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Abstract. This paper is about lower and upper bounds for the Hausdorff dimen-
sion of the level and collision sets for a class of Feller processes. Our approach is
motivated by analogous results for Lévy processes by Hawkes (1974) (for level sets)
and Taylor (1966) and Jain and Pruitt (1969) (for collision sets). Since Feller pro-
cesses lack independent or stationary increments, the methods developed for Lévy
processes cannot be used in a straightforward manner. Under the assumption that
the Feller process possesses a transition probability density, which admits lower and
upper bounds of a certain type, we derive sufficient conditions for regularity and
non-polarity of points; together with suitable time changes this allows us to get
upper and lower bounds for the Hausdorff dimension.

1. Introduction

In this paper, we study the Hausdorff dimension of the level and collision sets
for a certain class of strong Feller processes; concrete examples were constructed
in Knopova and Kulik (2015) and Knopova and Kulik (2016) under rather general
assumptions, see Assumption A below. This assumption guarantees, in particular,
that the process is a strong Feller process admitting a transition probability density
which enjoys upper and lower estimates of “compound kernel” type, see (2.7) and
(2.8).

Let us briefly describe the problems which are discussed in this paper. Let X be
a (strong) Feller process with values in R™. Then

{s : Xs(w) € D} for any Borel set D C R" (1.1)
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denotes a level set of X, i.e. the (random) set of times when X visits the set D.

We adapt the techniques from Hawkes (1974), see also Hawkes (1970) and
Hawkes (1971), to obtain bounds on the Hausdorff dimension of such level sets.
The idea used in Hawkes (1974) is based on the notion of subordination (in the
sense of Bochner, i.e. a random time change by an independent increasing Lévy
process), and on knowledge of the Hausdorfl dimension of the range of a 7-stable
subordinator T} (cf. Lemma 4.2 below).

The proof presented in Hawkes (1974) heavily relies on the fact that X is a Lévy
process; a key ingredient is a criterion for the polarity of points in terms of the
characteristic exponent of the Lévy process X. For general Markov processes such
a result is not available, and so we need an essentially different approach. The first
problem which we encounter in the investigation of the level set (1.1), is how to
check that the process X a.s. enters D; in other words: when is the starting point
x reqular for D. We can overcome this problem using some abstract potential
theory and the Kato class; this requires, however, upper and lower estimates for
the transition density p:(z,y) of X which allows us to characterize the notion of a
Kato class (with respect to p¢(z,y); see Definition 3.1) and regular points for D.
For d-sets this problem simplifies and, at least for certain values of d, any point in
the topological boundary 9D is regular for D. Using the structure of the estimates
for p¢(z,y), we can establish similar assertions on the polarity of sets and regularity
of points for the subordinate (i.e. time-changed) process Xy

In Theorem 2.1 we use the indices vins and sup—these characterize the set D
“in the eyes” of the time-changed process X7y—to obtain uniform upper and lower
bounds on the random set dim{s : Xs(w) € D}; here D is a d-set and the process
starts from a point & which belongs to the topological closure D of D. In the
one-dimensional case we obtain (Proposition 2.2) the exact value of the Hausdorff
dimension of the zero-level set {s : X (w) = 0}. This result can be pushed a bit
further: in dimension one we show (Proposition 2.3) that this value is also the
Hausdorff dimension of the set of times, at which two independent copies of X
meet.

The second half of the paper is on collision sets. Motivated by our findings in
Proposition 2.3 and the results from Taylor (1966) and Jain and Pruitt (1969), we
investigate the Hausdorfl dimension of the collision set

Aw):={zeR: X/(w) = X7 (w) ==z for somet >0}

of two independent copies X' and X? of X; from now on we assume that X is one-
dimensional and recurrent. Since recurrence reflects the behaviour of the process as
time tends to infinity, it cannot be deduced from Assumption A (which is essentially
a condition on short times). Some examples of recurrent processes which fit our
setting are given in Section 6. In order to get bounds on the Hausdorff dimension
of A(w), we compare the polar sets of the process (X!, X?) with the polar sets of
symmetric stable processes with parameters o and 3. The idea to use the range of
a stable process as a “gauge” in order to express the Hausdorff dimension of a Borel
set in R™ is due to Taylor (1966); in its original version it heavily relies on the fact
that the process X is a Lévy process. In the present paper, we use the symmetric
stable (“gauge”) processes in a different way, especially when establishing the lower
bound for the Hausdorff dimension.
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Let us briefly mention some known results. We refer to Xiao (2004) for an exten-
sive survey on sample path properties of Lévy processes, in particular, for various
dimension results on level, intersection and image sets. Most results essentially de-
pend on the independence and stationarity of increments of Lévy processes, while
for general Markov processes much less is known. For Lévy-type processes the be-
haviour of the symbol of the corresponding generator allows us to get the results
on the Hausdorfl dimension of the image sets, see e.g. Schilling (1998), Knopova
et al. (2015), and the monograph Bottcher et al. (2013); in Shieh (1995) conditions
are given, such that Markov processes collide with positive probability, and Shich
and Xiao (2010) studies the Hausdorff and packing dimensions of the image sets of
self-similar processes.

Our paper is organized as follows. In Section 2 we explain the notation and
state our main results. Section 3 is devoted to some facts and auxiliary statements
from probabilistic potential theory; these are interesting in their own right. The
proofs of the main results are given in Sections 4 and 5. Examples of recurrent
processes, which satisfy Assumption A can be found in Section 6. Finally, the
(rather technical) proofs of some auxiliary statements are given in the appendix.

2. Setting and main results

We begin with the description of the class of stochastic processes which we
are going to consider. Denote by C% (R™) and C¥(R") the spaces of k times
continuously differentiable functions which vanish at infinity (with all derivatives)
and which are compactly supported, respectively. For f € C2 (R") we consider the
following Lévy-type operator

L) = @) VI [ (Fa )= )T S o (), ) (),
(2.1)

where a : R” — R”, m : R” x R” — (0,00) are measurable functions and y is a
Lévy measure, i.e. a measure on R™ \ {0} such that f]R"\{o} (1A R[?)p(dh) < oo.

Denote by f(z) := (2r)™" Jgn f(x)e™ ™€ dz the Fourier transform. It is not hard
to see that we can rewrite £ as a pseudo-differential operator

Cf@)i= - [ @ OfOds e CEm,

with symbol ¢ : R™ x R® — C. The symbol is given by the Lévy—Khintchine
representation

q(z,§) = —ia(x) ~£+/m\{0} (1 — €™ +ih-€1g 1 (|h]))m(z, h) p(dh). (2.2)

We will frequently compare the variable-coefficient operator £ with an operator
Lo (with bounded coefficients), defined by

Cof(0) =~ [ eSq@)f(e)de,

with the real-valued symbol

d©= [ (1= ol ) ulan). (23)
R"\{0}
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The symbol ¢(&) is the characteristic exponent of a symmetric Lévy process Z; in
R", i.e. EeZt = ¢~ Define

() = / ((€-m)? A1) p(dh) and g"(€) == / (& 1)? u(dh)
R™\{0}

0<|¢-h|<1
and

q*(r) == sup ¢"(r0),
Legn

where $" is the unit sphere in R”. The functions ¢V and ¢* are, up to multiplicative
constants, upper and lower bounds for ¢(&) (cf. Knopova and Kulik (2013); Knopova
(2013)):

(1 —cos1)g™(€) < q(€) < 24" ().
The key regularity assumption in Knopova and Kulik (2015, 2016) is the following
comparison result:

Fk>1 Vr>1:q"(r)< Hemsf q“(re). (2.4)
e n

This condition means that the function ¢(§) does not oscillate “too much”. For
example, if ¢(§) = |€|* one can check that (2.4) holds true with k = 2/a. Motivated
by this example, we use the notation

Q

=2/K (2.5)

with k > 1 from (2.4). Moreover, (2.4) implies, see Knopova and Kulik (2013);
Knopova (2013), that

q(&) = cl¢l*, €l = 1. (2.6)

We refer to Knopova and Kulik (2013) for examples which illustrate this condition.

In Knopova and Kulik (2016) it was shown that, under the following assumptions

Assumption A.
1) The Lévy measure p is such that (2.4) holds;
2) There exist constants c1,ca,c3 > 0, such that
la(z)| <1 and co < m(z,u) < cs;
3) The functions a(z) and m(z,u) are locally Hélder continuous in x with
some index X € (0,1];
4) FEither a > 1, with a as in (2.4), (2.5),
or a(x) =0 and m(z, h) = m(xz, —h), p(dh) = p(—dh),

the operator £ extends to the generator of a (strong) Feller process X, which has
a transition probability density p:(x,y). This density is continuous as a function
of (t,x,y) € [to,00) x R™ x R™, ty > 0, and satisfies the following upper and lower
bounds:

pt(xvy) > p?flow((y —x)pt), teE(0, 1]7 z,y € R", (2.7)
and
pe(@,y) < o (fup(pe ) % Qi) (y — ), t€(0,1], 2,y € R™, (2.8)
where (Q¢):>0 is a family of sub-probability measures,
pe:=inf{r >0: ¢*(r) > 1/t},

fiow(2) = a1(1 —azlz)+ and fup(z) == age_a“lzl, z€eR,
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where a; > 0, ¢ = 1,...,4, are constants and z; := max(z,0). The family of
sub-probability measures (Q;):;>o0 has been explicitly constructed in Knopova and
Kulik (2016); for our purposes the exact form of the @y is not important.

Unless otherwise specified, X = (X;);>o will always denote an R™-valued
Feller process as above, with law P*(X; € dy) = pi(z,y)dy, t > 0.

There are many Feller and Lévy-type processes satisfying the conditions required
in Assumption A. Note that the integro-differential structure of the generator—as
n (2.2), but with a jump kernel (compensator of the jumping measure) N(z,dh)
instead of m(z,h) u(dy) and with a second-order term—is, in fact, necessary for
Feller processes and more general semimartingales, at least if the test functions
C2°(R™) are in the domain of the generator, see Bottcher et al. (2013). This means
that the main restriction is the fact that N(x,dy) is absolutely continuous w.r.t.
some Lévy measure and the absence of a second-order diffusion part; just as in the
Lévy case, the latter would dominate the short-time path behaviour. Below we give
a few typical examples of Feller processes satisfying our assumptions.

e Any rotationally symmetric Lévy process whose Lévy measure has a (rota-
tionally symmetric) density g(|u|) satisfying

a o0
/ r2g(r) dr < a2/ g(r)dr. (2.9)
0 a
A concrete example when such condition is satisfied is given in Example 6.1 below.

e Any Lévy process whose Lévy measure is radially symmetric, i.e.

) = [ [ dvelan) mar) o d0)

where pg is a finite measure on $"; we assume, in addition, that r — m(R\(—r?2,r?))

is regularly varying at 0. Then ¢%(¢) < (\§|) where f(|¢]) = f\5\<1 r21£12 m(dr)
is regularly varying at infinity as we have the representation

1/1¢)?
FUED = [¢2 / m{r % > s}ds,

see Bingham et al. (1987) [Proposition 1.5.8]. Fix some £ € $", and rewrite ¢~ as

A0 = [ P n a(an
[€][¢-h|<1
= [, Ruatesenle(e: 7 uan 210)

//]1{|s|r|ec|<1}|£| 2(£-¢)* m(dr) po(dC).

Since [£- ¢ < 1, we get Lyjejpje.cj<1y = Lyjer<1}, and so

60> | LpepenlePriman) [ (¢ 0F @)
= 146D | (¢ 0P ().

IWe write f(t) =< g(t) or f < g if there is an absolute constant 0 < ¢ < oo such that
cHf(t) < g(t) < cf(t) for all t (in the specified domain)
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On the other hand, the last line of (2.10) reads

¢F(IEl0) = / FUENE - C1) po(dC).
Sn

Since the function f(r) is regularly varying at infinity, there exists some C' > 0,
such that f(cr) < Cf(r) for any ¢ € (0,1] and sufficiently large values of r > 1,
see Bingham et al. (1987) [Theorem 1.5.6]. Therefore, we get

q"([10) < Cuo(S™)f(IED,  I€] > 1.

Observe also, that the function ¢V is differentiable almost everywhere, and the
derivative with respect to the radial component equals

— ) = — 0).

5.0 () = —q"(rf)
for any ¢ € " and r > 0. Therefore, we deduce from our previous calculations that

L U
1= fim CA0 _ gy OO
r—oo ql(rf) r—oo qU(rl)

for the second equivalence relation we use I’'Hospital’s rule. Thus, condition (2.4)
holds true.

e Any Lévy process from the previous example, which is perturbed by a non-
constant drift a(x) and such that g(£) > c|£]1T€ for some € > 0;

o (Weak) solutions to SDEs driven by symmetric a-stable Lévy noise (1 < « < 2)
and Holder continuous coefficients, see Knopova and Kulik (2014) for the existence
of such weak solutions, as well as for a simplified version of the parametrix method.

e Stable-type processes (in the sense of Z.-Q. Chen and T. Kumagai) where
m(x, h) is jointly continuous, bounded and bounded away from 0 and with an a-
stable Lévy measure ju(dh) = |h|~*~ % dh.

In general, the main problem is to show that (2.4) holds true, which is a condition
on the Lévy measure. To wit, this condition holds true for the “discretized version”
of an a-stable Lévy measure in R™:

p(dh) = > 28my ,(dh), 0 <y < 2v,

k=—o0

where my, ,,(dh) is the uniform distribution on the sphere Sy ,, centered at 0 with
radius 27%, v >0,k € Z, v > 0, 0 < 7y < 20, see Knopova (2013). In this example
V(&) =< q(¢) =< qF(¢) = [¢]®, where a = v/v € (0,2); see Knopova and Kulik
(2013) for further examples in this direction. On the other hand, Lévy measures of
the form ZZ';O @10h,, ak, hy > 0 for rapidly growing weights ar — oo and hy — 0
are exactly those measures which create oscillations in the symbol ¢, making (2.4)
impossible, see Farkas et al. (2001) [Example 1.1.15].

In Section 6 we consider further examples of processes which satisfy Assump-
tion A and are recurrent (which is needed in the second main result of our paper).

In order to state our result on the bound for the Hausdorff dimension of level
sets we need to define two auxiliary indices. Recall that a set D is called a d-set, if
there exists a measure w € J\/E;L(D)7 suppw = D, such that

er? < @ (B(z,r)N D) < cord, xeD,r>0; (2.11)
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the corresponding measure w is called a d-measure. Denote by M;“ (D) the family
of all finite Borel measures with support in D C R"™. For a d-set D we define

Vint = inf {fy €[0,1] : /01 @(Blz,r) dr < 00, (2.12)

(g )7 (1/r) rmtt

for a d-measure w on D}

. ! rd dr
:1nf{7€[0,l] :/0 WW<O®},

V% (B(z,7)ND) dr
Ysup := SUP {'y €[0,1) : z »—)/O (55),;(1)/2)13) Tg+1 (2.13)

is unbounded Vo € M, (D)}

Let us give an intuitive explanation of the meaning of the indices vins and “ysup.
Denote by T = (T} )0, 7 € (0,1), a y-stable subordinator, i.e. a real-valued Lévy
process with increasing sample paths such that ¢!/ 1Ty = TY in distribution for all
t > 0. Assume that 77 is independent of X. Intuitively, vin¢ is the smallest ~ for
which the time-changed process Xr» still can see the set D, and ~ygyp is the largest

7, for which D is polar for X1y
We can now state our first main result.

Theorem 2.1. Suppose thatl the Feller process X with generator L satisfies As-
sumption A, and D = D C R"™ is a closed d-set with d > n—«a. Ifx € D,
then”

1=y <dim{s : X7 € D} <1—rvp, P%-as. (2.14)
where vint and Ysup are given by (2.12) and (2.13), respectively.

In the one-dimensional case we can get a result which closely resembles those in
Hawkes (1974) for Lévy processes. Denote by

X71{0},w) :={s>0: X,(w) =0}, where X(w) =0,

the zero-level set of X and set

'y*::inf{'ye[OJ] : /Ol(q*(ll/s))’YCsij<oo}'

The corollary below follows from Theorem 2.1 if we take D = {0}, d =0 and o > 1;
in this case points are non-polar for X.

Corollary 2.2. Let X be a Feller process with generator £ and suppose that As-
sumption A is satisfied. Let n =1 and o > 1. Then

dim X '({0},w) =1 —+* P%a.s.
In particular, if ¢* (&) < [€|* (€] > 1), then v* =1/a.

2Here, as well as in the rest of the paper, “dim” stands for the Hausdorff dimension.
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Corollary 2.2 can also be used to calculate the Hausdorff dimension of the set of
collision times of independent copies X', X? of X:

Ow):={t>0: X/ =X =2 forsomezecR"}.

Proposition 2.3. Suppose that X is a one-dimensional (n = 1) Feller process with
generator £ and that Assumption A is satisfied. Let o > 1, and denote by X' and
X? two independent copies of X. Then

dimO(w) =1—-v" P-a.s.
Our second main result concerns the Hausdorff dimension of the collision set
Aw):={zeR: X}(w) = X}(w) =z for some t >0} (2.15)
(X', X? are two independent copies of X).

Theorem 2.4. Let X be a one-dimensional (n = 1) Feller process with generator
L and suppose that Assumption A is holds. If X is recurrent and if the function

q(&) from (2.3) satisfies
c1lé]* < q(€) < Cz|§|6 for all |€] > 1, (2.16)

for some constants c1,co >0 and 1 < a < 8 < 2, then the Hausdorff dimension of
the collision set A(w) is estimated from above and below as

a—1<dimAw)<pB—-1 Pas. foralzeR.

3. Some auxiliary results from potential theory

A central problem is which points can be hit by the process X. For this we need
a few tools from potential theory. The following definition is taken from Kuwae
and Takahashi (2007).

Definition 3.1. Let (X;);>0 be an R™-valued Markov process admitting a transi-
tion density p;(x,y) and w a Borel measure on R”. The measure w belongs to the
Kato class 8k with respect to pi(z,y), if

lim sup/ / ps(z,y) w(dy)ds = (3.1)
t—=0 pcRrn n

Let ry(z,y), A > 0, be the A-potential density of X, i.e.

() = / N py(z, y) ds.
0

We can extend the resolvent operator from functions f € L;(R™) to (finite) mea-
sures: For A > 0 and any finite measure w we can define the operator

Ryw(x / /n w(dy)ds = /nm(af,y)W(dy)

A Borel set D C R™ is polar for X = (X¢)¢>0, if PT(7p < 00) = 0 for all x € R”,

where
Tp :=inf{t >0 : X; € D}
is the first hitting time of the set D.
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Remark 3.2. Tt is shown in Kuwae and Takahashi (2006) that the condition (3.1) is
equivalent to “limy_, o sup, Ryw(xz) = 0”. The set D is polar if and only if Rywo(x)
is unbounded for any finite non-zero measure w with compact support contained
in D, see Blumenthal and Getoor (1968) [p. 285].

In order to make sure that the process X enters the set D, we need to take the
starting point = from the fine closure (i.e. the closure in the fine topology) of D.
Recall from Blumenthal and Getoor (1968) [p. 87, Exercise 4.9] that the fine closure
D of aset D is DU D", where D" denotes the set of regular points of D, i.e.

D" :={zeR": P*(rp=0)=1}.

We need to characterize the regular points for D. The following elementary result
should be known, but we could not find a reference and so we include the short
proof.

Lemma 3.3. Let D C R" and assume that there exists a finite measure @ € Sy
(w.r.t. pi(x,y)) with suppw = D. If a point © € R™ satisfies

lim inf Rrw(2)

L S ——— 3.2
A—00 supyeﬁRAw(y) (z) (3.2)

then x is regular for D. In particular, if a point x is not reqular for D, then the
constant c(x) in (3.2) is necessarily equal to 0.

Proof: Let w be a finite measure such that suppw = D and w € Sg. By Dynkin
(1965) [Vol. 1, p. 194, Theorem 6.6], there exists a continuous additive functional”
A, satisfying

t
B A, — / / pa(2,) w(dy) ds.
0 n

Using standard arguments, we find for any A > 0 and x € R"

IE)I/ e*AtdAt:/ e*’\tdE"”At:/ e Mpy(x,y) w(dy) dt. (3.3)
0 0 0

Passing to the limit as m — oo, we get

El/ e MdA, = Ryw(x). (3.4)
0

3that is, Atys = As + A 005 for any t,s > 0 where 0, is the shift operator.
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Let 7 := 7p be the hitting time of the set D. By construction, the additive func-
tional A; satisfies A; = 0 for t < 7. Thus,

AE® / e MA, dt
0

m

:)\Ex/ e MAL (o dt+A1Ef/ e MAL ;<) dt
0 T

=0

m—r
= )\EI/ e_k(t+T)At+‘r]1{‘r§m} dt
0

=E* €_>\T]1{T§m}IEXT (A/ e_AtAt dt>:|
0

m—r
=E" e_ATﬂ{TSm}EXT (/ e M dAt):| — e MM E® []I{Tgm}EXTAm,T]
0

=E” |e L <m BY (/ e M dAtﬂ — e AMETA,,.
0

For the last step we used the continuity of A; to get A, = 0 and, by the additive
property,
E*A,, =E*A, + E* [Am_T o GT]I{TSm}] =E* [E* (Apm—r 00 | F;)]
=E" [1{r<myEX Apr].

These calculations, when combined with (3.3) and integration by parts, yield

Ex/ e MdA =E* |e ML < EX (/ e M dAtﬂ ,
0 0

and passing to the limit as m — oo we finally arrive at
Ryw(z) =E” [eiATR,\w(XT)] .
Since X, € D, the last equality implies
Ryw(x)

— A < Efe V. 3.9
sup, 5 Raw(y) (35)

Note that {7 > 0} is a “tail event”, i.e. it has probability 0 or 1. Taking the lower
limit liminf_,», on both sides, we get a contradiction to (3.2), unless 7 = 0. Thus,
P*(r >0)=0. O

Remark 3.4. For a symmetric Markov process X, the relation (3.4) is known for all
measures which have finite energy integrals, see Fukushima et al. (2011) [pp. 223~
226, Theorem 5.1.1, Lemma 5.1.3].

It is possible to give a more explicit sufficient condition for a point x to be regular
for D; this requires further knowledge of the structure of D, for instance that D is
a d-set.

Lemma 3.5. Let D C R" be a d-set and assume that the corresponding d-measure
w belongs to Sk w.r.t. pi(x,y). Then any point of D is regular for D, i.e. D =
DuUD"=D.
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In order to keep the presentation transparent, we defer the rather technical proof
of this lemma to the appendix.
Here is a criterion for the non-polarity of a set D based on the inequality (3.5).

Corollary 3.6. Assume that there exists some w € Sk w.r.t. pe(z,y) such that
suppw = D. Then the set D is non-polar for X, i.e.

P?(mp < o0) > 0. (3.6)

Proof: We know from Kuwae and Takahashi (2006), see also Remark 3.2, that
w € 8k satisfies sup,, Ryw(z) < oo for some A > 0. From (3.5) we derive
Ryw(x)
sup, e fw(y)
Let us show that Ryw(x) > 0. For this we show that

< IPI(TD < OO)

pe(z,y) >0 forallt >0, z,y € R"™

There is a minimal N, such that the distance from x to y can be covered by N
balls of radius less than (2aqp; /N)*1 (where as > 0 is the constant appearing in
the representation of fi,y), i.e. the smallest N, for which the inequality

|z —y] 1
< 3.7
N 7 axpyn (8.7)

holds true. Observe that ¢*(r) < c17?, r > 1, implying cot='/2 < p,, for all ¢
small enough. Hence, (3.7) is valid for all N > (agca|z —y|)?/t. Therefore, putting
Yo =2, Yn =Y, we get

N
pe(w,y) = /n /n <Hpt/N(yi—1,yi)> dy ...dyn

N
2/ / Hpt/N(yiflvyi)dyi
B(yo,(2a2p¢/n) 1) B(yn-1,(2a2pt/n)71) 1

> Copi\;%
In the last line we use (2.7) which gives
PN (Yi-1,9i) > 27 apgyn Vi € Blyio1, (2a2pin) 7).
Thus, the transition probability density p(z,y) is strictly positive, which implies

Ryw(z) > e_)‘/o /Dpt(x,y) w(dy)dt > 0.

Hence, we get (3.6). O

Remark 3.7. a) Under the assumptions of Corollary 3.6 one has P*(rp < 00) > ci
uniformly for all z € K where K C R" is a compact set.

b) If, in addition, the process X is recurrent, then P*(rp < 00) = 1, see Sharpe
(1988) [p. 60].

¢) Suppose that X is one-dimensional (n = 1) and [;~ ¢*(s)~'ds < co. Then
there exists a local time for any point € R, see Knopova and Kulik (2016). Let
D = {z}, where x is the starting point of X;. Then Ryw(x) = sup,cg Raw(y),
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i.e. the left-hand side of (3.2) is equal to 1, implying that every point is regular for
itself.
On the other hand, if n > 2, we always have f|§|>1 ¢ (§)71d¢é = 00, ie. forn > 2

points are polar.

4. Proof of Theorem 2.1 and Proposition 2.3

Throughout this section X = (X;);>0 is a Feller process as in Section 2. Let
(Q*,F*,P*) be a further probability space and define on this space a ~y-stable
subordinator 77 = (1} )i>0, v € (0,1). T, has a transition probability density
O't(’Y)(S), and

/ e_)‘sap)(s) ds=e ™" A>0,t>0.
0
From this we immediately get the following scaling property

at(v)(s) = til/“’o’p)(st*l/'y). (4.1)

Let X, := X7y be the subordinate process. Its transition probability density

pp)(az, y) is given by

P (a,y) = / " e y)ol (s) ds, (4.2)

see, for example, Jacob (2001) [Theorem 4.3.1].
The technical proof of the following lemma is deferred to the appendix. Recall
that Sk denotes the Kato class of measures, cf. Definition 3.1. If v = 1, Ttm =t,

and the ‘subordinate’ kernel pgl)(x,y) is just p(x,y).

Lemma 4.1. a) Suppose that w satisfies

L ZB@ ) dr
/0 Slip @) () < oo, f ~v € (0,1]. (4.3)

Then w € 8 with respect to pp)(x, Y)-

b) Suppose that w € Sk with respect to pE” (x,y), where v € (0,1]. Then

. "w(B(z,r) dr
iy || G 7o O o

The next lemma is due to Hawkes (1974) [Lemma 2.1], cf. also Hawkes (1971)
[Proof of Theorem 1]; it plays the key role in the proof of Theorem 2.1.

Lemma 4.2. Let T be a stable subordinator of index vy € (0,1), and let B C [0, 00)
be a Borel set. Then

P(Ty € B for somet>0)=0 implies dimB <1 -7,
while

P (T, € B for somet>0)>0 implies dimB>1-—+.

We are now ready for the
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Proof of Theorem 2.1: By assumption, D is a closed d-set; pick a corresponding
d-measure w on D. For d > n — « we have

1 1 d 1
w(B(x,r)) dr / r dr / dba—n—1
—_— < — < T dr < o0,
/o e e Sy ) et =T e

where we used that ¢*(r) > cr®, cf. (2.6). By Lemma 4.1 (used for v = 1) we have
@ € 8k w.r.t. ps(z,y), and by Lemma 3.5 all points of D are regular for D = D.

As Xog =z € D, the set {s : X (w) € D} is a.s. non-empty, and therefore the
random set

W= {(w,w*) : Xy ()(w) € D for some t > 0}
={(w,w*) : T](w*) € {s : Xs(w) € D} for some ¢t > 0}

is well-defined and non-void.
First we calculate the lower bound of the Hausdorff dimension of the random set
{s: Xs(w) € D}. Assume that v € (vint, 1). Recall that the transition probability
density of the subordinate process XT](m)(W) is given by (4.2). By Lemma 4.1,
()
(

(4.5)

w € 8k with respect to p;”’(x,y) for any v € (Yinf, 1). Using Lemma 3.5 we see
that the points, which are regular for D “in the eyes” of the original process X, are
still regular for D and the subordinate process XTv—Whenever v € (Ving, 1). This
implies that the set W has full P* ® P*-measure. T hus, (4.5) yields

1=P*eP")(W)
= / P* (w* : TY (w*) € {s : Xs(w) € D} for some t > O) P*(dw),
which in turQn gives
IP“(w P wt o T (w') € {s : Xs(w) € D} for some ¢t > 0] > 0) =1.
Now Lemma 4.2 shows dim{s : X,(w) € D} > 1 — v with P*-probability 1; letting

v | vinf along a countable sequence we arrive at
dim{s: Xs(w) € D} > 1 — ~iut P?-a.s.
To show the upper bound in (2.14), we take v € (0, Ysup). By the definition of

- / (xz,r)) dr
(1 / r r”“
is unbounded for any finite measure @ bupported in D. There exist, see (7.5) below,
constants a, b, §(T) > 0 such that

5 5(T)me,r dr
/ / V@) wldy)dt 2 a / (q(*w(a/:)) AT

Thus, Rywo(x) is unbounded and, by Remark 3.2, the set D is polar for X;. There-
fore, (P ® P*)(W) = 0 and, consequently,

Vsup>s

IPz(w P Wt TP (w*) €{s : X¥(w) € D} for some t > 0] :0) =1.

This means that {s : X*(w) € D} is polar for T, with P*-probability 1. Applying
Lemma 4.2 we get dim{s : X?(w) € D} < 1 — v with PP*-probability 1. Letting
7 T Ysup along a countable sequence, the upper bound in (2.14) follows. ([
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Proof of Proposition 2.3: Since the processes X' and X?2 are, up to different start-
ing points, i.i.d. copies, the transition probability density of X; := X} — X? is given
by
pie(z,y) = / pe(z + 2o, 2 + Y)pt (2o, 2) dz;
R
here zg € R is the starting point of X2. Let us estimate p;(z,y) using the upper
bounds (2.8) for p;(x,y). By the triangle inequality we have for any € > 0 and
wy, W € R
/ ple=art |z+y—z—zo—wi| g —asps [o—2+wal g,
R
< ot 4P ly—z—wi+w2| / Pt e—a4(1—e)pt~(\z+y—$—ro—w1|+|ro—2+w2|) dz
R

< cpy a4t ly—z—wi+wa|

This yields the following upper bound for p;(x,y):

ﬁt(xv y) < a% /// p?e_a“p‘ \z—x—xo—wl\e—cupt l2—z0—ws| dz Qt(dwl) Qt(d’wg)
R3
<Cp; (fflp(ﬂt') * Qt) (y — ),

where Qt(dw) = f]R Q+(dw+v) Q¢(dv) is again a sub-probability measure. In other
words, the transition probability density of X has an upper bound of the same form

as pi(x,y).
To show the lower bound, take z,y such that p; |y — 2| < ay'(1 — age), where
€ > 0 is small. Then

Pe(x,y) > afpf/Rflow((y + 2 — 2 — 20)pt) frow((x0 — 2)pr) dz

Z a1 Pt /| i< flow(pt(y - — U/pt))flow(v) dv.

Since for |v| <€

az
L—aspe|y—a—v/pt| = 1—aze—aspt |y — x| = (1 —ea) (1— T e Iy—x>,

we get for all z,y such that p; |y — 2| < ay '(1 — age) the estimate

pe(z,y) > c1ps (1 —capr |y — 1)

with ¢; = ai(1 — age) fvie fiow(v)dv and ¢z = az(1 — aze)~!. Thus, the lower
bound for p;(z,y) is also of the same form as the one for pe(x,y).

We have shown that the symmetrized process X satisfies the estimates (2.7) and
(2.8), and these estimates are the essential ingredient in the proof of Corollary 2.2.*
Thus, we can apply Corollary 2.2, and the proof is finished. O

4Notice that Assumption A in Corollary 2.2 is just used to ensure that we have (2.7) and (2.8).
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5. Proof of Theorem 2.4

Throughout this section we work under the assumptions of Theorem 2.4: As-
sumption A holds and the process X is recurrent. We denote the transition prob-
ability density by p¢(z,y), t > 0. Recall that the process X is called

1) (neighbourhood) recurrent if
Vx € R Vopen sets GCR : P*(X; € G for some t > 0) = 1.
2) point recurrent, if
Ve,y e R : P?(X; =y for somet>0)=1.
Using the arguments of Jain and Pruitt (1969) [Lemma 4.1] we can show that, in
the setting of Theorem 2.4, the recurrence of X already implies point recurrence.
Lemma 5.1. The process X is point recurrent.
Proof: Write 7, := inf{¢t > 0 : X; =y} for the hitting time of {y} and set
O(z,y) =P (X; =y forsomet>0)=E"1N ooy

Let us show that for X any singleton {z} is regular for itself. By (2.8) and the
inequality p; < ct='/*, ¢ € (0,1]—this follows from (2.6)—we have for a > 1

t t t
sup / ps(x,y)ds < cl/ psds < 02/ s Vegs < 03t171/°‘, t € (0,1].
z,yeR JO 0 0

Thus, any measure of the form @ = ¢d, for ¢ > 0 and some y belongs to the Kato
class Sk w.r.t. pi(z,y). By Lemma 3.5, any point y € R is regular for itself for X.
Then

(y,y) =1,

because {7, = 0} = [ 5o{X: = = for some ¢ € (0,¢)}, and because of the regu-
larity P*(7, =0) = 1.

Let us show that the function ®(-,y) is excessive. Denote by (P;);>¢ the semi-
group given by the kernel p;(z,y). Since

O(X;(w),y) = P (X, =y for some s > 0) for P*-a.a. w
=P* (Xys =y for some s >0),

we have

PO, y)(zx) =E*®(X;,y) =P (X445 =y for some s > 0) < &(z,y),

and by the dominated convergence theorem P,®(z,y) T ®(z,y) as t — 0. Since X
is recurrent, all excessive functions are constant, see Sharpe (1988) [Exercise 10.39];
hence, we get ®(z,y) =1 for all z,y € R. O

Remark 5.2. Let ~X1 and X? be two independent copies of X. Then the sym-
metrized process X = X' — X2 is point recurrent.

Let 8 be the exponent appearing in the upper bound in (2.16).

Lemma 5.3. Let X' and X? be independent copies of X, and denote by Z° a
symmetric (3-stable Lévy process in R2. Let D be a subset of the diagonal in R2. If
D is polar for Z®, then it is polar for (X', X?).
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Proof: Denote by pi(z,y), x = (z1,22), y = (y1,¥y2), the transition probability
density of the bivariate process (X!, X?). Suppose that |z — y| < € for some
sufficiently small ¢ > 0. Using the lower estimates (2.7) for ps(x;, ), ¢ = 1,2, we
get

1 1
/ pe(z,y)dt > a%/ (1 —aspe |21 — y1|)+ (1 — aspe |z2 — yal) 107 dt
0 0

1

>afi-a? [ g
co(|lz—yl)

where ¢(r) := 1/¢Y(1/r); with this choice of ¢(r) we have p; |z — y| < 1. Changing
variables gives

1 1//71 1 52
dt > ———dr > —y|°~
[tz [ ez e

where we use that p; is the inverse of ¢* and (2.4), as well as (qU(r))l =2q¢L(r)/r
a.e. and (2.16). The expression in the last line is (up to a constant) the potential
of the process Z”. Thus, for |z — y| < € the potential of (X!, X2) is bounded from
below by the potential U(z) := |z|?~2 of Z8. Now

1
/ lz—y|2 P w(dy) < 2w (D) for all finite measures . (5.1)
|[z—y|>e [+ T

By Remark 3.2 the set D is polar for Z# if and only if the potential of ZP is
unbounded for any finite measure w # 0 with suppw C D, i.e.

1
sup UW(JI) = sup/ m@(dy) = 0Q.

Because of (5.1) this happens if and only if
1
sup/ ———— w(dy) = oo. 5.2
T lz—y|<e |3? - y‘Q A ( ) ( )
Thus, if (5.2) holds true, then sup, Row(x) = oo, where Ry is the 0-resolvent for
(X1, X?); by Remark 3.2 the set D is polar for (X1, X?). O

The next lemma is from Taylor (1966) [Theorem 4], see also Jain and Pruitt
(1969), and it plays the key role in the proof of Theorem 2.4.

Lemma 5.4. Suppose that A is an analytic subset of R"(n = 1,2), and Zf’" 18
any symmetric (-stable Lévy process in R™. Then

dim A = n — inf {C : A is non-polar for ZC’"} :

Proof of Theorem 2.4: Let A(w) be the collision set defined in (2.15). Since the
one-dimensional process X' — X2 is point recurrent, cf. Remark 5.2, the set A(w)
is a.s. non-empty. Instead of A(w) we consider the following set on the diagonal of
R2:

(z,2) €R® : (X} (w), X} (w)) = (z,z) for some t >0}

(z,z) ER® : 7%(w) < o0},
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where 7% ;= inf{t > 0 : (X}, X}?) = (z,2)}. There is a one-to-one correspondence
between A(w) and A(w), and their Hausdorff dimensions coincide. For our needs it
is more convenient to work with the set A(w).

Define on a further probability space (£, 3, P’) a symmetric §-stable Lévy pro-
cess Zte’l(w’), t > 0, taking values on the diagonal of R? and with § < 2 — 3. We
are going to show that

P’ (w’ : 70N W) € A(w)  for some ¢ > 0) =0 (5.3)
for almost all w; this means that A(w) is a.s. polar for Z%!(w').

Let

I:= {(w,w’) 70N W) € A(w)  for some ¢ > O} :
Then, by the definition of A(w),
r= {(w,w') L (X (w), X2(w)) = (z,2) € B(w') for some ¢ > o} ,

where B(w') := Range Zte’l(w’). In Blumenthal and Getoor (1960) it is shown that
dim B(w’) = 6; by Lemma 5.4 we get
2 —inf {C >0 : B(w') is non-polar for ZC’2} =dimB(W) =60 <2- 4,

and so

B < inf {C >0 : B(w') is non-polar for ZC’Q} .

Thus, the set B(w’) is for almost all w’ polar for the process Ztﬁ’Z. By Lemma 5.3
the set B(w') is polar for (X}(w), X2(w)) for almost all /. By Fubini’s theorem
we have P @ P/(T') = 0; therefore, (5.3) holds true, showing that A(w) is polar for
Z%1 for all § < 2 — 3. Thus, by Lemma 5.4

dim A(w) = 1 — inf {0 >0 : A(w) is non-polar for Ze’l} <1-(2-B8)=p-1.

Next, we are going to show that dim A(w) > a — 1. Choose 0 € (2 — a,2), and
let Z%! be a symmetric f-stable Lévy process on the diagonal in R2. Denote by
B(w') its range; by Blumenthal and Getoor (1960), dim B(w') = . By Frostman’s
lemma, cf. e.g. Schilling and Partzsch (2014) [p. 387, Theorem A.44], there exists a
measure @ on B(w') N K (K is a compact subset of the diagonal in R?) such that

@w(B(z,r)) <Cr?~, ze BW), r>0. (5.4)

Denote by p;(z,y) the transition probability density of (X}, X?). A direct calcu-
lation shows (cf. (7.1) in the appendix for details of the first estimate) that (5.4)
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implies

1
/ / i, y) w(dy) dt
0 JBW')NK

1 [e’e)
< cl/ / pf sup wi{y : |z —y| < cor/p:} e " drdt
o Jo rER?
1

< 03/ pi 0t dt
0
1
< 04/ =024/ gt < o0,
0

which shows that @ € Sx w.r.t. p;(z,y). Hence, by Corollary 3.6 the set B(w') is
non-polar for (X1, X?).

By P(**) we indicate that the starting point of the process (X1, X2) is (z,2).
For all (z,z) € R?

P2 @ P’ ((w7w') D (XM W), X2(w)) = (z,2) € B(W') for some t > 0) > 0.
By Fubini’s theorem, there is a set F' € F with P(*)(F) > 0 such that

VweF : P (w' . 70N (W) € A(w)  for some ¢ > O) > 0.

Let us show that there exists an open subset O of the diagonal in R? such that

inf PEA(F)>6§>0. (5.5)
(z,2)€0

Indeed, for any s > 0 we have

2,2) T R
ECIE D 500, (x3,x2)eB(w)

2,2) T/ R
2 ]E( )E IL{Elt>s:(th,XE)EB(L:J’)}

— (=2 X1.x?2 A
— I )(]E( )E'1{3t>s:(X},S,XE,S)EB(UJ/)})

2,2 XI,X2
:E( )(E( 0 O)E/]l{at>s:(th_soes,XE_SOGS)GB(W/)})

= E(Z,z) (E/1{3r>0:(X;OHS,X,?OQQ)EB(W’)}) .

Denote by ;1F = {w : sw € F} the shift of the set F. Clearly, ;1{Y € I'} =
{Y 00y € T'} for any random variable Y (w) and a set I in the state space of Y, and
S0

P& (F) > PE(97LF).
This inequality implies that IP(**)(F) is excessive:

PP (F) = BEAPEX)(F) = BES) (B (1,0, | 7))
=By = PO F) < PEI(E),

and, by the dominated convergence theorem, P,P(*2) (F) 4+ P(*2)(F) as t — 0. As-
sumption A implies that the process X is a strong Feller process, cf. Section 2, which
means that any excessive function is lower semicontinuous, see Blumenthal and
Getoor (1968) [p. 77, Exercise 2.16]. Since z + P(*:*)(F) is lower semi-continuous
we get (5.5).
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Fix € > 0, and define

mo=inf{t >e: X} = X7}, i=inf{t>e: X/ =X?=2}, z€R,

and
A (w) = {(z,2) e R* : 7{(w) < o0} .
We have
P’ (w’ : ZPN (W) € Ay(w)  for some t € (0,7'1]) >0, VYwePF.
Thus,

inf {( : Al(w) is non-polar for Zc’l} <2-—aq,
which implies by Lemma 5.4 that for all w € F'
dim A; (w) = 1 — inf {C : Aj(w) is non-polar for Zc’l}
>1-2—-a)=a-1.
For (z,z) € O we get
p(=:2) (dimfll(~) > 1) > PEA(F) > 6> 0. (5.6)
Let us now show that
dimA(w) > a—1 PE#-ae. forall z € R.
Let 79(w) = 0 and define
Ta(w) = inf {t > 71 (W) + € ¢ (X (W), X} (w)) = (z,2) € K},

where K is as above. Since the process X' — X2 is point recurrent, the stopping
times 7, are almost surely finite. Define G;(w) := dim A; (w), and for n > 2

Gp(w) :==dim {(z,z) e R* : X} = X} =2 for some t € (T,_1(w), Tn(w)]}.
Note that dim A(w) > sup,, G, (w). Using the Markov property and (5.6) we get
P (dim A < 1-9)
< P2 (sup Gp<1l— 9)

< P2 <m<axGi <1-— 0>

=ECY <ﬂ{maX19§n—1 Gi<1—9}E(z’z) []I{Gn<1—9} ! ?Tn—l])
= ¢

(X7 X2 ) [1{G1<1_9}])

(1 - 6)E(27Z) (]l{maxlgign,l Gi<1—0})
1 8)

%) (ﬂ{maxlggn,l Gi<i-0y B

for all n > 1. Therefore, dim A(w) > 1—60 P-a.s. Letting 6 | 2—« along a countable
sequence, the claim follows. O
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6. Examples: Recurrent processes satisfying Assumption A

In this section we give examples of processes X which satisfy Assumption A and
which are recurrent. For simplicity, we will assume that the space dimension n = 1.

FEzample 6.1. Let
J@ ) = (n(z,u) +n(u,2))g(x — u),

where the function n(x,u) is strictly positive, uniformly bounded and Hélder con-
tinuous in both variables, and g satisfies (2.9). In particular, (2.9) holds true for
p(du) = g(u)du, if

a) g is even and g(h) < C|h|~17" for some n > 1 and all |u| > 1;

b) There exists some € € (0,1) such that h?T¢g(h) is increasing on (0, 1];

¢) There exits some § > 1 such that the function h%g(h) is decreasing on (0, 1].

Let us check (2.9). As in Section 2 we write

6= /Q\{O}(l-—<xs<§h>)g<h>dh

and we define the corresponding upper and lower symbols ¢V (¢) and ¢%(¢). The
conditions a)—c) imply (2.4). Indeed, by b) we have for || > 1

0=2[ celp) =t [ al) = 3a()

and by c) we get
v? g dv> / 290 dv> Zg(L),
5/ 3 3 (E>

/1/5 (h)dh/l/gh Spig (h)dh<z (%)

which implies (2.4). Since (1 — cos1)q” (&) < q(¢) < 2¢Y(€), we have for large |¢|
that ¢(¢) = [¢] g (|€]7).

Note that the estimate in a) gives

q(&) = /h|<1(1 —cos&h) g(h) dh —I—/ (1 —cos&h)g(h) dh

[h|>1
e dv
<+ C2|€\"/ (1 —cosv)
3
<elePM, g <
Assume also that

[ i 1) = o= )] dh < o
|n|<1

Then the function

k(x) := ;/h|<1 (j(z,z 4+ h) — j(z,x — h))hdh

is well-defined.
Consider the operator £ defined by (2.1) with a(z) = k(z), and

m(z, h) p(dh) = j(z,x + h) dh = (n(z,x + h) + n(z + h,z))g(h) dh.
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Then
L(x) = / (F@+h) — f(2))i(x.z + h) dh,
R\{0}

which is a symmetric operator, and generates a (symmetric) Dirichlet form

1 N
- Q/R\{O}/R(¢($+h) — ¢(x))? j(x,x + h) dz dh.

The form (-, -) is comparable with the Dirichlet form £4(-,-) corresponding to the
Lévy process Z with characteristic exponent g¢:

£(0.) = £7(6,0) = [ a@I6@Pde = [ [ (o4 1) o) o0h) dhd

The Dirichlet form €9 is recurrent, because the related Lévy process Z is recurrent

by the Chung-Fuchs criterion, i.e. fl <14 q(&)7td¢ = co. By Oshima’s criterion, cf.

Oshima (1992), the form & is also recurrent implying the recurrence of the related
process X.

Ezample 6.2. Let £ be the generator defined by (2.1). In order to construct an
example of a non-symmetric recurrent Markov process satisfying Assumption A,
we use the approach from Wang (2008). Note that our Assumpuon A implies the
condition (H) needed in Wang (2008). According to Wang (2008) [Theorem 1.4]
the following condition is sufficient for the recurrence of the process X:

B(x)x + D(x)|z| < C for sufficiently large |z|, (6.1)
where B(z) := b(z +f1<|2|<\$\ zm(x, z) u(dz) and D(z) := le|>|x\ |z|m(z, 2) p(dz),
with b(z) and m(z,u) from the representation of £ in (2.1). Thus, by Wang (2008)

[Theorem 1.4], the process X which corresponds to (2.1) is recurrent, if (6.1) holds
true.

7. Appendix

Proof of Lemma 5.5. Without loss of generality we may assume that D is a closed
set. We begin with the upper bound for

Ryw(x // W (2,y) @ dydt+// w(dy) dt.

The upper estimate for the second term can be proved in the same way as Kuwae
and Takahashi (2006) [(3.3)]: for any € D and A > 0 one finds that

// w(dy)dt < —— igg//psxy (dy) ds,

where we used in the last line that the integral on the right-hand side is finite since
w € 8k . Therefore,

[ [ et wlay e < Ryt
<t L s
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Using the upper and lower bounds (2.7), (2.8) for the heat kernel, we obtain by
a change of variables

A / o (dy) di
e NP (1 — aslw — ylpr)+ w(dy) dt
Mopnw{yeD : (1 —aglx—ylp)y >1—7}drdt

:al// Mot {y e D : aglr —ylp <} drdt.
o Jo

Using the lower bound in (2.11) for the d-measure w, we get for € D

// (2, y) w(dy) dt > cray // pr=de= Mrd dt dy

=c\~ /0 e v Z//\ddu

Similarly, using (2.8) we get

[ f o

<ag e~ aalr=y=210t o (dy) Qy(dz) di

(7.1)

e Pt sup w{y €D : aslw—ylps <r}e " drdt
weR™

0

o]
< 05/ et pn—d dt~/ rde=" dr
0 0
A
= 06)\71/ efupz/_)\d du.
0
Here we used the upper bound (2.11) for small r, and the fact that suppw = D,

which implies sup, @(B(z,r)) < C for large r. This proves that sup, Rxw(y) < oo.
Therefore, we see

N n/

// Mo w{y €D :asw —y—zlps <rye " drQu(dz)dt
/0

1

lim inf M > lim inf Rrw(z)
A—oo sup,ep Raw(y) A—oo SUpP,cgrn RAw(Y)

>c>0,

and by Lemma 3.3 all points of D are regular. O

Proof of Lemma /.1. The case v = 1 is already contained in Knopova and Kulik
(2016). Therefore, we consider only v € (0,1). Without loss of generality we may
assume that D is closed.

a) Under our assumptions the transition density p:(x,y) of the process X sat-
isfies (2.7) and (2.8) for ¢ € (0,1]. Using (2.8) and the scaling property of the
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subordinator (4.1), we get for any T € (0, 1]

/oT /Dp (@, y) @ (dy) de

T 1
<c / / / P2 (Fun(p2) % Qa) (& — )t~ Y70 (4717 5) ds wo(dy) dt

/ // pola, )t~ 10 (175 ds w(dy) d

=:CL(z,T)+ Ix(z,T).
We estimate I1(z,T) and Iz(z,T) separately. For I(x,T) we have

(2,7) / / / Prvsin (@, 9)0) (7) (dy) dr d
t—1/v
- / / / Pri (2,9)0 ) () (dy) dt dr
T-v Jr=~JD
o0 T
- / / / Py (@, 9)7 70 (7) w(dy) dv dr.
T-1/v J1 D

Note that sup, ,cgn pt(2,y) < c for all t > 1. Indeed, since for 0 < ¢ < 1 we have
pe(x,y) < Ce for all z,y € R™, the Chapman—Kolmogorov relation implies

pt(£7y) = / ptfe(xvz)pe(zvy)dz S Ce~
Therefore,

sup Is(z,T) < ¢; / (r'T — 1)w(D)T_'YU£7)(T) dr
z€RP T=1/~

< c;w(D)T / e (7)dr < eyw(D)T —— 0,
T—1/~ T—0

where we used that [, o (r)dr = 1.
For the first integral expression Iy (z,T) we have

Il(Lﬂ T

-1

-1/~

/ / / P (Fap(Prir ) ¥ Qrns ) (@ = y)ot ™ (7) w(dy) dt dr

=1/~

[ s Gprsi) + Q) o =)o) o)

+ / / / s (Fap(Prrn) * Qo) (@ — )0 (7) o (dy) di dr
T-1/7Jo D
-1/~

T
/ / / P/ (fup(Pvl/w') * Qvl/w) (x — y)r‘”ap) (1) w(dy) dv dr

/ y / /p'ul/’Y fup pvl/"f) Qvl/“f)(x_ )T ’YO—(’Y)( ) (dy) dvdr
T—1/~v
=: Illl‘T)—i-IngZT)
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For I15(x, D) we have

o(@, T) = [/Oo e dT]// T (Fup (0wt ) * Qi ) (2 — ) w(dy) d.

T—1/~
Since lim7_.q f;ﬁlm T‘VUYY) (1) dr = 0, we get limp_,o I12(z, T) = 0, if we can show
that

1
Su]}? / / P (fup(Por/n) % Quisq ) (z —y) w(dy) dv < oo for some 7 € (Yint, 1).
zeR~ Jo JD

(7.2)
Set £ :=e; = (1,0,...0)" and 6; := inf {r : ¢V (rf) > 1/t}. Because of (2.1) we
have 0; =< p; for all ¢ € (0,1]. Moreover, the mapping r + ¢Y(rf) is absolutely
continuous, and we have, cf. Knopova (2013),
q"(v0)

v

q¥ (r20) — ¢V (r10) = 2/ dv, 0<r <ro. (7.3)

T1

Thus, the above calculations give

sup/ /pvl/w' Jup (Porrv) * Qy 1/7)( —y) w(dy)dv

zER™
< ey sup / [ 02 Gupleatior) + Q)@ =) i) o
TER™
= cja3 sup / / / 0", - y €D : e Culr—y=2l0,1/y > s}@
zeR™ n
® ds Qu1/+(dz) dv
1 oo
= C1C2a30a4 SUP / / / le/w.w{ye D : |$7y72‘0v1/7 Sr}efcgau‘@
zeR™ JO nJo
® dr Qvl/—y (dZ) dv

eED:|z—y —z|<ur}_ ~ du
—C/ // =iy 2r Q. (dz dr
1 i @) Q)
D: <
<HC1/ / wlyeD:E—yl<ur} ¢, v,
0 £E]R"

(¢*)7(1/u) untt
(7.4)

where Q,(dz) = Q,1/~(dz) under the change of variables v = (¢V)~7(fu~"), which
was done in the second line from below. Note that 1 = ¢V (6,¢), and that by (7.3)
and ¢V =< ¢%, one has

d

0 = (@) (Y

The constant & is from (2.4).
Let us estimate the integrals in the last line of (7.4). Without loss of generality
we assume that Cy = 1. Put h(r) := supgegn w{y € D : [§ —y| < r}. Split

J{// / /} 1/u uzi e "dr = Jy + Jo.
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From the monotonicity of A(r) and the assumption (4.3)

1 1
h(u) du
Jﬁ/ii-/ e "dr < oo.
U (@ () wntt
Using the monotonicity of ¢*, we get
T /("  h) dv _
< n r
n<a U o7 (1/0) J rend
rhe=" dv
L L e e
Clearly, Jo1 < co. For Jos we have
o] o0
Jao S/ [/ rte”" dr} 7h(v) dvl
o Lo (g*)7(1/v) vt
>~ - h(v) dv
< €v n (1 e)rd
= / ‘ [/ ne " @y fe) o

< /°° —ew hv)  dv
c e .
= (g7)7(1/v) v7i1

By (4.3) and the fact that the integrand is bounded by Ce®’ for v > 1 we derive
that the integral in the last line is finite. Thus, (7.2) holds true, implying that
supyepn J12(z,T) - 0as T — 0.

Let us estimate I11(x,T). Define ¢(u) := 1/60,,

[(0,7,T) i= Ly cporjmye™ /AT,

and recall that h(r) := supgepn @ {y € D : [ —y| < r}. By the same arguments
as those which we have used in (7.4), we derive

sup I11(x,T)

zeR"

=1/

< e sup / / 03 (20002 5 Quu ) o = )7 7o) () ) o e

z€R™

o $(T' T h ur) d
—c3r,_— ™) u
= 02/ [ q*) WD g
-1/ (Tl/wT) ) d
- —y (V) u
< cz/ / / l/u) e~ a7 (7) e
-1/~ qS(T /’YT) ur) d
—car_—v (V) u
+ 62/ / / 71 /u) e T Vo (T) o)

The first term is estimated from above by

-1/~ qS(T /’YT) ) d
— () u
/ / l/u) T 70,7 (T) ) dr,

which tends to zero as T — 0 by the dominated convergence theorem.

dr dr

drdr.
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For the second term we have for some € > 0

-1/~ Tl/v ) h U) d
n_—c r - (’Y) v
/ / / )7(1/1))7‘6 3 (T )vn+1drdr
-1/~
/ / / h U) rnefcyr — (’Y)( )d?" dl)l dT
Joriivey (49)7(1/v) ot

-1/~
76U/¢(T1/’YT) h( ) — () dv
s [ @ram O e

—ev/2¢(1)h ) dv
< eI (v, 7, T) — dr.
04/ / i) T Vo () (v, 7, T) o dr

Note that I(v,7,T) < 1, and limp_,0I(v,7,T) = 0 a.e. From Euler’s Gamma-
integral s7* = '(a)™! [ e~ **2*" ! dz, a > 0, we derive

/ —ag () ds_/ / e’
0
—z7 0~ 1 T
[ Tl
o T(a) T(a)
By the dominated convergence theorem, limr_,osup,cgn f11(2,T) = 0. This fin-
ishes the proof of a).

xal

7)(s) dsdx

b) Without loss of generality we may assume that T € (0,1/2]. Using (2.7), we
have

/ / (t,x,y) w(dy) dt

/ // P frow (ps (& = )t 7017 (t717s) ds o (dy) dt
Z/O /D/O P frow (ps(@ — YY1 (41 5) ds wo(dy) dt

N

-1/

/ / / P Frow(prissn (2 — )0 (7) w(dy) dt dr

+/T y / /Pftuwflow(ﬂrtl/v(x—y))UY/)(T)w(dy)dth

=1/~

/ / / Pressnfiow(prisso (= 9))oy” (7) w(dy) dt dr

-1/~ T
/ / / 5 o (0o (@ — )7 10 () w(dy) dvdr
D

21/7
>/
1

/ P Frow(Praiso (2 — )0 (7) w(dy) dr dt

T
16 (r) dr / /D P Frows (9o (@ — 9)) w(dy) do.
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Using the form of fi,w and the fact that p; < 6;, we see that the double integral is
bounded from below by

T
/ / 931/“{ flow(cgvl/’v ((E - y)) w(dy) dv,
0 D

where ¢ > 0 is some constant. Proceeding as in the estimate for Iy, (z,T), we get
for this expression

T
| [ 0 fostestinss @ = ) st o
o Jp
T 1
:/ / 0" w{y € D : cadabyiyy |z —y| <} drdv

(/) <
203/ /w{yeD)|x y|_ru}dr du

7(1/w) untt
>03/¢(TM w{yeD :|lz—yl <27} du
2o (¢*)7(1/u) untt

Combining everything, we have shown for some constant C' > 0

/ / D (z d)dt>0/¢(T1/7)w{y€D:|m_y§2_1u} du
(dy 0 (@) (1/u) un
(7.5)

Therefore, whenever w € 8§ with respect to p(V)( y), then (4.4) holds true. O
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