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Université de Lyon
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Abstract. The Adaptive Multilevel Splitting (AMS) algorithm is a powerful and
versatile method for the simulation of rare events. It is based on an interacting (via
a mutation-selection procedure) system of replicas, and depends on two integer
parameters: n ∈ Z

∗
+ the size of the system and the number k ∈ {1, . . . , n− 1} of

the replicas that are eliminated and resampled at each iteration.
In an idealized setting, we analyze the performance of this algorithm in terms

of a Large Deviations Principle when n goes to infinity, for the estimation of the
(small) probability P(X > a) where a is a given threshold and X is real-valued
random variable. The proof uses the technique introduced in Bréhier et al. (2015c):
in order to study the log-Laplace transform, we rely on an auxiliary functional
equation.

Such Large Deviations Principle results are potentially useful to study the al-
gorithm beyond the idealized setting, in particular to compute rare transitions
probabilities for complex high-dimensional stochastic processes.

1. Introduction

1.1. Splitting algorithms for rare event simulation. In many problems from engi-
neering, biology, chemistry, physics or finance, rare events are often critical and
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have a huge impact on the phenomena which are studied. From a general math-
ematical perspective, we may consider the following situation: let (Xt)t∈T, where
T = Z+ or R, be a (discrete or continuous in time) stochastic process, taking val-
ues in R

d. Assume that A,B ⊂ R
d are two metastable regions : starting from a

neighborhood of A (resp. of B), the probability that the process reaches B (resp.
A) before hitting A (resp. B) is very small (typically, less than 10−10). As a
consequence, a direct numerical Monte-Carlo with an ensemble of size N does not
provide significant results when N is reasonably large (typically, less than 1010) in
real-life applications.

Even if theoretical asymptotic expansions on quantities of interest are (often,
but not always) available - such as the Kramers-Arrhenius law given for instance
by the Freidlin-Wentzell Large Deviations Theory or Potential Theory for the exit
problem of a diffusion process in the small noise regime - in practice their explicit
computation is not possible (for instance when the dimension is large) and numerical
simulations are unavoidable.

It is thus essential to propose efficient and general methods, and to rigorously
study their consistency and efficiency properties. Two main families of methods
have been introduced in the 1950’s and studied extensively since then, in order to
improve the Monte-Carlo simulation algorithms, in particular for rare events: im-
portance sampling and importance splitting (see for instance Asmussen and Glynn
(2007), Rubino and Tuffin (2009) for general reviews of these methods and Kahn
and Harris (1951) for the historical introduction of importance splitting). The
main difference between these two methods is the following: the first one is in-
trusive, meaning that the dynamics of the stochastic process (more generally, the
distribution of the random variable of interest) is modified so that the probability
that the event of interest increases and in a Monte-Carlo simulation it is realized
more often, while the second is not intrusive and can thus be used more directly
for complex problems. Instead, for importance splitting strategies, the state space
is decomposed as a nested sequence of regions which are visited sequentially and
more easily by an interacting system of replicas.

In this paper, we focus on an importance splitting strategy which is known
as the Multilevel Splitting approach and describe it in the following setting. Let
h : Rd → R be a given function and assume we want to estimate the probability
p = P(X > a) that a real-valued random variable X = h(Y ) (where Y is a R

d-
valued random variable) belongs to (a,+∞) for a given threshold a ∈ R. This
situation is not restrictive for many applications; indeed, we may take X = 1τB<τA

and any a ∈ (0, 1) in the situation described above, where τA and τB are the hitting
times of A and B by the processX . A key assumption, for the analysis developed in
the paper, on the distribution of X is the following: we assume that the cumulative
distribution function F of X - i.e. F (x) = P(X ≤ x) for any x ∈ R - is continuous;
for convenience, we also assume that F (0) = 0 - i.e. X > 0 almost surely.

1.2. Multilevel splitting. The multilevel splitting approach (see Kahn and Harris
(1951), Glasserman et al. (1999), Cérou et al. (2012) for instance) is based on the
following decomposition of p as a telescoping product of conditional probabilities:

p = P(X > a) =
N
∏

i=1

P(X > ai
∣

∣X > ai−1), (1.1)
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where a0 = 0 < a1 < . . . < aN = a is a sequence of non-decreasing levels. In
other words, the realization of the event {X > a} is split into the realizations
of the N events {X > ai} conditionally on {X > ai−1}; each event has a larger
probability than the initial one and is thus much easier to realize. Then each of
the conditional probabilities is estimated separately, for instance with independent
Monte-Carlo simulations, or using a Sequential Monte-Carlo technique with a split-
ting of successful trajectories. This approach has been studied with different points
of view and variants under different names in the literature – nested sampling
Skilling (2006), Skilling (2007), subset simulation Au and Beck (2001), RESTART
(REpetitive Simulation Trials After Reaching Thresholds) Villén-Altamirano and
Villén-Altamirano (1991), Villén-Altamirano and Villén-Altamirano (1994).

For future reference, we introduce the following (unbiased) estimator of p given
by the multilevel splitting approach with N levels and n independent replicas (per
level):

p̂Nn =
N
∏

i=1

1

n

n
∑

m=1

1
X

(i)
m >ai

, (1.2)

where the random variables (X
(i)
m )1≤m≤N,1≤i≤N are independent and the distribu-

tion ofX
(i)
m is L(X |X > ai−1). Thus p̂

N
n is a product ofN independent Monte-Carlo

estimators of the conditional probabilities P(X > ai
∣

∣X > ai−1) appearing in (1.1).
The efficiency of the algorithm crucially depends on the choice of the sequence

of levels (ai)1≤i≤N : for a fixed number of levels N , the asymptotic variance of the
estimator (when n→ +∞) is minimized when the conditional probabilities satisfy
P(X > ai

∣

∣X > ai−1) = p1/N for all 1 ≤ i ≤ N ; moreover under this condition the

variance is of size (to −p2 log(p)/n) when N goes to infinity - see for instance Cérou
et al. (2012) for more details.

In general, finding a sequence of levels (ai)1≤i≤N such that the conditional prob-
abilities P(X > ai

∣

∣X > ai−1) are equal, or at least of the same order, is not an
easy task. Moreover, if the levels are not chosen that way, the performance of
the algorithm may be very poor. Computing the levels adaptively, following the
above guideline, is a fruitful approach, which gives Adaptive Multilevel splitting
algorithm.

1.3. The Adaptive Multilevel Splitting (AMS) algorithm. Versions of multilevel
splitting algorithms with an adaptive computation of the levels have been pro-
posed in Cérou and Guyader (2007), and studied extensively in the last years,
see for instance Bréhier et al. (2015c), Bréhier et al. (2015b), Cérou and Guyader
(2014), Guyader et al. (2011), Simonnet (2014), Walter (2014). It is essential and
non trivial to check that these adaptive versions still give reliable results, and to
prove they do it efficiently. In addition to the original reference Cérou and Guyader
(2007), we refer to the presentation given in Bréhier et al. (2015c), in particular for
notation and main properties of the algorithm.

Let us describe the algorithm we study in this paper; a precise statement is
provided by Algorithm 1 below. Two integer parameters are required: n ∈ Z

∗
+ is

the size of the system of interacting replicas; at each iteration a selection-mutation
procedure leads to eliminate and resample k ∈ {1, . . . , n− 1} of them.

The deterministic sequence (ai)1≤i≤N of the fixed-level algorithm is replaced
with a sequence of random variables, referred to as levels, Z0, Z1, . . ., which are
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computed as k-th order statistics of the n replicas at each iteration. The k replicas
with values less than Z are eliminated, and are then resampled using the condi-
tional distribution L(X |X > Z) of X conditionally on {X > Z}. The conditional
probabilities are replaced with 1−k/n: indeed, the levels are estimators of empirical
quantiles of the conditional distribution.

The number of iterations of the algorithm is a random variable: the algorithm
stops when a level satisfies Zj ≥ a. At the end, one obtains the estimator

p̂n,k =
1

n
Card

{

i; XJn,k

i ≥ a
}

(

1− k

n

)Jn,k

, (1.3)

where Jn,k is the number of iterations and
(

XJn,k

i

)

1≤i≤n
is the system of replicas

at the final iteration.
The results proved in this article can be applied for practical rare event estima-

tion problems only if one is able to sample according to the conditional distribution
L(X |X > z) for any value of z: this is part of the idealized setting assumption (see
Section 2.1). Even if it is rarely satisfied in real-life applications, the study of the
algorithm in that idealized setting is already challenging and yields very interesting
results, which give a guideline for a generalization beyond this simplified case, but
at the price of a much more intricate analysis. We refer to Section 8 for elements
on the non-idealized situation.

The adaptive multilevel splitting algorithm is non-intrusive: contrary to im-
portance sampling techniques, the (conditional) distributions do not need to be
modified during the simulation. The generation of random variables comes from a
black-box, and this property is a strength of the approach. The limitation is in the
requirement of an exact sampling.

Let us recall some important results obtained recently on the estimator (1.3),
in the setting of this article. On the one hand, in Guyader et al. (2011) (see
also Simonnet (2014), Walter (2014)), it has been proved that p̂n,1 is an unbiased
estimator of p – meaning that E[p̂n,1] = p – for all values of n ≥ 2 . This result
was extended to arbitrary k ∈ {1, . . . , n− 1} in Bréhier et al. (2015c): p̂n,k is an
unbiased estimator of p. On the other hand, efficiency properties have been studied
with the proof of Central Limit Theorems in two different kinds of regimes: either
k is fixed and n→ +∞ (see Guyader et al. (2011) and Simonnet (2014) for the case
k = 1 and Bréhier et al. (2015b) for arbitrary k), or both k and n go to infinity,
in such a way that k/n converges to α ∈ (0, 1) - which gives a fixed proportion
of resampled replicas at each iteration, see Cérou and Guyader (2007). We also
mention recent works which go beyond the idealized setting considered here: an
unbiasedness result in Bréhier et al. (2015a) and a central limit theorem in Cérou
and Guyader (2014).

We recall the following observation, which ensures the efficiency of the adaptive
multilevel splitting approach: the asymptotic variance is the same for both the
adaptive and the non-adaptive versions – i.e. with the estimator (1.2) in the limit
N → +∞ with an optimal choice of the levels ai. Moreover, it is much smaller
when the probability p is small than when using a crude Monte-Carlo estimator,
i.e. the empirical average

pn =
1

n

n
∑

m=1

1Xm>a, (1.4)
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where the random variables (Xm)1≤m≤n are independent and identically distrib-
uted, with distribution L(X). Indeed, for the splitting algorithm, asymptotically
(in n → ∞) the variance is of the order −p2log(p)/n, while it is of the order p/n
for the crude Monte-Carlo estimator.

1.4. Large deviations principle for the AMS algorithm. In this paper, we provide
a similar comparison of the efficiency of adaptive and non-adaptive splitting algo-
rithms, also with crude Monte-Carlo estimators. However, the comparison is based
on a different criterion, which seems to be original compared with existing liter-
ature: we prove a Large Deviations Principle principle for the distribution of the
estimator p̂n,k given by (1.3) when k is fixed and n → +∞. Our main result is
Theorem 3.1, which in particular yields that for any given ǫ > 0

1

n
log

(

P
(

|p̂n,k − p| ≥ ǫ
)

)

→
n→+∞

−min
(

I(p+ ǫ), I(p− ǫ)
)

< 0.

The rate function I - see (3.1) - obtained in Theorem 3.1 does not depend on k. We
then compare this rate function with the rate function I (see (6.2)) obtained for
the crude Monte-Carlo estimator pn given by (1.4) (thanks to Cramer’s Theorem,
see Dembo and Zeitouni (2010)) and show that for any y ∈ (0, 1) \ p we have
I(y) > I(y). In addition, it is clear that I(p) = I(p) = 0 and I(y) = I(y) = +∞ if
y /∈ (0, 1). Thus

P(p̂n,k − p > ǫ)

P(pn − p > ǫ)
→

n→+∞
0.

In other words, for large n, the probability that p̂n,k deviates from p from above
(and similarly from below) with threshold ǫ > 0 decreases exponentially fast, at a
faster rate than for pn.

Moreover, the non-adaptive, fixed-levels estimator p̂Nn given by (1.2) satisfies
a Large Deviations Principle when n → +∞ with rate function IN for a fixed
number of levels N and when the levels are chosen in an optimal way, namely
such that P(X > ai|X > ai−1) = p1/N does not depend on i. We then show
that limN→+∞ IN (y) ≤ I(y) for any y ∈ R: this inequality is sufficient to prove
that asymptotically the adaptive algorithm performs (at least) as well as the non-
adaptive version in this setting, in terms of large deviations.

Gathering this new result with those recalled above, in the idealized setting, the
consistency (estimators remain unbiased) and the efficiency (asymptotic variance
and rate function) are preserved (at least) when considering adaptive versions of
the multilevel splitting algorithms. The main advantage of the adaptive version is
the reduced number of parameters required a priori: only two integers n and k,
instead of n and a well-chosen family of levels (ai)1≤i≤N .

The proof of Theorem 3.1 relies on the technique introduced in Bréhier et al.
(2015c), and which has also been used in Bréhier et al. (2015b) to prove a central
limit theorem in the same regime (fixed k and n→ +∞). First, we restrict the study
of the properties of the algorithm to the case when X is exponentially distributed
with parameter 1 (this key remark was introduced first in Guyader et al. (2011) and
used also in Simonnet (2014), Walter (2014)). Instead of directly studying p̂n,k, we
focus on its logarithm log(p̂n,k), and prove that when considering the algorithm as
depending on an initial condition x, the Laplace transform of the latter is solution
of a functional (integral) equation (with respect to the x variable) - thanks to a
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decomposition of the realizations of the algorithm according to the value of the first
level. To study the equation in the asymptotic regime considered in this paper,
we then derive a linear ordinary differential equation of order k and perform an
asymptotic expansion. Note that we do not give all details for the derivation of the
differential equations and the basic properties of its coefficients; for some points we
refer the reader to Bréhier et al. (2015c) where all the arguments are proved with
details and here we mainly focus on the proof of the new asymptotic results as well
as on the interpretation of the Large Deviations Principle.

It seems that studying the performance of multilevel splitting algorithms via
Large Deviations Principle is an original approach, which can complement the other
studies which are all based on Central Limit Theorems. Note that Glasserman et al.
(1998) also uses Large Deviations techniques to study the efficiency of (fixed-levels)
multilevel splitting algorithms; however asymptotics are not in terms of parameters
of the algorithm (like n), but are in terms of a parameter ǫ→ 0 such that X = Xǫ

satisfies a Large Deviations Principle, and p = pǫ → 0. In the present paper, we
proved a result in a specific regime (k is fixed, n → +∞), in the idealized setting.
To go further, it would be interesting to look at other regimes (k, n → +∞ with
k/n→ α ∈ (0, 1)) and to go beyond the idealized setting. These issues are discussed
in Section 8 and will be the subject of future investigation.

1.5. Organization of the paper. The paper is organized as follows. In Section 2,
we introduce our main assumptions (Section 2.1), describe the Adaptive Multilevel
Splitting algorithm (Section 2.2) and recall several of its fundamental properties
used in the sequel of the article (Section 2.3). The main result of this paper is
given in Section 3: it is the Large Deviations Principle for the estimator of the
probability given by the AMS estimator, see Theorem 3.1. An important auxiliary
result is stated in Section 4, and proofs are carried over in Section 5 - some technical
estimates being proved in Section 7. We compare the performance in terms of the
Large Deviations Principle of the AMS algorithm with two other methods in Section
6: a crude Monte-Carlo method and a fixed-level splitting method. Finally, we give
some concluding remarks and perspectives in Section 8.

2. Description of the Adaptive Multilevel Splitting algorithm

2.1. Assumptions. Let X be some real random variable. For simplicity, we assume
that X > 0 almost surely.

We want to estimate the probability p = P(X > a), where a > 0 is some
threshold. When a goes to +∞, p goes to 0 and we have to estimate the probability
of a rare event.

We make a fundamental assumption on the distribution of X .

Assumption 2.1. Let F denote the cumulative distribution function of X: we
assume that F is continuous.

More generally, for both theoretical and practical purpose, we introduce for
0 ≤ x ≤ a the conditional probability

P (x) = P(X > a|X > x); (2.1)
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we also denote by L
(

X |X > x) the associated conditional distribution, and F (·;x)
its cumulative distribution function: for any y > x we have F (y;x) = F (y)−F (x)

1−F (x)

whenever F (x) < 1.
We emphasize on two important equalities: P (a) = 1, and the estimated proba-

bility is p = P (0); in fact, the distribution of X is equal to L
(

X |X > 0).
The idealized setting refers to the following assumptions:

• Assumption 2.1 is satisfied (theoretical condition);
• it is possible to sample according to the conditional distribution L

(

X |X >
x) for any x ∈ [0, a) (practical condition).

In view of a practical implementation of the algorithm, the second condition
is probably the most restrictive. One may rely on some approximation of the
conditional distribution L

(

X |X > x) thanks to a Metropolis-Hastings algorithm:
in that case (see Cérou and Guyader (2014) for instance), the analysis we develop
here does not apply, but gives an interesting insight for the behavior in the case
of a large number of steps in the Metropolis-Hastings auxiliary scheme (rigorously,
we treat the case of an infinite number of steps).

2.2. The algorithm. We now present the Adaptive Multilevel Splitting algorithm,
under the assumptions of Section 2.1 above.

The algorithm depends on two parameters:

• the number of replicas n;
• the number k ∈ {1, . . . , n− 1} of replicas that are resampled at each itera-
tion.

The other necessary parameters are the initial condition x and the stopping
threshold a: the aim is to estimate the conditional probability P (x) introduced in
(2.1). For future reference, we denote by AMS(n, k; a, x) the algorithm.

The dependence with respect to x allows us below to state fundamental func-
tional equations on useful observables of the estimator computed at the end of the
iterations of the algorithm, as a function of x. In practice, we are interested in the
case x = 0; in this situation, the algorithm is denoted by AMS(n, k; a).

Before we detail the algorithm, we introduce important notation. First, when
we consider a random variable Xj

i , the subscript i denotes the index in {1, . . . , n}
of a replica, while the superscript j denotes the iteration of the algorithm.

Moreover, we use the following notation for order statistics. Let Y = (Y1, . . . , Yn)
be independent and identically distributed (i.i.d.) real valued random variables
with continuous cumulative distribution function; then there exists almost surely a
unique (random) permutation σ of {1, . . . , n} such that Yσ(1) < . . . < Yσ(n). For
any k ∈ {1, . . . , n}, we then denote by Y(k) = Yσ(k) the so-called k-th order statistic
of the sample Y . Sometimes we need to specify the size of the sample of which we
consider the order statistics: we then use the notation Y(k,n).

We are now in position to write the AMS(n, k; a, x) algorithm.

Algorithm 1 (Adaptive Multilevel Splitting, AMS(n, k; a, x)).
Initialization: Set the initial level Z0 = x.

Sample n i.i.d. realizations X0
1 , . . . , X

0
n, with distribution L(X |X > x).

Define Z1 = X0
(k), the k-th order statistics of the sample X0 = (X0

1 , . . . , X
0
n),

and σ1 the (a.s.) unique associated permutation: X0
σ1(1) < . . . < X0

σ1(n).

Set j = 1.
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Iterations (on j ≥ 1): While Zj < a:

• Conditional on Zj, sample k new independent random variables
(Y j

1 , . . . , Y
j
k ), according to the law L(X |X > Zj).

• Set

Xj
i =

{

Y j
(σj)−1(i) if (σj)−1(i) ≤ k

Xj−1
i if (σj)−1(i) > k.

In other words, we resample exactly k out of the n replicas, namely those
with index i such that Xj−1

i ≤ Zj, i.e. such that i ∈
{

σj(1), . . . , σj(k)
}

(which is equivalent to (σj)−1(i) ≤ k). They are resampled according the the
conditional distribution L(X |X > Zj). The other replicas are not modified.

• Define Zj+1 = Xj
(k), the k-th order statistics of the sample

Xj = (Xj
1 , . . . , X

j
n), and σj+1 the (a.s.) unique associated permutation:

Xj
σj+1(1) < . . . < Xj

σj+1(n).

• Finally increment j ← j + 1.

End of the algorithm: Define Jn,k(x) = j − 1 as the (random) number of

iterations. Note that Jn,k(x) is such that ZJn,k(x) < a and ZJn,k(x)+1 ≥ a.

Observe for instance that Jn,k(x) = 0 if and only if Z1 > a: we mean that in
this case the algorithm has required 0 iteration, since the stopping condition at the
beginning of the loop (on j) is satisfied without entering into the loop.

The estimator of the probability P (x) is defined by

p̂n,k(x) = Cn,k(x)

(

1− k

n

)Jn,k(x)

, (2.2)

with

Cn,k(x) =
1

n
Card

{

i; X
Jn,k(x)
i ≥ a

}

. (2.3)

The interpretation of the factor Cn,k(x) is the following: it is the proportion of

the replicas X
Jn,k(x)
i which satisfy Xj

i ≥ a: since X
Jn,k(x)
(k) = ZJn,k(x)+1 ≥ a, we

have Cn,k(x) ≥ n−k+1
n . Note that Cn,1(x) = 1.

When x = 0, to simplify notations we set p̂n,k = p̂n,k(0).

2.3. Properties of the AMS Algorithm 1.

Well-posedness. We first recall some important results on the well-posedness of the
algorithm. For more detailed statements and complete proofs, see Section 3.2 in
Bréhier et al. (2015c), in particular Proposition 3.2 there.

First, at each iteration j of the algorithm, conditional on the level Zj, the re-
sampling produces a family of n random variables

(

Xj
i

)

1≤i≤n
which are indepen-

dent and identically distributed, with distribution L(X |X > Zj). By Assumption
2.1, conditional on Zj the latter conditional distribution also admits a continu-
ous cumulative distribution function F (·;Zj); as a consequence, almost surely the
permutation σj+1 is unique, and the level Zj+1 is well-defined.

Moreover, if we assume that P (x) > 0, almost surely the algorithm stops after
a finite number of steps, for any values of k and n such that 1 ≤ k ≤ n − 1: the
random variable Jn,k(x) almost surely takes values in Z+, and the estimator p̂n,k(x)
is well-defined and takes values in (0, 1].
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Reduction to the exponential case. We now state properties that are essential for
our theoretical study of the algorithm below.

One of the main tools in Bréhier et al. (2015c) and Bréhier et al. (2015b), which
was also used in Guyader et al. (2011) in the case k = 1, is the restriction to
the case where the random variables are exponentially distributed. More pre-
cisely, assume that P (x) > 0, and denote by E(1) the exponential distribution
with mean 1. Then in distribution the algorithm AMS(n, k; a) is equal to the algo-
rithm AMSexpo(n, k;− log(p)) in which we assume that the distribution is E(1); a
similar result holds for AMS(n, k; a, x) when x ∈ [0, a). In particular, the associated
estimators are equally distributed. The main argument is the well-known equality
of distribution F (X) = U where U is uniformly distributed on (0, 1).

In the sequel, we state in Section 3 our results in the general setting - i.e. for
AMS(n, k; a), with the probability p and the estimator p̂n,k - but in the remaining of
the paper we give proofs in the exponential case, namely for AMSexpo(n, k; aexpo, x)
with aexpo = − log(p), and we omit the reference to the exponential case to simplify
the notation. Whether we consider the general or the exponential case will be clear
from the context.

3. The Large Deviations Principle result for the AMS algorithm

The main result of this article is the following Theorem 3.1, which states a
Large Deviations Principle (in the sense of Dembo and Zeitouni (2010)) for the
distribution µn,k = L

(

p̂n,k
)

of p̂n,k for fixed probability p > 0 and k ∈ Z
∗
+, in the

limit n→ +∞.

Theorem 3.1. Assume that p ∈ (0, 1) and k ∈ Z
∗
+ are fixed. Then the se-

quence
(

µn,k
)

n∈Z+,n>k
of distributions of the estimator p̂n,k of p obtained by the

AMS(n, k; a) algorithm satisfies a Large Deviations Principle with the rate function
I defined by

I(y) =

{

+∞ if y /∈ (0, 1)

log(y) log( log(p)log(y) ) + log(yp ) if y ∈ (0, 1).
(3.1)

Observe that the rate function does not depend on k.
Note that the statement above is restricted to p ∈ (0, 1). Indeed, when p = 1,

we have almost surely p̂n,k = 1 (the algorithm stops after 0 iteration). Moreover,
we always estimate the probability of events which have a positive probability
(otherwise the algorithm does not stop after a finite number of iterations).

The following Proposition describes some properties of the rate function I.

Proposition 3.2. The rate function I is of class C∞ on its domain (0, 1).
Moreover, p is the unique minimizer of I: we have I(p) = I ′(p) = 0, I ′′(p) =
1

−p2 log(p) > 0.

Finally, for any y ∈ (0, 1) \ {p} we have I(y) > 0; I is decreasing on (0, p) and
is increasing on (p, 1).
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Proof : Straightforward computations yield that for y ∈ (0, 1) we have

dI(y)

dy
=

log(log(p))− log(log(y))

y
,

d2I(y)

dy2
= − log(log(p))− log(log(y))

y2
− 1

y2 log(y)
.

�

Let ǫ ∈ (0,max(p, 1− p)); then from Theorem 3.1 we have when n→ +∞
1

n
log

(

P
(

|p̂n,k − p| ≥ ǫ
)

)

→
n→+∞

−min
(

I(p+ ǫ), I(p− ǫ)
)

< 0. (3.2)

Applying the Borel-Cantelli Lemma, we get the almost sure convergence p̂n,k → p.

Remark 3.3. The almost sure limit is consistent with the unbiasedness result
(E[p̂n,k] = p) from Bréhier et al. (2015c). There only the convergence in prob-
ability of p̂n,k to p has been proved.

Note also that a Central Limit Theorem has been proved in Bréhier et al. (2015b),
in the same regime:

√
n
(

p̂n,k − p
)

→ N
(

0,−p2 log(p)
)

.

The asymptotic variance is given by I ′′(p).

We conclude this section with a result showing that the choice of the regime p
(and k) fixed and n → +∞ is crucial to get Theorem 3.1. Indeed, set k = 1, and
for a given σ > 0 assume that n and p are related though the following formula:

− log(p) = σ2n. Then pn,k

p converges (in law) to a log-normal distribution, as stated

in the following proposition.

Proposition 3.4. If − log(p) = σ2n, we have the convergence in distribution

lim
n→∞

p̂n,1

p
= exp(σZ − σ2/2),

where Z ∼ N (0, 1).

The proof is postponed to Section 5.1, since it uses the same arguments as the
proof of Theorem 3.1 in the case k = 1.

Let ǫ > 0. Then (compare with (3.2) with ǫp instead of ǫ)

P
(

| p̂
n,1

p
− 1| ≥ ǫ

)

−→
n=−

log(p)

σ2 →+∞

PZ∼N (0,1)

(

| exp(σZ − σ2/2)− 1| ≥ ǫ
)

> 0,

where the limit is positive, while owing to (3.2) when p fixed, P
(

| p̂n,1

p − 1| ≥ ǫ
)

converges to 0 exponentially fast when n→ +∞.

4. Strategy of the proof

To prove Theorem 3.1, we in fact first prove a Large Deviations Principle for
µ̃n,k = L

(

log(p̂n,k)
)

, with rate function J given below.
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Proposition 4.1. Assume that p ∈ (0, 1) and k ∈ Z
∗
+ are fixed. Then the sequence

(

µ̃n,k
)

n∈Z+,n>k
of distributions of log(p̂n,k) obtained by the AMS(n, k; a) algorithm

satisfies a Large Deviations Principle with the rate function J defined by

J(z) =

{

+∞ if z ≥ 0

z − log(p)− z log( z
log(p) ) if z < 0.

(4.1)

Then Theorem 3.1 immediately follows from Proposition 4.1 and the application
of the contraction principle (see Dembo and Zeitouni (2010), Theorem 4.2.1): we
have p̂n,k = exp

(

log(p̂n,k)
)

, and we obtain the rate function with the identity
I(y) = J(log(y)).

The proof of Proposition 4.1 relies on the use of the Gärtner-Ellis Theorem (see
Theorem 2.3.6 in Dembo and Zeitouni (2010)) and the asymptotic analysis when
n→ +∞ of the log-Laplace transform of µ̃n,k.

Proposition 4.2. Set for any 1 ≤ k ≤ n− 1 and any λ ∈ R

Λn,k(λ) = log
(

E

[

exp
(

λ log(p̂n,k)
)

])

. (4.2)

Then for any fixed k ∈ Z
∗
+ and any λ ∈ R we have the convergence

1

n
Λn,k(nλ)→ Λ(λ) = − log(p)(exp(−λ)− 1). (4.3)

The Fenchel-Legendre transform Λ∗ of Λ satisfies:

Λ∗(z) = sup
λ∈R

(

λz − Λ(λ)
)

=

{

+∞ if z ≥ 0

z − log(p)− z log( z
log(p) ) if z < 0.

(4.4)

Then for any k ∈ Z
∗
+, the sequence of distributions

(

µ̃n,k
)

n∈Z+,n>k
satisfies a

Large Deviations Principle, with the rate function J = Λ∗.
The proof of (4.3) is the main task of this paper. In Section 5.1, we give a

first easy proof in the case k = 1, relying on the knowledge of the distribution
of Jn,1: it is a Poisson distribution with mean −n log(p). We can then compute
explicitly Λn,1(λ) and prove (4.3). In Section 5.2, we study the general case k ≥ 1
with the method introduced in Bréhier et al. (2015c), in the exponential case: for
the algorithm AMSexpo(n, k; a, x), we derive a functional equation on the Laplace
transform exp

(

Λn,k(λ) as a function of the initial condition x, for fixed parameter
λ.

For completeness, we close this Section with the computation of the Fenchel-
Legendre transform J = Λ∗ of Λ in Proposition 4.2.

Proof : First, assume that z ≥ 0. Then λz − Λ(λ) → +∞ when λ → +∞: thus
Λ∗(z) = +∞. This result is not surprising, since log(p̂n,k) < 0 almost surely.

If z < 0, the map λ ∈ R 7→ λz − Λ(λ) admits the limit −∞ for z → ±∞, and

attains its maximum at the unique solution λz of the equation z − dΛ(λ)
dλ (λz) = 0,

which is given by λz = − log
(

z
log(p)

)

. Then Λ∗(z) = λzz − Λ(λz), which gives

(4.4). �
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5. Proof of Proposition 4.2

5.1. The case k = 1. We start with a proof of Theorem 3.1 when k = 1: in this
case, we have Cn,1 = 1 almost surely, and the number of iterations Jn,1 follows a
Poisson distribution P(−n log(p)) (see for instance Bréhier et al. (2015c), Guyader
et al. (2011)).

As a consequence, it is very easy to prove Proposition 4.1. Let λ ∈ R. Then

Γn,1(λ) = exp
(

Λn,1(λ)
)

= E
[

exp
(

λ log(p̂n,1)
)]

= E
[

exp
(

λ log(1 − 1/n)Jn,1
)]

= exp
(

−n log(p)
(

exp(λ log(1− 1/n))− 1
)

)

.

It is now easy to conclude: when n→ +∞
1

n
log

(

Λ(nλ)
)

= − log(p)
(

exp(nλ log(1 − 1/n))− 1
)

→
n→+∞

− log(p)
(

exp(−λ)− 1
)

.

We have performed explicit calculations, using the knowledge of the distribution
of Jn,1. However for k > 1, we cannot rely on such simple arguments and we need
other tools.

The connexion with the Poisson distribution gives an interpretation of the rate
functions I and J . More precisely, I is obtained from J by the contraction principle
(I(y) = J(log(y))), and J is the rate function obtained in the Cramer theorem
where the distribution R is such that −R ∼ P

(

− log(p)
)

. Indeed, let (Rm)m∈Z∗

+
be

independent, with the same distribution as X ; if we denote by Rn = 1
n

∑n
m=1 Rm

the empirical average, we compute for any λ ∈ R

E
[

exp
(

nλRn

)]

=
(

E
[

exp
(

λR
)

)n

=
(

exp
(

− log(p)
(

exp(−λ)− 1
))

)n

.

To conclude this section on the case k = 1, we prove Proposition 3.4. We use
again the explicit knowledge of the distribution of Jn,1 and use a Central Limit
Theorem on exponential distributions to conclude.

Proof of Proposition 3.4: We write (with a = − log(p) = σ2n)

p̂n,1

p
= exp(Jn,1 log(1− 1/n) + a)

= exp

(

Jn,1 − na√
na

√
na log(1 − 1/n) + a+ na ln(1 − 1/n)

)

.

By the Central Limit Theorem on the Poisson distribution, one gets, in the limit
n→ +∞, the following convergence in distribution

Jn,1 − na√
na

→ N (0, 1).

Moreover, when n→ +∞, we have
√
na log(1− 1/n) = nσ log(1− 1/n)→ −σ and

a + na log(1 − 1/n) = σ2
(

n+ n2 ln(1− 1/n)
)

tends to −σ2

2 . This concludes the
proof. �
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5.2. The general case. In this section, we give the main arguments used to prove
Proposition 4.2 in the general case k ∈ Z

∗
+. In particular, we want to show that

the rate function we obtain does not depend on k. The proof of some important
but technical results is postponed to Section 7.

Even if in Section 5.1 above we have proved Proposition 4.2 in the case k = 1,
we include this case in our general framework, and obtain an alternative proof.

To this aim, we make use of the strategy introduced in Bréhier et al. (2015c) to
study the properties of the AMS(n, k; a) algorithm. First, as explained in Section
2.3, we are allowed to restrict the study to the case where X is exponentially
distributed: it is enough to study the AMSexpo(n, k; aexpo) algorithm, where aexpo =
− log(p).

Moreover, one of the main ideas is to consider the initial condition of the al-
gorithm as an extra variable: for x ∈ [0, a), we study the AMSexpo(n, k; aexpo, x)
algorithm. From now on, in this Section, and in Section 7, we only consider the
exponential case and we omit the dependence.

Definition 5.1. We use the following notation: for any (x, y) ∈ R
2

f(y) = exp(−y)1y≥0 , F (y) =
(

1− exp(−y)
)

1y≥0 =

∫ y

−∞

f(z)dz;

f(y;x) =
f(y)

1− F (x)
1y≥x , F (y;x) =

F (y)− F (x)

1− F (x)
1y≥x =

∫ y

−∞

f(z;x)dz;

fn,k(y;x) = k

(

n

k

)

F (y;x)k−1f(y;x)
(

1− F (y;x)
)n−k

,

Fn,k(y;x) =

∫ y

x

fn,k(z;x)dz.

Let X be exponentially distributed with parameter 1. Then f (resp. F )) is the
density (resp. the c.d.f.) of L(X). For x ≥ 0, f(·;x) (resp. F (·;x)) is the density
(resp. the c.d.f.) of the conditional distribution L

(

X |X > x
)

.
Finally, let (X1, . . . , Xn) be i.i.d. with the distribution of L(X), with the asso-

ciated order statistics X(1) < . . . < X(n). Then fn,k(·;x) (resp. Fn,k(·;x)) is the
density (resp. the c.d.f.) of the k-th order statistic X(k).

The main object we need to study is the following function Γn,k of λ ∈ R

(considered as a fixed parameter) and the initial condition x ∈ [0, a]

Γn,k(λ;x) = E

[

exp
(

nλ log(p̂n,k(x))
)

]

(5.1)

= exp
(

Λn,k(nλ;x)
)

.

Notice that we include x = a in the domain of definition of the functions Γn,k and
Λn,k (defined by (4.2)). It is also important to remark that we evaluate Λn,k at
(nλ;x).

We state several fundamental results which together yield Proposition 4.2 in the
x-dependent case; to get (4.3) it is then enough to take x = 0.

First, Proposition 5.2 gives a functional equation satisfied by Γn,k(λ; ·) on [0, a],
for any value of the parameters 1 ≤ k < n and λ ∈ R.

We use the following auxiliary function:

Θn,k(λ;x) =

k−1
∑

ℓ=0

exp
(

nλ log(1− ℓ

n
)
)

(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

, (5.2)
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with the convention Fn,0(y;x) = 1y≥x.

Proposition 5.2. For any n ∈ Z
∗
+, k ∈ {1, . . . , n− 1}, and λ ∈ R, the func-

tion Γn,k(λ; ·) is solution on the interval [0, a] of the functional equation (with the
unknown Γ):

Γ(x) =

∫ a

x

exp
(

nλ log(1 − k

n
)
)

Γ(y)fn,k(y;x)dy +Θn,k(λ;x). (5.3)

Observe that for the moment, it is not clear that Γn,k is the unique solution of
the functional equation (5.3). We will prove this property below.

For completeness, we include a proof of this fundamental result, even if follows
the same lines as Proposition 4.2 in Bréhier et al. (2015c).

Proof of Propositon 5.2: We decompose the expectation according to the value of
the (random) number of iterations Jn,k(x) in the algorithm starting from x:

Γn,k(λ;x) =E

[

exp
(

nλ log(p̂n,k(x))
)

]

=E

[

exp
(

nλ log(p̂n,k(x))
)

1Jn,k(x)=0

]

+ E

[

exp
(

nλ log(p̂n,k(x))
)

1Jn,k(x)≥1

]

.

First, since
{

Jn,k(x) = 0
}

=
{

Z1 ≥ a
}

=
⋃k−1

ℓ=0

{

X(ℓ+1) ≥ a > X(ℓ)

}

, we have

E

[

exp
(

nλ log(p̂n,k(x))
)

1Jn,k(x)=0

]

=E

[

exp
(

nλ log(Cn,k(x))
)

1Jn,k(x)=0

]

=

k−1
∑

ℓ=0

exp
(

nλ log(1− ℓ

n
)
)

×
(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

=Θn,k(λ;x).

Second, we use
{

Jn,k(x) ≥ 1
}

=
{

Z1 ≤ a
}

and condition with respect to Z1:

E

[

exp
(

nλ log(p̂n,k(x))
)

1Jn,k(x)≥1

]

= E

[

E
[

exp
(

nλ log(p̂n,k(x))
)∣

∣Z1
]

1Z1<a

]

= E

[

E
[

exp
(

nλ log((1 − k/n)J
n,k(x)−1Cn,k(x)) + nλ log(1 − k/n)

)
∣

∣Z1
]

1Z1<a

]

= exp
(

nλ log(1− k

n
)
)

E

[

E
[

exp
(

nλ log((1 − k/n)J
n,k(Z1)Cn,k(Z1))

)
∣

∣Z1
]

1Z1<a

]

= exp
(

nλ log(1− k

n
)
)

E

[

Γn,k(Z
1;x)1Z1<a

]

=

∫ a

x

exp
(

nλ log(1− k

n
)
)

Γn,k(λ; y)fn,k(y;x)dy.

We have used a kind of Markov property for the algorithm: up to taking into
account for one more iteration, the algorithm behaves the same starting from x or
from Z1 ∈ (x, a]. �

Notice that the functional equation (5.3) involves a simple factor depending
only on λ, n and k in the integral, and that on both the left and the right-hand
sides the function Γ is evaluated at the same value of the parameter λ. These
observations are consequences of the choice to prove a Large Deviations Principle
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for log(p̂n,k) (instead of p̂n,k) thanks to the Gärtner-Ellis Theorem, and to conclude
with the use of the contraction principle; the same trick was used in Bréhier et al.
(2015b) to prove the Central Limit Theorem, thanks to the delta-method and the
use of Levy Theorem. If one replaces log(p̂n,k(x)) with p̂n,k(x) in (5.1), then one
obtains a more complicated functional equation where the observations above do
not hold, and which is not easily exploitable. In particular, one does not obtain a
nice counterpart of the fundamental result, Proposition 5.3 below.

We now state in Proposition 5.3 that solutions Γ of the functional equation (5.3)
are in fact solutions of a linear Ordinary Differential Equation (ODE) of order k,
with constant coefficients.

Proposition 5.3. For any n ∈ Z
∗
+, k ∈ {1, . . . , n− 1}, and λ ∈ R, let Γ be a

solution of the functional equation (5.3). Then it is solution of the following linear
ODE of order k:

dk

dxk
Γn,k(λ;x) = exp

(

nλ log(1− k

n
)
)

µn,kΓn,k(λ;x)+

k−1
∑

m=0

rn,km

dm

dxm
Γn,k(λ;x). (5.4)

The coefficients µn,k and (rn,km )0≤m≤k−1 satisfy the following properties:

µn,k = (−1)kn . . . (n− k + 1)

νk −
k−1
∑

m=0

rn,km νm = (ν − n) . . . (ν − n+ k − 1) for all ν ∈ R.
(5.5)

A sketch of proof of this result is postponed to Section 7. It uses the same argu-
ments as to prove the corresponding functional equation in Bréhier et al. (2015c).
For the proof of (5.5) in particular, we refer to that article.

To conclude on uniqueness of the solution of (5.3), and then prove asymptotic
expansions on Γn,k, we prove the following Lemma.

Lemma 5.4. For any fixed k ∈ {1, . . . , } and any λ ∈ R, we have for any m ∈
{0, . . . , k − 1}

dm

dxm
Γn,k(λ;x)

∣

∣

∣

x=a
= dm

dxmΘn,k(λ;x)
∣

∣

∣

x=a
(5.6)

∼
n→∞

nm
(

1− exp(−λ)
)m

.

By Cauchy-Lipschitz theory, the linear ODE (5.4) with the conditions (5.6) at
x = a admits a unique solution; therefore it is clear that Γn,k is the unique solution
of (5.3).

Remark 5.5. A similar result, although in a weaker form, is used to prove the
Central Limit Theorem in Bréhier et al. (2015b): it was sufficient to establish
dm

dxmΘn,k(λ;x)
∣

∣

∣

x=a
= O(nm). Here we require a more precise asymptotic result in

order to prove that the coefficient γ1
n,k(λ) defined in Proposition 5.6 below converges

to 1 (in fact, we only need that it is bounded from below by a positive constant).

We finally explain how to obtain asymptotic knowledge on Γn,k(λ;x) and
Λn,k(nλ, x) when n → +∞. First, the k roots

(

νℓn,k(λ)
)

1≤ℓ≤k
of the polynomial

equation associated with the linear ODE (5.4) are pairwise distinct for n large
enough (the other parameters λ and k being fixed), and more precisely they satisfy
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(5.8). As a consequence, the solution Γn,k can be written (see (5.7)) as a linear

combination of exponential functions x 7→ exp
(

νℓn,k(λ) (x− a)
)

. Finally, using the

asymptotic expression for the derivatives of order 0, . . . , k − 1 at x = a, we obtain
a linear system of equations, solve it using the Cramer’s formulae and obtain the
asymptotic expression (5.9). The proof is postponed to Section 7.

Proposition 5.6. Let k ∈ {1, . . . , } and λ ∈ R be fixed. Then for n large enough,
we have for any x ∈ [0, a]

Γn,k(λ, x) =

k
∑

ℓ=1

γℓ
n,k(λ) exp

(

νℓn,k(λ) (x− a)
)

, (5.7)

where

νℓn,k(λ) ∼ n
(

1− e−λei2π
(ℓ−1)

k

)

(5.8)

and

γℓ
n,k(λ)→ 1ℓ=1. (5.9)

We now conclude and prove Proposition 4.1, namely the Large Deviations Prin-
ciple for

(

L(log(p̂n,k))
)

n>k
.

We start with the case k > 1. Then for any ℓ ∈ {2, . . . , k} we have for any λ ∈ R

Re
(

1− e−λei2π(ℓ−1)/k
)

> Re
(

1− e−λ
)

.

As a consequence, for x < a we have when n→ +∞

eν
ℓ
n,k(λ)(x−a) = o

(

e1−exp(−λ))(x−a)
)

,

and thus

1

n
Λn,k(nλ;x) =

1

n
log(Γn,k(λ;x)) ∼

n→+∞
ν1n,k(λ)(x − a) →

n→+∞
(1− e−λ)(x− a).

When k = 1, the linear ODE (5.4) is of order 1, and it is easy to check that

Γn,1(λ;x) = exp
(

ν1n,k(λ)(x − a)
)

,

so that the same asymptotic result as above holds.
It remains to take x = a, and to recall that a = − log(p) if p = P(X > a) and X

is exponentially distributed with parameter 1.
This concludes the proof of Proposition 4.1.

6. Comparison with other algorithms

We propose a comparison (in terms of large deviations) of the Adaptive Multi-
level Splitting algorithm with the two other methods described in the introduction:
a direct, naive Monte-Carlo method, based on a non-interacting system of repli-
cas with the same size (see the estimator (1.4)) , and a non-adaptive version of
multilevel splitting (see the estimator (1.2)).

In the first case, we obtain that large deviations are much less likely for the AMS
algorithm than for the crude Monte-Carlo method. In the second case, we show
that the AMS estimator is more efficient than the non-adaptive one taken in the
limit of a large number N of fixed levels.
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These results are consistent with the cost analysis and the comparison based on
the central limit theorem, see Bréhier et al. (2015c), Bréhier et al. (2015b), Cérou
et al. (2012), Cérou and Guyader (2014).

6.1. Crude Monte-Carlo. We compare the performance of the AMS algorithm with
the use of a Crude Monte-Carlo estimation in the large n limit.

Let (Xm)m∈Z
∗

+
a sequence of independent and identically distributed random

variables, each one being equal in law with X .
Then for any n ∈ Z

∗
+

pn =
1

n

n
∑

m=1

1Xm>a (6.1)

is an unbiased estimator of p.
It is a classical result (Theorem 2.2.3 in Dembo and Zeitouni (2010)) due to

Cramer that the sequence
(

L(pn)
)

n∈Z
∗

+

satisfies a Large Deviations Principle with

the rate function (case of Bernoulli random variables, see Exercice 2.2.23 in Dembo
and Zeitouni (2010)):

I(y) =
{

+∞ if y /∈ (0, 1)

y log
(

y
p

)

+ (1 − y) log
(

1−y
1−p

)

if y ∈ (0, 1).
(6.2)

The comparison between the algorithms is based on the following result:

Proposition 6.1. For any p ∈ (0, 1) and any y ∈ (0, 1), we have

I(y) ≥ I(y),
I(y) = I(y) if and only if y = p.

Proof : We explicitly mention the dependence of I and of I with respect to p, and
we define

D(y, p) = I(y, p)− I(y, p).
It is clear that D(p, p) = 0 for any p ∈ (0, 1). We compute that

∂D(y, p)

∂p
=

1− y

p log(p)

( log(y)

1− y
− log(p)

1− p

)

;

since the function t 7→ log(t)
1−t is strictly decreasing on (0, 1) (as can be seen by

computing its first and second order derivatives), we see that for any y, p ∈ (0, 1)2

we have the inequalities

∂D(y, p)

∂p
> 0 if y > p and

∂D(y, p)

∂p
< 0 if y < p.

Using D(p, p) = 0, it is easy to conclude. �

Now let ǫ ∈ (0,max(p, 1− p)); then for n large we have

P(p̂n,k − p > ǫ)

P(pn − p > ǫ)
= exp

(

n∆(ǫ, n)
)

→ 0,

exponentially fast, since we have by the Large Deviations Principles ∆(ǫ, n) →
I(p + ǫ) − I(p + ǫ) < 0 when n → +∞ (indeed both I and I are increasing on
(p, 1)).
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The same arguments apply to get

P(p̂n,k − p < −ǫ)
P(pn − p < −ǫ) → 0.

As a consequence, the probability of observing large deviations from the mean
p is much smaller for the AMS algorithm than when using a crude Monte-Carlo
estimator, in the large n limit. This statement is a new way of expressing the
efficiency of the AMS algorithm.

In the discussion above we have not assumed that we are estimating a probability
in a rare event regime: the conclusion holds for any p ∈ (0, 1). Now it is also
instructive to compare I((1 + ǫ)p) and I((1 + ǫ)p) for a given ǫ ∈ (0, 1) and when
p→ 0: it amounts at looking at deviations of the relative error, and we have

lim
n→+∞

1

n
log

(

P(
p̂n,k − p

p
> ǫ)

)

= −I
(

p(1 + ǫ)
)

∼p→0 −
(

log(1 + ǫ)
)2

−2 log(p)

lim
n→+∞

1

n
log

(

P(
pn − p

p
> ǫ)

)

= −I
(

p(1 + ǫ)
)

∼p→0 −p
(

(1 + ǫ) log(1 + ǫ)− ǫ
)

.

Given δ > 0, in order to have a probability lower than δ that the relative er-
ror is larger than ǫ, in the small p limit, one thus needs a number of replicas n
which scales like 1/p when using the crude Monte-Carlo method, while it scales like
− log(p) (which is much smaller) when using the AMS algorithm. Moreover, since
the expected workload is of size n when using the Monte-Carlo method and of size
−n log(p) when using the AMS algorithm, it is clear that in terms of large deviations
from the mean the AMS algorithm is more efficient than the crude Monte-Carlo
method.

This discussion is consistent with the conclusions coming from the Central Limit
Theorem, where in the regime p → 0 the asymptotic variance is equivalent to p
when using the crude Monte-Carlo method and −p2 log(p) when using the AMS
algorithm: to obtain reliable confidence intervals on the relative error, the number
of replicas n scales in the same way.

6.2. Non-adaptive Multilevel Splitting. We now compare the rate function I ob-
tained for the Large Deviations Principle on the AMS algorithm, with the one we
obtain when using a deterministic (non-adaptive) sequence of levels.

Namely, using Assumption 2.1, we decompose the probability as a telescoping
product of N ∈ Z

∗
+ conditional probabilities

p = P(X > a) =

N
∏

i=1

P(X > ai
∣

∣X > ai−1), (6.3)

associated with a given non-decreasing sequence of levels a0 = 0 < a1 < . . . < aN =
a. We denote by p(i) = P(X > ai

∣

∣X > ai−1) the i-th conditional probability. The
sequence is of size N and we study the asymptotic regime N → +∞.

We can define an unbiased estimator of p as follows: let n ∈ Z
∗
+ and set

p̂Nn =

N
∏

i=1

p(i)n , (6.4)

where
(

p
(i)
n

)

1≤i≤N
is a family of independent random variables, where each p

(i)
n is a

Crude Monte-Carlo estimator (as defined in the section above) for the probability
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p(i) with n realizations. More precisely, let
(

X
(i)
m

)

1≤m≤n,1≤i≤N
be independent

random variables, such that L
(

X
(i)
m

)

= L(X |X > ai−1), and set

p(i)n =
1

n

n
∑

m=1

1
X

(i)
m >ai

. (6.5)

From a practical point of view, notice that the computation of these estimators
requires the sampling of random variables according to the conditional distribution
L(X |X > ai−1) for each i ∈ {1, . . . , N}, just like for the adaptive version.

Here n thus denotes the number of replicas used for the estimation of the prob-
abilities in both the adaptive and the non-adaptive versions. We needed the extra
parameter N to denote the number of iterations (i.e. the length of the sequence
of levels) of the algorithm, while we know that the average number of iterations is

of the order −n log(p)
k in the adaptive case. Therefore, to study the non-adaptive

version, we first let n → +∞, and then analyze the behavior of the asymptotic
quantities with respect to N (in the limit N → +∞), while for the adaptive version
we need to pass to the limit only once, namely n→ +∞.

Clearly, by the independence properties of the random variables introduced here
we have

E[p̂Nn ] = p.

Moreover, it is well-known that, for a given value of N (the length of the sequence of
levels) the asymptotic variance (when n goes to +∞) is minimized when p(i) = p1/N

for all i ∈ {1, . . . , N} (i.e. the conditional probabilities in (6.3) are equal); moreover

the asymptotic variance is a decreasing function of N , which converges to −p2 log(p)
n

when N → +∞. From a practical point of view, the computation of the associated
sequence of levels a1, . . . , aN−1 is a priori difficult: the adaptive version overcomes
this issue, and in the regime N → +∞ both the non-adaptive and the adaptive
version have the same statistical properties.

As a consequence, from now on we assume that p(i)=p1/N for any i ∈ {1, . . . , N}.
For any i ∈ {1, . . . , N},

(

L(p(i)n )
)

n∈Z
∗

+

satisfies a Large Deviations Principle with

the rate function (see (6.2))

IN (y) =

{

+∞ if y /∈ (0, 1)

y log
(

y
p1/N

)

+ (1− y) log
(

1−y
1−p1/N

)

if y ∈ (0, 1).
(6.6)

Since for any n ∈ Z
∗
+ the random variables

(

p
(i)
n

)

1≤i≤N
are independent, it is easy to

generalize this statement as follows. The sequence
(

L(p(1)n , . . . , p
(N)
n )

)

n∈Z
∗

+

satisfies

a Large Deviations Principle in R
N with the rate function (with abuse of notation

IN refers both to the function depending on a 1-dimensional or a N -dimensional
variable)

IN (y1, . . . , yN ) =
N
∑

i=1

IN (yi). (6.7)
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Now as a consequence of the contraction principle, since p̂Nn =
∏N

i=1 p
(i)
n , the se-

quence
(

p̂Nn
)

n∈Z
∗

+

also satisfies a Large Deviations Principle with the rate function

IN (y) = inf

{

IN (yN , . . . , yN ) ; y =

N
∏

i=1

yi

}

. (6.8)

On the one hand, it is clear that if y /∈ (0, 1), then IN (y) = +∞. Indeed, for any

(y1, . . . , yN ) satisfying the constraint y =
∏N

i=1 yi /∈ (0, 1), at least one of the yi’s
satisfies yi /∈ (0, 1), which yields IN (yi) = IN (y1, . . . , yn) = +∞.

On the other hand, by definition of IN , we have for any y ∈ (0, 1)

IN (y) ≤ IN (y1/N , . . . , y1/N ) = NIN (y1/N )

= Ny1/N log
(y1/N

p1/N
)

+N(1− y1/N ) log
(1− y1/N

1− p1/N
)

→
N→∞

log(y)− log(p)− log(y) log
( log(y)

log(p)

)

= I(y).

For our purpose, this inequality is sufficient.
We now interpret the previous inequality in terms of asymptotic estimates for

deviations of p̂Nn and of p̂n,k with respect to their expected value p. Let ǫ > 0, then
we have by definition of the Large Deviations Principle with rate function IN

lim inf
n→+∞

1

n
log

(

P
(
∣

∣p̂Nn − p
∣

∣ > ǫ
)

)

≥ − inf {IN (y) ; |y − p| ≥ ǫ}

≥ − inf
{

NIN (y1/N ) ; |y − p| ≥ ǫ
}

≥ −min
{

NIN((p+ ǫ)1/N ), NIN ((p− ǫ)1/N )
}

,

using that IN is non-increasing on (−∞, p1/N ) and non-decreasing on (p1/N ,+∞).
To conclude, observe that

lim
N→+∞

−min
{

NIN ((p+ ǫ)1/N ), NIN ((p− ǫ)1/N )
}

= −min {I(p+ ǫ), I(p− ǫ)}

= lim
n→+∞

1

n
log

(

P
(∣

∣p̂n,k − p
∣

∣ > ǫ
)

)

.

We can thus assess that the Adaptive Multilevel Splitting algorithm is more
efficient (in a large sense) than the non-adaptive version in terms of large deviations
when the number of replicas n goes to +∞ and in the limit of large number N if
levels.

7. Proof of the technical estimates

In this section, we give detailed proofs for the technical auxiliary results used in
Section 5.2.

Proof of Proposition 5.3: We proceed by recursion, like in the proof of Proposition
6.4 in Bréhier et al. (2015c) and Lemma 2 in Bréhier et al. (2015b). We fix the
values of 1 ≤ k < n and of λ ∈ R.
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Differentiating recursively with respect to x, for any 0 ≤ l ≤ k − 1 and for any
0 ≤ x ≤ a we have (for a family of coefficients described by (7.3) below)

dl

dxl
(Γn,k(λ;x) −Θn,k(λ;x)) =µn,k

l exp
(

nλ log(1− k

n
)
)

×
∫ a

x

Γn,k(λ; y)fn,k−l(y;x)dy

+

l−1
∑

m=0

rn,km,l

dm

dxm
(Γn,k(λ;x) −Θn,k(λ;x)) ,

(7.1)

and that differentiating once more we get

dk

dxk
(Γn,k(λ;x) −Θn,k(λ;x)) = µn,k exp

(

nλ log(1− k

n
)
)

Γn,k(λ;x)

+

k−1
∑

m=0

rn,km

dm

dxm
(Γn,k(λ;x) −Θn,k(λ;x)) , (7.2)

with µn,k := µn,k
k and rn,km := rn,km,k.

The coefficients satisfy

µn,k
0 = 1, µn,k

l+1 = −(n− k + l + 1)µn,k
l ;











rn,k0,l+1 = −(n− k + l + 1)rn,k0,l , if l > 0,

rn,km,l+1 = rn,km−1,l − (n− k + l + 1)rn,km,l, 1 ≤ m ≤ l,

rn,kl,l = −1.

(7.3)

Note that these coefficients do not depend on λ, and are the same as in Bréhier
et al. (2015c) and Bréhier et al. (2015b). Properties (5.5) are proved in Bréhier
et al. (2015c).

Thanks to (5.5), for all j ∈ {0, . . . , k − 1} and any x ∈ [0, a] we have

dk

dxk
exp ((n− k + j + 1)(x− a)) =

k−1
∑

m=0

rn,km

dm

dxm
exp ((n− k + j + 1)(x− a)) .

Using the expression of Fn,k, straightforward computations show that Θn,k(λ; ·) is
a linear combination of the exponential functions z 7→ exp(−nz), . . . , exp(−(n−k+
1)z); therefore

dk

dxk
Θn,k(t, x) =

k−1
∑

m=0

rn,km

dm

dxm
Θn,k(t, x),

and thus (7.2) gives (5.4).
�

Proof of Lemma 5.4: From (7.1), the equality in (5.6) is clear.
We claim that for any 0 ≤ m ≤ k − 1 and any 0 ≤ ℓ ≤ k − 1

dm

dxm

(

Fn,ℓ(a;x) − Fn,ℓ+1(a;x)
)

∣

∣

x=a
∼

n→∞
nm

(

m

ℓ

)

(−1)ℓ. (7.4)

In particular, dm

dxm

(

Fn,ℓ(a;x) − Fn,ℓ+1(a;x)
)

∣

∣

x=a
= 0 =

(

m
ℓ

)

for n large enough as

soon as ℓ > m. Conclusion is then straightforward: using the definition (5.2) of
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Θn,k, we get

1

nm

dm

dxm
Θn,k(λ;x)

∣

∣

x=a
=

1

nm

k−1
∑

ℓ=0

dm

dxm
exp

(

nλ log(1− ℓ

n
)
)

×
(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

∣

∣

x=a

→
n→∞

m
∑

ℓ=0

(

m

ℓ

)

(−1)ℓ exp
(

−ℓλ
)

=
(

1− exp
(

−λ
)

)m

.

We now prove (7.4) by induction on m.
We first consider m = 0. Then for any ℓ ∈ Z

∗
+ we have Fn,ℓ(a; a) = 0 and

Fn,0(a; a) = 1 (by the convention Fn,0(y;x) = 1y≥x), and (7.4) holds.

Let us also consider m = 1, when k ≥ 2. Then d
dxFn,0(a;x)

∣

∣

x=a
= 0, while for

any x ≤ a

d

dx
Fn,ℓ(a;x) =

d

dx
Fn,ℓ(a− x; 0) = −fn,ℓ(a− x; 0) = −fn,ℓ(a;x)

as a consequence of the absence of memory property of the exponential distribution.
Now since fn,ℓ(a, a) = n1ℓ=1, we get (7.4) for m = 1.
The induction is based on the following relations (deduced from elementary com-

putations; for a proof see Bréhier et al. (2015c), Section 6.3)










d

dx
fn,1(y;x) = nfn,1(y;x).

for ℓ ∈ {2, . . . , n− 1}, d

dx
fn,ℓ(y;x) = (n− ℓ+ 1)

(

fn,ℓ(y;x)− fn,ℓ−1(y;x)
)

.

(7.5)
Thanks to the first formula in (7.5), we easily get (7.4) for ℓ = 0 by induction on
m.

If now ℓ ∈ {1, . . . , k − 1}, we have the recursive formula for m ≥ 1

dm+1

dxm+1

(

Fn,ℓ(a;x)−Fn,ℓ+1(a;x)
)

∣

∣

x=a
=

dm

dxm

(

fn,ℓ+1(a;x) − fn,ℓ(a;x)
)

∣

∣

x=a

=(n− ℓ)
dm−1

dxm−1

(

fn,ℓ+1(a;x)− fn,ℓ(a;x)
)

∣

∣

x=a

− (n− ℓ+ 1)
dm−1

dxm−1

(

fn,ℓ(a;x) − fn,ℓ−1(a;x)
)

∣

∣

x=a

=(n− ℓ)
dm

dxm

(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

∣

∣

x=a

− (n− ℓ+ 1)
dm

dxm

(

Fn,ℓ−1(a;x)− Fn,ℓ(a;x)
)

∣

∣

x=a

Finally using the induction hypothesis and obtain

1

nm+1

dm+1

dxm+1

(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

∣

∣

x=a
→

n→+∞
(−1)ℓ

(

m

ℓ

)

− (−1)ℓ−1

(

m

ℓ− 1

)

= (−1)ℓ
(

m+ 1

ℓ

)

.

This concludes the proof of Lemma 5.4.
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�

Proof of Proposition 5.6: The νℓn,k(λ) are the roots of the caracteristic equation

associated with the linear ODE (5.4):

(n− ν)...(n− k + 1− ν)

n...(n− k + 1)
− exp

(

nλ log(1 − k

n
)
)

= 0,

which can be rewritten as a polynomial equation of degree k with respect to the
variable νn = ν

n :

(1− νn)...(1 − k−1
n − νn)

1...(1− k−1
n )

− exp
(

nλ log(1− k

n
)
)

= 0,

where exp
(

nλ log(1 − k
n )
)

→
n→+∞

exp(−kλ).
By continuity of the roots of polynomials of degree k with respect to the co-

efficients, we get that for all ℓ ∈ {1, . . . , k} (with an appropriate ordering of the
roots)

νℓn,k(λ)

n
→ νℓ

∞,k(λ)

where (1− νℓ∞,k(λ))
k = e−kλ. This identity immediately yields (5.8).

As a consequence, for n large enough the roots νℓn,k(λ) are pairwise distinct.

Then (5.7) holds for some complex numbers γℓ
n,k(λ), where ℓ ∈ {1, . . . , k}. Thanks

to (5.7) evaluated at x = a, these coefficients are solution of the following linear
system of equations:























γ1
n,k(λ) + ...+ γk

n,k(λ) = Γn,k(λ;x)
∣

∣

x=a
,

γ1
n,k(λ)ν

1
n,k(λ) + ...+ γk

n,k(λ)ν
k
n,k(λ) =

d
dxΓn,k(λ;x)

∣

∣

x=a
,

...

γ1
n,k(λ)

(

ν1n,k(λ)
)k−1

+ ...+ γk
n,k(λ)

(

νkn,k(λ)
)k−1

= dk−1

dxk−1Γn,k(λ;x)
∣

∣

x=a
.

(7.6)
This system is equivalent with


































γ1
n,k(λ) + ...+ γk

n,k(λ) = Γn,k(λ;x)
∣

∣

x=a
→

n→+∞
1,

γ1
n,k(λ)ν

1
n,k(λ) + ...+ γk

n,k(λ)ν
k
n,k(λ) =

1
n

d
dxΓn,k(λ;x)

∣

∣

x=a
→

n→+∞
ν1
∞,k(λ),

...
γ1
n,k(λ)ν

1
n,k(λ)

k−1 + ...+ γk
n,k(λ)ν

k
n,k(λ)

k−1

= 1
nk−1

dk−1

dxk−1Γn,k(λ;x)
∣

∣

x=a
→

n→+∞
ν1∞,k(λ)

k−1,

(7.7)

thanks to (5.6) and (5.8), where νℓn,k(λ) =
νℓ
n,k(λ)

n →
n→+∞

νℓ∞,k(λ).

It is now easy to get (5.9), which concludes the proof of Proposition 5.6.
�

8. Conclusion and perspectives

We have established (Theorem 3.1) a Large Deviations Principle result for the
Adaptive Multilevel Splitting AMS(n, k) Algorithm in an idealized setting, when
the number of replicas n goes to infinity while the parameter k and the threshold
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a remain fixed. The rate function does not depend on k: when k = 1, the proof
is very simple and uses an interpretation of the algorithm with a Poisson process
(the number of iterations follows a Poisson distribution). When k > 1, we rely on
a functional equation technique which was already used to prove unbiasedness and
asymptotic normality of the estimator in the previous works Bréhier et al. (2015c)
and Bréhier et al. (2015b).

We were able to relate the efficiency of the algorithm with this Large Deviations
result, with a comparison with two algorithms (see Section 6): a crude Monte-
Carlo method and a non-adaptive version. More generally, in other situations Large
Deviations could be a powerful tool to compare adaptive or non-adaptive multilevel
splitting algorithms, instead of resorting only on comparison of asymptotic variances
associated with central limit theorems.

Let us mention a few open directions for future works. First, it should be in-
teresting to look at the regime where k also goes to infinity, with k/n converging
to a proportion α ∈ (0, 1). We expect to prove that the optimal rate function is
obtained for α decreasing to 0: indeed, the asymptotic variance is minimized in this
regime. A comparison with a non-adaptive version of the algorithm is expected to
show that the adaptive algorithm behaves (in terms of large deviations) like the
non-adaptive version when the number of replicas and of levels goes to infinity, like
in the regime we have studied in this paper.

A severe restriction is given by the so-called idealized setting: we need to know
how to sample according to the conditional distribution L(X |X > x). In prac-
tice, and especially when computing crossing probabilities for high dimensional
metastable stochastic processes, it is not satisfied and the multilevel splitting al-
gorithm needs to use an importance function to define appropriate levels, and at
each step the computation of the new sample uses the one at the previous iteration
(thanks to a branching procedure of the successful trajectories). A natural question
is whether one can prove a Large Deviations Principle in such a framework, and
study quantitatively how the rate function depends on the importance function.

Another general strategy is as follows: one can use an approximation of the
conditional distribution L(X |X > x), based for instance on a Metropolis chain. It
is expected that a Large Deviations Principle still holds for associated algorithms,
but the rate function is expected to depend on the proposition kernel used in the
Metropolis chain. Indeed, this observation is made in the case of the Central Limit
Theorem in Cérou and Guyader (2014): the variance (which is the same both
for adaptive and fixed-levels splitting algorithms) is the sum of the variance for
the idealized version of the algorithm (exact sampling of conditional distribution)
and of a nonnegative term which takes into account the mixing properties of the
Metropolis chain. Large deviations properties of adaptive splitting algorithms in
the setting of Cérou and Guyader (2014)(Metropolis scheme) or of Bréhier et al.
(2015a) (discrete-time dynamics), with a precise analysis of rate functions, will be
investigated in future works.

When using both non-adaptive (see Garvels et al. (2002), Glasserman et al.
(1998)) and adaptive (Bréhier et al. (2015a)) multilevel splitting algorithms, one
may observe a very large difference between the value of the estimator (averaged
over a number M of independent realizations) and the true result, or between the
results obtained for different choices of the importance function. Even if the estima-
tor of the probability is unbiased, in such situations one observes an apparent bias
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toward smaller values if M is not sufficiently large. This phenomenon is explained
by specificity of the models: there are several channels to reach the region B from
A (in the case of the estimation of crossing probabilities between metastable states
of a Markov process), which may be sampled very differently when the importance
function changes. It should be interesting to investigate the relation between this
phenomenon and the Large Deviations Principle for the associated estimator.
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