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Abstract. We prove abstract bounds on the Wasserstein and Kolmogorov dis-
tances between non-randomly centered random sums of real i.i.d. random variables
with a finite third moment and the standard normal distribution. Except for the
case of mean zero summands, these bounds involve a coupling of the summation
index with its size biased distribution as was previously considered in Goldstein
and Rinott (1996) for the normal approximation of nonnegative random variables.
When being specialized to concrete distributions of the summation index like the
Binomial, Poisson and Hypergeometric distribution, our bounds turn out to be of
the correct order of magnitude.

1. Introduction

Let N,X1, X2, . . . be random variables on a common probability space such
that the Xj , j ≥ 1, are real-valued and N assumes values in the set of nonnegative
integers Z+ = {0, 1, . . . }. Then, the random variable

S :=

N∑
j=1

Xj (1.1)

is called a random sum. Such random variables appear frequently in modern prob-
abiliy theory, as many models for example from physics, finance, reliability and risk
theory naturally lead to the consideration of such sums. Furthermore, sometimes a
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model, which looks quite different from (1.1) at the outset, may be transformed into
a random sum and then general theory of such sums may be invoked to study the
original model Gnedenko and Korolev (1996). For example, by the recent so-called
master Steiner formula from McCoy and Tropp (2014) the distribution of the met-
ric projection of a standard Gaussian vector onto a closed convex cone in Euclidean
space can be represented as a random sum of i.i.d. centered chi-squared random
variables with the distribution of N given by the conic intrinsic volumes of the
cone. Hence, this distribution belongs to the class of the so-called chi-bar-square
distributions, which is ubiquitous in the theory of hypotheses testing with inequal-
ity constraints (see e.g. Dykstra, 1991 and Shapiro, 1988). This representation was
used in Goldstein et al. (2014) to prove quantitative CLTs for both the distribution
of the metric projection and the conic intrinsic volume distribution. These results
are of interest e.g. in the field of compressed sensing.
There already exists a huge body of literature about the asymptotic distributions of
random sums. Their investigation evidently began with the work Robbins (1948) of
Robbins, who assumes that the random variables X1, X2, . . . are i.i.d. with a finite
second moment and that N also has a finite second moment. One of the results of
Robbins (1948) is that under these assumptions asymptotic normality of the index
N automatically implies asymptotic normality of the corresponding random sum.
The book Gnedenko and Korolev (1996) gives a comprehensive description of the
limiting behaviour of such random sums under the assumption that the random
variables N,X1, X2, . . . are independent. In particular, one may ask under what
conditions the sum S in (1.1) is asymptotically normal, where asymptotically refers
to the fact that the random index N in fact usually depends on a parameter, which
is sent either to infinity or to zero. Once a CLT is known to hold, one might ask
about the accuracy of the normal approximation to the distribution of the given
random sum. It turns out that it is generally much easier to derive rates of con-
vergence for random sums of centered random variables, or, which amounts to the
same thing, for random sums centered by random variables than for random sums
of not necessarily centered random variables. In the centered case one might, for
instance, first condition on the value of the index N , then use known error bounds
for sums of a fixed number of independent random variables like the classical Berry-
Esseen theorem and, finally, take expectation with respect to N . This technique
is illustrated e.g. in the manuscript Döbler (2012) and also works for non-normal
limiting distributions like the Laplace distribution. For this reason we will mainly
be interested in deriving sharp rates of convergence for the case of non-centered
summands, but will also consider the mean-zero case and hint at the relevant dif-
ferences. Also, we will not assume from the outset that the index N has a certain
fixed distribution like the Binomial or the Poisson, but will be interested in the
general situation.
For non-centered summands and general index N , the relevant literature on rates of
convergence in the random sums CLT seems quite easy to survey. Under the same
assumptions as in Robbins (1948) the paper Englund (1983) gives an upper bound
on the Kolmogorov distance between the distribution of the random sum and a
suitable normal distribution, which is proved to be sharp in some sense. However,
this bound is not very explicit as it contains the Kolmogorov distance of N to the
normal distribution with the same mean and variance as N as one of the terms
appearing in the bound, for instance. This might make it difficult to apply this
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result to a concrete distribution of N . Furthermore, the method of proof cannot
be easily adapted to probability metrics different from the Kolmogorov distance
like e.g. the Wasserstein distance. In Korolev (1987) a bound on the Kolmogorov
distance is given which improves upon the result of Englund (1983) with respect to
the constants appearing in the bound. However, the bound given in Korolev (1987)
is no longer strong enough to assure the well-known asymptotic normality of Bi-
nomial and Poisson random sums, unless the summands are centered. The paper
Korolev (1988) generalizes the results from Englund (1983) to the case of not nec-
essarily identically distributed summands and to situations, where the summands
might not have finite absolute third moments. However, at least for non-centered
summands, the bounds in Korolev (1988) still lack some explicitness.
To the best of our knowledge, the article Sunklodas (2013) is the only one, which
gives bounds on the Wasserstein distance between random sums for general indices
N and the standard normal distribution. However, as mentioned by the same au-
thor in Sunklodas (2014), the results of Sunklodas (2013) generally do not yield
accurate bounds, unless the summands are centered. Indeed, the results from Sun-
klodas (2013) do not even yield convergence in distribution for Binomial or Poisson
random sums of non-centered summands.
The main purpose of the present article is to combine Stein’s method of normal
approximation with several modern probabilistic concepts like certain coupling con-
structions and conditional independence, to prove accurate abstract upper bounds
on the distance between suitably standardized random sums of i.i.d. summands
measured by two popular probability metrics, the Kolmogorov and Wasserstein
distances. Using a simple inequality, this gives bounds for the whole classe of Lp

distances of distributions, 1 ≤ p ≤ ∞. These upper bounds, in their most abstract
forms (see Theorem 2.5 below), involve moments of the difference of a coupling of
N with its size-biased distribution but reduce to very explicit expressions if either
N has a concrete distribution like the Binomial, Poisson or dirac delta distribution,
the summands Xj are centered, or, if the distribution of N is infinitely divisible.
These special cases are extensively presented in order to illustrate the wide appli-
cability and strength of our results. As indicated above, this seems to be the first
work which gives Wasserstein bounds in the random sums CLT for general indices
N , which reduce to bounds of optimal order, when being specialized to concrete
distributions like the Binomial and the Poisson distributions. Using our abstract
approach via size-bias couplings, we are also able to prove rates for Hypergeometric
random sums. These do not seem to have been treated in the literature, yet. This
is not a surprise, because the Hypergeometric distribution is conceptually more
complicated than the Binomial or Poisson distribution, as it is neither a natural
convolution of i.i.d. random variables nor infinitely divisible. Indeed, every distri-
bution of the summation index which allows for a close size-bias coupling should
be amenable to our approach.
It should be mentioned that Stein’s method and coupling techniques have previ-
ously been used to bound the error of exponential approximation Peköz and Röllin
(2011) and approximation by the Laplace distribution Pike and Ren (2014) of cer-
tain random sums. In these papers, the authors make use of the fact that the
exponential distribution and the Laplace distribution are the unique fixed points of
certain distributional transformations and are able to succesfully couple the given
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random sum with a random variable having the respective transformed distribu-
tion. In the case of the standard normal distribution, which is a fixed point of the
zero-bias transformation from Goldstein and Reinert (1997), it appears natural to
try to construct a close coupling with the zero biased distribution of the random
sum under consideration. However, interestingly it turns out that we are only able
to do so in the case of centered summands whereas for the general case an inter-
mediate step involving a coupling of the index N with its size biased distribution
is required for the proof. Nevertheless, the zero-bias transformation or rather an
extension of it to non-centered random variables, plays an important role for our
argument. This combination of two coupling constructions which belong to the
classical tools of Stein’s method for normal approximation is a new feature lying at
the heart of our approach.
The remainder of the article is structured as follows: In Section 2 we review the
relevant probability distances, the size biased distribution and state our quantita-
tive results on the normal approximation of random sums. Furthermore, we prove
new identities for the distance of a nonnegative random variable to its size-biased
distribution in three prominent metrics and show that for some concrete distribu-
tions, natural couplings are L1-optimal and, hence, yield the Wasserstein distance.
In Section 3 we collect necessary facts from Stein’s method of normal approxima-
tion and introduce a variant of the zero-bias transformation, which we need for the
proofs of our results. Then, in Section 4, the proof of our main theorems, Theo-
rem 2.5 and Theorem 2.7 is given. Finally, Section 5 contains the proofs of some
auxiliary results, needed for the proof of the Berry-Esseen bounds in Section 4.

2. Main results

Recall that for probability measures µ and ν on (R,B(R)), their Kolmogorov
distance is defined by

dK(µ, ν) := sup
z∈R

∣∣µ((−∞, z]
)
− µ

(
(−∞, z]

)∣∣ = ‖F −G‖∞ ,

where F and G are the distribution functions corresponding to µ and ν, respec-
tively. Also, if both µ and ν have finite first absolute moment, then one defines the
Wasserstein distance between them via

dW(µ, ν) := sup
h∈Lip(1)

∣∣∣∫ hdµ−
∫

hdν
∣∣∣ ,

where Lip(1) denotes the class of all Lipschitz-continous functions g on R with Lip-
schitz constant not greater than 1. In view of Lemma 2.1 below, we also introduce
the total variation distance bewtween µ and ν by

dTV (µ, ν) := sup
B∈B(R)

∣∣µ(B)− ν(B)
∣∣ .

If the real-valued random variables X and Y have distributions µ and ν, respec-
tively, then we simply write dK(X,Y ) for dK

(
L(X),L(Y )

)
and similarly for the

Wasserstein and total variation distances and also speak of the respective distance
between the random variables X and Y . Before stating our results, we have to re-
view the concept of the size-biased distribution corresponding to a distribution sup-
ported on [0,∞). Thus, if X is a nonnegative random variable with 0 < E[X] < ∞,
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then a random variable Xs is said to have the X-size biased distribution, if for all
bounded and measurable functions h on [0,∞)

E[Xh(X)] = E[X]E[h(Xs)] , (2.1)

see, e.g. Goldstein and Rinott (1996); Arratia and Goldstein (2010) or Arratia et al.
(2013). Equivalently, the distribution of Xs has Radon-Nikodym derivative with
respect to the distribution of X given by

P (Xs ∈ dx)

P (X ∈ dx)
=

x

E[X]
,

which immediately implies both existence and uniqueness of the X-size biased dis-
tribution. Also note that (2.1) holds true for all measurable functions h for which
E|Xh(X)| < ∞. In consequence, if X ∈ Lp(P ) for some 1 ≤ p < ∞, then
Xs ∈ Lp−1(P ) and

E
[(
Xs
)p−1

]
=

E
[
Xp
]

E[X]
.

The following lemma, which seems to be new and might be of independent
interest, gives identities for the distance of X to Xs in the three metrics mentioned
above. The proof is deferred to the end of this section.

Lemma 2.1. Let X be a nonnegative random variable such that 0 < E[X] < ∞.
Then, the following identities hold true:

(a) dK(X,Xs) = dTV (X,Xs) =
E|X − E[X]|

2E[X]
.

(b) If additionally E[X2] < ∞, then dW(X,Xs) =
Var(X)

E[X]
.

Remark 2.2. (a) It is well known (see e.g. Dudley, 2002) that the Wasserstein
distance dW(X,Y ) between the real random variables X and Y has the dual
representation

dW(X,Y ) = inf
(X̂,Ŷ )∈π(X,Y )

E|X̂ − Ŷ | , (2.2)

where π(X,Y ) is the collection of all couplings of X and Y , i.e. of all pairs

(X̂, Ŷ ) of random variables on a joint probability space such that X̂
D
= X and

Ŷ
D
= Y . Also, the infimum in (2.2) is always attained, e.g. by the quantile

transformation: If U is uniformly distributed on (0, 1) and if, for a distribution
function F on R, we let

F−1(p) := inf{x ∈ R : F (x) ≥ p}, p ∈ (0, 1) ,

denote the corresponding generalized inverse of F , then F−1(U) is a random
variable with distribution function F . Thus, letting FX and FY denote the
distribution functions of X and Y , respectively, it was proved e.g. in Major
(1978) that

inf
(X̂,Ŷ )∈π(X,Y )

E|X̂ − Ŷ | = E|F−1
X (U)− F−1

Y (U)| =
∫ 1

0

|F−1
X (t)− F−1

Y (t)|dt .

Furthermore, it is not difficult to see that Xs is always stochastically larger
than X, implying that there is a coupling (X̂, X̂s) of X and Xs such that

X̂s ≥ X̂ (see Arratia and Goldstein, 2010 for details). In fact, this property
is already achieved by the coupling via the quantile transformation. By the
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dual representation (2.2) and the fact that the coupling via the quantile trans-
formation yields the minimum L1 distance in (2.2) we can conclude that every

coupling (X̂, X̂s) such that X̂s ≥ X̂ is optimal in this sense, since

E
∣∣X̂s − X̂

∣∣ = E
[
X̂s
]
− E

[
X̂
]
= E

[
F−1
Xs (U)

]
− E

[
F−1
X (U)

]
= E

∣∣F−1
Xs (U)− F−1

X (U)
∣∣ = dW(X,Xs) .

Note also that, by the last computation and part by (b) of Lemma 2.1, we have

E
[
Xs
]
− E

[
X
]
= E

[
X̂s
]
− E

[
X̂
]
= dW(X,Xs) =

Var(X)

E[X]
.

(b) Due to a result by Steutel (1973), the distribution of X is infinitely divisible,
if and only if there exists a coupling (X,Xs) of X and Xs such that Xs −X
is nonnegative and independent of X (see e.g. Arratia and Goldstein, 2010 for
a nice exposition and a proof of this result). According to (a) such a coupling
always achieves the minimum L1-distance.

(c) It might seem curious that according to part (a) of Lemma 2.1, the Kolmogorov
distance and the total variation distance between a nonnegative random vari-
able and one with its size biased distribution always coincide. Indeed, this holds
true since for each Borel-measurable set B ⊆ R we have the inequality∣∣P (Xs ∈ B)− P (X ∈ B)

∣∣ ≤ ∣∣P (Xs > m)− P (X > m)
∣∣

≤ dK(X,Xs) ,

where m := E[X]. Thus, the supremum in the definition

dTV (X,Xs) = sup
B∈B(R)

∣∣P (Xs ∈ B)− P (X ∈ B)
∣∣

of the total variation distance is assumed for the set B = (m,∞). This can
be shortly proved and explained in the following way: For t ∈ R, using the
defining property (2.1) of the size biased distribution, we can write

H(t) := P (Xs ≤ t)− P (X ≤ t) = m−1E
[
(X −m))1{X≤t}

]
.

Thus, for s < t we have

H(t)−H(s) = m−1E
[
(X −m))1{s<X≤t}

]
,

and, hence, H is decreasing on (−∞,m) and increasing on (m,∞). Thus, for
every Borel set B ⊆ R we conclude that

P (Xs ∈ B)− P (X ∈ B) =

∫
R
1B(t)dH(t) ≤

∫
R
1B∩(m,∞)(t)dH(t)

≤
∫
R
1(m,∞)(t)dH(t) = P (Xs > m)− P (X > m) .

Note that for this argumentation we heavily relied on the defining property (2.1)
of the size biased distribution which guaranteed the monotonicity property of
the difference H of the distribution functions of Xs and X, respectively. Since
Xs is stochastically larger than X, one might suspect that the coincidence of
the total variation and the Kolmogorov distance holds true in this more general
situation. However, observe that the fact that Xs dominates X stochastically
only implies that H ≤ 0 but that it is the monotonicity of H on (−∞,m) and
on (m,∞) that was crucial for the derivation.
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Example 2.3. (a) Let X ∼ Poisson(λ) have the Poisson distribution with paramter
λ > 0. From the Stein characterization of Poisson(λ) (see Chen, 1975) it is
known that

E[Xf(X)] = λE[f(X + 1)] = E[X]E[f(X + 1)]

for all bounded and measurable f . Hence, X + 1 has the X-size biased dis-
tribution. As X + 1 ≥ X, by Remark 2.2 this coupling yields the minimum
L1-distance between X and Xs, which is equal to 1 in this case.

(b) Let n be a positive integer, p ∈ (0, 1] and let X1, . . . , Xn be i.i.d. random
variables such that X1 ∼ Bernoulli(p). Then,

X :=
n∑

j=1

Xj ∼ Bin(n, p)

has the Binomial distribution with parameters n and p. From the construction
in Goldstein and Rinott (1996) one easily sees that

Xs :=
n∑

j=2

Xj + 1

has the X-size biased distribution. As Xs ≥ X, by Remark 2.2 this coupling
yields the minimum L1-distance between X and Xs, which is equal to

dW(X,Xs) = E[1−X1] = 1− p =
Var(X)

E[X]

in accordance with Lemma 2.1.
(c) Let n, r, s be positive integers such that n ≤ r+s and let X ∼ Hyp(n; r, s) have

the Hypergeometric distribution with parameters n, r and s, i.e.

P (X = k) =

(
r
k

)(
s

n−k

)(
r+s
n

) , k = 0, 1, . . . , n

with E[X] = nr
r+s . Imagaine an urn with r red and s silver balls. If we draw

n times without replacement from this urn and denote by X the total number
of drawn red balls, then X ∼ Hyp(n; r, s). For j = 1, . . . , n denote by Xj

the indicator of the event that a red ball is drawn at the j-th draw. Then,
X =

∑n
j=1 Xj and since the Xj are exchangeable, the well-known construction

of a random variable Xs wth the X-size biased distribution from Goldstein and
Rinott (1996) gives that Xs = 1 +

∑n
j=2 X

′
j , where

L
(
(X ′

2, . . . , X
′
n)
)
= L

(
(X2, . . . , Xn)

∣∣X1 = 1
)
.

But given X1 = 1 the sum
∑n

j=2 Xj has the Hypergeometric distribution with
parameters n− 1, r − 1 and s and, hence,

Xs D
= Y + 1 , where Y ∼ Hyp(n− 1; r − 1, s) .

In order to construct an L1-optimal coupling of X and Xs, fix one of the red
balls in the urn and, for j = 2, . . . , n, denote by Yj the indicator of the event
that at the j-th draw this fixed red ball is drawn. Then, it is not difficult to
see that

Y := 1{X1=1}

n∑
j=2

Xj + 1{X1=0}

n∑
j=2

(Xj − Yj) ∼ Hyp(n− 1; r − 1, s)
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and, hence,

Xs := Y + 1 = 1{X1=1}

n∑
j=2

Xj + 1{X1=0}

n∑
j=2

(Xj − Yj) + 1

= 1{X1=1}X + 1{X1=0}

(
X + 1−

n∑
j=2

Yj

)
has the X-size biased distribution. Note that since

∑n
j=2 Yj ≤ 1 we have

Xs −X = 1{X1=0}

(
1−

n∑
j=2

Yj

)
≥ 0 ,

and consequently, by Remark 2.2 (a), the coupling (X,Xs) is optimal in the
L1-sense and yields the Wasserstein distance between X and Xs:

dW(X,Xs) = E
∣∣Xs −X

∣∣ = Var(X)

E[X]
=

n r
r+s

s
r+s

r+s−n
r+s−1

nr
r+s

=
s(r + s− n)

(r + s)(r + s− 1)
.

We now turn back to the asymptotic behaviour of random sums. We will rely on
the following general assumptions and notation, which we adopt and extend from
Robbins (1948).

Assumption 2.4. The random variablesN,X1, X2, . . . are independent,X1, X2, . . .
being i.i.d. and such that E|X1|3 < ∞ and E[N3] < ∞. Furthermore, we let

α := E[N ], β2 := E[N2], γ2 := Var(N) = β2 − α2, δ3 := E[N3],

a := E[X1], b2 := E[X2
1 ], c2 := Var(X1) = b2 − a2 and d3 := E

∣∣X1 − E[X1]
∣∣3.

By Wald’ s equation and the Blackwell-Girshick formula, from Assumption 2.4
we have

µ := E[S] = αa and σ2 := Var(S) = αc2 + a2γ2 . (2.3)

The main purpose of this paper is to assess the accuracy of the standard normal
approximation to the normalized version

W :=
S − µ

σ
=

S − αa√
αc2 + aγ2

(2.4)

of S measured by the Kolmogorov and the Wasserstein distance, respectively. As
can be seen from the paper Robbins (1948), under the general assumption that

σ2 = αc2 + a2γ2 → ∞ ,

there are three typical situations in which W is asymptotically normal, which we
will now briefly review.

1) c 6= 0 6= a and γ2 = o(α)
2) a = 0 6= c and γ = o(α)
3) N itself is asymptotically normal and at least one of a and c is different from

zero.

We remark that 1) roughly means that N tends to infinity in a certain sense, but
such that it only fluctuates slightly around its mean α and, thus, behaves more or
less as the constant α (tending to infinity). If c = 0 and a 6= 0, then we have

S = aN a.s.
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and asymptotic normality of S is equivalent to that of N . For this reason, unless
specifically stated otherwise, we will from now on assume that c 6= 0. However, we
would like to remark that all bounds in which c does not appear in the denominator
also hold true in the case c = 0.

Theorem 2.5. Suppose that Assumption 2.4 holds, let W be given by (2.4) and
let Z have the standard normal distribution. Also, let (N,Ns) be a coupling of N
and Ns having the N -size biased distribution such that Ns is also independent of
X1, X2, . . . and define D := Ns −N . Then, we have the following bound:

(a) dW(W,Z) ≤ 2c2bγ2

σ3
+

3αd3

σ3
+

αa2

σ2

√
2

π

√
Var
(
E[D |N ]

)
+

2αa2b

σ3
E
[
1{D<0}D

2
]
+

α|a|b2

σ3
E[D2]

(b) If, additionally, D ≥ 0, then we also have

dK(W,Z) ≤ (
√
2π + 4)bc2α

4σ3

√
E[D2] +

d3α(3
√
2π + 4)

8σ3
+

c3α

σ3

+
(7
2

√
2 + 2

)√αd3

cσ2
+

c2α

σ2
P (N = 0) +

d3α

cσ2
E
[
N−1/21{N≥1}

]
+

αa2

σ2

√
Var
(
E[D |N ]

)
+

α|a|b2

2σ3

√
E
[(
E
[
D2
∣∣N])2]

+
α|a|b2

√
2π

8σ3
E[D2] +

α|a|b
σ2

√
P (N = 0)

√
E[D2]

+
α|a|b2

cσ2
√
2π

E
[
D21{N≥1}N

−1/2
]

+
(d3α|a|b

σ2
+

αbc

σ2
√
2π

)
E
[
D1{N≥1}N

−1/2
]
.

Remark 2.6. (a) In many concrete situations, one has that a natural coupling of
N and Ns yields D ≥ 0 and, hence, Theorem 2.5 gives bounds on both the
Wasserstein and Kolmogorov distances (note that the fourth summand in the
bound on dW(W,Z) vanishes if D ≥ 0). For instance, by Remark 2.2 (b),
this is the case, if the distribution of N is infinitely divisible. In this case, the
random variables D and N can be chosen to be independent and, thus, our
bounds can further be simplified (see Corollary 2.9 below). Indeed, since Ns is
always stochastically larger than N , by Remark 2.2 (a) it is always possible to
construct a coupling (N,Ns) such that D = Ns −N ≥ 0.

(b) However, although we know that a coupling of N and Ns such that D =
Ns−N ≥ 0 is always possible in principle, sometimes one would prefer working
with a feasible and natural coupling which does not have this property. For
instance, this is the case in the situation of Corollary 2.11 below. This is why
we have not restricted ourselves to the case D ≥ 0 but allow for arbitrary
couplings (N,Ns). We mention that we also have a bound on the Kolmogorov
distance betweenW and a standard normally distributed Z in this more general
situation, which is given by

dK(W,Z) ≤
7∑

j=1

Bj ,
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where B1, B2, B4, B5, B6 and B7 are defined in (4.33), (4.38), (4.44), (4.50),
(4.59) and (4.64), respectively, and

B3 :=
αa2

σ2

√
Var
(
E[D |N ]

)
.

It is this bound what is actually proved in Section 4. Since it is given by a
rather long expression in the most general case, we have decided, however, not
to present it within Theorem 2.5.

(c) We mention that the our proof of the Wasserstein bounds given in Theorem
2.5 is only roughly five pages long and is not at all technical but rather makes
use of probabilistic ideas and concepts. The extended length of our derivation
is simply due to our ambition to present Kolmogorov bounds as well which, as
usual within Stein’s method, demand much more technicality.

The next theorem treats the special case of centered summands.

Theorem 2.7. Suppose that Assumption 2.4 holds with a = E[X1] = 0, let W be
given by (2.4) and let Z have the standard normal distribution. Then,

dW(W,Z) ≤ 2γ

α
+

3d3

c3
√
α

and

dK(W,Z) ≤ (
√
2π + 4)γ

4α
+
(d3(3√2π + 4)

8c3
+ 1
) 1√

α
+
(7
2

√
2 + 2

) d3

c3α

+ P (N = 0) +

(
d3

c3
+

γ
√
α
√
2π

)√
E
[
1{N≥1}N−1

]
.

Remark 2.8. (a) The proof will show that Theorem 2.7 holds as long as
E[N2] < ∞. Thus, Assumption 2.4 could be slightly relaxed in this case.

(b) Theorem 2.7 is not a direct consequence of Theorem 2.5 as it is stated above.
Actually, instead of Theorem 2.5 we could state a result, which would reduce to
Theorem 2.7 if a = 0, but the resulting bounds would look more cumbersome in
the general case. Also, they would be of the same order as the bounds presented
in Theorem 2.5 in the case that a 6= 0. This is why we have refrained from
presenting these bounds in the general case but have chosen to prove Theorem
2.5 and Theorem 2.7 in parallel. Note that, if a 6= 0, then a necessary condition
for our bounds to imply the CLT is that

α

σ3
E[D2] = o(1) and

α

σ2

√
Var
(
E[D|N ]

)
= o(1) . (2.5)

This should be compared to the conditions which imply asymptotic normality
for N by size-bias couplings given in Goldstein and Rinott (1996), namely

α

γ3
E[D2] = o(1) and

α

γ2

√
Var
(
E[D|N ]

)
= o(1) . (2.6)

If (2.6) holds, then from Goldstein and Rinott (1996) we know that N is asymp-
totically normal and, as was shown within the proof of Lemma 1 in Robbins
(1948), this implies that γ = o(α). Since, if a 6= 0, (2.6) implies (2.5), we can
conclude from Theorems 2.5 and 2.7 that W is asymptotically normal. In a
nutshell, if the bounds from Goldstein and Rinott (1996) on the distance to
normality of N tend to zero, then so do our bounds and, hence, yield the CLT
for W . However, the validity of (2.6) is neither necessary for (2.5) to hold
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nor for our bounds to imply asymptotic normality of W (see Remark 2.17 (b)
below).

(c) For distribution functions F and G on R and 1 ≤ p < ∞, one defines their
Lp-distance by

‖F −G‖p :=

(∫
R

∣∣F (x)−G(x)
∣∣pdx)1/p

.

It is known (see Dudley, 2002) that ‖F − G‖1 coincides with the Wasserstein
distance of the corresponding distributions µ and ν, say. By Hölder’s inequality,
for 1 ≤ p < ∞, we have

‖F −G‖p ≤ dK(µ, ν)
p−1
p · dW(µ, ν)

1
p .

Thus, our results immediately yield bounds on the Lp-distances of L(W ) and
N(0, 1).

(d) It would be possible to drop the assumption that the summands be identi-
cally distributed. For reasons of clarity of the presentation, we have, however,
decided to stick to the i.i.d. setting. See also the discussion of possible gener-
alizations before the proof of Lemma 2.1 at the end of this section.

Corollary 2.9. Suppose that Assumption 2.4 holds, let W be given by (2.4) and let
Z have the standard normal distribution. Furthermore, assume that the distribution
of the index N is infinitely divisible. Then, we have

dW(W,Z) ≤ 2c2bγ2 + 3αd3

σ3
+

(αδ3 − α2γ2 + γ4 − β4)|a|b2

ασ3
and

dK(W,Z) ≤ d3α(3
√
2π + 4)

8σ3
+

c3α

σ3
+

(
7

2

√
2 + 2

)√
αd3

cσ2
+

c2α

σ2
P (N = 0)

+
|a|b2(δ3α+ γ4 − β4 − γ2α2)

ασ3

(√
2π

8
+

1

2

)
+
√

δ3α+ γ4 − β4 − γ2α2

(
(
√
2π + 4)bc2

4σ3
+
√
P (N = 0)

|a|b
σ2

)
+ E

[
1{N≥1}N

−1/2
]( |a|b2(δ3α+ γ4 − β4 − γ2α2)

cασ2
√
2π

+
γ2d3|a|b

σ2
+

d3α

cσ2
+

γ2bc

σ2
√
2π

)
.

Proof : By Remark 2.2 (b) we can choose D ≥ 0 independent of N such that
Ns = N +D has the N -size biased distribution. Thus, by independence we obtain

Var(D) = Var(Ns)−Var(N) = E
[
(Ns)2

]
− E[Ns]2 − γ2

=
E[N3]

E[N ]
−
(
E[N2]

E[N ]

)2

− γ2

=
δ3

α
− β4

α2
− γ2 .

This gives

E[D2] = Var(D) + E[D]2 =
δ3

α
+

γ4 − β4

α2
− γ2 .

Also,

Var
(
E[D|N ]

)
= Var

(
E[D]

)
= 0 and

√
E
[(
E
[
D2
∣∣N])2] = E[D2]
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in this case. Now, the claim follows from Theorem 2.5.
�

In the case that N is constant, the results from Theorem 2.5 reduce to the
known optimal convergence rates for sums of i.i.d. random variables with finite
third moment, albeit with non-optimal constants (see e.g. Shevtsova, 2011 and
Goldstein, 2010 for comparison).

Corollary 2.10. Suppose that Assumption 2.4 holds, let W be given by (2.4) and
let Z have the standard normal distribution. Also, assume that the index N is a
positive constant. Then,

dW(W,Z) ≤ 3d3

c3
√
N

and

dK(W,Z) ≤ 1√
N

(
1 +

(7
2

(
1 +

√
2
)
+

3
√
2π

8

)d3
c3

)
.

Proof : In this case, we can choose Ns = N yielding D = 0 and the result follows
from Theorem 2.5.

�

Another typical situation when the distribution of W may be well approximated
by the normal is if the index N is itself a sum of many i.i.d. variables. Our results
yield very explicit convergence rates in this special case. This will be exemplified
for the Wasserstein distance by the next corollary. Using the bound presented in
Remark 2.6 (b) one would get a bound on the Kolmogorov distance, which is more
complicated but of the same order of magnitude. A different way to prove bounds
for the CLT by Stein’s method in this special situation is presented in Theorem
10.6 of Chen et al. (2011). Their method relies on a general bound for the error of
normal approximation to the distribution of a non-linear statistic of independent
random variables which can be written as a linear statistic plus a small remainder
term as well as on truncation and conditioning on N in order to apply the classical
Berry-Esseen theorem. Though our method also makes use of conditioning on N ,
it is more directly tied to random sums and also relies on (variations of) classical
couplings in Stein’s method (see the proof in Section 4 for details).

Corollary 2.11. Suppose that Assumption 2.4 holds, let W be given by (2.4) and let
Z have the standard normal distribution. Additionally, assume that the distribution

of the index N is such that N
D
= N1+. . .+Nn, where n ∈ N and N1, . . . , Nn are i.i.d.

nonnegative random variables such that E[N3
1 ] < ∞. Then, using the notation

α1 := E[N1] , β2
1 := E[N2

1 ] , γ2
1 := Var(N1) , δ31 := E[N3

1 ] and

σ2
1 := c2α1 + a2γ2

1

we have

dW(W,Z) ≤ 1√
n

(
2c2bγ2

1

σ3
1

+
3α1d

3

σ3
1

+

√
2

π

α1a
2γ2

1

σ2
1

+
2α1(a

2b+ |a|b2)
σ3
1

( δ31
α1

− β2
1

))
.
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Proof : From Goldstein and Rinott (1996) (see also Chen et al., 2011) it is known
that letting Ns

1 be independent of N1, . . . , Nn and have the N1-size biased distri-
bution, a random variable with the N -size biased distribution is given by

Ns := Ns
1 +

n∑
j=2

Nj , yielding D = Ns
1 −N1 .

Thus, by independence and since N1, . . . , Nn are i.i.d., we have

E[D|N ] = E[Ns
1 ]−

1

n
N

and, hence,

Var
(
E[D|N ]

)
=

Var(N)

n2
=

γ2
1

n
.

Clearly, we have
α = nα1 , γ2 = nγ2

1 and σ2 = nσ2
1 .

Also, using independence and (2.1),

E[D2] = E
[
N2

1 − 2N1N
s
1 + (Ns

1 )
2
]
= β2

1 − 2α1E[Ns
1 ] + E

[
(Ns

1 )
2
]

= β2
1 − 2α1

β2
1

α1
+

δ31
α1

=
δ31
α1

− β2
1 .

Thus, the bound follows from Theorem 2.5.
�

Very prominent examples of random sums, which are known to be asymptotically
normal, are Poisson and Binomial random sums. The respective bounds, which
follow from our abstract findings, are presented in the next two corollaries.

Corollary 2.12. Suppose that Assumption 2.4 holds, let W be given by (2.4) and
let Z have the standard normal distribution. Assume further that N ∼ Poisson(λ)
has the Poisson distribution with parameter λ > 0. Then,

dW(W,Z) ≤ 1√
λ

(2c2
b2

+
3d3

b3
+

|a|
b

)
and

dK(W,Z) ≤ 1√
λ

(√
2π

4
+ 1 +

(3
√
2π + 4)d3

8b3
+

c3

b3
+
(7
2

√
2 + 3

) d3

cb2

+
|a|(

√
2π + 4 + 8d3)

8b
+

|a|
c
√
2π

+
c

b
√
2π

)
+

c2

b2
e−λ +

|a|
b
e−λ/2 .

Proof : In this case, by Example 2.3 (a), we can choose D = 1, yielding that

E[D2] = 1 and Var
(
E[D|N ]

)
= 0 .

Note that

E
[
1{N≥1}N

−1/2
]
≤
√
E
[
1{N≥1}N−1

]
by Jensen’s inequality. Also, using k + 1 ≤ 2k for all k ∈ N, we can bound

E
[
1{N≥1}N

−1
]
= e−λ

∞∑
k=1

λk

kk!
≤ 2e−λ

∞∑
k=1

λk

(k + 1)k!
=

2

λ
e−λ

∞∑
k=1

λk+1

(k + 1)!

=
2

λ
e−λ

∞∑
l=2

λl

l!
≤ 2

λ
.
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Hence,

E
[
1{N≥1}N

−1/2
]
≤

√
2√
λ
.

Noting that

α = γ2 = λ and σ2 = λ(a2 + c2) = λb2 ,

the result follows from Theorem 2.5.
�

Remark 2.13. The Berry-Esseen bound presented in Corollary 2.12 is of the same
order of λ as the bound given in Korolev and Shevtsova (2012), which seems to
be the best currently available, but has a worst constant. However, it should be
mentioned that the bound in Korolev and Shevtsova (2012) was obtained using
special properties of the Poisson distribution and does not seem likely to be easily
transferable to other distributions of N .

Corollary 2.14. Suppose that Assumption 2.4 holds, let W be given by (2.4) and let
Z have the standard normal distribution. Furthermore, assume that N ∼ Bin(n, p)
has the Binomial distribution with parameters n ∈ N and p ∈ (0, 1]. Then,

dW(W,Z) ≤ 1
√
np
(
b2 − pa2

)3/2((2c2b+ |a|b2
)
(1− p) + 3d3

+

√
2

π
a2p
√

b2 − pa2
√
1− p

)
and

dK(W,Z) ≤ 1
√
np
(
b2 − pa2

)3/2(c3 + (
√
2π + 4)bc2

√
1− p

4
+

(3
√
2π + 4)d3

8

+
|a|b2

√
1− p

2
+

|a|b2
√
2π(1− p)

8

)
+

1
√
np
(
b2 − pa2

)((9
2

√
2 + 2

)d3
c

+
√

1− p
(
a2p+

√
2|a|bd3

)
+

√
2(1− p)b

(
2b2 − a2

)
c
√
2π

)
+

c2

b2 − pa2
(1− p)n +

|a|b
b2 − pa2

(1− p)
n+1
2 .

Remark 2.15. Bounds for binomial random sums have also been derived in Sun-
klodas (2014) using a technique developed in Tihomirov (1980). Our bounds are of
the same order (np)−1/2 of magnitude.

Proof of Corollary 2.14: Here, we clearly have

α = np , γ2 = np(1− p) and σ2 = np(a2(1− p) + c2) .

Also, using the same coupling as in Example 2.3 (b) we have D ∼ Bernoulli(1− p),

E[D2] = E[D] = 1− p and E[D|N ] = 1− N

n
.

This yields

Var
(
E[D|N ]

)
=

1

n2
Var(N) =

p(1− p)

n
.
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We have D2 = D and, by Cauchy-Schwarz,

E
[
D1{N≥1}N

−1/2
]
≤
√
E[D2]

√
E
[
1{N≥1}N−1

]
=
√
1− p

√
E
[
1{N≥1}N−1

]
.

Using

1

k

(
n

k

)
≤ 2

n+ 1

(
n+ 1

k + 1

)
≤ 2

n

(
n+ 1

k + 1

)
, 1 ≤ k ≤ n ,

we have

E
[
1{N≥1}N

−1
]
=

n∑
k=1

1

k

(
n

k

)
pk(1− p)n−k ≤ 2

n

n∑
k=1

(
n+ 1

k + 1

)
pk(1− p)n−k

=
2

np

n+1∑
l=2

(
n+ 1

l

)
pl(1− p)n+1−l ≤ 2

np
.

Thus,

E
[
D1{N≥1}N

−1/2
]
≤
√
2(1− p)
√
pn

and E
[
1{N≥1}N

−1/2
]
≤

√
2

√
np

.

Also, we can bound

E
[(
E
[
D2
∣∣N])2] ≤ E

[
D4
]
= E[D] = 1− p .

Now, using a2 + c2 = b2, the claim follows from Theorem 2.5.
�

Corollary 2.16. Suppose that Assumption 2.4 holds, let W be given by (2.4) and let
Z have the standard normal distribution. Assume further that N ∼ Hyp(n; r, s) has
the Hypergeometric distribution with parameters n, r, s ∈ N such that n ≤ min{r, s}.
Then,

dW(W,Z) ≤
( nr

r + s

)−1/2
(
2b

c

s(r + s− n)

(r + s)2
+

3d3

c3
+

|a|b2

c2
s(r + s− n)

(r + s)2

)
+K

a2

c2

√
2

π

(
min{r, s}
n(r + s)

)1/2

and

dK(W,Z) ≤
( nr

r + s

)−1/2
[
1 +

(
√
2π + 4)b

4c

(s(r + s− n)

(r + s)2

)1/2
+
(3√2π

8
+

9

2

√
2 +

5

2

)d3
c3

+
(√2π

8
+ 1
) |a|b2

c3
s(r + s− n)

(r + s)2

+
(
|a|b2c3

√
2π +

|a|bd3

c2
+

b

c
√
2π

)(2s(r + s− n)

(r + s)2

)1/2
]

+
(s)n

(r + s)n
+K

a2

c2

(
min{r, s}
n(r + s)

)1/2

+
|a|b
c2

(
(s)n

(r + s)n

s(r + s− n)

(r + s)2

)1/2

,

where K is a numerical constant and (m)n = m(m − 1) · . . . · (m − n + 1) denotes
the lower factorial.
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Proof : In this case, we clearly have

α =
nr

r + s
, γ2 =

nr

r + s

s

r + s

r + s− n

r + s− 1
=

nr

r + s

s(r + s− n)

(r + s)2
and

σ2 =
nr

r + s

(
c2 + a2

s

r + s

r + s− n

r + s− 1

)
=

nr

r + s

(
c2 + a2

s(r + s− n)

(r + s)2

)
.

Hence,

c2
nr

r + s
≤ σ2 ≤ nr

r + s

(
c2 + a2

s

r + s

)
=

nr

r + s

(
b2 − a2

r

r + s

)
.

We use the coupling constructed in Example 2.3 (c) but write N for X and Ns

for Xs, here. Recall that we have

D = Ns −N = 1{X1=0}

(
1−

n∑
j=2

Yj

)
≥ 0 and D = D2 .

Furthermore, we know that

E[D] = E[D2] = dW(N,Ns) =
Var(N)

E[N ]
=

s(r + s− n)

(r + s)2
.

Elementary combinatorics yield

E
[
Yj

∣∣X1, . . . , Xn

]
= r−11{Xj=1} .

Thus,

E
[
D
∣∣X1, . . . , Xn

]
= 1{X1=0} −

1

r
1{X1=0}

n∑
j=2

1{Xj=1} = 1{X1=0}

(
1− N

r

)
and

E
[
D
∣∣N] = (1− N

r

)
P
(
X1 = 0

∣∣N) = (1− N

r

)n−N

n

=
(r −N)(n−N)

nr
=
(
1− N

r

)(
1− N

n

)
.

Using a computer algebra system, one may check that

Var
(
E
[
D
∣∣N]) = (nrs− n3rs− r2s+ 5n2r2s+ 2n3r2s− 8nr3s− 8n2r3s+ 2nrs5

− n3r3s+ 4r4s+ 10nr4s+ 3n2r4s− 4r5s− 3nr5s+ r6s+ ns2

− n3s2 − 2rs2 + 4n2rs2 − 2n3rs2 − 14nr2s2 − 4n2r2s2 + n3r2s2

+ 12r3s2 + 20nr3s2 + 2n2r3s2 − 14r4s2 − 7nr4s2 + 4r5s2 − s3

− n2s3 + 2n3s3 − 5nrs3 + 4n2rs3 + n3rs3 + 13r2s3 + 8nr2s3

− 4n2r2s3 − 18r3s3 − 3nr3s3 + 6r4s3 + ns4 − n3s4 + 6rs4 − 4nrs4

− 2n2rs4 − 10r2s4 + 3nr2s4 + 4r3s4 + s5 − 2ns5 + n2s5 − 2rs5

+ r2s5
)(

nr(r + s)2(r + s− 1)2(r + s− 2)(r + s− 3)
)−1

=: ε(n, r, s) . (2.7)

One can check that under the assumption n ≤ min{r, s} always

ε(n, r, s) = O

(
min{r, s}
n(r + s)

)
.
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Hence, there is a numerical constant K such that√
ε(n, r, s) ≤ K

(
min{r, s}
n(r + s)

)1/2

.

Also, by the conditional version of Jensen’s inequality

E
[(
E
[
D2
∣∣N])2] ≤ E

[
D4
]
= E[D] =

s(r + s− n)

(r + s)2
.

Using

E
[
N−11{N≥1}

]
=

(
r + s

n

)−1 n∑
k=1

1

k

(
r

k

)(
s

n− k

)

≤ 2

r + 1

(
r + s

n

)−1 n+1∑
l=2

(
r + 1

l

)(
s

n+ 1− l

)

≤ 2

r + 1

(
r + s

n

)−1(
r + 1 + s

n+ 1

)
=

2(r + s+ 1)

(n+ 1)(r + 1)
≤ 2

r + s

nr
,

we get

E
[
D1{N≥1}N

−1/2
]
≤
√

E[D2]
√

E
[
1{N≥1}N−1

]
≤
(
2

s(r + s− n)

(r + s)(r + s− 1)

r + s

nr

)1/2

=
√
2
( s

nr

r + s− n

r + s− 1

)1/2
and

E
[
1{N≥1}N

−1/2
]
≤
√

E
[
1{N≥1}N−1

]
≤

√
2
(r + s

nr

)1/2
.

Finally, we have

P (N = 0) =

(
s
n

)(
r+s
n

) =
s(s− 1) · . . . · (s− n+ 1)

(r + s)(r + s− 1) · . . . · (r + s− n+ 1)
=

(s)n
(r + s)n

.

Thus, the result follows from Theorem 2.5.
�

Remark 2.17. (a) From the above proof we see that the numerical constant K
appearing in the bounds of Corollary 2.16 could in principle be computed ex-
plicitly. Also, as always

min{r, s}
n(r + s)

≤ r + s

nr
=

1

E[N ]
,

we conclude that the bounds are of order E[N ]−1/2.
(b) One typical situation, in which a CLT for Hypergeometric random sums holds,

is when N , itself, is asymptotically normal. Using the same coupling (N,Ns)
as in the above proof and the results from Goldstein and Rinott (1996), one
obtains that under the condition

max{r, s}
nmin{r, s}

−→ 0 (2.8)

the index N is asymptotically normal. This condition is stricter than that

E[N ]−1 =
r + s

nr
−→ 0 , (2.9)
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which implies the random sums CLT. For instance, choosing

r ∝ n1+ε , and s ∝ n1+κ

with ε, κ ≥ 0, then (2.8) holds, if and only if |ε − κ| < 1, whereas (2.9) is
equivalent to κ− ε < 1 in this case.

Before we end this section by giving the proof of Lemma 2.1, we would like to
mention in what respects the results in this article could be generalized. Firstly,
it would be possible do dispense with the assumption of independence among the
summands X1, X2, . . . . Of course, the terms appearing in the bounds would look
more complicated, but the only essential change would be the emergence of the
additional error term

E3 :=
C

ασ
E
∣∣αAN − µN

∣∣ ,
where

AN :=

N∑
j=1

E[Xj ] and µ = E[AN ]

and where C is an explicit constant depending on the probabilistic distance chosen.
Note that E3 = 0 if the summands are either i.i.d. or centered.

Secondly, it would be possible in principle to allow for some dependence among
the summands X1, X2, . . . . Indeed, an inspection of the proof in Section 4 re-
veals that this dependence should be such that for the non-random partial sums
bounds on the normal approximation exist and such that suitable couplings with
the non-zero biased distribution (see Section 3 ) of those partial sums are available.
The latter, however, have not been constructed yet in great generality, although
Goldstein and Reinert (1997) gives a construction for summands forming a simple
random sampling in the zero bias case.

It would be much more difficult to abandon the assumption about the indepen-
dence of the summation index and the summands. This can be seen from Equation
(4.9) below, in which the second identity would no longer hold, in general, if this
independence was no longer valid. Also, one would no longer be able to freely
choose the coupling (N,Ns) when specializing to concrete distributions of N .

Proof of Lemma 2.1: Let h be a measurable function such that all the expected
values in (2.1) exist. By (2.1) we have∣∣∣E[h(Xs)]− E[h(X)]

∣∣∣ = 1

E[X]

∣∣∣E[(X − E[X]
)
h(X)

]∣∣∣ . (2.10)

It is well known that

dTV (X,Y ) = sup
h∈H

∣∣∣E[h(X)]− E[h(Y )]
∣∣∣ , (2.11)

where H is the class of all measurable functions on R such that ‖h‖∞ ≤ 1/2. If
‖h‖∞ ≤ 1/2, then

1

E[X]

∣∣∣E[(X − E[X]
)
h(X)

]∣∣∣ ≤ E|X − E[X]|
2E[X]

.

Hence, from (2.11) and (2.10) we conclude that

dTV (X,Xs) ≤ E|X − E[X]|
2E[X]

.
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On the other hand, letting

h(x) :=
1

2

(
1{x>E[X]} − 1{x≤E[X]}

)
in (2.10) we have h ∈ H and obtain∣∣∣E[h(Xs)]− E[h(X)]

∣∣∣ = E|X − E[X]|
2E[X]

proving the second equality of (a). Note that, since Xs is stochastically larger than
X, we have

dK(X,Xs) = sup
t≥0

∣∣P (Xs > t)− P (X > t)
∣∣ = sup

t≥0

(
P (Xs > t)− P (X > t)

)
= sup

t≥0

(
E[gt(X

s)]− E[gt(X)]
)
, (2.12)

where gt := 1(t,∞).
By (2.10), choosing t = E[X] yields

dK(X,Xs) ≥ E
[(
X − E[X]

)
1{X>E[X]}

]
. (2.13)

If 0 ≤ t < E[X] we obtain

E
[(
X − E[X]

)
1{X>t}

]
= E

[(
X − E[X]

)
1{t<X≤E[X]}

]
+ E

[(
X − E[X]

)
1{X>E[X]}

]
≤ E

[(
X − E[X]

)
1{X>E[X]}

]
. (2.14)

Also, if t ≥ E[X], then

E
[(
X − E[X]

)
1{X>t}

]
≤ E

[(
X − E[X]

)
1{X>E[X]}

]
. (2.15)

Thus, by (2.10), from (2.12), (2.13), (2.14) and (2.15) we conclude that

dK(X,Xs) = E
[(
X − E[X]

)
1{X>E[X]}

]
. (2.16)

Now, the remaining claim of (a) can be easily inferred from (2.16) and from the
following two identities:

0 = E
[
X − E[X]

]
= E

[(
X − E[X]

)
1{X>E[X]}

]
− E

[(
X − E[X]

)
1{X≤E[X]}

]
= E

[∣∣X − E[X]
∣∣1{X>E[X]}

]
− E

[∣∣X − E[X]
∣∣1{X≤E[X]}

]
and

E
∣∣X − E[X]

∣∣ = E
[∣∣X − E[X]

∣∣1{X>E[X]}
]
+ E

[∣∣X − E[X]
∣∣1{X≤E[X]}

]
= 2E

[(
X − E[X]

)
1{X>E[X]}

]
.

Finally, if h is 1-Lipschitz continuous, then∣∣∣E[(X − E[X]
)
h(X)

]∣∣∣ =∣∣∣E[(X − E[X]
)(
h(X)− h(E[X])

)]∣∣∣
≤ ‖h′‖∞E

[
|X − E[X]|2

]
= Var(X) .

On the other hand, the function h(x) := x− E[X] is 1-Lipschitz and

E
[(
X − E[X]

)
h(X)

]
= Var(X) .

Thus, also (b) is proved.
�
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3. Elements of Stein’s method

In this section we review some well-known and also some recent results about
Stein’s method of normal approximation. Our general reference for this topic is the
book Chen et al. (2011). Throughout, Z will denote a standard normal random
variable. Stein’s method originated from Stein’s seminal observation (see Stein,
1972) that a real-valued random variable X has the standard normal distribution,
if and only if the identity

E
[
f ′(X)

]
= E

[
Xf(X)

]
holds for each, say, continuously differentiable function f with bounded derivative.
For a given random variable W , which is supposed to be asymptotically normal,
and a Borel-measurable test function h on R with E|h(Z)| < ∞ it was then Stein’s
idea to solve the Stein equation

f ′(x)− xf(x) = h(x)− E[h(Z)] (3.1)

and to use properties of the solution f and of W in order to bound the right hand
side of ∣∣∣E[h(W )

]
− E

[
h(Z)

]∣∣∣ = ∣∣∣E[f ′(W )−Wf(W )
]∣∣∣

rather than bounding the left hand side directly. For h as above, by fh we denote
the standard solution to the Stein equation (3.1) which is given by

fh(x) = ex
2/2

∫ x

−∞

(
h(t)− E[h(Z)]

)
e−t2/2dt

= −ex
2/2

∫ ∞

x

(
h(t)− E[h(Z)]

)
e−t2/2dt . (3.2)

Note that, generally, fh is only differentiable and satisfies (3.1) at the continuity
points of h. In order to be able to deal with distributions which might have point
masses, if x ∈ R is a point at which fh is not differentiable, one defines

f ′
h(x) := xfh(x) + h(x)− E[h(Z)] (3.3)

such that, by definition, fh satisfies (3.1) at each point x ∈ R. This gives a Borel-
measurable version of the derivative of fh in the Lebesgue sense. Properties of the
solutions fh for various classes of test functions h have been studied. Since we are
only interested in the Kolmogorov and Wasserstein distances, we either suppose
that h is 1-Lipschitz or that h = hz = 1(−∞,z] for some z ∈ R. In the latter case
we write fz for fhz .
We need the following properties of the solutions fh. If h is 1-Lipschitz, then it is
well known (see e.g. Chen et al., 2011) that fh is continuously differentiable and
that both fh and f ′

h are Lipschitz-continuous with

‖fh‖∞ ≤ 1 , ‖f ′
h‖∞ ≤

√
2

π
and ‖f ′′

h ‖∞ ≤ 2 . (3.4)

Here, for a function g on R, we denote by

‖g′‖∞ := sup
x 6=y

|g(x)− g(y)|
|x− y|

its minimum Lipschitz constant. Note that if g is absolutely continuous, then ‖g′h‖∞
coincides with the essential supremum norm of the derivative of g in the Lebesgue
sense. Hence, the double use of the symbol ‖·‖∞ does not cause any problems. For
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an absolutely continuous function g on R, a fixed choice of its derivative g′ and for
x, y ∈ R we let

Rg(x, y) := g(x+ y)− g(x)− g′(x)y (3.5)

denote the remainder term of its first order Taylor expansion around x at the point
x+ y. If h is 1-Lipschitz, then we obtain for all x, y ∈ R that∣∣Rfh(x, y)

∣∣ = ∣∣fh(x+ y)− fh(x)− f ′
h(x)y

∣∣ ≤ y2 . (3.6)

This follows from (3.4) via∣∣fh(x+ y)− fh(x)− f ′
h(x)y

∣∣ = ∣∣∣∫ x+y

x

(
f ′
h(t)− f ′

h(x)
)
dt
∣∣∣

≤ ‖f ′′
h ‖∞

∣∣∣∫ x+y

x

|t− x|dt
∣∣∣ = y2‖f ′′

h ‖∞
2

≤ y2 .

For h = hz we list the following properties of fz: The function fz has the represen-
tation

fz(x) =

{
(1−Φ(z))Φ(x)

ϕ(x) , x ≤ z
Φ(z)(1−Φ(x))

ϕ(x) , x > z .
(3.7)

Here, Φ denotes the standard normal distribution function and ϕ := Φ′ the cor-
responding continuous density. It is easy to see from (3.7) that fz is infinitely
often differentiable on R \ {z}. Furthermore, it is well-known that fz is Lipschitz-
continuous with Lipschitz constant 1 and that it satisfies

0 < fz(x) ≤ f0(0) =

√
2π

4
, x, z ∈ R .

These properties already easily yield that for all x, u, v, z ∈ R∣∣(x+ u)fz(x+ u)− (x+ v)fz(x+ v)
∣∣ ≤ (|x|+ √

2π

4

)(
|u|+ |v|

)
. (3.8)

Proofs of the above mentioned classic facts about the functions fz can again be
found in Chen et al. (2011), for instance. As fz is not differentiable at z (the right
and left derivatives do exist but are not equal) by the above Convention (3.3) we
define

f ′
z(z) := zfz(z) + 1− Φ(z) (3.9)

such that f = fz satisfies (3.1) with h = hz for all x ∈ R. Furthermore, with this
definition, for all x, z ∈ R we have

|f ′
z(x)| ≤ 1 . (3.10)

The following quantitative version of the first order Taylor approximation of fz
has recently been proved by Lachi and Peccati (2015) and had already been used
implicitly in Eichelsbacher and Thäle (2014). Using (3.9), for all x, u, z ∈ R we
have ∣∣Rfz (x, u)

∣∣ = ∣∣fz(x+ u)− fz(x)− f ′
z(x)u

∣∣
≤ u2

2

(
|x|+

√
2π

4

)
+ |u|

(
1{x<z≤x+u} + 1{x+u≤z<x}

)
=

u2

2

(
|x|+

√
2π

4

)
+ |u|1{

z−(u∨0)<x≤z−(u∧0)
} , (3.11)
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where, here and elsewhere, we write x ∨ y := max(x, y) and x ∧ y := min(x, y).

For the proof of Theorems 2.5 and 2.7 we need to recall a certain coupling
construction, which has been efficiently used in Stein’s method of normal ap-
proximation: Let X be a real-valued random variable such that E[X] = 0 and
0 < E[X2] < ∞. In Goldstein and Reinert (1997) it was proved that there exists a
unique distribution for a random variable X∗ such that for all Lipschitz continuous
functions f the identity

E[Xf(X)] = Var(X)E[f ′(X∗)] (3.12)

holds true. The distribution of X∗ is called the X-zero biased distribution and the
distributional transformation which maps L(X) to L(X∗) is called the zero bias
transformation. It can be shown that (3.12) holds for all absolutely continuous
functions f on R such that E|Xf(X)| < ∞. From the Stein characterization of
the family of normal distributions it is immediate that the fixed points of the zero
bias transformation are exactly the centered normal distributions. Thus, if, for
a given X, the distribution of X∗ is close to that of X, the distribution of X is
approximately a fixed point of this transformation and, hence, should be close to
the normal distribution with the same variance as X. In Goldstein (2004) this
heuristic was made precise by showing the inequality

dW(X,σZ) ≤ 2dW(X,X∗) ,

where X is a mean zero random variable with 0 < σ2 = E[X2] = Var(X) < ∞,
X∗ having the X-zero biased distribution is defined on the same probability space
as X and Z is standard normally distributed. For merely technical reasons we
introduce a variant of the zero bias transformation for not necessarily centered
random variables. Thus, if X is a real random variable with 0 < E[X2] < ∞, we
say that a random variable Xnz has the X-non-zero biased distribution, if for all
Lipschitz-continuous functions f it holds that

E
[(
X − E[X]

)
f(X)

]
= Var(X)E

[
f ′(Xnz)

]
.

Existence and uniqueness of the X-non-zero biased distribution immediately follow
from Theorem 2.1 of Goldstein and Reinert (2005) (or Theorem 2.1 of Döbler,
2015 by letting B(x) = x − E[X], there). Alternatively, letting Y := X − E[X]
and Y ∗ have the Y -zero biased distribution, it is easy to see that Xnz := Y ∗ +
E[X] fulfills the requirements for the X-non-zero biased distribution. Most of the
properties of the zero bias transformation have natural analogs for the non-zero bias
transformation, so we do not list them all, here. Since an important part of the
proof of our main result relies on the so-called single summand property, however,
we state the result for the sake of reference.

Lemma 3.1 (single summand property). Let X1, . . . , Xn be independent random
variables such that 0 < E[X2

j ] < ∞, j = 1, . . . , n. Define σ2
j := Var(Xj),

j = 1, . . . , n, S :=
∑n

j=1 Xj and σ2 := Var(S) =
∑n

j=1 σ
2
j . For each j = 1, . . . , n

let Xnz
j have the Xj-non-zero biased distribution and be independent of

X1, . . . , Xj−1, Xj+1, . . . , Xn and let I ∈ {1, . . . , n} be a random index, independent
of all the rest and such that

P (I = j) =
σ2
j

σ2
, j = 1, . . . , n .
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Then, the random variable

Snz := S −XI +Xnz
I =

n∑
i=1

1{I=i}

(∑
j 6=i

Xj +Xnz
i

)
has the S-non-zero biased distribution.

Proof : The proof is either analogous to the proof of Lemma 2.1 in Goldstein and
Reinert (1997) or else, the statement could be deduced from this result in the
following way: Using the fact that Xnz = Y ∗ + E[X] has the X-non-zero biased
distribution if and only if Y ∗ has the (X − E[X])-zero biased distribution, we Let
Yj := Xj −E[Xj ], Y

∗
j := Xnz

j −E[Xj ], j = 1, . . . , n and W :=
∑n

j=1 Yj = S−E[S].

Then, from Lemma 2.1 in Goldstein and Reinert (1997) we know that

W ∗ := W − YI + Y ∗
I = S − E[S] +

n∑
j=1

1{I=j}

(
E[Xj ]−Xj +Xnz

j − E[Xj ]
)

= S −XI +Xnz
I − E[S] = Snz − E[S]

has the W -zero biased distribution, implying that Snz has the S-non-zero biased
distribution.

�

4. Proof of Theorems 2.5 and 2.7

From now on we let h be either 1-Lipschitz or h = hz for some z ∈ R and write
f = fh given by (3.2). Since f is a solution to (3.1), plugging in W and taking
expectations yields

E[h(W )]− E[h(Z)] = E[f ′(W )−Wf(W )] . (4.1)

As usual in Stein’s method of normal approximation, the main task is to rewrite
the term E[Wf(W )] into a more tractable expression be exploiting the structure
of W and using properties of f . From (2.4) we have

E[Wf(W )] =
1

σ
E[(S − aN)f(W )] +

a

σ
E[(N − α)f(W )] =: T1 + T2 . (4.2)

For ease of notation, for n ∈ Z+ and M any Z+-valued random variable we let

Sn :=

n∑
j=1

Xj , Wn :=
Sn − αa

σ
, SM :=

M∑
j=1

Xj and WM :=
SM − αa

σ
,

such that, in particular, S = SN and W = WN . Using the decomposition

E
[
f ′(W )

]
=

αc2

σ2
E
[
f ′(W )

]
+

a2γ2

σ2
E
[
f ′(W )

]
which is true by virtue of (2.3), from (4.1) and (4.2) we have

E[h(W )]− E[h(Z)] = E[f ′(W )]− T1 − T2

= E
[c2α
σ2

f ′(W )− 1

σ
(S − aN)f(W )

]
+ E

[a2γ2

σ2
f ′(W )− a

σ
(N − α)f(W )

]
=: E1 + E2 . (4.3)
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We will bound the terms E1 and E2 seperately. Using the independence of N and
X1, X2, . . . for T1 we obtain:

T1 =
1

σ

∞∑
n=0

P (N = n)E
[
(Sn − na)f(Wn)

]
=

1

σ

∞∑
n=0

P (N = n)E
[
(Sn − na)g(Sn)

]
, (4.4)

where

g(x) := f

(
x− αa

σ

)
.

Thus, if, for each n ≥ 0, Snz
n has the Sn-non-zero biased distribution, from (4.4)

and (3) we obtain that

T1 =
1

σ

∞∑
n=0

P (N = n)Var(Sn)E
[
g′
(
Snz
n

)]
=

c2

σ2

∞∑
n=0

nP (N = n)E
[
f ′
(Snz

n − αa

σ

)]
.

Note that if we let M be independent of Snz
1 , Snz

2 , . . . and have the N -size biased
distribution, then, this implies that

T1 =
c2α

σ2
E
[
f ′
(Snz

M − αa

σ

)]
, (4.5)

where

Snz
M =

∞∑
n=1

1{M=n}S
nz
n .

We use Lemma 3.1 for the construction of the variables Snz
n , n ∈ N. Note, however,

that by the i.i.d. property of the Xj we actually do not need the mixing index I,
here. Hence, we construct independent random variables

(N,M), X1, X2, . . . and Y

such thatM has theN -size biased distribution and such that Y has theX1-non-zero
biased distribution. Then, for all n ∈ N

Snz
n := Sn −X1 + Y

has the Sn-non-zero biased distribution and we have

Snz
M − αa

σ
=

SM − αa

σ
+

Y −X1

σ
= WM +

Y −X1

σ
=: W ∗ . (4.6)

Thus, from (4.6) and (4.5) we conclude that

T1 =
c2α

σ2
E
[
f ′(W ∗)] (4.7)

and

E1 =
c2α

σ2
E
[
f ′(W )− f ′(W ∗)

]
. (4.8)

We would like to mention that if a = 0, then, by (4.7), W ∗ has the W -zero biased
distribution as T2 = 0 and σ2 = c2α in this case. Before addressing T2, we remark
that the random variables appearing in E1 and E2, respectively, could possibly be
defined on different probability spaces, if convenient, since they do not appear under
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the same expectation sign. Indeed, for E2 we use the coupling (N,Ns), which is
given in the statements of Theorems 2.5 and 2.7 and which appears in the bounds
via the difference D = Ns − N . In order to manipulate E2 we thus assume that
the random variables

(N,Ns), X1, X2, . . .

are independent and that Ns has the N -size biased distribution. Note that we do
not assume here that D = Ns−N ≥ 0, since sometimes a natural coupling yielding
a small value of |D| does not satisfy this nonnegativity condition. In what follows
we will use the notation

V := WNs −WN =
1

σ

(
SNs − SN

)
and J := 1{D≥0} = 1{Ns≥N} .

Now we turn to rewriting T2. Using the independence of N and X1, X2, . . . , and
that of Ns and X1, X2, . . . , respectively, E[N ] = α and the defining equation (2.1)
of the N -size biased distribution, we obtain from (4.2) that

T2 =
a

σ
E[(N − α)f(WN )] =

αa

σ
E
[
f(WNs)− f(WN )

]
=

αa

σ
E
[
1{Ns≥N}

(
f(WNs)− f(WN )

)]
+

αa

σ
E
[
1{Ns<N}

(
f(WNs)− f(WN )

)]
=

αa

σ
E
[
J
(
f(WN + V )− f(WN )

)]
− αa

σ
E
[
(1− J)

(
f(WNs − V )− f(WNs)

)]
=

αa

σ
E
[
JV f ′(WN )

]
+

αa

σ
E
[
JRf (WN , V )

]
+

αa

σ
E
[
(1− J)V f ′(WNs)

]
− αa

σ
E
[
(1− J)Rf (WNs ,−V )

]
, (4.9)

where Rf was defined in (3.5). Note that we have

JV = 1{Ns≥N}
1

σ

Ns∑
j=N+1

Xj and WN =

∑N
j=1 Xj − αa

σ

and, hence, the random variables JV and WN are conditionally independent given
N . Noting also that

E
[
JV

∣∣N] = 1

σ
E

[
J

Ns∑
j=N+1

Xj

∣∣∣∣N]

=
1

σ
E

[
JE
[ Ns∑
j=N+1

Xj

∣∣∣N,Ns
] ∣∣∣∣N]

=
a

σ
E
[
JD

∣∣N] = a

σ
E
[
JD

∣∣N]
we obtain that

αa

σ
E
[
JV f ′(WN )

]
=

αa

σ
E
[
E
[
JV

∣∣N]E[f ′(WN )
∣∣N]]

=
αa2

σ2
E
[
E
[
JD

∣∣N]E[f ′(WN )
∣∣N]]

=
αa2

σ2
E
[
E
[
JDf ′(WN )

∣∣N]]
=

αa2

σ2
E
[
JDf ′(WN )

]
, (4.10)
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where we have used for the next to last equality that also D and WN are condi-
tionally independent given N . In a similar fashion, using that WNs and 1{D<0}V
and also WNs and D are conditionally independent given Ns, one can show

αa

σ
E
[
(1− J)V f ′(WNs)

]
=

αa2

σ2
E
[
(1− J)Df ′(WNs)

]
. (4.11)

Hence, using that

αa2

σ2
E[D] =

αa2

σ2
E[Ns −N ] =

αa2

σ2

γ2

α
=

a2γ2

σ2

from (4.3), (4.9), (4.10) and (4.11) we obtain

E2 =
αa2

σ2
E
[(
E[D]−D

)
f ′(WN )

]
+

αa2

σ2
E
[
(1− J)D

(
f ′(WN )− f ′(WNs)

)]
− αa

σ
E
[
JRf (WN , V )

]
+

αa

σ
E
[
(1− J)Rf (WNs ,−V )

]
=: E2,1 + E2,2 + E2,3 + E2,4 . (4.12)

Using the conditional independence of D and WN given N as well as the Cauchy-
Schwarz inequality, we can estimate

|E2,1| =
αa2

σ2

∣∣∣E[E[D − E[D]
∣∣N]E[f ′(WN )

∣∣N]]∣∣∣
≤ αa2

σ2

√
Var
(
E[D |N ]

)√
E
[(
E
[
f ′(WN )

∣∣N])2]
≤ αa2

σ2
‖f ′‖∞

√
Var
(
E[D |N ]

)
. (4.13)

Now we will proceed by first assuming that h is a 1-Lipschitz function. In this
case, we choose the coupling (M,N) used for E1 in such a way that M ≥ N .
By Remark 2.2 (a) such a construction of (M,N) is always possible e.g. via the
quantile transformation und that it achieves the Wasserstein distance, i.e.

E|M −N | = E[M −N ] =
E[N2]

E[N ]
− E[N ] =

Var(N)

E[N ]
=

γ2

α
= dW(N,Ns) .

In order to bound E1, we first derive an estimate for E|WM −WN |. We have

E
[
|WM −WN |

∣∣N,M
]
=

1

σ
E
[
|SM − SN |

∣∣N,M
]
≤ |M −N |

σ
E|X1|

≤ b(M −N)

σ
(4.14)

and, hence,

E|WM −WN | = E
[
E
[
|WM −WN |

∣∣N,M
]]

=
1

σ
E
[
|SM − SN |

∣∣N,M
]

≤ b

σ
E[M −N ] =

bγ2

σα
. (4.15)
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Then, using (3.4), (4.15) as well as the fact that the Xj are i.i.d., for E1 we obtain
that

|E1| =
c2α

σ2

∣∣∣E[f ′(WN )− f ′
(
WM +

Y −X1

σ

)]∣∣∣
≤ 2c2α

σ2

(
E|WN −WM |+ σ−1E|Y −X1|

)
(4.16)

≤ 2c2α

σ3

(bγ2

α
+

3

2c2
E
∣∣X1 − E[X1]

∣∣3)
=

2c2bγ2

σ3
+

3αd3

σ3
. (4.17)

Here, we have used the inequality

E|Y −X1| = E
∣∣Y −E[X1]−

(
X1 −E[X1]

)∣∣ ≤ 3

2Var(X1)
E
∣∣X1 −E[X1]

∣∣3 , (4.18)

which follows from an analogous one in the zero-bias framework (see Chen et al.,
2011) via the fact that Y − E[X1] has the (X − E[X1]) - zero biased distribution.
Similarly to (4.14) we obtain

E
[
|V |
∣∣N,Ns

]
= E

[
|WNs −WN |

∣∣N,Ns
]
≤ b|Ns −N |

σ
=

b|D|
σ

which, together with (3.4) yields that

|E2,2| =
αa2

σ2

∣∣∣E[(1− J)D
(
f ′(WN )− f ′(WNs)

)]∣∣∣
≤ 2αa2

σ2
E
∣∣(1− J)D(WN −WNs)

∣∣
=

2αa2

σ2
E
[
(1− J)|D|E

[
|V |
∣∣N,Ns

]]
≤ 2αa2b

σ3
E
[
(1− J)D2

]
. (4.19)

We conclude the proof of the Wasserstein bounds by estimating E2,3 and E2,4. Note
that by (3.6) we have∣∣Rf (WN , V )

∣∣ ≤ V 2 and
∣∣Rf (WNs ,−V )

∣∣ ≤ V 2

yielding

|E2,3|+ |E2,4| ≤
α|a|
σ

E
[(
1{D≥0} + 1{D<0}

)
V 2
]
=

α|a|
σ

E
[
V 2
]
. (4.20)

Observe that

E[V 2] =
1

σ2
E
[(
SNs − SN

)2]
=

1

σ2

(
Var
(
SNs − SN

)
+
(
E
[
SNs − SN

])2)
(4.21)

and

E
[
SNs − SN

]
= E

[
E
[
SNs − SN

∣∣N,Ns
]]

= aE[D] =
aγ2

α
. (4.22)

Further, from the variance decomposition formula we obtain

Var
(
SNs − SN

)
= E

[
Var
(
SNs − SN

∣∣N,Ns
)]

+Var
(
E
[
SNs − SN ,

∣∣N,Ns
])

= E
[
c2|D|

]
+Var(aD) = c2E|D|+ a2 Var(D) .



890 Christian Döbler

This together with (4.21) and (4.22) yields the bounds

E[V 2] = E
[
(WNs −WN )2

]
=

1

σ2

(
c2E|D|+ a2E[D2]

)
(4.23)

≤ b2

σ2
E[D2] , (4.24)

where we have used the fact that D2 ≥ |D| and a2 + c2 = b2 to obtain

c2E|D|+ a2E[D2] ≤ b2E[D2] .

The asserted bound on the Wasserstein distance between W and Z from Theorem
2.5 now follows from (3.4), (4.3), (4.12), (4.17), (4.19), (4.20) and (4.24).
If a = 0, then E1 can be bounded more accurately than we did before. Indeed,
using (4.23) with Ns = M and applying the Cauchy-Schwarz inequality give

E|WM −WN | ≤
√
E
[
(WM −WN )2

]
=

c

σ

√
E[M −N ] =

cγ√
ασ

,

as c = b in this case. Plugging this into (4.16), we obtain

|E1| ≤
2c2α

σ2

(
E|WM −WN |+ σ−1E|Y −X1|

)
≤ 2c3γ

√
α

σ3
+

2c2α

σ3
E|Y −X1|

≤ 2c3γ
√
α

c3α3/2
+

3αd3

c3α3/2

=
2γ

α
+

3d3

c3
√
α
,

which is the Wasserstein bound claimed in Theorem 2.7.

Next, we proceed to the proof of the Berry-Esseen bounds in Theorems 2.5 and
2.7. Bounding the quantities E1, E2,2, E2,3 and E2,4 in the case that h = hz

is much more technically involved. Also, in this case we do not in general profit
from choosing M appearing in T1 in such a way that M ≥ N . This is why we let
M = Ns for the proof of the Kolmogorov bound in Theorem 2.5. Only for the proof
of Theorem 2.7 we will later assume that M ≥ N . We write f = fz and introduce
the notation

Ṽ := W ∗ −W = WNs + σ−1(Y −X1)−WN = V + σ−1(Y −X1) .

From (4.8) and the fact that f solves the Stein equation (3.1) for h = hz we have

E1 =
c2α

σ2
E
[
f ′(W )− f ′(W ∗)

]
=

c2α

σ2
E
[
Wf(W )−W ∗f(W ∗)

]
+

c2α

σ2

(
P (W ≤ z)− P (W ∗ ≤ z)

)
=: E1,1 + E1,2 . (4.25)

In order to bound E1,1 we apply (3.8) to obtain

|E1,1| ≤
c2α

σ2
E
[
|Ṽ |
(√2π

4
+ |W |

)]
. (4.26)
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Using (4.23), (4.24) and (4.18) we have

E|Ṽ | ≤ E|V |+ σ−1E|Y −X1| ≤
√

E[V 2] +
3d3

2σc2

=
1

σ

√
c2E|D|+ a2E[D2] +

3d3

2σc2
(4.27)

≤ b

σ

√
E[D2] +

3d3

2σc2
. (4.28)

Furthermore, using independence of W and Y , we have

E
∣∣(Y −X1)W

∣∣ ≤ E
∣∣(Y − E[X1])W

∣∣+ E|(X1 − E[X1])W |
= E

∣∣Y − E[X1]
∣∣E|W |+ E

∣∣(X1 − E[X1])W
∣∣

≤ d3

2c2

√
E[W 2] +

√
Var(X1)E[W 2] =

d3

2c2
+ c . (4.29)

Finally, we have

E|VW | ≤
√

E[V 2]
√
E[W 2] =

1

σ

√
c2E|D|+ a2E[D2] (4.30)

≤ b

σ

√
E[D2] . (4.31)

From (4.26), (4.27), (4.28), (4.29), (4.30) and (4.31) we conclude that

|E1,1| ≤
c2α

σ2

(√2π

4σ

√
c2E|D|+ a2E[D2] +

3d3
√
2π

8c2σ
+

d3

2c2σ
+

c

σ

+
1

σ

√
c2E|D|+ a2E[D2]

)
=

c2α(
√
2π + 4)

4σ3

√
c2E|D|+ a2E[D2] +

d3α(3
√
2π + 4)

8σ3
+

c3α

σ3
(4.32)

≤ (
√
2π + 4)bc2α

4σ3

√
E[D2] +

d3α(3
√
2π + 4)

8σ3
+

c3α

σ3
=: B1 . (4.33)

In order to bound E1,2 we need the following lemma, which will be proved in Section
5. In the following we denote by CK the Berry-Esseen constant for sums of i.i.d.
random variables with finite third moment. It is known from Shevtsova (2011) that

CK ≤ 0.4748 .

In particular, 2CK ≤ 1, which is substituted for 2CK in the statements of Theorems
2.5 and 2.7. However, we prefer keeping the dependence of the bounds on CK
explicit within the proof.

Lemma 4.1. With the above assumptions and notation we have for all z ∈ R∣∣P (W ∗ ≤ z)− P (WNs ≤ z)
∣∣ ≤ 1√

α

(7
2

√
2 + 2

)d3
c3

and (4.34)∣∣P (WNs ≤ z)− P (W ≤ z)
∣∣ ≤ P (N = 0) +

b

c
√
2π

E
[
D1{D≥0}N

−1/21{N≥1}
]

+
2CKd

3

c3
E
[
1{D≥0}N

−1/21{N≥1}
]

(4.35)

+
1√
α

( b

c
√
2π

√
E
[
D21{D<0}

]
+

2CKd
3

c3

√
P (D < 0)

)
.
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If a = 0 and D ≥ 0, then for all z ∈ R

∣∣P (WNs ≤ z)− P (W ≤ z)
∣∣ ≤ P (N = 0) +

2CKd
3

c3
E
[
N−1/21{N≥1}

]
+

1√
2π

E
[√

DN−1/21{N≥1}
]

(4.36)

≤P (N = 0) +

(
2CKd

3

c3
+

γ
√
α
√
2π

)√
E
[
1{N≥1}N−1

]
.

(4.37)

Applying the triangle inequality to Lemma 4.1 yields the following bounds on
E1,2: In the most general situation (Theorem 2.5 and Remark 2.6 (b)) we have

|E1,2| ≤
(7
2

√
2 + 2

)√αd3

cσ2
+

c2α

σ2
P (N = 0) +

αbc

σ2
√
2π

E
[
D1{D≥0}N

−1/21{N≥1}
]

+
2CKd

3α

cσ2
E
[
1{D≥0}N

−1/21{N≥1}
]
+

cb
√
α

σ2
√
2π

√
E
[
D21{D<0}

]
+

αCKd
3

cσ2

√
P (D < 0) =: B2 . (4.38)

If a = 0 and D ≥ 0, then, keeping in mind that σ2 = αc2 in this case,

|E1,2| ≤
(7
2

√
2 + 2

) d3

c3
√
α
+ P (N = 0) +

2CKd
3

c3
E
[
N−1/21{N≥1}

]
+

1√
2π

E
[√

DN−1/21{N≥1}
]

≤
(7
2

√
2 + 2

) d3

c3
√
α
+ P (N = 0) +

(
2CKd

3

c3
+

γ
√
α
√
2π

)√
E
[
1{N≥1}N−1

]
.

(4.39)

The following lemma, which is also proved in Section 5, will be needed to bound
the quantities E2,2, E2,3 and E2,4 from (4.12).

Lemma 4.2. With the above assumptions and notation we have

E
[
J |V |1{z−(V ∨0)<W≤z−(V ∧0)}

]
≤ b

σ

√
P (N = 0)

√
E[JD2]

+
b2

cσ
√
2π

E
[
JD21{N≥1}N

−1/2
]
+

2CKd
3b

c3σ
E
[
JD1{N≥1}N

−1/2
]
, (4.40)

E
[
(1− J)|V |1{z+(V ∧0)<WNs≤z+(V ∨0)}

]
≤ b2

cσ
√
2π

E
[
(1− J)D2(Ns)−1/2

]
+

2CKbd
3

c3σ
√
α

√
E
[
(1− J)D2

]
and (4.41)

E
[
(1− J)|D|1{z+(V ∧0)<WNs≤z+(V ∨0)}

]
≤ b

c
√
2π

E
[
(1− J)D2(Ns)−1/2

]
+

2CKd
3

c3
√
α

√
E
[
(1− J)D2

]
. (4.42)
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Next, we derive a bound on E2,2. Since f solves the Stein equation (3.1) for
h = hz we have

E2,2 =
αa2

σ2
E
[
(1− J)D

(
WNf(WN )−WNsf(WNs)

)]
+

αa2

σ2
E
[
(1− J)D

(
1{WN≤z} − 1{WNs≤z}

)]
=: E2,2,1 + E2,2,2 . (4.43)

Using

WN = WNs − V

and Lemma 5.1, we obtain from (4.42) that

|E2,2,2| ≤
αa2

σ2
E
[
1{D<0}|D|1{z+(V ∧0)<WNs≤z+(V ∨0)}

]
≤ αa2b

σ2c
√
2π

E
[
1{D<0}D

2(Ns)−1/2
]
+

2CKd
3a2

√
α

c3σ2

√
E
[
1{D<0}D2

]
=: B4 . (4.44)

As to E2,2,1, from (3.8) we have

|E2,2,1| ≤
αa2

σ2
E
[
(1− J)|DV |

(
|WNs |+

√
2π

4

)]
(4.45)

As

E
[
|V |
∣∣N,Ns

]
≤
√
E
[
V 2
∣∣N,Ns

]
=

1

σ

√
c2|D|+ a2D2 ≤ b

σ
|D| , (4.46)

by conditioning, we see

E
[
(1− J)|DV |] = E

[
(1− J)|D|E

[
|V |
∣∣N,Ns

]]
≤ b

σ
E
[
(1− J)D2] . (4.47)

Now, using the fact that conditionally on Ns, the random variables WNs and
(1−J)|DV | are independent, as well as the Cauchy-Schwarz inequality, we conclude
that

E
∣∣(1− J)DVWNs

∣∣ = E
[
E
[∣∣(1− J)DVWNs

∣∣ ∣∣Ns
]]

= E
[
E
[
(1− J)|DV |

∣∣Ns
]
E
[
|WNs |

∣∣Ns
]]

≤
√
E
[(
E
[
(1− J)|DV |

∣∣Ns
])2]√

E
[(
E
[
|WNs |

∣∣Ns
])2]

≤ b

σ

√
E
[(
E
[
(1− J)D2

∣∣Ns
])2]√

E
[
W 2

Ns

]
, (4.48)

where we have used the conditional Jensen inequality, (4.46) and

E
[
(1− J)|DV |

∣∣Ns
]
= E

[
(1− J)|D|E

[
|V |
∣∣N,Ns

] ∣∣∣Ns
]

to obtain the last inequality. Using the defining relation (2.1) of the size-biased
distribution one can easily show that

E
[
W 2

Ns

]
=

1

σ2
E
[
c2Ns + a2(Ns − α)2

]
=

c2β2 + a2
(
δ3 − 2αβ2 + α3

)
ασ2

, (4.49)
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which, together with (4.45), (4.47) and (4.48) yields that

|E2,2,1| ≤
αa2b

√
2π

4σ3
E
[
1{D<0}D

2]

+ a2b
c2β2 + a2

(
δ3 − 2αβ2 + α3

)
σ5

√
E
[(
E
[
1{D<0}D2

∣∣Ns
])2]

=: B5 . (4.50)

It remains to bound the quantities E2,3 and E2,4 from (4.12) for f = fz. From
(3.11) we have

|E2,3| =
α|a|
σ

∣∣∣E[1{D≥0}Rf (W,V )
]∣∣∣

≤ α|a|
2σ

E
[
JV 2

(
|W |+

√
2π

4

)]
+

α|a|
σ

E
[
J |V |1{z−(V ∨0)<W≤z−(V ∧0)}

]
=: R1,1 +R1,2 . (4.51)

Similarly to (4.23) we obtain

E
[
JV 2

]
=

1

σ2

(
c2E

[
JD
]
+ a2E

[
JD2

])
≤ b2

σ2
E
[
JD2

]
(4.52)

from

E
[
JV 2

∣∣N,Ns
]
= JE

[
V 2
∣∣N,Ns

]
=

J

σ2

(
c2|D|+ a2D2

)
=

1

σ2

(
c2JD + a2JD2

)
. (4.53)

Also, recall that the random variables

JV 2 = σ−11{Ns≥N}

( Ns∑
j=N+1

Xj

)2
and WN = σ−1

( N∑
j=1

Xj − αa
)

are conditionally independent givenN . Hence, using the Cauchy-Schwarz inequality

E
[
JV 2|WN |

]
= E

[
E
[
JV 2|WN |

∣∣N]] = E
[
E
[
JV 2

∣∣N]E[|WN |
∣∣N]]

≤

√
E

[(
E
[
JV 2

∣∣N])2]√E

[(
E
[
|WN |

∣∣N])2] . (4.54)

From (4.53) and D2 ≥ |D| we conclude that

E
[
JV 2

∣∣N] = 1

σ2

(
c2E

[
JD

∣∣N]+ a2E
[
JD2

∣∣N]) ≤ b2

σ2
E
[
JD2

∣∣N] . (4.55)

Furthermore, by the conditional version of Jensen’ s inequality we have

E

[(
E
[
|WN |

∣∣N])2] ≤ E
[
E
[
W 2

N

∣∣N]] = E
[
W 2

N

]
= 1 . (4.56)

Thus, from (4.54), (4.55) and (4.56) we see that

E
[
JV 2|WN |

]
≤ b2

σ2

√
E
[(
E
[
JD2

∣∣N])2] . (4.57)
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Hence, (4.51), (4.52) and (4.57) yield

R1,1 ≤ α|a|b2

2σ3

√
E
[(
E
[
JD2

∣∣N])2]+ α|a|b2
√
2π

8σ3
E[JD2] . (4.58)

Finally, from (4.51), (4.58) and (4.40) we get

|E2,3| ≤
α|a|b2

2σ3

√
E
[(
E
[
1{D≥0}D2

∣∣N])2]+ α|a|b2
√
2π

8σ3
E[1{D≥0}D

2]

+
α|a|b
σ2

√
P (N = 0)

√
E[1{D≥0}D2]

+
α|a|b2

cσ2
√
2π

E
[
1{D≥0}D

21{N≥1}N
−1/2

]
+

2CKd
3α|a|b
σ2

E
[
1{D≥0}D1{N≥1}N

−1/2
]
=: B6 . (4.59)

Similarly, we have

|E2,4| =
α|a|
σ

∣∣∣E[1{D<0}Rf (WNs ,−V )
]∣∣∣

≤ α|a|
2σ

E
[
(1− J)V 2

(
WNs +

√
2π

4

)]
+

α|a|
σ

E
[
(1− J)|V |1{z+(V ∧0)<WNs≤z+(V ∨0)}

]
=: R2,1 +R2,2 . (4.60)

Analogously to the above we obtain

E
[
(1− J)V 2

]
=

1

σ2

(
c2E

[
(1− J)|D|

]
+ a2E

[
(1− J)D2

])
≤ b2

σ2
E
[
(1− J)D2

]
and (4.61)

E
[
(1− J)V 2

∣∣Ns
]
=

1

σ2

(
c2E

[
(1− J)|D|

∣∣Ns
]
+ a2E

[
(1− J)D2

∣∣Ns
])

≤ b2

σ2
E
[
(1− J)D2

∣∣Ns
]
.

Using these as well as the conditional independence of (1 − J)V 2 and WNs given
Ns, one has

E
[
(1− J)V 2|WNs |

]
≤ b2

σ2

√
E
[(
E
[
(1− J)D2

∣∣Ns
])2]√

E
[
W 2

Ns

]
. (4.62)

Combining (4.49) and (4.62) we obtain

E
[
(1− J)V 2|WNs |

]
≤ b2

σ2

√
E
[(
E
[
(1− J)D2

∣∣Ns
])2]

(
c2β2 + a2

(
δ3 − 2αβ2 + α3

)
ασ2

)1/2

. (4.63)
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Thus, from (4.60), (4.61), (4.63) and (4.41) we conclude

|E2,4| ≤
α|a|b2

√
2π

8σ3
E
[
1{D<0}D

2
]
+

α|a|b2

2σ3

√
E
[(
E
[
1{D<0}D2

∣∣Ns
])2]

·

(
c2β2 + a2

(
δ3 − 2αβ2 + α3

)
ασ2

)1/2

+
α|a|b2

σ2c
√
2π

E
[
1{D<0}D

2(Ns)−1/2
]
+

√
α|a|2CKbd

3

σ2

√
E
[
1{D<0}D2

]
=: B7 . (4.64)

The Berry-Esseen bound stated in Remark 2.6 (b) follows from (4.3), (4.25), (4.33),
(4.38), (4.12), (4.13), (3.10), (4.43), (4.44), (4.50), (4.59) and (4.64). This immedi-
ately yields the Berry-Esseen bound presented in Theorem 2.5 (b) because

B2 = B4 = B5 = B7 = 0

in this case. In order to obtain the Kolmogorov bound in Theorem 2.7, again, we
choose M such that M ≥ N and use the bounds (4.32) and (4.39) instead. The
result then follows from (4.3) and (4.25).

5. Proofs of auxiliary results

Here, we give several rather technical proofs. We start with the following easy
lemma, whose proof is omitted.

Lemma 5.1. For all x, u, v, z ∈ R we have

1{x+u≤z} − 1{x+v≤z} = 1{z−v<x≤z−u} − 1{z−u<x≤z−v} and∣∣1{x+u≤z} − 1{x+v≤z}
∣∣ = 1{z−u∨v<x≤z−u∧v} .

Lemma 5.2 (Concentration inequality). For all real t < u and for all n ≥ 1 we
have

P (t < Wn ≤ u) ≤ σ(u− t)

c
√
2π

√
n
+

2CKd
3

c3
√
n

.

Proof : The proof uses the Berry-Esseen Theorem for sums of i.i.d. random vari-
ables with finite third moment as well as the following fact, whose proof is straight-
forward: For each real-valued random variable X and for all real r < s we have the
bound

P (r < X ≤ s) ≤ s− r√
2π

+ 2dK(X,Z) . (5.1)

A similar result was used in Peköz and Röllin (2011) in the framework of exponential
approximation. Now, for given t < u and n ≥ 1 by (5.1) and the Berry-Esseen
Theorem we have

P (t < Wn ≤ u) = P

(
σt+ a(α− n)

c
√
n

<
Sn − na

c
√
n

≤ σu+ a(α− n)

c
√
n

)
≤ σ(u− t)

c
√
2π

√
n
+

2CKd
3

c3
√
n

.

�
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Remark 5.3. It is actually not strictly necessary to apply the Berry-Esseen The-
orem in order to prove Lemma 5.2: Using known concentration results for sums
of independent random variables like Proposition 3.1 from Chen et al. (2011), for
instance, would yield a comparable result, albeit with worse constants.

In order to prove Lemma 4.1 we cite the following concentration inequality from
Chen et al. (2011):

Lemma 5.4. Let Y1, . . . , Yn be independent mean zero random variables such that

n∑
j=1

E[Y 2
j ] = 1 and ζ :=

n∑
j=1

E|Yj |3 < ∞ ,

then with S(i) :=
∑

j 6=i Yj one has for all real r < s and all i = 1, . . . , n that

P (r ≤ S(i) ≤ s) ≤
√
2(s− r) + 2(

√
2 + 1)ζ .

Proof of Lemma 4.1: We first prove (4.34). Define

W
(1)
Ns := WNs − σ−1X1 =

1

σ

(Ns∑
j=2

Xj − αa
)

such that

WNs = W
(1)
Ns + σ−1X1 and W ∗ = W

(1)
Ns + σ−1Y .

Then, using Lemma 5.1 we have∣∣P (W ∗ ≤ z)− P (WNs ≤ z)
∣∣

=
∣∣P (W

(1)
Ns + σ−1Y ≤ z)− P (W

(1)
Ns + σ−1X1 ≤ z)

∣∣
≤ P

(
z − σ−1(X1 ∨ Y ) < W

(1)
Ns ≤ z − σ−1(X1 ∧ Y )

)
= E

[
P

(
σz − (X1 ∨ Y ) + a(α−Ns + 1)

c
√
Ns

<
Ns∑
j=2

(Xj − a

c
√
Ns

)

≤ σz − (X1 ∧ Y ) + a(α−Ns + 1)

c
√
Ns

∣∣∣∣Ns

)]
.

Now note that conditionally on Ns the random variables W
(1)
Ns and (X1, Y ) are

independent and that the statement of Lemma 5.4 may be applied to the random
variable in the middle term of the above conditional probabilty giving the bound∣∣P (W ∗ ≤ z)− P (WNs ≤ z)

∣∣ ≤ E

[√
2|Y −X1|
c
√
Ns

+
2(
√
2 + 1)d3

c3
√
Ns

]
. (5.2)

Noting that (X1, Y ) and Ns are independent and using (4.18) again, we obtain

E

[
|Y −X1|√

Ns

]
≤ 3

2c2
d3E

[
(Ns)−1/2

]
≤ 3d3

2c2
√
α
, (5.3)

as

E
[
(Ns)−1/2

]
=

E[
√
N ]

E[N ]
≤
√

E[N ]

E[N ]
=

1√
α

(5.4)
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by (2.1) and Jensen’s inequality. From (5.2), (5.3) and (5.4) the bound (4.34)
follows.
Next we prove (4.35). Using Lemma 5.1 we obtain∣∣P (WNs ≤ z)− P (W ≤ z)

∣∣ = ∣∣E[J(1{W+V≤z} − 1{W≤z})
]

− E
[
(1− J)(1{WNs−V≤z} − 1{WNs≤z})

]∣∣
≤ E

[
J1{z−(V ∨0)<W≤z−(V ∧0)}

]
+ E

[
(1− J)1{z+(V ∧0)<WNs≤z+(V ∨0)}

]
=: A1 +A2 . (5.5)

To bound A1 we write

A1 =
∞∑

n=0

E
[
J1{N=n}1{z−(V ∨0)<W≤z−(V ∧0)}

]
=

∞∑
n=0

P
(
z − (V ∨ 0) < W ≤ z − (V ∧ 0)

∣∣D ≥ 0, N = n
)
· P
(
D ≥ 0, N = n

)
.

(5.6)

Now note that conditionally on the event that D ≥ 0 and N = n the random
variables W and V are independent and

L(W |D ≥ 0, N = n) = L(Wn) .

Thus, using Lemma 5.2 we have for all n ≥ 1:

P
(
z − (V ∨ 0) < W ≤ z − (V ∧ 0)

∣∣D ≥ 0, N = n
)

= P
(
z − (V ∨ 0) < Wn ≤ z − (V ∧ 0)

∣∣D ≥ 0, N = n
)

≤ E

[
σ|V |

c
√
2π

√
n
+

2CKd
3

c3
√
n

∣∣∣∣D ≥ 0, N = n

]
(5.7)

From (5.6) and (5.7) we thus have

A1 ≤ P (N = 0) +
∞∑

n=1

E

[
σ|V |

c
√
2π

√
n
+

2CKd
3

c3
√
n

∣∣∣∣D ≥ 0, N = n

]
P
(
D ≥ 0, N = n

)
= P (N = 0) +

∞∑
n=1

E

[
1{D≥0,N=n}

(
σ|V |

c
√
2π

√
n
+

2CKd
3

c3
√
n

)]
= P (N = 0) + E

[
J1{N≥1}

(
σ|V |

c
√
2π

√
N

+
2CKd

3

c3
√
N

)]
(5.8)

Now note that

E
[
J1{N≥1}|V |N−1/2

]
= E

[
J1{N≥1}N

−1/2E
[
|V |
∣∣N,Ns

]]
≤ E

[
J1{N≥1}N

−1/2
√
E
[
V 2
∣∣N,Ns

]]
=

1

σ
E
[
J1{N≥1}N

−1/2
√

c2D + a2D2
]

(5.9)

≤ b

σ
E
[
JD1{N≥1}N

−1/2
]
. (5.10)
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It remains to bound A2. We may assume that P (D < 0) > 0 since otherwise
A2 = 0. Noting that Ns ≥ 1 almost surely, similarly to (5.6) we obtain

A2 =

∞∑
m=1

P
(
z + (V ∧ 0) < WNs ≤ z + (V ∨ 0)

∣∣D < 0, Ns = m
)

· P
(
D < 0, Ns = m

)
.

Now, using the fact that conditionally on the event {Ns = m} ∩ {D < 0} the
random variables WNs and V are independent and

L(WNs |Ns = m,D < 0) = L(Wm)

in the same manner as (5.8) we find

A2 ≤ E

[
(1− J)

(
σ|V |

c
√
2π

√
Ns

+
2CKd

3

c3
√
Ns

)]
. (5.11)

Using (2.1) we have

E
[(
Ns
)−1]

=
1

E[N ]
=

1

α
. (5.12)

Thus, from the Cauchy-Schwarz inequality and (5.12) we obtain

E
[
(1− J)

|V |√
Ns

]
≤
√

E
[(
Ns
)−1]√

E
[
(1− J)V 2

]
=

1

σ
√
α

√
c2E

[
|D|(1− J)

]
+ a2E

[
D2(1− J)

]
≤ b

σ
√
α

√
E
[
D2(1− J)

]
. (5.13)

Similarly, we have

E
[1− J√

Ns

]
≤
√
P (D < 0)

√
E
[(
Ns
)−1]

=

√
P (D < 0)√

α
. (5.14)

Thus, from (5.8), (5.10), (5.11), (5.13) and (5.14) we see that A1 + A2 is bounded
from above by the right hand side of (4.35). Using (5.8) and (5.9) instead gives the
bounds (4.36) and (4.37).

�

Proof of Lemma 4.2: We only prove (4.40), the proofs of (4.41) and (4.42) being
similar and easier. By the definition of conditional expectation given an event, we
have

E
[
J |V |1{z−(V ∨0)<WN≤z−(V ∧0)}

]
=

∞∑
n=0

E
[
1{N=n,D≥0}|V |1{z−(V ∨0)<Wn≤z−(V ∧0)}

]
= E

[
1{N=0}J |V |

]
+

∞∑
n=1

E
[
|V |1{z−(V ∨0)<Wn≤z−(V ∧0)}

∣∣N = n,D ≥ 0
]
· P (N = n,D ≥ 0) .

(5.15)

Now, for n ≥ 1, using the fact that the random variables WN and V are condition-
ally independent given the event {D ≥ 0} ∩ {N = n}, from Lemma 5.2 we infer
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that

E
[
|V |1{z−(V ∨0)<Wn≤z−(V ∧0)}

∣∣N = n,D ≥ 0
]

= E
[
|V |
( σ|V |
c
√
2π

√
n
+

2CKd
3

c3
√
n

) ∣∣∣N = n,D ≥ 0
]

(5.16)

Combining (5.15) and (5.16) we get

E
[
J |V |1{z−(V ∨0)<WN≤z−(V ∧0)}

]
≤ E

[
1{N=0}J |V |

]
+

∞∑
n=1

E
[
|V |
( σ|V |
c
√
2π

√
n
+

2CKd
3

c3
√
n

) ∣∣∣N = n,D ≥ 0
]
· P (N = n,D ≥ 0)

= E
[
1{N=0}J |V |

]
+E
[
1{N≥1}J |V |

( σ|V |
c
√
2π

√
N

+
2CKd

3

c3
√
N

)]
. (5.17)

Using Cauchy-Schwarz as well as

E
[
JV 2

]
= E

[
JE
[
V 2
∣∣N,Ns

]]
≤ b2

σ2
E
[
JD2

]
we obtain

E
[
1{N=0}J |V |

]
≤ b

σ

√
P (N = 0)

√
E
[
JD2

]
. (5.18)

Analogously to (5.10) one can show that

E
[
1{N≥1}N

−1/2JV 2
]
≤ b2

σ2
E
[
1{N≥1}N

−1/2JD2
]
. (5.19)

Hence, bound (4.40) follows from (5.17), (5.18), (5.10) and (5.19).
�
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