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Abstract. In this paper we consider the persistence properties of random processes
in Brownian scenery, which are examples of non-Markovian and non-Gaussian pro-
cesses. More precisely we study the asymptotic behaviour for large T , of the prob-
ability P[supt∈[0,T ] ∆t ≤ 1] where ∆t =

∫
R Lt(x) dW (x). Here W = {W (x);x ∈ R}

is a two-sided standard real Brownian motion and {Lt(x);x ∈ R, t ≥ 0} is the local
time of some self-similar random process Y , independent from the process W . We
thus generalize the results of Castell et al. (2013) where the increments of Y were
assumed to be independent.

1. Introduction

Let W = {W (x);x ∈ R} be a standard two-sided real Brownian motion and
Y = {Y (t); t ≥ 0} be a real-valued self-similar process of index γ ∈ (0, 2) (i.e. for

any c > 0, {Y (ct); t ≥ 0} (d)
= {cγY (t); t ≥ 0}), with stationary increments. When

it exists, we will denote by {Lt(x);x ∈ R, t ≥ 0} a version of the local time of the
process {Y (t); t ≥ 0}. The process L satisfies the occupation density formula: for
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each bounded measurable function f : R→ R and for each t ≥ 0,∫ t

0

f(Y (s))ds =

∫
R
f(x)Lt(x)dx. (1.1)

The processes W and Y are defined on the same probability space and are assumed
to be independent. We consider the random process in Brownian scenery {∆t; t ≥ 0}
defined as

∆t =

∫
R
Lt(x) dW (x).

The process ∆ is itself a self-similar process of index h with stationary increments,
with

h := 1− γ

2
.

This process can be seen as a mixture of Gaussian processes, but it is neither
Gaussian nor Markovian. It appeared independently in the mathematical litera-
ture (see Kesten and Spitzer (1979); Borodin (1979)), and in the physics literature
(see Matheron and de Marsily (1980)) where it was originally introduced to model
diffusion in layered white-noise velocity field. Note indeed that ∆t can formally

be written as
∫ t

0
Ẇ (Y (s))ds. Thus, it describes the horizontal motion of a tracer

particle in a (1+1)-dimensional medium, where the motion of the particle along the
vertical direction y is described by the process Y , while along the horizontal direc-
tion, the particle is driven by the white noise velocity field Ẇ (y), that depends only
on the vertical coordinate y. The process {∆t; t ≥ 0} provides a simple example of
anomalous super-diffusion, being for instance of order t3/4 when Y is a Brownian
motion. In this paper, we are interested in the persistence probability of the process
∆, i.e. the asymptotic behaviour of

F(T ) := P
[

sup
t∈[0,T ]

∆t ≤ 1
]

as T → +∞. The study of the one-sided exit problem of random processes is a
classical issue in probability. One usually gets polynomial decay of the persistence
probability: F(T ) � T−θ for a non-negative θ, often called persistence exponent,
or survival exponent. Classical examples, where this exponent can be computed,
include random walks or Lévy processes, and we refer the reader to the recent survey
papers Aurzada and Simon (2012); Bray et al. (2013) for an account of models where
the persistence exponent is known. However, there are relevant physical situations
where this exponent remains unknown (see for instance Majumdar (1999); Bray
et al. (2013)). The persistence exponent of the Brownian motion in Brownian
scenery was studied by Redner (1990, 1997), and Majumdar (2003). Based on
physical arguments, numerical simulations and analogy with fractional Brownian
motion, Redner and Majumdar conjectured the value of the persistence exponent.
In Castell et al. (2013), their conjecture was proved up to logarithmic factors, when
the process Y is a stable Lévy process with index δ ∈ (1, 2]. The proof of Castell
et al. (2013) depends heavily on the increments independence of the process Y and
the question raises if it is possible to compute the persistence exponent without it.
The aim of this paper is to answer this question, and to provide assumptions on Y
allowing to compute the persistence exponent of the random process in Brownian
scenery.

(H1): There exists a continuous version {Lt(x);x ∈ R, t ≥ 0} of the local time
of Y ;
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(H2): Y is a self-similar process of index γ ∈ (0, 2);
(H3): For every T > 0, {Y (T−t)−Y (T ); t ∈ [0, T ]} has the same distribution

as either {Y (t); t ∈ [0, T ]} or {−Y (t); t ∈ [0, T ]};
(H4): Let V1 :=

∫
L2

1(x) dx be the self-intersection local time of Y . There
exist a real number α > 1, and positive constants C, c such that for any
x ≥ 0,

P [V1 ≥ x] ≤ C exp(−cxα) ;

(H5): There exist a real number β > 0, and positive constants C, c such that
for any x > 0,

P [V1 ≤ x] ≤ C exp(−cx−β) .

Our main result is the following one.

Theorem 1.1. Assume (H1) to (H5) hold. There exists a constant c > 0, such
that for large enough T ,

T−γ/2(lnT )−c ≤ P
[

sup
t∈[0,T ]

∆t ≤ 1
]
≤ T−γ/2(lnT )+c. (1.2)

Our main achievement in this paper is to remove the increments independence
assumption on {Y (t); t ≥ 0}, which was crucial in Castell et al. (2013). Another
interesting issue would be to obtain the persistence exponent for {W (x);x ∈ R}
being a stable Lévy process. This seems delicate, our proof relying on the fact that
the process {∆(t); t ≥ 0} is a Gaussian process, conditionally to {Y (t); t ≥ 0}.

The paper is organized as follows. Section 2 provides three examples of processes
satisfying (H1) to (H5), including the stable Lévy process with index δ ∈ (1, 2], and
thus generalizing the result of Castell et al. (2013). Section 3 states some useful
properties of the process ∆. Section 4 is devoted to the proof of Theorem 1.1.

2. Some examples

2.1. A sufficient condition for (H5). In this section we assume that (H1) holds and
we provide a sufficient condition on {Y (t); t ≥ 0} allowing to check (H5). Let us
first compare V1 with max

s∈[0,1]
|Y (s)|. By noting that

1 =

∫
{|x|≤maxs∈[0,1] |Y (s)|}

L1(x)dx ≤ V 1/2
1

√
2 max
s∈[0,1]

|Y (s)|,

we deduce that
1

2 max
s∈[0,1]

|Y (s)|
≤ V1. (2.1)

Lemma 2.1. Assume that (H1) holds and that there exist positive constants C and
c, and a real number β > 0 such that for all x > 0,

P
[

max
s∈[0,1]

|Y (s)| ≥ x
]
≤ C exp

(
−cxβ

)
.

Then (H5) holds true.

Proof : It is a direct consequence of (2.1) that for all x > 0,

P [V1 ≤ x] ≤ P
[

max
s∈[0,1]

|Y (s)| ≥ 1

2x

]
≤ C exp(−c2−βx−β) .

�
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2.2. Stable Lévy processes. A process Y = {Y (t); t ≥ 0} is a strictly stable Lévy
process with index δ ∈ (1, 2] if it is a process with stationary and independent
increments, such that Y (0) = 0 and for any t ≥ 0 and u ∈ R,

E[eiuY (t)] = exp
{
− c|u|δt

(
1 + iζ sgn(u) tan(πδ/2)

)}
, (2.2)

where ζ ∈ [−1, 1], and c is a positive scale parameter.

Lemma 2.2. The stable Lévy process with index δ ∈ (1, 2] satisfies (H1) to (H5)
with γ = 1

δ , α = δ, and β = δ
2δ−1 .

Proof : It is immediate that the Lévy process is self-similar of index 1/δ and that
for every T > 0,

{Y (T − t)− Y (T ); t ∈ [0, T ]} (d)
= {−Y (t); t ∈ [0, T ]}

then (H2) and (H3) are satisfied.
A continuous version of the local time exists, since δ > 1 (this was proved by Boylan
(1964)), so it satisfies (H1). Moreover, Corollary 5.6 in Khoshnevisan and Lewis
(1998) states that there exist positive constants C and ξ s.t. for every x > 0,

P[V1 ≥ x] ≤ Ce−ξx
δ

,

which gives (H4). To prove (H5) we let Vt :=
∫
L2
t (x) dx be the self-intersection

local time of Y up to time t for t ≥ 0, and we show that there exists l > 0 such
that

P [Vt ≤ 1] ≤ e−lt for t large enough. (2.3)

As {Vt; t ≥ 0} is self-similar of index 2δ−1
δ , (2.3) implies that for every positive ε

small enough,

P[V1 ≤ ε] = P[V
ε
− δ

2δ−1
≤ 1] ≤ e−lε

− δ
2δ−1

,

which gives (H5). To prove (2.3) we show that the function defined on R+ by

f(t) = logP[Vt ≤ 1]

is subadditive. Let us fix s, t in [0,+∞). We consider the process Y (s) := {Y (s)
u ;u ≥

0} defined by

Y (s)
u = Y (u+ s)− Y (s),

its local time {L(s)
u (x);x ∈ R, u ≥ 0}, and its self-intersection local time {V (s)

u ;u ≥
0}. Note that

Lt+s(x) = Ls(x) + L
(s)
t (x− Y (s)).

Hence

Vt+s ≥ Vs + V
(s)
t .

The process Y being a Lévy process, V
(s)
t and Vs are independent and V

(s)
t has the

same law as Vt. Therefore

P[Vt+s ≤ 1] ≤ P[Vs ≤ 1;V
(s)
t ≤ 1] = P[Vs ≤ 1]P[Vt ≤ 1].

Thus f is subadditive, which implies that f(t)
t converges, as t → +∞, towards a

limit −l = inft>0
f(t)
t (see Hammersley (1962)). It remains to show that l is strictly
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positive. As −l is less than or equal to f(1), it is enough to show that P[V1 > 1] > 0.
But thanks to (2.1) and Proposition 10.3 of Fristedt (1974),

P[V1 > 1] ≥ P
[

max
s∈[0,1]

|Y (s)| < 1

2

]
> 0,

and this concludes the proof of (2.3). �

2.3. Fractional Brownian motion. The fractional Brownian motion of Hurst index
H ∈ (0, 1) is the real centered Gaussian process {BH(t); t ≥ 0} with covariance
function

E[BH(t)BH(s)] =
1

2
(t2H + s2H − |t− s|2H) .

Lemma 2.3. The fractional Brownian motion with Hurst index H ∈ (0, 1) satisfies
(H1) to (H5) with γ = H, α = 1/H, β = 2.

Proof : It follows readily from the definition that BH is self-similar with index H
and satisfies (H3). The existence of a jointly continuous version of its local time
process for H ∈ (0, 1) is a classical fact (see for instance paragraph 22 in Geman and
Horowitz (1980)). Theorem 1 of Hu et al. (2008) asserts that there exists λ0 > 0
such that for every 0 < λ < λ0,

E
[
eλV

1/H
1

]
<∞ , (2.4)

which implies (H4) with α = 1/H. Finally, (H5) follows from Lemma 2.1 and
Fernique’s estimation (Fernique (1975), Theorem 4.1.1): there exists cF > 0 such

that for any x ≥
√

5,

P[ max
s∈[0,1]

|BH(s)| ≥ cFx] ≤ 10

∫ +∞

x

e−
v2

2 dv . (2.5)

This implies (H5) with β = 2. �

2.4. Iterated Brownian motion. Let {B(x);x ∈ R} be a two-sided real standard

Brownian motion, and let
{
B̃(t); t ≥ 0

}
be a real standard Brownian motion,

independent of {B(x);x ∈ R}. The iterated Brownian motion is the process
{Y (t); t ≥ 0} defined by

Y (t) = B(B̃(t)) .

Lemma 2.4. The iterated Brownian motion satisfies (H1) to (H5) with γ = 1/4,
and α = β = 4/3.

Proof : The self-similarity of the iterated Brownian motion is a direct consequence of
the self-similarity and independence of both Brownian motions. The assertion (H3)

follows once again from the independence of B and B̃, the increments stationarity
of B and the fact that B̃ satisfies (H3).

The existence and joint continuity of the local times of iterated Brownian motion
were proved in Burdzy and Khoshnevisan (1995); Csáki et al. (1996). Let us prove
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(H5). For x > 0,

P
[

max
s∈[0,1]

|Y (s)| ≥ x
]
≤ P

[
max
s∈[0,1]

∣∣∣B̃(s)
∣∣∣ ≥ x2/3

]
+ P

[
max
|u|≤x2/3

|B(u)| ≥ x
]

≤ P
[

max
s∈[0,1]

∣∣∣B̃(s)
∣∣∣ ≥ x2/3

]
+ P

[
max

u∈[0,x2/3]
|B(u)| ≥ x

]
≤ 2P

[
max
s∈[0,1]

|B(s)| ≥ x2/3

]
≤ 4P

[
max
s∈[0,1]

B(s) ≥ x2/3

]
= 4P

[
|B(1)| ≥ x2/3

]
. (2.6)

This proves (H5) with β = 4/3 using Lemma 2.1.
To prove (H4), we use the uniform norm on the local times of iterated Brownian

motion proved in Lemma 4 of Xiao (1998): there exists a constant K > 0 such that
for any even integer n,

sup
x∈R

E [(L1(x))n] ≤ Kn(n!)3/4 . (2.7)

Since
∫
R L1(x) dx = 1, Hölder’s inequality implies that for any integer n ≥ 1,

V n1 =

(∫
R
L1(x)2 dx

)n
≤
∫
R
L1(x)n+1 dx =

∫ maxs∈[0,1]|Y (s)|

−maxs∈[0,1]|Y (s)|
L1(x)n+1 dx .

Therefore,

E [V n1 ] ≤
∫
R
E
[
L1(x)n+11|x|≤maxs∈[0,1]|Y (s)|

]
dx

≤
∫
R

√
E
[
L1(x)2(n+1)

]√
P
[

max
s∈[0,1]

|Y (s)| ≥ |x|
]
dx

≤ Kn+1 ((2n+ 2)!)3/8

∫
R

√
P
[

max
s∈[0,1]

|Y (s)| ≥ |x|
]
dx , (2.8)

where we used (2.7) in the last inequality. By (2.6), the integral in (2.8) is finite.
We deduce then from Stirling’s formula that there exists a constant C > 0 such
that for any integer n ≥ 1,

E [V n1 ] ≤ Cnn 3
4n .

Hence, for any x > 0, and any integer n ≥ 1,

P [V1 ≥ x] ≤ x−nCnn 3
4n .

Optimizing over the values of n leads to take n =
⌈
e−1

(
x
C

)4/3⌉
, so that x−nCnn

3
4n

' exp(− 3
4e

(
x
C

)4/3
) for large x. This proves that the iterated Brownian motion

satisfies (H4) with α = 4/3.
�
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3. Auxiliary statements on (∆t; t ≥ 0)

For a certain class of stochastic processes {Xt; t ≥ 0} (to be specified below),
Molchan (1999) proved that the asymptotic behavior of

P
[

sup
t∈[0,T ]

Xt ≤ 1
]

is related to the quantity

I(T ) := E

(∫ T

0

eXt dt

)−1
 .

We refer to Aurzada (2011) where the relationship between both quantities is clearly
explained as well as the heuristics. Moreover I(T ) can be estimated by the following
result.

Theorem 3.1 (Statement 1, Molchan (1999)). Let {Xt; t ≥ 0} be a continuous
process, self-similar with index h > 0 such that for every T > 0,

{XT−t −XT ; t ∈ [0, T ]} (d)
= {Xt; t ∈ [0, T ]}.

Moreover assume that for every θ > 0,

E
[

exp
(
θ max
t∈[0,1]

|Xt|
)]

< +∞.

Then, as T → +∞,

E

(∫ T

0

eXt dt

)−1
 = hT−(1−h)

(
E
[

max
t∈[0,1]

Xt

]
+ o(1)

)
.

Before applying this result to our random process ∆ we first establish some useful
facts concerning it. First we show that the process satisfies

{∆T−t −∆T ; t ∈ [0, T ]} (d)
= {∆t; t ∈ [0, T ]}

and has stationary increments (Lemma 3.2). Next we provide an exponential upper
bound for the tail of ∆1, from which we deduce the Kolmogorov-Centsov continu-
ity criterion (Lemma 3.3). Finally we show that the process satisfies a maximal
inequality (Lemma 3.4).

Lemma 3.2. Assume (H1) and (H3). The process ∆ satisfies for every T > 0,

{∆T−t −∆T ; t ∈ [0, T ]} (d)
= {∆t; t ∈ [0, T ]} . (3.1)

Therefore, it has stationary increments, i.e. for every s > 0, {∆t+s−∆s; t ≥ 0} (d)
=

{∆t; t ≥ 0}.

Proof : Conditionally to {Y (t); t ≥ 0}, the process {∆T−t − ∆T ; t ∈ [0, T ]} is a
centered Gaussian process with (random) covariance function:

CT (s, t) =

∫
R

(LT (x)− LT−t(x)) (LT (x)− LT−s(x)) dx .

Note that LT (x) − LT−t(x) = L
(T )
t (x − Y (T )), where {L(T )

t (x); t ∈ [0, T ], x ∈
R} is the local time process of Y

(T )
t := Y (T − t) − Y (T ). Hence, CT (s, t) =
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∫
R L

(T )
t (x)L

(T )
s (x) dx. Now, if Y (T ) has the same distribution as Y (respectively

−Y ), then {L(T )
t (x); t ∈ [0, T ], x ∈ R} has the same law as {Lt(x); t ∈ [0, T ], x ∈ R}

(respectively {Lt(−x); t ∈ [0, T ], x ∈ R}). We deduce then that in both cases,
{CT (s, t); s, t ∈ [0, T ]} is distributed as the conditional covariance of {∆t; t ∈ [0, T ]}
with respect to Y . Hence,

{∆T−t −∆T ; t ∈ [0, T ]} (d)
= {∆t; t ∈ [0, T ]} .

Concerning the increments stationarity, fix s > 0, and 0 < t1 < · · · < tn. Let
T > tn + s be fixed.

(∆t1+s −∆s, · · · ,∆tn+s −∆s)

(d)
= (∆T−t1−s −∆T−s, · · · ,∆T−tn−s −∆T−s) by time reversal at time T ,

(d)
= (∆t1 , · · · ,∆tn) by time reversal at time T − s .

�

Lemma 3.3. Assume (H1) to (H4) hold. There exist C > 0 and δ > 0 such that
for any x > 0,

P[∆1 ≥ x] ≤ C exp(−δx
2α

1+α ). (3.2)

Hence, for every a ≥ 1,

(E|∆t −∆s|a)1/a = C(a)|t− s|h, t, s ≥ 0 (3.3)

where C(a) ≤ caν with ν := 1
2

(
1 + 1

α

)
. In particular the process satisfies the

Kolmogorov-Centsov criterion of continuity.

Proof : Conditionally to the process Y , the random variable ∆1 is a real centered
Gaussian variable with variance V1. For each u ∈ R, let

Φ(u) =
1√
2π

∫ +∞

u

e−
s2

2 ds.

Then for x > 0 and θ > 0,

P[∆1 ≥ x] =

∫ +∞

0

Φ(xz−1/2)PV1
(dz) =

∫ xθ

0

Φ(xz−1/2)PV1
(dz)

+

∫ +∞

xθ
Φ(xz−1/2)PV1

(dz)

≤ Φ(x1− θ2 ) + P[V1 ≥ xθ],

where we used that the function z 7→ Φ(xz−1/2) is non decreasing with values in
[0, 1]. Using (H4) and the classical inequality

Φ(u) ≤ 1√
2πu

e−u
2/2 for every u > 0,

and choosing θ = 2
1+α , we obtain that for x large enough,

P[∆1 ≥ x] ≤ x−α/(1+α)

√
2π

e−
1
2x

2α/(1+α)

+ Ce−cx
2α/(1+α)

≤ Ce−δx
2α/(1+α)

,

with δ = min(c, 1/2). This implies (3.2) for every x > 0.
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Let us prove (3.3). The increments of the process ∆ being stationary (see Lemma
(3.2)), by self-similarity, we have for every t, s ≥ 0,

E[|∆t −∆s|a] = |t− s|ha E[|∆1|a] .

Now, using (3.2) and the symmetry of ∆1,

E[|∆1|a] =

∫ +∞

0

P[|∆1| ≥ x1/a] dx ≤ 2

∫ +∞

0

P[∆1 ≥ x1/a] dx

≤ C

∫ +∞

0

exp(−δx
2α

a(1+α) ) dx = Caδ−
a(1+α)

2α Γ

(
a(1 + α)

2α

)
. (3.4)

Hence, it follows from Stirling’s formula that C(a) = E[|∆1|a]1/a ≤ Ca(1+α)/(2α).
�

Lemma 3.4. Assume (H1) and (H4) hold. Let T, x ≥ 0. Then

P[ max
s∈[0,T ]

∆s ≥ x|Y ] ≤ 2P[∆T ≥ x|Y ], (3.5)

P[ max
s∈[0,T ]

∆s ≥ x] ≤ 2P[∆T ≥ x]. (3.6)

Proof : Conditionally to the process Y , the process {∆t; t ≥ 0} is a centered Gauss-
ian process on R with covariance function

E [∆s∆t|Y ] =

∫
R
Ls(x)Lt(x)dx.

Moreover for any t ≥ s ≥ 0,

E
[
∆2
t |Y
]
− E

[
∆2
s|Y
]
− E

[
(∆t −∆s)

2|Y
]

=

∫
R

(L2
t (x)− L2

s(x)

− (Lt(x)− Ls(x))2)dx

=

∫
R

2Ls(x)(Lt(x)− Ls(x))dx ≥ 0,

hence applying Proposition 2.2 in Khoshnevisan and Lewis (1998), we deduce the
inequality (3.5). By integrating we obtain the maximal inequality (3.6). �

We are now in position to use Theorem 3.1 and to state the main result of this
section.

Proposition 3.5. Assume (H1) to (H4) hold. As T → +∞,

E

(∫ T

0

e∆t dt

)−1
 =

(
1− γ

2

)
T−γ/2

(
E
[

max
t∈[0,1]

∆t

]
+ o(1)

)
.

Proof : It follows easily from assumption (H2), that the process {∆t; t ≥ 0} is self-
similar with index h := 1 − γ

2 . From Lemma 3.2, it satisfies (3.1). From (3.3)
and Kolmogorov-Centsov continuity criterion, we can assume that it is continuous.
Hence, to apply Theorem 3.1, it is enough to prove that for every θ > 0,

E
[

exp
(
θ max
t∈[0,1]

|∆t|
)]

< +∞. (3.7)
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Let θ > 0. We have

E
[

exp
(
θ max
t∈[0,1]

|∆t|
)]

=

∫ ∞
0

P
[

exp (θ max
t∈[0,1]

|∆t|) ≥ λ
]
dλ

≤ 2 +

∫ ∞
2

P
[

max
t∈[0,1]

|∆t| ≥
ln(λ)

θ

]
dλ.

Since the process {∆t; t ≥ 0} is symmetric and satisfies the maximal inequality (3.6)
of Lemma 3.4,

P
[

max
t∈[0,1]

|∆t| ≥
ln(λ)

θ

]
≤ 2 P

[
max
t∈[0,1]

∆t ≥
ln(λ)

θ

]
≤ 4 P[∆1 ≥ (lnλ)/θ].

We apply the inequality (3.2) of Lemma 3.3, and since the function

λ→ exp(−δ((lnλ)/θ)2α/(1+α))

is integrable at infinity for any α > 1, the assertion (3.7) follows. �

4. Proof of Theorem 1.1

In this section, we prove upper and lower bounds on the persistence probability

P
[
supt∈[0,T ) ∆(t) ≤ 1

]
.

In the case of fractional Brownian motion {BH(t); t ≥ 0}, Aurzada’s proof of
the lower bound (see Aurzada (2011)), rests on both following arguments: the
fractional Brownian motion satisfies the hypothesis of Theorem 3.1, and it satisfies
the equality (valid for a large enough)

(E|BH(t)−BH(s)|a)1/a = C(a)|t− s|H , t, s ≥ 0 (4.1)

with C(a) ≤ caν , for some c and ν > 0. We showed (see Lemma 3.3 and Proposition
3.5) that these conditions are also satisfied by our random process ∆. Therefore
the proof of Aurzada (2011) allows us to derive the lower bound in Theorem 1.1.

Let us give a sketch of the proof. Let η ∈ (h2 , h) and let us fix a such that a > 2
h

and η < h− 1
a . From Lemma 2.1 in Scheutzow (2009) and equation (3.3) we deduce

that for any 0 < ε ≤ 1, for every s, t ∈ [0, 1] such that |t− s| ≤ ε,

|∆t −∆s| ≤ Sεη (4.2)

where S is a random variable such that

E[Sa] ≤ (daν)a

2(ah−1)−aη − 1
,

with d a constant depending only on c and h. The quantity I(T ) defined in Section

3 can now be related to the Laplace transform g(T ) := E[e−T
h∆∗1 ], where ∆∗1 =

supt∈[0,1] ∆t. Indeed, using self similarity,
∫ T

0
e∆t dt

(d)
= T

∫ 1

0
eT

h∆t dt. For any

ε ∈ (0, 1], let V be a ε-neighborhood of the maximum of {∆t, t ∈ [0, 1]}. By (4.2),∫ 1

0

eT
h∆t dt ≥ eT

h∆∗1

∫
V
eT

h(∆t−∆∗1) dt ≥ eT
h∆∗1e−T

hSεηε .
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Choosing ε := (ThS)−1/η ∧ 1, we obtain∫ 1

0

eT
h∆t dt ≥ eT

h∆∗1e−1 1

(ThS)1/η + 1
.

Hence,

I(T ) ≤ e
(
E[Th/ηS1/ηe−T

h∆∗1 ] + g(T )
)
T−1 .

Using Hölder’s inequality with p := aη > 1 and the moment of order a of the
random variable S, we get

e−1I(T ) ≤ d1/ηaν/η

(2a(h−η)−1 − 1)1/(aη)
g(T )1−1/(aη)T−1+h/η + T−1g(T ). (4.3)

Fix δ ∈ (0, 1), and set a = log T (log log T )−δ , η = h − 2/a. Note that h − η =
2/a > 1/a and aη = ah− 2 > 1 for T large enough. From (4.3),(

kI(T )a−ν/ηT−2/(aη)
)1/(1−1/(aη))

≤ g(T ),

for some constant k. From Proposition 3.5, we know that I(T ) ∼ cT−(1−h) for T
large. Then,

g(T ) ≥ T−(1−h)(log T )−ν/h+o(1).

The lower bound is then obtained from direct computations. Indeed, by self-
similarity,

P

[
sup
t∈[0,T ]

∆t ≤ 1

]
= P

[
∆∗1 ≤ T−h

]
≥ E

[
e−T

h log(T )2∆∗1

]
− e− log(T )2

≥ T−(1−h) log(T )−(2(1−h)+ν)/h+o(1) − e− log(T )2 .

As in Molchan (1999) and Aurzada (2011), the main idea in the proof of the
upper bound in (1.2), is to bound I(T ) from below by restricting the expectation
to a well-chosen set of paths.
Conditionally to Y , the process {∆t; t ≥ 0} is a centered Gaussian process such
that for every 0 ≤ t < s,

E[∆t∆s|Y ] =

∫
R
Lt(x)Ls(x) dx ≥ 0,

E[∆t(∆s −∆t)|Y ] =

∫
R
Lt(x)(Ls(x)− Lt(x)) dx ≥ 0,

since t → Lt(x) is a.s. increasing for all x ∈ R. It follows then from Slepian’s
lemma (see the proof of Theorem 3 in Slepian (1962) or Lemma 1.2.5 in Baumgarten
(2013)), that for every 0 ≤ u < v < w and every real numbers a, b,

P

[
sup
t∈[u,v]

∆t ≤ a, sup
t∈[v,w]

∆t ≤ b
∣∣∣Y ] ≥ P

[
sup
t∈[u,v]

∆t ≤ a
∣∣∣Y ]P[ sup

t∈[v,w]

∆t ≤ b
∣∣∣Y ]

(4.4)
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P

[
sup
t∈[u,v]

∆t ≤ a, sup
t∈[v,w]

(∆t −∆v) ≤ b
∣∣∣Y ]

≥ P

[
sup
t∈[u,v]

∆t ≤ a
∣∣∣Y ]P[ sup

t∈[v,w]

(∆t −∆v) ≤ b
∣∣∣Y ] . (4.5)

Let aT = (lnT )a, where a > 0 will be chosen later; let αT := lnT
1+lnT , which

belongs to (0, 1) and set βT =
√
VaT where VaT :=

∫
R L

2
aT (x)dx. Let us define the

random function

φ(t) :=

{
1 for 0 ≤ t < aT ,
1− βT for aT ≤ t ≤ T ,

which is Y -measurable. Clearly, we have

E

(∫ T

0

e∆t dt

)−αT ∣∣∣Y
 ≥ (∫ T

0

eφ(t) dt

)−αT
P
[
∀t ∈ [0, T ],∆t ≤ φ(t)

∣∣∣Y ].
By Slepian’s lemma (see (4.4)), we have

P
[
∀t ∈ [0, T ],∆t ≤ φ(t)

∣∣∣Y ]
≥ P

[
∀t ∈ [0, aT ],∆t ≤ 1

∣∣∣Y ]P[∀t ∈ [aT , T ],∆t ≤ 1− βT
∣∣∣Y ].

Remark that

P
[
∀t ∈ [aT , T ],∆t ≤ 1− βT

∣∣∣Y ]
≥ P

[
∆aT ≤ −βT ;∀t ∈ [aT , T ],∆t −∆aT ≤ 1

∣∣∣Y ]
≥ P

[
∆aT ≤ −βT

∣∣∣Y ]P[∀t ∈ [aT , T ],∆t −∆aT ≤ 1
∣∣∣Y ],

by Slepian’s lemma (see (4.5)). Note that

P[∆aT ≤ −βT |Y ] = Φ(βTV
−1/2
aT ) = Φ(1).

Moreover, it is easy to check that when T goes to infinity,∫ T

0

eφ(t) dt = O(aT + Te−βT ).

In the following C is a constant whose value may change but does not depend on
T . Then we can write that for T large enough

E

(∫ T

0

e∆tdt

)−αT ∣∣∣Y


≥ C(aT + Te−βT )−αT P
[

sup
t∈[0,aT ]

∆t ≤ 1
∣∣Y ]P[ sup

t∈[aT ,T ]

(∆t −∆aT ) ≤ 1
∣∣Y ]. (4.6)

Next we use the maximal inequality (3.5) of Lemma 3.4 to write

P
[

sup
t∈[0,aT ]

∆t ≤ 1
∣∣Y ] = 1− P

[
sup

t∈[0,aT ]

∆t ≥ 1
∣∣Y ] ≥ 1− 2P

[
∆aT ≥ 1

∣∣Y ]
= P[|Z| ≤ V −1/2

aT |Y ]
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where Z is a Gaussian variable N (0, 1) independent of Y , from which we deduce
that there exists a constant c > 0 such that

P
[

sup
t∈[0,aT ]

∆t ≤ 1
∣∣Y ] ≥ cmin(V −1/2

aT , 1). (4.7)

Injecting (4.7) into (4.6) we get that for T large enough,

P
[

sup
t∈[aT ,T ]

(∆t −∆aT ) ≤ 1
∣∣Y ]

≤ CE

(∫ T

0

e∆tdt

)−αT ∣∣∣∣∣∣Y
 (aT + Te−V

1/2
aT )αT max(V 1/2

aT , 1).

By integrating and using successively Hölder’s inequality with pT = 1
αT

, 1
qT

+
1
pT

= 1, Jensen’s inequality, the inequality (x+ y)αT ≤ xαT + yαT for x, y > 0, and

Proposition 3.5, we get that for T large enough,

P
[

sup
t∈[aT ,T ]

(∆t −∆aT ) ≤ 1
]

≤ CE

(∫ T

0

e∆tdt

)−1
1/pT

× E
[(
aαTT max(V 1/2

aT , 1) + TαT e−αTV
1/2
aT max(V 1/2

aT , 1)
)qT ]1/qT

≤ CT−
γ

2pT ‖f1 + f2‖qT ≤ CT
− γ

2pT (‖f1‖qT + ‖f2‖qT ),

with

f1 = aαTT max(V 1/2
aT , 1), f2 = TαT e−αTV

1/2
aT max(V 1/2

aT , 1).

The lefthand term is greater than the quantity we want to bound from above, since
by stationarity,

P
[

sup
t∈[aT ,T ]

(∆t −∆aT ) ≤ 1
]

= P
[

sup
t∈[0,T−aT ]

∆t ≤ 1
]
≥ P

[
sup
t∈[0,T ]

∆t ≤ 1
]
.

Concerning the righthand term, we recall that αT = 1
pT

= lnT
1+lnT and 1

qT
= 1−αT =

1
1+lnT . Hence, when T goes to infinity, T

− γ
2pT ≤ CT−

γ
2 . Therefore,

P
[

sup
t∈[0,T ]

∆t ≤ 1
]
≤ CT−

γ
2 (‖f1‖qT + ‖f2‖qT ). (4.8)

It remains to prove that ‖f1‖qT and ‖f2‖qT are bounded by logarithmic terms.

‖f1‖qT = aαTT E
[
V qT /2aT 1VaT≥1 + 1VaT≤1

]1/qT
≤ aαTT

(
E
[
V qTaT

]1/(2qT )
+ 1
)
.

By (H2), VaT
L
= a2−γ

T V1. Therefore,

E
[
V qTaT

]1/(2qT )
= a

1− γ2
T E [V qT1 ]

1/(2qT )
.

As in (3.4), it follows from (H4) that

E[V m1 ] ≤ Cc−m/αm
α

Γ
(m
α

)
for every m ∈ N,



92 Castell et al.

so that using Stirling’s formula, it is easy to show that for T large enough

E[V qT1 ]1/2qT ≤ C(lnT )
1
2α .

We conclude that for T large enough

‖f1‖qT ≤ C(lnT )a(2− γ2 )+ 1
2α . (4.9)

Let us now turn our attention to ‖f2‖qT .

‖f2‖qT ≤ TαTE
[
e−2qTαTV

1/2
aT

]1/2qT
E [max(VaT , 1)qT ]

1/2qT

≤ CT (lnT )a(1− γ2 )+ 1
2αE

[
e−2qTαT a

1− γ
2

T

√
V1

]1/2qT

.

Let us note λT = 2qTαTa
1− γ2
T = 2(lnT )1+a(1− γ2 ). Then using (H5),

E
[
e−λTV

1/2
1

]
≤
∫ +∞

0

P
[
V1 ≤

u2

λ2
T

]
e−u du

≤ C
∫ +∞

0

e−c
λ
2β
T
u2β e−u du ,

for some constants c and C. We perform the change of variable u = λ
2β

1+2β

T v in the
preceding integral. This yields

E
[
e−λTV

1/2
1

]
≤ Cλ2β/(1+2β)

T

∫ +∞

0

e−λ
2β

1+2β
T (v+cv−2β)dv

≤ Cλ2β/(1+2β)
T

∫ +∞

1

e−λ
2β

1+2β
T v dv + Cλ

2β/(1+2β)
T

∫ 1

0

e−λ
2β

1+2β
T cv−2β

dv

≤ Ce−λ
2β

1+2β
T + Ce−cλ

2β
1+2β
T

≤ Ce−cλ
2β

1+2β
T ,

for some other constants c and C. This leads to

‖f2‖qT ≤ CT (lnT )a(1− γ2 )+ 1
2α e−c(lnT )

2β
1+2β (1+a(1− γ

2
))−1

.

We choose a such that a(1− γ
2 ) > 1 + 1

β . Then Te−c(lnT )
2β

1+2β (1+a(1− γ
2
))−1

remains

bounded, and when T goes to infinity, we get

‖f2‖qT ≤ C(lnT )c , (4.10)

for some constant c > 1 + 1
β + 1

2α . From (4.8), (4.9) and (4.10) we deduce that for

T large enough,

P
[

sup
t∈[0,T ]

∆t ≤ 1
]
≤ CT−

γ
2 (lnT )c,

with c > β+1
β

4−γ
2−γ + 1

2α .
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