
ALEA, Lat. Am. J. Probab. Math. Stat. 12, 1001–1029 (2015)

On level and collision sets of some Feller processes

Victoria Knopova and René L. Schilling
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Abstract. This paper is about lower and upper bounds for the Hausdorff dimen-
sion of the level and collision sets for a class of Feller processes. Our approach is
motivated by analogous results for Lévy processes by Hawkes (1974) (for level sets)
and Taylor (1966) and Jain and Pruitt (1969) (for collision sets). Since Feller pro-
cesses lack independent or stationary increments, the methods developed for Lévy
processes cannot be used in a straightforward manner. Under the assumption that
the Feller process possesses a transition probability density, which admits lower and
upper bounds of a certain type, we derive sufficient conditions for regularity and
non-polarity of points; together with suitable time changes this allows us to get
upper and lower bounds for the Hausdorff dimension.

1. Introduction

In this paper, we study the Hausdorff dimension of the level and collision sets
for a certain class of strong Feller processes; concrete examples were constructed
in Knopova and Kulik (2015) and Knopova and Kulik (2016) under rather general
assumptions, see Assumption A below. This assumption guarantees, in particular,
that the process is a strong Feller process admitting a transition probability density
which enjoys upper and lower estimates of “compound kernel” type, see (2.7) and
(2.8).

Let us briefly describe the problems which are discussed in this paper. Let X be
a (strong) Feller process with values in Rn. Then

{s : Xs(ω) ∈ D} for any Borel set D ⊂ Rn (1.1)
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denotes a level set of X, i.e. the (random) set of times when X visits the set D.
We adapt the techniques from Hawkes (1974), see also Hawkes (1970) and

Hawkes (1971), to obtain bounds on the Hausdorff dimension of such level sets.
The idea used in Hawkes (1974) is based on the notion of subordination (in the
sense of Bochner, i.e. a random time change by an independent increasing Lévy
process), and on knowledge of the Hausdorff dimension of the range of a γ-stable
subordinator T γt (cf. Lemma 4.2 below).

The proof presented in Hawkes (1974) heavily relies on the fact that X is a Lévy
process; a key ingredient is a criterion for the polarity of points in terms of the
characteristic exponent of the Lévy process X. For general Markov processes such
a result is not available, and so we need an essentially different approach. The first
problem which we encounter in the investigation of the level set (1.1), is how to
check that the process X a.s. enters D; in other words: when is the starting point
x regular for D. We can overcome this problem using some abstract potential
theory and the Kato class; this requires, however, upper and lower estimates for
the transition density pt(x, y) of X which allows us to characterize the notion of a
Kato class (with respect to pt(x, y); see Definition 3.1) and regular points for D.
For d-sets this problem simplifies and, at least for certain values of d, any point in
the topological boundary ∂D is regular for D. Using the structure of the estimates
for pt(x, y), we can establish similar assertions on the polarity of sets and regularity
of points for the subordinate (i.e. time-changed) process XTγt

.
In Theorem 2.1 we use the indices γinf and γsup—these characterize the set D

“in the eyes” of the time-changed process XTγt
—to obtain uniform upper and lower

bounds on the random set dim{s : Xs(ω) ∈ D}; here D is a d-set and the process
starts from a point x which belongs to the topological closure D of D. In the
one-dimensional case we obtain (Proposition 2.2) the exact value of the Hausdorff
dimension of the zero-level set {s : Xs(ω) = 0}. This result can be pushed a bit
further: in dimension one we show (Proposition 2.3) that this value is also the
Hausdorff dimension of the set of times, at which two independent copies of X
meet.

The second half of the paper is on collision sets. Motivated by our findings in
Proposition 2.3 and the results from Taylor (1966) and Jain and Pruitt (1969), we
investigate the Hausdorff dimension of the collision set

A(ω) :=
{
x ∈ R : X1

t (ω) = X2
t (ω) = x for some t > 0

}
of two independent copies X1 and X2 of X; from now on we assume that X is one-
dimensional and recurrent. Since recurrence reflects the behaviour of the process as
time tends to infinity, it cannot be deduced from Assumption A (which is essentially
a condition on short times). Some examples of recurrent processes which fit our
setting are given in Section 6. In order to get bounds on the Hausdorff dimension
of A(ω), we compare the polar sets of the process (X1, X2) with the polar sets of
symmetric stable processes with parameters α and β. The idea to use the range of
a stable process as a “gauge” in order to express the Hausdorff dimension of a Borel
set in Rn is due to Taylor (1966); in its original version it heavily relies on the fact
that the process X is a Lévy process. In the present paper, we use the symmetric
stable (“gauge”) processes in a different way, especially when establishing the lower
bound for the Hausdorff dimension.
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Let us briefly mention some known results. We refer to Xiao (2004) for an exten-
sive survey on sample path properties of Lévy processes, in particular, for various
dimension results on level, intersection and image sets. Most results essentially de-
pend on the independence and stationarity of increments of Lévy processes, while
for general Markov processes much less is known. For Lévy-type processes the be-
haviour of the symbol of the corresponding generator allows us to get the results
on the Hausdorff dimension of the image sets, see e.g. Schilling (1998), Knopova
et al. (2015), and the monograph Böttcher et al. (2013); in Shieh (1995) conditions
are given, such that Markov processes collide with positive probability, and Shieh
and Xiao (2010) studies the Hausdorff and packing dimensions of the image sets of
self-similar processes.

Our paper is organized as follows. In Section 2 we explain the notation and
state our main results. Section 3 is devoted to some facts and auxiliary statements
from probabilistic potential theory; these are interesting in their own right. The
proofs of the main results are given in Sections 4 and 5. Examples of recurrent
processes, which satisfy Assumption A can be found in Section 6. Finally, the
(rather technical) proofs of some auxiliary statements are given in the appendix.

2. Setting and main results

We begin with the description of the class of stochastic processes which we
are going to consider. Denote by Ck∞(Rn) and Ckc (Rn) the spaces of k times
continuously differentiable functions which vanish at infinity (with all derivatives)
and which are compactly supported, respectively. For f ∈ C2

∞(Rn) we consider the
following Lévy-type operator

Lf(x) := a(x)·∇f(x)+

∫
Rn\{0}

(
f(x+h)−f(x)−h·∇f(x)1(0,1)(|h|)

)
m(x, h)µ(dh),

(2.1)
where a : Rn → Rn, m : Rn × Rn → (0,∞) are measurable functions and µ is a
Lévy measure, i.e. a measure on Rn \ {0} such that

∫
Rn\{0}

(
1 ∧ |h|2

)
µ(dh) <∞.

Denote by f̂(x) := (2π)−n
∫
Rn
f(x)e−ix·ξ dx the Fourier transform. It is not hard

to see that we can rewrite L as a pseudo-differential operator

Lf(x) := −
∫
Rn
eiξ·xq(x, ξ)f̂(ξ) dξ, f ∈ C∞c (Rn),

with symbol q : Rn × Rn → C. The symbol is given by the Lévy–Khintchine
representation

q(x, ξ) = −ia(x) · ξ +

∫
Rn\{0}

(
1− eih·ξ + ih · ξ1(0,1)(|h|)

)
m(x, h)µ(dh). (2.2)

We will frequently compare the variable-coefficient operator L with an operator
L0 (with bounded coefficients), defined by

L0f(x) = −
∫
Rn
eix·ξq(ξ)f̂(ξ) dξ,

with the real-valued symbol

q(ξ) =

∫
Rn\{0}

(
1− cos(ξ · h)

)
µ(dh). (2.3)
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The symbol q(ξ) is the characteristic exponent of a symmetric Lévy process Zt in
Rn, i.e. Eeiξ·Zt = e−tq(ξ). Define

qU (ξ) :=

∫
Rn\{0}

(
(ξ · h)2 ∧ 1

)
µ(dh) and qL(ξ) :=

∫
0<|ξ·h|≤1

(ξ · h)2 µ(dh)

and

q∗(r) := sup
`∈Sn

qU (r`),

where Sn is the unit sphere in Rn. The functions qU and qL are, up to multiplicative
constants, upper and lower bounds for q(ξ) (cf. Knopova and Kulik (2013); Knopova
(2013)):

(1− cos 1)qL(ξ) ≤ q(ξ) ≤ 2qU (ξ).

The key regularity assumption in Knopova and Kulik (2015, 2016) is the following
comparison result:

∃κ ≥ 1 ∀r ≥ 1 : q∗(r) ≤ κ inf
`∈Sn

qL(r`). (2.4)

This condition means that the function q(ξ) does not oscillate “too much”. For
example, if q(ξ) = |ξ|α one can check that (2.4) holds true with κ = 2/α. Motivated
by this example, we use the notation

α := 2/κ (2.5)

with κ ≥ 1 from (2.4). Moreover, (2.4) implies, see Knopova and Kulik (2013);
Knopova (2013), that

q(ξ) ≥ c|ξ|α, |ξ| ≥ 1. (2.6)

We refer to Knopova and Kulik (2013) for examples which illustrate this condition.
In Knopova and Kulik (2016) it was shown that, under the following assumptions

Assumption A.

1) The Lévy measure µ is such that (2.4) holds;
2) There exist constants c1, c2, c3 > 0, such that

|a(x)| ≤ c1 and c2 ≤ m(x, u) ≤ c3;
3) The functions a(x) and m(x, u) are locally Hölder continuous in x with

some index λ ∈ (0, 1];
4) Either α > 1, with α as in (2.4), (2.5),

or a(x) ≡ 0 and m(x, h) = m(x,−h), µ(dh) = µ(−dh),

the operator L extends to the generator of a (strong) Feller process X, which has
a transition probability density pt(x, y). This density is continuous as a function
of (t, x, y) ∈ [t0,∞)×Rn ×Rn, t0 > 0, and satisfies the following upper and lower
bounds:

pt(x, y) ≥ ρnt flow((y − x)ρt), t ∈ (0, 1], x, y ∈ Rn, (2.7)

and

pt(x, y) ≤ ρnt
(
fup(ρt ·) ∗Qt

)
(y − x), t ∈ (0, 1], x, y ∈ Rn, (2.8)

where (Qt)t≥0 is a family of sub-probability measures,

ρt := inf{r > 0 : q∗(r) ≥ 1/t},

flow(z) := a1(1− a2|z|)+ and fup(z) := a3e
−a4|z|, z ∈ R,
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where ai > 0, i = 1, . . . , 4, are constants and x+ := max(x, 0). The family of
sub-probability measures (Qt)t≥0 has been explicitly constructed in Knopova and
Kulik (2016); for our purposes the exact form of the Qt is not important.

Unless otherwise specified, X = (Xt)t≥0 will always denote an Rn-valued
Feller process as above, with law Px(Xt ∈ dy) = pt(x, y) dy, t > 0.

There are many Feller and Lévy-type processes satisfying the conditions required
in Assumption A. Note that the integro-differential structure of the generator—as
in (2.2), but with a jump kernel (compensator of the jumping measure) N(x, dh)
instead of m(x, h)µ(dy) and with a second-order term—is, in fact, necessary for
Feller processes and more general semimartingales, at least if the test functions
C∞c (Rn) are in the domain of the generator, see Böttcher et al. (2013). This means
that the main restriction is the fact that N(x, dy) is absolutely continuous w.r.t.
some Lévy measure and the absence of a second-order diffusion part; just as in the
Lévy case, the latter would dominate the short-time path behaviour. Below we give
a few typical examples of Feller processes satisfying our assumptions.

• Any rotationally symmetric Lévy process whose Lévy measure has a (rota-
tionally symmetric) density g(|u|) satisfying1∫ a

0

r2g(r) dr � a2

∫ ∞
a

g(r) dr. (2.9)

A concrete example when such condition is satisfied is given in Example 6.1 below.

• Any Lévy process whose Lévy measure is radially symmetric, i.e.

µ(dh) =

∫ ∞
0

∫
Sn
δrζ(dh)m(dr)µ0(dζ),

where µ0 is a finite measure on Sn; we assume, in addition, that r 7→ m(R\(−r2, r2))
is regularly varying at 0. Then qL(ξ) � f(|ξ|), where f(|ξ|) =

∫
r|ξ|≤1

r2|ξ|2m(dr)

is regularly varying at infinity as we have the representation

f(|ξ|) = |ξ|2
∫ 1/|ξ|2

0

m{r : r2 > s} ds,

see Bingham et al. (1987) [Proposition 1.5.8]. Fix some ` ∈ Sn, and rewrite qL as

qL(|ξ|`) =

∫
|ξ||`·h|≤1

|ξ|2(` · h)2 µ(dh)

=

∫
h6=0

1{|ξ||`·h|≤1}|ξ|2(` · h)2 µ(dh)

=

∫ ∞
0

∫
Sn
1{|ξ|r|`·ζ|≤1}|ξ|2r2(` · ζ)2m(dr)µ0(dζ).

(2.10)

Since |` · ζ| ≤ 1, we get 1{|ξ|r|`·ζ|≤1} ≥ 1{|ξ|r≤1}, and so

qL(|ξ|`) ≥
∫ ∞

0

1{|ξ|r≤1}|ξ|2r2m(dr)

∫
Sn

(` · ζ)2 µ0(dζ)

= f(|ξ|)
∫
Sn

(` · ζ)2 µ0(dζ).

1We write f(t) � g(t) or f � g if there is an absolute constant 0 < c < ∞ such that

c−1f(t) ≤ g(t) ≤ cf(t) for all t (in the specified domain)
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On the other hand, the last line of (2.10) reads

qL(|ξ|`) =

∫
Sn
f(|ξ||` · ζ|)µ0(dζ).

Since the function f(r) is regularly varying at infinity, there exists some C > 0,
such that f(cr) ≤ Cf(r) for any c ∈ (0, 1] and sufficiently large values of r � 1,
see Bingham et al. (1987) [Theorem 1.5.6]. Therefore, we get

qL(|ξ|`) ≤ Cµ0(Sn)f(|ξ|), |ξ| � 1.

Observe also, that the function qU is differentiable almost everywhere, and the
derivative with respect to the radial component equals

∂

∂r
qU (r`) =

2

r
qL(r`).

for any ` ∈ Sn and r > 0. Therefore, we deduce from our previous calculations that

1 � lim
r→∞

qL(λr`)

qL(r`)
� lim
r→∞

qU (λr`)

qU (r`)
;

for the second equivalence relation we use l’Hospital’s rule. Thus, condition (2.4)
holds true.

• Any Lévy process from the previous example, which is perturbed by a non-
constant drift a(x) and such that q(ξ) ≥ c |ξ|1+ε for some ε > 0;

• (Weak) solutions to SDEs driven by symmetric α-stable Lévy noise (1 < α < 2)
and Hölder continuous coefficients, see Knopova and Kulik (2014) for the existence
of such weak solutions, as well as for a simplified version of the parametrix method.

• Stable-type processes (in the sense of Z.-Q. Chen and T. Kumagai) where
m(x, h) is jointly continuous, bounded and bounded away from 0 and with an α-
stable Lévy measure µ(dh) = |h|−α−d dh.

In general, the main problem is to show that (2.4) holds true, which is a condition
on the Lévy measure. To wit, this condition holds true for the “discretized version”
of an α-stable Lévy measure in Rn:

µ(dh) =

∞∑
k=−∞

2kγmk,v(dh), 0 < γ < 2υ,

where mk,υ(dh) is the uniform distribution on the sphere Sk,υ centered at 0 with
radius 2−kυ, υ > 0, k ∈ Z, υ > 0, 0 < γ < 2υ, see Knopova (2013). In this example
qU (ξ) � q(ξ) � qL(ξ) � |ξ|α, where α = γ/υ ∈ (0, 2); see Knopova and Kulik
(2013) for further examples in this direction. On the other hand, Lévy measures of
the form

∑∞
k=0 akδhk , ak, hk > 0 for rapidly growing weights ak →∞ and hk → 0

are exactly those measures which create oscillations in the symbol q, making (2.4)
impossible, see Farkas et al. (2001) [Example 1.1.15].

In Section 6 we consider further examples of processes which satisfy Assump-
tion A and are recurrent (which is needed in the second main result of our paper).

In order to state our result on the bound for the Hausdorff dimension of level
sets we need to define two auxiliary indices. Recall that a set D is called a d-set, if
there exists a measure $ ∈M+

b (D), supp$ = D, such that

c1r
d ≤ $

(
B(x, r) ∩D

)
≤ c2rd, x ∈ D, r > 0; (2.11)
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the corresponding measure $ is called a d-measure. Denote by M+
b (D) the family

of all finite Borel measures with support in D ⊂ Rn. For a d-set D we define

γinf := inf

{
γ ∈ [0, 1] :

∫ 1

0

$
(
B(x, r)

)
(q∗)γ(1/r)

dr

rn+1
<∞, (2.12)

for a d-measure $ on D

}

= inf

{
γ ∈ [0, 1] :

∫ 1

0

rd

(q∗)γ(1/r)

dr

rn+1
<∞

}
,

γsup := sup

{
γ ∈ [0, 1] : x 7→

∫ 1

0

$
(
B(x, r) ∩D

)
(q∗)γ(1/r)

dr

rn+1
(2.13)

is unbounded ∀$ ∈M+
b (D)

}
.

Let us give an intuitive explanation of the meaning of the indices γinf and γsup.
Denote by T γ = (T γt )t≥0, γ ∈ (0, 1), a γ-stable subordinator, i.e. a real-valued Lévy

process with increasing sample paths such that t−1/γT γt = T γ1 in distribution for all
t > 0. Assume that T γ is independent of X. Intuitively, γinf is the smallest γ for
which the time-changed process XTγt

still can see the set D, and γsup is the largest

γ, for which D is polar for XTγt
.

We can now state our first main result.

Theorem 2.1. Suppose that the Feller process X with generator L satisfies As-
sumption A, and D = D ⊂ Rn is a closed d-set with d > n − α. If x ∈ D,
then2

1− γinf ≤ dim{s : Xx
s ∈ D} ≤ 1− γsup, Px-a.s. (2.14)

where γinf and γsup are given by (2.12) and (2.13), respectively.

In the one-dimensional case we can get a result which closely resembles those in
Hawkes (1974) for Lévy processes. Denote by

X−1({0}, ω) := {s > 0 : Xs(ω) = 0}, where X0(ω) = 0,

the zero-level set of X and set

γ∗ := inf

{
γ ∈ [0, 1] :

∫ 1

0

1

(q∗(1/s))γ
ds

s2
<∞

}
.

The corollary below follows from Theorem 2.1 if we take D = {0}, d = 0 and α > 1;
in this case points are non-polar for X.

Corollary 2.2. Let X be a Feller process with generator L and suppose that As-
sumption A is satisfied. Let n = 1 and α > 1. Then

dimX−1({0}, ω) = 1− γ∗ P0-a.s.

In particular, if q∗(ξ) � |ξ|α (|ξ| ≥ 1), then γ∗ = 1/α.

2Here, as well as in the rest of the paper, “dim” stands for the Hausdorff dimension.
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Corollary 2.2 can also be used to calculate the Hausdorff dimension of the set of
collision times of independent copies X1, X2 of X:

Θ(ω) :=
{
t ≥ 0 : X1

t = X2
t = x for some x ∈ Rn

}
.

Proposition 2.3. Suppose that X is a one-dimensional (n = 1) Feller process with
generator L and that Assumption A is satisfied. Let α > 1, and denote by X1 and
X2 two independent copies of X. Then

dim Θ(ω) = 1− γ∗ P-a.s.

Our second main result concerns the Hausdorff dimension of the collision set

A(ω) :=
{
x ∈ R : X1

t (ω) = X2
t (ω) = x for some t > 0

}
(2.15)

(X1, X2 are two independent copies of X).

Theorem 2.4. Let X be a one-dimensional (n = 1) Feller process with generator
L and suppose that Assumption A is holds. If X is recurrent and if the function
q(ξ) from (2.3) satisfies

c1|ξ|α ≤ q(ξ) ≤ c2|ξ|β for all |ξ| ≥ 1, (2.16)

for some constants c1, c2 > 0 and 1 < α ≤ β < 2, then the Hausdorff dimension of
the collision set A(ω) is estimated from above and below as

α− 1 ≤ dimA(ω) ≤ β − 1 Px-a.s. for all x ∈ R.

3. Some auxiliary results from potential theory

A central problem is which points can be hit by the process X. For this we need
a few tools from potential theory. The following definition is taken from Kuwae
and Takahashi (2007).

Definition 3.1. Let (Xt)t≥0 be an Rn-valued Markov process admitting a transi-
tion density pt(x, y) and $ a Borel measure on Rn. The measure $ belongs to the
Kato class SK with respect to pt(x, y), if

lim
t→0

sup
x∈Rn

∫ t

0

∫
Rn
ps(x, y)$(dy) ds = 0. (3.1)

Let rλ(x, y), λ > 0, be the λ-potential density of X, i.e.

rλ(x, y) :=

∫ ∞
0

e−λsps(x, y) ds.

We can extend the resolvent operator from functions f ∈ L1(Rn) to (finite) mea-
sures: For λ > 0 and any finite measure $ we can define the operator

Rλ$(x) :=

∫ ∞
0

∫
Rn
e−λsps(x, y)$(dy) ds =

∫
Rn
rλ(x, y)$(dy).

A Borel set D ⊂ Rn is polar for X = (Xt)t≥0, if Px(τD < ∞) = 0 for all x ∈ Rn,
where

τD := inf{t > 0 : Xt ∈ D}
is the first hitting time of the set D.
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Remark 3.2. It is shown in Kuwae and Takahashi (2006) that the condition (3.1) is
equivalent to “limλ→∞ supxRλ$(x) = 0”. The set D is polar if and only if R0$(x)
is unbounded for any finite non-zero measure $ with compact support contained
in D, see Blumenthal and Getoor (1968) [p. 285].

In order to make sure that the process X enters the set D, we need to take the
starting point x from the fine closure (i.e. the closure in the fine topology) of D.
Recall from Blumenthal and Getoor (1968) [p. 87, Exercise 4.9] that the fine closure

D̃ of a set D is D ∪Dr, where Dr denotes the set of regular points of D, i.e.

Dr := {x ∈ Rn : Px(τD = 0) = 1} .

We need to characterize the regular points for D. The following elementary result
should be known, but we could not find a reference and so we include the short
proof.

Lemma 3.3. Let D ⊂ Rn and assume that there exists a finite measure $ ∈ SK
(w.r.t. pt(x, y)) with supp$ = D. If a point x ∈ Rn satisfies

lim inf
λ→∞

Rλ$(x)

supy∈D Rλ$(y)
= c(x) > 0, (3.2)

then x is regular for D. In particular, if a point x is not regular for D, then the
constant c(x) in (3.2) is necessarily equal to 0.

Proof : Let $ be a finite measure such that supp$ = D and $ ∈ SK . By Dynkin
(1965) [Vol. 1, p. 194, Theorem 6.6], there exists a continuous additive functional3

At satisfying

ExAt =

∫ t

0

∫
Rn
ps(x, y)$(dy) ds.

Using standard arguments, we find for any λ > 0 and x ∈ Rn

Ex
∫ m

0

e−λt dAt =

∫ m

0

e−λt dExAt =

∫ m

0

e−λtpt(x, y)$(dy) dt. (3.3)

Passing to the limit as m→∞, we get

Ex
∫ ∞

0

e−λt dAt = Rλ$(x). (3.4)

3that is, At+s = As +At ◦ θs for any t, s > 0 where θs is the shift operator.
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Let τ := τD be the hitting time of the set D. By construction, the additive func-
tional At satisfies At = 0 for t < τ . Thus,

λEx
∫ m

0

e−λtAt dt

= λEx
∫ m

0

e−λtAt1{τ>m} dt︸ ︷︷ ︸
=0

+λEx
∫ m

τ

e−λtAt1{τ≤m} dt

= λEx
∫ m−τ

0

e−λ(t+τ)At+τ1{τ≤m} dt

= Ex
[
e−λτ1{τ≤m}E

Xτ

(
λ

∫ m−τ

0

e−λtAt dt

)]
= Ex

[
e−λτ1{τ≤m}E

Xτ

(∫ m−τ

0

e−λt dAt

)]
− e−λmEx

[
1{τ≤m}E

XτAm−τ
]

= Ex
[
e−λτ1{τ≤m}E

Xτ

(∫ m−τ

0

e−λt dAt

)]
− e−λmExAm.

For the last step we used the continuity of At to get Aτ = 0 and, by the additive
property,

ExAm = ExAτ + Ex
[
Am−τ ◦ θτ1{τ≤m}

]
= Ex [Ex (Am−τ ◦ θτ | Fτ )]

= Ex
[
1{τ≤m}E

XτAm−τ
]
.

These calculations, when combined with (3.3) and integration by parts, yield

Ex
∫ m

0

e−λt dAt = Ex
[
e−λτ1{τ≤m}E

Xτ

(∫ m−τ

0

e−λt dAt

)]
,

and passing to the limit as m→∞ we finally arrive at

Rλ$(x) = Ex
[
e−λτRλ$(Xτ )

]
.

Since Xτ ∈ D, the last equality implies

Rλ$(x)

supy∈D Rλ$(y)
≤ Exe−λτ . (3.5)

Note that {τ > 0} is a “tail event”, i.e. it has probability 0 or 1. Taking the lower
limit lim infλ→∞ on both sides, we get a contradiction to (3.2), unless τ ≡ 0. Thus,
Px(τ > 0) = 0. �

Remark 3.4. For a symmetric Markov process X, the relation (3.4) is known for all
measures which have finite energy integrals, see Fukushima et al. (2011) [pp. 223–
226, Theorem 5.1.1, Lemma 5.1.3].

It is possible to give a more explicit sufficient condition for a point x to be regular
for D; this requires further knowledge of the structure of D, for instance that D is
a d-set.

Lemma 3.5. Let D ⊂ Rn be a d-set and assume that the corresponding d-measure
$ belongs to SK w.r.t. pt(x, y). Then any point of D is regular for D, i.e. D =

D ∪Dr = D̃.
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In order to keep the presentation transparent, we defer the rather technical proof
of this lemma to the appendix.

Here is a criterion for the non-polarity of a set D based on the inequality (3.5).

Corollary 3.6. Assume that there exists some $ ∈ SK w.r.t. pt(x, y) such that
supp$ = D. Then the set D is non-polar for X, i.e.

Px(τD <∞) > 0. (3.6)

Proof : We know from Kuwae and Takahashi (2006), see also Remark 3.2, that
$ ∈ SK satisfies supxRλ$(x) <∞ for some λ > 0. From (3.5) we derive

Rλ$(x)

supy∈D Rλ$(y)
≤ Px(τD <∞).

Let us show that Rλ$(x) > 0. For this we show that

pt(x, y) > 0 for all t > 0, x, y ∈ Rn.

There is a minimal N , such that the distance from x to y can be covered by N
balls of radius less than (2a2ρt/N )−1 (where a2 > 0 is the constant appearing in
the representation of flow), i.e. the smallest N , for which the inequality

|x− y|
N

≤ 1

a2ρt/N
(3.7)

holds true. Observe that q∗(r) ≤ c1r
2, r ≥ 1, implying c2t

−1/2 ≤ ρt, for all t
small enough. Hence, (3.7) is valid for all N ≥ (a2c2|x− y|)2/t. Therefore, putting
y0 = x, yN = y, we get

pt(x, y) =

∫
Rn
. . .

∫
Rn

(
N∏
i=1

pt/N (yi−1, yi)

)
dy1 . . . dyN

≥
∫
B(y0,(2a2ρt/N )−1)

. . .

∫
B(yN−1,(2a2ρt/N )−1)

N∏
i=1

pt/N (yi−1, yi) dyi

≥ c0ρNnt/N .

In the last line we use (2.7) which gives

pt/N (yi−1, yi) ≥ 2−1a1ρ
n
t/N ∀yi ∈ B(yi−1, (2a2ρt/N )−1).

Thus, the transition probability density pt(x, y) is strictly positive, which implies

Rλ$(x) ≥ e−λ
∫ 1

0

∫
D

pt(x, y)$(dy) dt > 0.

Hence, we get (3.6). �

Remark 3.7. a) Under the assumptions of Corollary 3.6 one has Px(τD <∞) > cK
uniformly for all x ∈ K where K ⊂ Rn is a compact set.

b) If, in addition, the process X is recurrent, then Px(τD <∞) = 1, see Sharpe
(1988) [p. 60].

c) Suppose that X is one-dimensional (n = 1) and
∫∞

1
q∗(s)−1 ds < ∞. Then

there exists a local time for any point x ∈ R, see Knopova and Kulik (2016). Let
D = {x}, where x is the starting point of Xt. Then Rλ$(x) = supy∈RRλ$(y),
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i.e. the left-hand side of (3.2) is equal to 1, implying that every point is regular for
itself.

On the other hand, if n ≥ 2, we always have
∫
|ξ|≥1

q∗(ξ)−1 dξ =∞, i.e. for n ≥ 2

points are polar.

4. Proof of Theorem 2.1 and Proposition 2.3

Throughout this section X = (Xt)t≥0 is a Feller process as in Section 2. Let
(Ω∗,F∗,P∗) be a further probability space and define on this space a γ-stable
subordinator T γ = (T γt )t≥0, γ ∈ (0, 1). T γt has a transition probability density

σ
(γ)
t (s), and ∫ ∞

0

e−λsσ
(γ)
t (s) ds = e−tλ

γ

, λ > 0, t > 0.

From this we immediately get the following scaling property

σ
(γ)
t (s) = t−1/γσ

(γ)
1 (st−1/γ). (4.1)

Let Xγ
t := XTγt

be the subordinate process. Its transition probability density

p
(γ)
t (x, y) is given by

p
(γ)
t (x, y) =

∫ ∞
0

ps(x, y)σ
(γ)
t (s) ds, (4.2)

see, for example, Jacob (2001) [Theorem 4.3.1].
The technical proof of the following lemma is deferred to the appendix. Recall

that SK denotes the Kato class of measures, cf. Definition 3.1. If γ = 1, T
(γ)
t ≡ t,

and the ‘subordinate’ kernel p
(1)
t (x, y) is just pt(x, y).

Lemma 4.1. a) Suppose that $ satisfies∫ 1

0

sup
x

$(B(x, r))

(q∗)γ(1/r)

dr

rn+1
<∞, for some γ ∈ (0, 1]. (4.3)

Then $ ∈ SK with respect to p
(γ)
t (x, y).

b) Suppose that $ ∈ SK with respect to p
(γ)
t (x, y), where γ ∈ (0, 1]. Then

lim
t→0

sup
x

∫ t

0

$(B(x, r))

(q∗)γ(1/r)

dr

rn+1
= 0. (4.4)

The next lemma is due to Hawkes (1974) [Lemma 2.1], cf. also Hawkes (1971)
[Proof of Theorem 1]; it plays the key role in the proof of Theorem 2.1.

Lemma 4.2. Let T γ be a stable subordinator of index γ ∈ (0, 1), and let B ⊂ [0,∞)
be a Borel set. Then

P (T γt ∈ B for some t > 0) = 0 implies dimB ≤ 1− γ,

while

P (T γt ∈ B for some t > 0) > 0 implies dimB ≥ 1− γ.

We are now ready for the
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Proof of Theorem 2.1: By assumption, D is a closed d-set; pick a corresponding
d-measure $ on D. For d > n− α we have∫ 1

0

sup
x

$(B(x, r))

q∗(1/r)

dr

rn+1
≤ c1

∫ 1

0

rd

q∗(1/r)

dr

rn+1
≤ c2

∫ 1

0

rd+α−n−1 dr <∞,

where we used that q∗(r) ≥ crα, cf. (2.6). By Lemma 4.1 (used for γ = 1) we have
$ ∈ SK w.r.t. pt(x, y), and by Lemma 3.5 all points of D are regular for D = D.

As X0 = x ∈ D, the set {s : Xs(ω) ∈ D} is a.s. non-empty, and therefore the
random set

W :=
{

(ω, ω∗) : XTγt (ω∗)(ω) ∈ D for some t > 0
}

= {(ω, ω∗) : T γt (ω∗) ∈ {s : Xs(ω) ∈ D} for some t > 0}
(4.5)

is well-defined and non-void.
First we calculate the lower bound of the Hausdorff dimension of the random set

{s : Xs(ω) ∈ D}. Assume that γ ∈ (γinf , 1). Recall that the transition probability
density of the subordinate process XTγt (ω∗)(ω) is given by (4.2). By Lemma 4.1,

$ ∈ SK with respect to p
(γ)
t (x, y) for any γ ∈ (γinf , 1). Using Lemma 3.5 we see

that the points, which are regular for D “in the eyes” of the original process X, are
still regular for D and the subordinate process XTγt

—whenever γ ∈ (γinf , 1). This

implies that the set W has full Px ⊗ P∗-measure. Thus, (4.5) yields

1 = (Px ⊗ P∗)(W )

=

∫
Ω

P∗
(
ω∗ : T γt (ω∗) ∈ {s : Xs(ω) ∈ D} for some t > 0

)
Px(dω),

which in turn gives

Px
(
ω : P∗ [ω∗ : T γt (ω∗) ∈ {s : Xs(ω) ∈ D} for some t > 0] > 0

)
= 1.

Now Lemma 4.2 shows dim{s : Xs(ω) ∈ D} ≥ 1− γ with Px-probability 1; letting
γ ↓ γinf along a countable sequence we arrive at

dim{s : Xs(ω) ∈ D} ≥ 1− γinf Px-a.s.

To show the upper bound in (2.14), we take γ ∈ (0, γsup). By the definition of
γsup,

x 7→
∫ δ

0

$(B(x, r))

(q∗)γ(1/r)

dr

rn+1

is unbounded for any finite measure $ supported in D. There exist, see (7.5) below,
constants a, b, δ(T ) > 0 such that∫ T

0

∫
D

p
(γ)
t (x, y)$(dy) dt ≥ a

∫ δ(T )

0

$(B(x, r))

(q∗)γ(1/r)

dr

rn+1
.

Thus, R0$(x) is unbounded and, by Remark 3.2, the set D is polar for Xγ
t . There-

fore, (Px ⊗ P∗)(W ) = 0 and, consequently,

Px
(
ω : P∗ [ω∗ : T γt (ω∗) ∈ {s : Xx

s (ω) ∈ D} for some t > 0] = 0
)

= 1.

This means that {s : Xx
s (ω) ∈ D} is polar for T γt with Px-probability 1. Applying

Lemma 4.2 we get dim{s : Xx
s (ω) ∈ D} ≤ 1 − γ with Px-probability 1. Letting

γ ↑ γsup along a countable sequence, the upper bound in (2.14) follows. �
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Proof of Proposition 2.3: Since the processes X1 and X2 are, up to different start-
ing points, i.i.d. copies, the transition probability density of X̃t := X1

t −X2
t is given

by

p̃t(x, y) =

∫
R

pt(x+ x0, z + y)pt(x0, z) dz;

here x0 ∈ R is the starting point of X2
t . Let us estimate p̃t(x, y) using the upper

bounds (2.8) for pt(x, y). By the triangle inequality we have for any ε > 0 and
w1, w2 ∈ R∫

R

ρ2
t e
−a4ρt |z+y−x−x0−w1|e−a4ρt |x0−z+w2| dz

≤ ρt e−a4ερt |y−x−w1+w2|
∫
R

ρt e
−a4(1−ε)ρt·(|z+y−x−x0−w1|+|x0−z+w2|) dz

≤ cρt e−a4ερt |y−x−w1+w2|.

This yields the following upper bound for p̃t(x, y):

p̃t(x, y) ≤ a2
3

∫∫∫
R3

ρ2
t e
−a4ρt |z−x−x0−w1|e−a4ρt |z−x0−w2| dz Qt(dw1)Qt(dw2)

≤ Cρt
(
f εup(ρt· ) ∗ Q̃t

)
(y − x),

where Q̃t(dw) :=
∫
R
Qt(dw+v)Qt(dv) is again a sub-probability measure. In other

words, the transition probability density of X̃ has an upper bound of the same form
as pt(x, y).

To show the lower bound, take x, y such that ρt |y − x| ≤ a−1
2 (1 − a2ε), where

ε > 0 is small. Then

p̃t(x, y) ≥ a2
1ρ

2
t

∫
R

flow((y + z − x− x0)ρt)flow((x0 − z)ρt) dz

≥ a1ρt

∫
|v|≤ε

flow(ρt(y − x− v/ρt))flow(v) dv.

Since for |v| ≤ ε

1− a2ρt |y− x− v/ρt| ≥ 1− a2ε− a2ρt |y− x| = (1− εa2)

(
1− a2

1− a2ε
ρt |y − x|

)
,

we get for all x, y such that ρt |y − x| ≤ a−1
2 (1− a2ε) the estimate

p̃t(x, y) ≥ c1ρt (1− c2ρt |y − x|)

with c1 = a1(1 − a2ε)
∫
|v|≤ε flow(v) dv and c2 = a2(1 − a2ε)

−1. Thus, the lower

bound for p̃t(x, y) is also of the same form as the one for pt(x, y).

We have shown that the symmetrized process X̃ satisfies the estimates (2.7) and
(2.8), and these estimates are the essential ingredient in the proof of Corollary 2.2.4

Thus, we can apply Corollary 2.2, and the proof is finished. �

4Notice that Assumption A in Corollary 2.2 is just used to ensure that we have (2.7) and (2.8).
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5. Proof of Theorem 2.4

Throughout this section we work under the assumptions of Theorem 2.4: As-
sumption A holds and the process X is recurrent. We denote the transition prob-
ability density by pt(x, y), t > 0. Recall that the process X is called

1) (neighbourhood) recurrent if

∀x ∈ R ∀open sets G ⊂ R : Px (Xt ∈ G for some t > 0) = 1.

2) point recurrent, if

∀x, y ∈ R : Px (Xt = y for some t > 0) = 1.

Using the arguments of Jain and Pruitt (1969) [Lemma 4.1] we can show that, in
the setting of Theorem 2.4, the recurrence of X already implies point recurrence.

Lemma 5.1. The process X is point recurrent.

Proof : Write τy := inf{t > 0 : Xt = y} for the hitting time of {y} and set

Φ(x, y) := Px (Xt = y for some t > 0) = Ex1{τy<∞}.

Let us show that for X any singleton {x} is regular for itself. By (2.8) and the
inequality ρt ≤ ct−1/α, t ∈ (0, 1]—this follows from (2.6)—we have for α > 1

sup
x,y∈R

∫ t

0

ps(x, y) ds ≤ c1
∫ t

0

ρs ds ≤ c2
∫ t

0

s−1/α ds ≤ c3t1−1/α, t ∈ (0, 1].

Thus, any measure of the form $ = cδy for c ≥ 0 and some y belongs to the Kato
class SK w.r.t. pt(x, y). By Lemma 3.5, any point y ∈ R is regular for itself for X.
Then

Φ(y, y) = 1,

because {τx = 0} =
⋂
ε>0{Xt = x for some t ∈ (0, ε)}, and because of the regu-

larity Px(τx = 0) = 1.
Let us show that the function Φ(·, y) is excessive. Denote by (Pt)t≥0 the semi-

group given by the kernel pt(x, y). Since

Φ(Xt(ω), y) = PXt(ω) (Xs = y for some s > 0) for Px-a.a. ω

= Px (Xt+s = y for some s > 0) ,

we have

PtΦ(·, y)(x) = ExΦ(Xt, y) = Px (Xt+s = y for some s > 0) ≤ Φ(x, y),

and by the dominated convergence theorem PtΦ(x, y) ↑ Φ(x, y) as t→ 0. Since X
is recurrent, all excessive functions are constant, see Sharpe (1988) [Exercise 10.39];
hence, we get Φ(x, y) ≡ 1 for all x, y ∈ R. �

Remark 5.2. Let X1 and X2 be two independent copies of X. Then the sym-
metrized process X̃ = X1 −X2 is point recurrent.

Let β be the exponent appearing in the upper bound in (2.16).

Lemma 5.3. Let X1 and X2 be independent copies of X, and denote by Zβ a
symmetric β-stable Lévy process in R2. Let D be a subset of the diagonal in R2. If
D is polar for Zβ, then it is polar for (X1, X2).
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Proof : Denote by pt(x, y), x = (x1, x2), y = (y1, y2), the transition probability
density of the bivariate process (X1, X2). Suppose that |x − y| ≤ ε for some
sufficiently small ε > 0. Using the lower estimates (2.7) for pt(xi, yi), i = 1, 2, we
get ∫ 1

0

pt(x, y) dt ≥ a2
1

∫ 1

0

(1− a2ρt |x1 − y1|)+(1− a2ρt |x2 − y2|)+ρ
2
t dt

≥ a2
1(1− a2)2

∫ 1

cφ(|x−y|)
ρ2
t dt,

where φ(r) := 1/qU (1/r); with this choice of φ(r) we have ρt |x− y| < 1. Changing
variables gives∫ 1

0

pt(x, y) dt ≥ c1
∫ 1/ρ1

|x−y|

1

r3qU (1/r)
dr ≥ c2|x− y|β−2,

where we use that ρt is the inverse of q∗ and (2.4), as well as
(
qU (r)

)′
= 2qL(r)/r

a.e. and (2.16). The expression in the last line is (up to a constant) the potential
of the process Zβ . Thus, for |x− y| < ε the potential of (X1, X2) is bounded from
below by the potential U(x) := |x|β−2 of Zβ . Now∫

|x−y|>ε

1

|x− y|2−β
$(dy) ≤ εβ−2$(D) for all finite measures $. (5.1)

By Remark 3.2 the set D is polar for Zβ if and only if the potential of Zβ is
unbounded for any finite measure $ 6= 0 with supp$ ⊂ D, i.e.

sup
x
U$(x) = sup

x

∫
1

|x− y|2−β
$(dy) =∞.

Because of (5.1) this happens if and only if

sup
x

∫
|x−y|≤ε

1

|x− y|2−β
$(dy) =∞. (5.2)

Thus, if (5.2) holds true, then supxR0$(x) = ∞, where R0 is the 0-resolvent for
(X1, X2); by Remark 3.2 the set D is polar for (X1, X2). �

The next lemma is from Taylor (1966) [Theorem 4], see also Jain and Pruitt
(1969), and it plays the key role in the proof of Theorem 2.4.

Lemma 5.4. Suppose that A is an analytic subset of Rn(n = 1, 2), and Zζ,nt is
any symmetric ζ-stable Lévy process in Rn. Then

dimA = n− inf
{
ζ : A is non-polar for Zζ,n

}
.

Proof of Theorem 2.4: Let A(ω) be the collision set defined in (2.15). Since the
one-dimensional process X1 −X2 is point recurrent, cf. Remark 5.2, the set A(ω)
is a.s. non-empty. Instead of A(ω) we consider the following set on the diagonal of
R2:

Â(ω) :=
{

(x, x) ∈ R2 : (X1
t (ω), X2

t (ω)) = (x, x) for some t > 0
}

≡
{

(x, x) ∈ R2 : τx(ω) <∞
}
,
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where τx := inf{t > 0 : (X1
t , X

2
t ) = (x, x)}. There is a one-to-one correspondence

between Â(ω) and A(ω), and their Hausdorff dimensions coincide. For our needs it

is more convenient to work with the set Â(ω).
Define on a further probability space (Ω′,F′,P′) a symmetric θ-stable Lévy pro-

cess Zθ,1t (ω′), t ≥ 0, taking values on the diagonal of R2 and with θ < 2 − β. We
are going to show that

P′
(
ω′ : Zθ,1t (ω′) ∈ Â(ω) for some t > 0

)
= 0 (5.3)

for almost all ω; this means that Â(ω) is a.s. polar for Zθ,1(ω′).
Let

Γ :=
{

(ω, ω′) : Zθ,1t (ω′) ∈ Â(ω) for some t > 0
}
.

Then, by the definition of Â(ω),

Γ =
{

(ω, ω′) : (X1
t (ω), X2

t (ω)) = (x, x) ∈ B̂(ω′) for some t > 0
}
,

where B̂(ω′) := RangeZθ,1t (ω′). In Blumenthal and Getoor (1960) it is shown that

dim B̂(ω′) = θ; by Lemma 5.4 we get

2− inf
{
ζ > 0 : B̂(ω′) is non-polar for Zζ,2

}
= dim B̂(ω′) = θ < 2− β,

and so

β < inf
{
ζ > 0 : B̂(ω′) is non-polar for Zζ,2

}
.

Thus, the set B̂(ω′) is for almost all ω′ polar for the process Zβ,2t . By Lemma 5.3

the set B̂(ω′) is polar for (X1
t (ω), X2

t (ω)) for almost all ω′. By Fubini’s theorem

we have P⊗ P′(Γ) = 0; therefore, (5.3) holds true, showing that Â(ω) is polar for
Zθ,1 for all θ < 2− β. Thus, by Lemma 5.4

dim Â(ω) = 1− inf
{
θ > 0 : Â(ω) is non-polar for Zθ,1

}
≤ 1− (2− β) = β − 1.

Next, we are going to show that dim Â(ω) ≥ α − 1. Choose θ ∈ (2 − α, 2), and
let Zθ,1 be a symmetric θ-stable Lévy process on the diagonal in R2. Denote by
B̂(ω′) its range; by Blumenthal and Getoor (1960), dim B̂(ω′) = θ. By Frostman’s
lemma, cf. e.g. Schilling and Partzsch (2014) [p. 387, Theorem A.44], there exists a

measure $ on B̂(ω′) ∩K (K is a compact subset of the diagonal in R2) such that

$
(
B(z, r)

)
≤ Crθ−ε, z ∈ B̂(ω′), r > 0. (5.4)

Denote by pt(x, y) the transition probability density of (X1
t , X

2
t ). A direct calcu-

lation shows (cf. (7.1) in the appendix for details of the first estimate) that (5.4)
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implies ∫ 1

0

∫
B̂(ω′)∩K

pt(x, y)$(dy) dt

≤ c1
∫ 1

0

∫ ∞
0

ρ2
t sup
x∈R2

${y : |x− y| ≤ c2r/ρt} e−r dr dt

≤ c3
∫ 1

0

ρ2−θ+ε
t dt

≤ c4
∫ 1

0

t−(θ−2+ε)/α dt <∞,

which shows that $ ∈ SK w.r.t. pt(x, y). Hence, by Corollary 3.6 the set B̂(ω′) is
non-polar for (X1, X2).

By P(z,z) we indicate that the starting point of the process (X1, X2) is (z, z).
For all (z, z) ∈ R2

P(z,z) ⊗ P′
(

(ω, ω′) : (X1
t (ω), X2

t (ω)) = (x, x) ∈ B̂(ω′) for some t > 0
)
> 0.

By Fubini’s theorem, there is a set F ∈ F with P(z,z)(F ) > 0 such that

∀ω ∈ F : P′
(
ω′ : Zθ,1t (ω′) ∈ Â(ω) for some t > 0

)
> 0.

Let us show that there exists an open subset O of the diagonal in R2 such that

inf
(z,z)∈O

P(z,z)(F ) ≥ δ > 0. (5.5)

Indeed, for any s > 0 we have

E(z,z)E′1{∃t>0 : (X1
t ,X

2
t )∈B̂(ω′)}

≥ E(z,z)E′1{∃t>s : (X1
t ,X

2
t )∈B̂(ω′)}

= E(z,z)
(
E(X1

s ,X
2
s )E′1{∃t>s : (X1

t−s,X
2
t−s)∈B̂(ω′)}

)
= E(z,z)

(
E(X1

0 ,X
2
0 )E′1{∃t>s : (X1

t−s◦θs,X2
t−s◦θs)∈B̂(ω′)}

)
= E(z,z)

(
E′1{∃r>0 : (X1

r◦θs,X2
r◦θs)∈B̂(ω′)}

)
.

Denote by θ−1
s F = {ω : θsω ∈ F} the shift of the set F . Clearly, θ−1

s {Y ∈ Γ} =
{Y ◦ θs ∈ Γ} for any random variable Y (ω) and a set Γ in the state space of Y , and
so

P(z,z)(F ) ≥ P(z,z)(θ−1
s F ).

This inequality implies that P(z,z)(F ) is excessive:

PtP
(z,z)(F ) = E(z,z)P(Xt,Xt)(F ) = E(z,z)

(
E(z,z)

[
1θ−1

t F

∣∣∣ Ft])
= E(z,z)1θ−1

t F = P(z,z)(θ−1
t F ) ≤ P(z,z)(F ),

and, by the dominated convergence theorem, PtP
(z,z)(F ) ↑ P(z,z)(F ) as t→ 0. As-

sumption A implies that the process X is a strong Feller process, cf. Section 2, which
means that any excessive function is lower semicontinuous, see Blumenthal and
Getoor (1968) [p. 77, Exercise 2.16]. Since z 7→ P(z,z)(F ) is lower semi-continuous
we get (5.5).



Level and collision sets of Feller processes 1019

Fix ε > 0, and define

τ1 := inf{t > ε : X1
t = X2

t }, τx1 := inf{t > ε : X1
t = X2

t = x}, x ∈ R,

and

Â1(ω) :=
{

(x, x) ∈ R2 : τx1 (ω) <∞
}
.

We have

P′
(
ω′ : Zθ,1t (ω′) ∈ Â1(ω) for some t ∈ (0, τ1]

)
> 0, ∀ω ∈ F.

Thus,

inf
{
ζ : Â1(ω) is non-polar for Zζ,1

}
≤ 2− α,

which implies by Lemma 5.4 that for all ω ∈ F

dim Â1(ω) = 1− inf
{
ζ : Â1(ω) is non-polar for Zζ,1

}
≥ 1− (2− α) = α− 1.

For (z, z) ∈ O we get

P(z,z)
(

dim Â1(·) ≥ α− 1
)
≥ P(z,z)(F ) ≥ δ > 0. (5.6)

Let us now show that

dim Â(ω) ≥ α− 1 P(z,z)-a.e. for all z ∈ R.

Let τ0(ω) = 0 and define

τn(ω) := inf
{
t > τn−1(ω) + ε : (X1

t (ω), X2
t (ω)) = (x, x) ∈ K

}
,

where K is as above. Since the process X1 −X2 is point recurrent, the stopping
times τn are almost surely finite. Define G1(ω) := dim Â1(ω), and for n ≥ 2

Gn(ω) := dim
{

(x, x) ∈ R2 : X1
t = X2

t = x for some t ∈ (τn−1(ω), τn(ω)]
}
.

Note that dim Â(ω) ≥ supnGn(ω). Using the Markov property and (5.6) we get

P(z,z)
(

dim Â < 1− θ
)

≤ P(z,z)

(
sup
n
Gn < 1− θ

)
≤ P(z,z)

(
max
i≤n

Gi < 1− θ
)

= E(z,z)
(
1{max1≤i≤n−1Gi<1−θ}E

(z,z)
[
1{Gn<1−θ}

∣∣ Fτn−1

])
= E(z,z)

(
1{max1≤i≤n−1Gi<1−θ}E

(X1
τn−1

,X2
τn−1

) [
1{G1<1−θ}

])
≤ (1− δ)E(z,z)

(
1{max1≤i≤n−1Gi<1−θ}

)
≤ (1− δ)n

for all n ≥ 1. Therefore, dimA(ω) ≥ 1−θ P-a.s. Letting θ ↓ 2−α along a countable
sequence, the claim follows. �
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6. Examples: Recurrent processes satisfying Assumption A

In this section we give examples of processes X which satisfy Assumption A and
which are recurrent. For simplicity, we will assume that the space dimension n = 1.

Example 6.1. Let

j(x, u) :=
(
n(x, u) + n(u, x)

)
g(x− u),

where the function n(x, u) is strictly positive, uniformly bounded and Hölder con-
tinuous in both variables, and g satisfies (2.9). In particular, (2.9) holds true for
µ(du) = g(u)du, if

a) g is even and g(h) ≤ C|h|−1−η for some η > 1 and all |u| ≥ 1;
b) There exists some ε ∈ (0, 1) such that h2+εg(h) is increasing on (0, 1];
c) There exits some δ > 1 such that the function hδg(h) is decreasing on (0, 1].

Let us check (2.9). As in Section 2 we write

q(ξ) =

∫
R\{0}

(
1− cos(ξh)

)
g(h) dh

and we define the corresponding upper and lower symbols qU (ξ) and qL(ξ). The
conditions a)–c) imply (2.4). Indeed, by b) we have for |ξ| ≥ 1

qL(ξ) =
2

ξ

∫ 1

0

v2g
(
v
ξ

)
dv =

2

ξ

∫ 1

0

v−εv2+εg
(
v
ξ

)
dv ≤ c1

ξ
g
(

1
ξ

)
,

and by c) we get

qL(ξ) =
2

ξ

∫ 1

0

v2g
(
v
ξ

)
dv ≥ 2

ξ

∫ 1

0

v2−δvδg
(
v
ξ

)
dv ≥ c2

ξ
g
(

1
ξ

)
,∫ 1

1/ξ

g(h) dh =

∫ 1

1/ξ

h−δhδg(h) dh ≤ c3
ξ
g
(

1
ξ

)
,

which implies (2.4). Since (1 − cos 1)qL(ξ) ≤ q(ξ) ≤ 2qU (ξ), we have for large |ξ|
that q(ξ) � |ξ|−1g

(
|ξ|−1

)
.

Note that the estimate in a) gives

q(ξ) =

∫
|h|≤1

(1− cos ξh) g(h) dh+

∫
|h|≥1

(1− cos ξh)g(h) dh

≤ c1ξ2 + c2|ξ|η
∫ ∞
ξ

(1− cos v)
dv

v1+η

≤ c3|ξ|2∧η, |ξ| ≤ 1.

Assume also that ∫
|h|≤1

|h|
∣∣j(x, x+ h)− j(x, x− h)

∣∣ dh <∞.
Then the function

k(x) :=
1

2

∫
|h|≤1

(
j(x, x+ h)− j(x, x− h)

)
h dh

is well-defined.
Consider the operator L defined by (2.1) with a(x) = k(x), and

m(x, h)µ(dh) = j(x, x+ h) dh =
(
n(x, x+ h) + n(x+ h, x)

)
g(h) dh.
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Then

Lf(x) =

∫
R\{0}

(
f(x+ h)− f(x)

)
j(x, x+ h) dh,

which is a symmetric operator, and generates a (symmetric) Dirichlet form

E(φ, φ) =
1

2

∫
R\{0}

∫
R

(φ(x+ h)− φ(x))2 j(x, x+ h) dx dh.

The form E(·, ·) is comparable with the Dirichlet form Eq(·, ·) corresponding to the
Lévy process Z with characteristic exponent q:

E(φ, φ) � Eq(φ, φ) :=

∫
R

q(ξ)|φ̂(ξ)|2dξ =
1

2

∫
R

∫
R\{0}

(
φ(x+ h)− φ(x)

)2
g(h) dh dx.

The Dirichlet form Eq is recurrent, because the related Lévy process Z is recurrent
by the Chung-Fuchs criterion, i.e.

∫
|ξ|≤1

q(ξ)−1 dξ =∞. By Oshima’s criterion, cf.

Ōshima (1992), the form E is also recurrent implying the recurrence of the related
process X.

Example 6.2. Let L be the generator defined by (2.1). In order to construct an
example of a non-symmetric recurrent Markov process satisfying Assumption A,
we use the approach from Wang (2008). Note that our Assumption A implies the
condition (H) needed in Wang (2008). According to Wang (2008) [Theorem 1.4]
the following condition is sufficient for the recurrence of the process X:

B(x)x+D(x)|x| ≤ C for sufficiently large |x|, (6.1)

where B(x) := b(x)+
∫

1<|z|≤|x| zm(x, z)µ(dz) and D(x) :=
∫
|z|≥|x| |z|m(x, z)µ(dz),

with b(x) and m(x, u) from the representation of L in (2.1). Thus, by Wang (2008)
[Theorem 1.4], the process X which corresponds to (2.1) is recurrent, if (6.1) holds
true.

7. Appendix

Proof of Lemma 3.5. Without loss of generality we may assume that D is a closed
set. We begin with the upper bound for

Rλ$(x) =

∫ 1

0

∫
D

e−λtpt(x, y)$(dy) dt+

∫ ∞
1

∫
D

e−λtpt(x, y)$(dy) dt.

The upper estimate for the second term can be proved in the same way as Kuwae
and Takahashi (2006) [(3.3)]: for any x ∈ D and λ > 0 one finds that∫ ∞

1

∫
D

e−λtpt(x, y)$(dy) dt ≤ e−λ

1− e−λ
sup
x∈D

∫ 1

0

∫
D

ps(x, y)$(dy) ds,

where we used in the last line that the integral on the right-hand side is finite since
$ ∈ SK . Therefore,∫ 1

0

∫
D

e−λtpt(x, y)$(dy) dt ≤ Rλ$(x)

≤
(

1 +
e−λ

1− e−λ

)
sup
x∈D

∫ 1

0

∫
D

e−λtpt(x, y)$(dy) dt.
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Using the upper and lower bounds (2.7), (2.8) for the heat kernel, we obtain by
a change of variables∫ 1

0

∫
D

e−λtpt(x, y)$(dy) dt

≥ a1

∫ 1

0

∫
D

e−λtρnt (1− a2|x− y|ρt)+$(dy) dt

= a1

∫ 1

0

∫ 1

0

e−λtρnt $ {y ∈ D : (1− a2|x− y|ρt)+ ≥ 1− r} dr dt

= a1

∫ 1

0

∫ 1

0

e−λtρnt $ {y ∈ D : a2|x− y|ρt ≤ r} dr dt.

Using the lower bound in (2.11) for the d-measure $, we get for x ∈ D∫ 1

0

∫
D

e−λtpt(x, y)$(dy) dt ≥ c1a−d2

∫ 1

0

∫ 1

0

ρn−dt e−λtrd dt dr

= cλ−1

∫ λ

0

e−uρn−du/λ du.

Similarly, using (2.8) we get∫ 1

0

∫
D

e−λtpt(x, y)$(dy) dt

≤ a3

∫ 1

0

∫
Rn

∫
D

e−λtρnt e
−a4|x−y−z|ρt $(dy)Qt(dz) dt

≤ a3

∫ 1

0

∫
Rn

∫ ∞
0

e−λtρnt $ {y ∈ D : a4|x− y − z|ρt ≤ r} e−r dr Qt(dz) dt

≤ c4
∫ 1

0

∫ ∞
0

e−tλρnt sup
w∈Rn

$ {y ∈ D : a4|w − y|ρt ≤ r} e−r dr dt

≤ c5
∫ 1

0

e−tλρn−dt dt ·
∫ ∞

0

rde−r dr

= c6λ
−1

∫ λ

0

e−uρn−du/λ du.

(7.1)

Here we used the upper bound (2.11) for small r, and the fact that supp$ = D,
which implies supx$(B(x, r)) ≤ C for large r. This proves that supy Rλ$(y) <∞.

Therefore, we see

lim inf
λ→∞

Rλ$(x)

supy∈D Rλ$(y)
≥ lim inf

λ→∞

Rλ$(x)

supy∈Rn Rλ$(y)
≥ c > 0,

and by Lemma 3.3 all points of D are regular. �

Proof of Lemma 4.1. The case γ = 1 is already contained in Knopova and Kulik
(2016). Therefore, we consider only γ ∈ (0, 1). Without loss of generality we may
assume that D is closed.

a) Under our assumptions the transition density pt(x, y) of the process X sat-
isfies (2.7) and (2.8) for t ∈ (0, 1]. Using (2.8) and the scaling property of the
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subordinator (4.1), we get for any T ∈ (0, 1]∫ T

0

∫
D

p
(γ)
t (x, y)$(dy) dt

≤ C
∫ T

0

∫
D

∫ 1

0

ρns
(
fup(ρs·) ∗Qs

)
(x− y)t−1/γσ

(γ)
1 (t−1/γs) ds$(dy) dt

+

∫ T

0

∫
D

∫ ∞
1

ps(x, y)t−1/γσ
(γ)
1 (t−1/γs) ds$(dy) dt

=: CI1(x, T ) + I2(x, T ).

We estimate I1(x, T ) and I2(x, T ) separately. For I2(x, T ) we have

I2(x, T ) =

∫ T

0

∫ ∞
t−1/γ

∫
D

pτt1/γ (x, y)σ
(γ)
1 (τ)$(dy) dτ dt

=

∫ ∞
T−1/γ

∫ T

τ−γ

∫
D

pτt1/γ (x, y)σ
(γ)
1 (τ)$(dy) dt dτ

=

∫ ∞
T−1/γ

∫ τγT

1

∫
D

pv1/γ (x, y)τ−γσ
(γ)
1 (τ)$(dy) dv dτ.

Note that supx,y∈Rn pt(x, y) ≤ c for all t ≥ 1. Indeed, since for 0 < ε < 1 we have
pε(x, y) ≤ Cε for all x, y ∈ Rn, the Chapman–Kolmogorov relation implies

pt(x, y) =

∫
Rn
pt−ε(x, z)pε(z, y) dz ≤ Cε.

Therefore,

sup
x∈Rn

I2(x, T ) ≤ c1
∫ ∞
T−1/γ

(τγT − 1)$(D)τ−γσ
(γ)
1 (τ) dτ

≤ c1$(D)T

∫ ∞
T−1/γ

σ
(γ)
1 (τ) dτ ≤ c1$(D)T −−−→

T→0
0,

where we used that
∫∞

0
σ

(γ)
1 (τ) dτ = 1.

For the first integral expression I1(x, T ) we have

I1(x, T )

=

∫ T

0

∫ t−1/γ

0

∫
D

ρnτt1/γ
(
fup(ρτt1/γ ·) ∗Qτt1/γ

)
(x− y)σ

(γ)
1 (τ)$(dy) dτ dt

=

∫ T−1/γ

0

∫ T

0

∫
D

ρnτt1/γ
(
fup(ρτt1/γ ·) ∗Qτt1/γ

)
(x− y)σ

(γ)
1 (τ)$(dy) dt dτ

+

∫ ∞
T−1/γ

∫ τ−γ

0

∫
D

ρnτt1/γ
(
fup(ρτt1/γ ·) ∗Qτt1/γ

)
(x− y)σ

(γ)
1 (τ)$(dy) dt dτ

=

∫ T−1/γ

0

∫ τγT

0

∫
D

ρnv1/γ
(
fup(ρv1/γ ·) ∗Qv1/γ

)
(x− y)τ−γσ

(γ)
1 (τ)$(dy) dv dτ

+

∫ ∞
T−1/γ

∫ 1

0

∫
D

ρnv1/γ
(
fup(ρv1/γ ·) ∗Qv1/γ

)
(x− y)τ−γσ

(γ)
1 (τ)$(dy) dv dτ

=: I11(x, T ) + I12(x, T ).
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For I12(x,D) we have

I12(x, T ) =

[∫ ∞
T−1/γ

τ−γσ
(γ)
1 (τ) dτ

] ∫ 1

0

∫
D

ρnv1/γ
(
fup(ρv1/γ ·)∗Qv1/γ

)
(x−y)$(dy) dv.

Since limT→0

∫∞
T−1/γ τ

−γσ
(γ)
1 (τ) dτ = 0, we get limT→0 I12(x, T ) = 0, if we can show

that

sup
x∈Rn

∫ 1

0

∫
D

ρnv1/γ
(
fup(ρv1/γ ·)∗Qv1/γ

)
(x−y)$(dy) dv <∞ for some γ ∈ (γinf , 1).

(7.2)
Set ` := e1 = (1, 0, . . . 0)> and θt := inf

{
r : qU (r`) ≥ 1/t

}
. Because of (2.4) we

have θt � ρt for all t ∈ (0, 1]. Moreover, the mapping r 7→ qU (r`) is absolutely
continuous, and we have, cf. Knopova (2013),

qU (r2`)− qU (r1`) = 2

∫ r2

r1

qL(v`)

v
dv, 0 < r1 < r2. (7.3)

Thus, the above calculations give

sup
x∈Rn

∫ 1

0

∫
D

ρnv1/γ ·
(
fup(ρv1/γ ·) ∗Qv1/γ

)
(x− y)$(dy) dv

≤ c1 sup
x∈Rn

∫ 1

0

∫
D

θnv1/γ ·
(
fup(c2θv1/γ ·) ∗Qv1/γ

)
(x− y)$(dy) dv

= c1a3 sup
x∈Rn

∫ 1

0

∫
Rn

∫ ∞
0

θnv1/γ ·$
{
y ∈ D : e−c2a4|x−y−z|θv1/γ ≥ s

}
⊗

⊗ dsQv1/γ (dz) dv

= c1c2a3a4 sup
x∈Rn

∫ 1

0

∫
Rn

∫ ∞
0

θnv1/γ ·$ {y ∈ D : |x− y − z|θv1/γ ≤ r} e−c2a4r⊗

⊗ dr Qv1/γ (dz) dv

= C1

∫ ∞
0

∫ 1

0

∫
Rn

sup
x∈Rn

$ {y ∈ D : |x− y − z| ≤ ur}
(qU )γ(`u−1)

e−C2r Q̃u(dz)
du

un+1
dr

≤ κC1

∫ ∞
0

∫ 1

0

sup
ξ∈Rn

$ {y ∈ D : |ξ − y| ≤ ur}
(q∗)γ(1/u)

e−C2r
du

un+1
dr,

(7.4)

where Q̃u(dz) = Qv1/γ (dz) under the change of variables v = (qU )−γ(`u−1), which
was done in the second line from below. Note that 1

t = qU (θt`), and that by (7.3)

and qU � qL, one has

dv

du
� (qU )−γ(`u−1)u−1.

The constant κ is from (2.4).
Let us estimate the integrals in the last line of (7.4). Without loss of generality

we assume that C2 = 1. Put h(r) := supξ∈Rn $ {y ∈ D : |ξ − y| ≤ r}. Split

J :=

[∫ 1

0

∫ 1

0

+

∫ ∞
1

∫ 1

0

]
h(ur)

(q∗)γ(1/u)

du

un+1
e−r dr =: J1 + J2.
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From the monotonicity of h(r) and the assumption (4.3)

J1 ≤
∫ 1

0

h(u)

(q∗)γ(1/u)

du

un+1
·
∫ 1

0

e−r dr <∞.

Using the monotonicity of q∗, we get

J2 ≤ c1
∫ ∞

1

[∫ r

0

h(v)

(q∗)γ(1/v)

dv

vn+1

]
rne−r dr

=

[∫ ∞
1

∫ 1

0

+

∫ ∞
1

∫ r

1

]
h(v)

(q∗)γ(1/v)
rne−r

dv

vn+1
dr =: J21 + J22.

Clearly, J21 <∞. For J22 we have

J22 ≤
∫ ∞

0

[∫ ∞
v

rne−r dr

]
h(v)

(q∗)γ(1/v)

dv

vn+1

≤ c2
∫ ∞

0

e−εv
[∫ ∞

v

rne−(1−ε)r dr

]
h(v)

(q∗)γ(1/v)

dv

vn+1

≤ c3
∫ ∞

0

e−εv
h(v)

(q∗)γ(1/v)

dv

vn+1
.

By (4.3) and the fact that the integrand is bounded by Ceεv for v > 1 we derive
that the integral in the last line is finite. Thus, (7.2) holds true, implying that
supx∈Rn I12(x, T )→ 0 as T → 0.

Let us estimate I11(x, T ). Define φ(u) := 1/θu,

I(v, τ, T ) := 1{τ≤T−1/γ}e
−εv/(2φ(T 1/γτ)),

and recall that h(r) := supξ∈Rn $ {y ∈ D : |ξ − y| ≤ r}. By the same arguments
as those which we have used in (7.4), we derive

sup
x∈Rn

I11(x, T )

≤ c1 sup
x∈Rn

∫ T−1/γ

0

∫ Tτγ

0

∫
D

θnv1/γ ·
(
fup(c2θv1/γ ·) ∗Qv1/γ

)
(x− y)τ−γσ

(γ)
1 (τ)$(dy) dv dτ

≤ c2
∫ T−1/γ

0

∫ ∞
0

∫ φ(T 1/γτ)

0

h(ur)

(q∗)γ(1/u)
e−c3rτ−γσ

(γ)
1 (τ)

du

un+1
dr dτ

≤ c2
∫ T−1/γ

0

∫ 1

0

∫ φ(T 1/γτ)

0

h(u)

(q∗)γ(1/u)
e−c3rτ−γσ

(γ)
1 (τ)

du

un+1
dr dτ

+ c2

∫ T−1/γ

0

∫ ∞
1

∫ φ(T 1/γτ)

0

h(ur)

(q∗)γ(1/u)
e−c3rτ−γσ

(γ)
1 (τ)

du

un+1
dr dτ.

The first term is estimated from above by∫ T−1/γ

0

∫ φ(T 1/γτ)

0

h(u)

(q∗)γ(1/u)
τ−γσ

(γ)
1 (τ)

du

un+1
dτ,

which tends to zero as T → 0 by the dominated convergence theorem.
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For the second term we have for some ε > 0∫ T−1/γ

0

∫ ∞
1

∫ rφ(T 1/γτ)

0

h(v)

(q∗)γ(1/v)
rne−c3rτ−γσ

(γ)
1 (τ)

dv

vn+1
dr dτ

≤
∫ T−1/γ

0

∫ ∞
0

∫ ∞
v/φ(T 1/γτ)

h(v)

(q∗)γ(1/v)
rne−c3rτ−γσ

(γ)
1 (τ)dr

dv

vn+1
dτ

≤ c4
∫ T−1/γ

0

∫ ∞
0

e−εv/φ(T 1/γτ) h(v)

(q∗)γ(1/v)
τ−γσ

(γ)
1 (τ)

dv

vn+1
dτ

≤ c4
∫ ∞

0

∫ ∞
0

e−εv/2φ(1)h(v)

(q∗)γ(1/v)
τ−γσ

(γ)
1 (τ)I(v, τ, T )

dv

vn+1
dτ.

Note that I(v, τ, T ) ≤ 1, and limT→0 I(v, τ, T ) = 0 a.e. From Euler’s Gamma-
integral s−a = Γ(a)−1

∫∞
0
e−sxxa−1 dx, a > 0, we derive∫ ∞

0

s−aσ
(γ)
1 (s) ds =

∫ ∞
0

∫ ∞
0

e−sxxa−1

Γ(a)
σ

(γ)
1 (s) ds dx

=

∫ ∞
0

e−x
γ

xa−1

Γ(a)
dx =

Γ(a/γ)

γΓ(a)
.

By the dominated convergence theorem, limT→0 supx∈Rn I11(x, T ) = 0. This fin-
ishes the proof of a).

b) Without loss of generality we may assume that T ∈ (0, 1/2]. Using (2.7), we
have∫ T

0

∫
D

p(γ)(t, x, y)$(dy) dt

≥
∫ T

0

∫
D

∫ ∞
0

ρns flow(ρs(x− y))t−1/γσ
(γ)
1 (t−1/γs) ds$(dy) dt

≥
∫ T

0

∫
D

∫ 1

0

ρns flow(ρs(x− y))t−1/γσ
(γ)
1 (t−1/γs) ds$(dy) dt

=

∫ T

0

∫ t−1/γ

0

∫
D

ρnτt1/γflow(ρτt1/γ (x− y))σ
(γ)
1 (τ)$(dy) dτ dt

=

∫ T−1/γ

0

∫ T

0

∫
D

ρnτt1/γflow(ρτt1/γ (x− y))σ
(γ)
1 (τ)$(dy) dt dτ

+

∫ ∞
T−1/γ

∫ τ−γ

0

∫
D

ρnτt1/γflow(ρτt1/γ (x− y))σ
(γ)
1 (τ)$(dy) dt dτ

≥
∫ T−1/γ

0

∫ T

0

∫
D

ρnτt1/γflow(ρτt1/γ (x− y))σ
(γ)
1 (τ)$(dy) dt dτ

=

∫ T−1/γ

0

∫ τγT

0

∫
D

ρnv1/γflow(ρv1/γ (x− y))τ−γσ
(γ)
1 (τ)$(dy) dv dτ

≥
∫ 21/γ

1

τ−γσ
(γ)
1 (τ) dτ

∫ T

0

∫
D

ρnv1/γflow(ρv1/γ (x− y))$(dy) dv.
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Using the form of flow and the fact that ρt � θt, we see that the double integral is
bounded from below by∫ T

0

∫
D

θnv1/γflow(cθv1/γ (x− y))$(dy) dv,

where c > 0 is some constant. Proceeding as in the estimate for I11(x, T ), we get
for this expression∫ T

0

∫
D

θnv1/γflow(c2θv1/γ (x− y))$(dy) dv

=

∫ T

0

∫ 1

0

θnv1/γ$ {y ∈ D : c2d2θv1/γ |x− y| ≤ r} dr dv

≥ c3
∫ φ(T 1/γ)

0

∫ 1

0

$ {y ∈ D : |x− y| ≤ ru}
(q∗)γ(1/u)

dr
du

un+1

≥ c3
2

∫ φ(T 1/γ)

0

$
{
y ∈ D : |x− y| ≤ 2−1u

}
(q∗)γ(1/u)

du

un+1
.

Combining everything, we have shown for some constant C > 0∫ T

0

∫
D

p
(γ)
t (x, y)$(dy) dt ≥ C

∫ φ(T 1/γ)

0

$
{
y ∈ D : |x− y| ≤ 2−1u

}
(q∗)γ(1/u)

du

un+1
.

(7.5)

Therefore, whenever $ ∈ SK with respect to p
(γ)
t (x, y), then (4.4) holds true. �
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