 and δ > 0,

lim
n→∞

∞∑
p=j+1

∫ ∞

nδ

(γp ∗ · · · ∗ γj+1)(u) du = 0. (4.2)

We have

IE

(
sup

|u′−u′′|≤δ

∥∥〈M j
n·/

√
n〉u′ − 〈M j

n·/
√
n〉u′′

∥∥) ≤ 2 IE

(
sup

0≤t≤1

∥∥∥H̃n
t − tm

∥∥∥)+ δ‖m‖.

Hence Theorem 3.3 implies that {〈M j
n·/

√
n〉}n∈N\{0} satisfies

lim
δ→0

lim sup
n→∞

sup
j∈N

IE

(
sup

|u′−u′′|≤δ

‖〈M j
n·/

√
n〉u′ − 〈M j

n·/
√
n〉u′′‖

)
= 0.

From Theorem 2, Section II.3 in Rebolledo (1979), it is obtained that the sequence

{M j
n·/

√
n}j∈N,n∈N\{0} is tight and consequently (4.1) holds.

Let k0 and ρ as in the proof of Lemma 3.2. We have
∞∑

p=j+1

sup
n∈N

∥∥∥∥∫ ∞

nδ

(γp ∗ · · · ∗ γj+1)(u) du

∥∥∥∥
≤


k0∑

p=j+1

p∏
i=j+1

ρi +
ρ

1− ρ

k0∏
i=j+1

ρi if j < k0;

1

1− ρ
if j ≥ k0,

where ρi =
∥∥∫∞

0
γi(u) du

∥∥. Hence, (4.2) follows from the DCT.
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Notice that sup0≤t≤1 ‖Dn
2,t‖ ≤

∑∞
j=0 An,j , where

An,j =
√
d sup
0≤t≤1

‖M j
nt/

√
n‖

∞∑
p=j+1

∥∥∥∥∫ n

nt

(γp ∗ · · · ∗ γj+1)(u) du

∥∥∥∥ .
For each δ ∈ (0, 1], we have

IE(An,j) ≤
√
d IE

(
sup

0≤t≤δ
‖M j

nt/
√
n‖
) ∞∑

p=j+1

∥∥∥∥∫ ∞

0

(γj+1 ∗ · · · ∗ γp)(u) du
∥∥∥∥

+
√
d IE

(
sup

0≤t≤1
‖M j

nt/
√
n‖
) ∞∑

p=j+1

∥∥∥∥∫ ∞

nδ

(γj+1 ∗ · · · ∗ γp)(u) du
∥∥∥∥ .

Hence Lemma 3.2, (4.1) and (A2) imply that for each j ∈ N, limn→∞ IE(An,j) = 0.
Consequently, limn→∞ IE(sup0≤t≤1 ‖Dn

2,t‖) = 0.
We have

sup
0≤t≤1

‖∆Y n
t ‖ ≤ 1√

n

1 + sup
j≥1

∞∑
p=j

∥∥∥∥∫ ∞

0

(γp ∗ · · · ∗ γj)(u) du
∥∥∥∥


and

〈Y n〉t =
∞∑
j=0

Cn
j diag

(
Λj
nt

n

)
Cn>

j ,

where

Cn
j = I +

∞∑
p=1

∫ n

0

(γj+p ∗ · · · ∗ γj+1)(u) du.

Hence, there exists a constant C > 0 tal que sup0≤t≤1 ‖∆Y n
t ‖ ≤ C/

√
n and from

Theorem 3.3, (A2) and the DCT, we have

lim
n→∞

IE

 sup
0≤t≤1

∥∥∥∥∥∥〈Y n〉t − t

∞∑
j=0

Cjdiag(mj)C
>
j

∥∥∥∥∥∥
 = 0.

Accordingly, Corollary 12, in Section II.5 by Rebolledo (1979), implies that {Y n}n∈N
converges in law to a continuous d-dimensional martingale with predictable increas-
ing process 〈X〉 given by 〈X〉t = t

∑∞
j=0 Cjdiag(mj)C

>
j , for t ∈ [0, 1]. Therefore,

the proof is complete. �

5. Two remarkable cases

In this section we consider two remarkable cases where Theorem 4.1 applies.
The first one corresponds to the classical multivariate Hawkes process, i.e. when
the matrix functions γk (k ∈ N \ {0}) are assumed to be equal.

Corollary 5.1. Suppose for each k ≥ 1, γk = γ does not depend on k, condition
(B1) holds,

∥∥∫∞
0

γ(u) du
∥∥ < 1 and

∥∥∫∞
0

√
uγ(u) du

∥∥ < ∞. Then, {Xn}n∈N con-
verges in law to a d-dimensional continuous martingale X starting at zero and such
that, for each t ∈ [0, 1], 〈X〉t = ts2, where

s2 =

(
I−

∫ ∞

0

γ(u) du

)−1

diag

[(
I−

∫ ∞

0

γ(u) du

)−1

γ0

](
I−

∫ ∞

0

γ(u) du

)−1

.
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Note that in this case, which was studied by Bacry et al. (2013), the martingale
X has the same distribution that(

I−
∫ ∞

0

γ(u) du

)−1

diag

[(
I−

∫ ∞

0

γ(u) du

)−1

γ0

]1/2
W,

where W is a standard d-dimensional Brownian motion.
Other particular case of Theorem 4.1 is when there exists n∗ ∈ N such that

γn∗+1 = 0. The particular case n∗ = 1 corresponds to a d-dimensional version of
the Neyman-Scott cluster point process where the ‘mother point process’ is included
(see e.g. Møller and Waagepetersen, 2004).

Corollary 5.2. Suppose condition (B1) holds and that there exists n∗ ∈ N such that
γn∗+1 = 0. In addition, we assume for each k ∈ {1, . . . , n∗},

∥∥∫∞
0

u1/2γk(u) du
∥∥ <

∞. Then, {Xn}n∈N converges in law to a d-dimensional continuous martingale X,
starting at zero, with predictable quadratic variation matrix 〈X〉 given by

〈X〉t = t

n∗∑
j=0

Cjdiag(mj)C
>
j ,

where for each j ∈ N, Cj is defined as in Theorem 4.1.

6. Unpredictable marks

The classical HP with unpredictable marks is defined in Daley and Vere-Jones
(2003), Brémaud et al. (2002) and Møller and Rasmussen (2005). In this section,
this situation is extended to the case of the HP with different exciting functions, as
follows: let {ξik; k ∈ N, 1 ≤ i ≤ d} a set of i.i.d. random variables and independent

of H with mean ν and variance σ2. Let H = (H(1), . . . ,H(d))> and {Sn}n∈N
defined by Sn = (Sn,1, . . . , Sn,d)>, where for each i ∈ {1, . . . , d},

Sn,i
t =

√
n

 1

n

H
(i)
nt∑

k=1

ξik − νmit

 , t ∈ [0, 1]

and m = (m1, . . . ,md)>.
The proof of the following lemma follows from a slight extension of Proposition

8.15 in Breiman (1968) and the Stone-Weierstrass theorem.

Lemma 6.1. Let E and F be two metric spaces and {Pn}n∈N a sequence of prob-
ability measures defined on the Borel σ-algebra of E × F . Suppose there exists a
probability measure P defined on the Borel σ-algebra of E × F such that for any
bounded functions u : E → R and v : F → R, limn→∞

∫
u(x)v(y)Pn(dxdy) =∫

u(x)v(y)P (dxdy). Then, {Pn}n∈N converges weakly to P .

In Theorem 6.2 below, we maintain notations stated in Theorem 4.1.

Theorem 6.2. Suppose that conditions (A1), (A2), (B1) and (B2) hold. Then,
{Sn}n∈N converges in law to the continuous d-dimensional semi-martingale S =
νX + V , where V is independent of X and for each t ∈ [0, 1], Vt = diag(tm)1/2W ,
being W a normal random vector with mean vector zero and variance and covariance
matrix σ2I.
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Proof : Let D = Nd be with the natural order � defined componentwise. For each
n = (n1, . . . , nd) ∈ D \ {0} and t ≥ 0, let Wn = (W 1

n1
, . . . ,W d

nd
)>, where for

i ∈ {1, . . . , d}, W i
ni

=
∑ni

k=0(ξ
i
k − ν)/

√
ni. By Theorem 4.1, {Xn}n∈N converges in

distribution to X and by the standard Central Limit Theorem, {Wn}n∈D converges
in distribution to a normal random vector W with mean zero and variance and
covariance matrix σ2I. We assume X and W are defined on (Ω,F , IP) and hence
they are independent. By definingW i

0 = 0, we have Sn = νXn+diag(Hn)1/2WnHn .

Moreover, {Xn}n∈N and {Wn}n∈D are independent. Let T i = inf{t > 0 : H
(i)
t > 0}

and for each n ∈ N \ {0}, τ in = T i/
√
n, Jn,i

t = H
(i)
n(τ i

n∨t) and

S̃n,i
t =

√
n

 1

n

Jn,i
t∑

k=1

ξik − νmit

 , t ∈ [0, 1].

Let S̃n = (S̃n,1, . . . , S̃n,d)> and note that, for each i ∈ {1, . . . , d},

sup
0≤t≤1

|S̃n,i
t − Sn,i

t | ≤ 2νmiτ in + |ξi1|/
√
n.

From (A1), γ0 = (γ1
0 , . . . , γ

d
0 )

> satisfies
∫∞
0

γi
0(u) du = ∞, for all i ∈ {1, . . . , d}. Ac-

cordingly T i < ∞, IP-a.s. and hence limn→∞ sup0≤t≤1 |S̃
n,i
t − Sn,i

t | = 0. Moreover

S̃n = νXn+diag(Hn)1/2WJn , where J
n = (Jn,1, . . . , Jn,d)> and since, from Theo-

rem 3.3, {diag(Hn)1/2}n∈N converges in probability to d, where d(t) = diag(tm)1/2,
it only remains to prove that {(Xn,WJn)}n∈N converges in distribution to (X,W ).

Let u and v be two uniformly continuous and bounded functions from D([0, 1],Rd)
to R and ε > 0. There exists n∗ ∈ D such that | IE(v(Wn))− IE(v(W ))| < ε, when-
ever n∗ � n. Let cu and cv be upper bounds of |u| and |v|, respectively. We
have

|IE(u(Xn)v(WJn)− u(X)v(W ))| ≤ cv |IE (u(Xn)− u(X))|
+ |IE(u(Xn)[v(WJn)− v(W )]| .

Hence

lim sup
n→∞

|IE(u(Xn)v(WJn)− u(X)v(W ))| ≤ lim sup
n→∞

|IE(u(Xn)[v(WJn)− v(W )]| .

(6.1)
Let An = {ω ∈ Ω : for all t ∈ [0, 1], n∗ � Jn

t (ω)}. Due to the independence of
Wn and H, we have

|IE(u(Xn)[v(WJn)− v(W )]| ≤ εcu + 2cucv(1− IP(Bn)),

where Bn = {ω ∈ Ω : n∗ � (H
(1)√
nT 1(ω), . . . , H

(d)√
nTd(ω))

>}. Since for each i ∈
{1, . . . , d}, T i > 0, IP-a.s., Theorem 3.3 implies that limn→∞ IP(Bn) = 1. This

fact along with (6.1) imply that lim supn→∞

∣∣∣IE(u(Xn)v(Ṽ n)− u(X)v(V ))
∣∣∣ ≤ 2εcu.

But ε > 0 is arbitrary and consequently,

lim
n→∞

∣∣∣IE(u(Un)v(Ṽ n)− u(U)v(V )
)∣∣∣ = 0.

Therefore, by Lemma 6.1 the proof is complete. �
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