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Abstract. We consider the simple random walk in i.i.d. nonnegative potentials on
the multidimensional cubic lattice. Our goal is to investigate the cost paid by the
simple random walk for traveling from the origin to a remote location in a landscape
of potentials. In particular, we obtain concentration inequalities for the travel cost
in unbounded nonnegative potentials.

1. Introduction

1.1. The model. Let (Sk)∞k=0 be the simple random walk on the d-dimensional cu-
bic lattice Zd, d ≥ 2. For x ∈ Zd, write P x for the law of the random walk
starting at x, and Ex for the associated expectation. Furthermore, we consider

the measurable space Ω := [0,∞)Z
d

endowed with the canonical σ-field G. Let P
be the corresponding product measure on (Ω,G) and denote an element of Ω by
ω = (ω(x))x∈Zd , which is called the potential. To avoid trivialities we suppose that
ω(0) is not almost surely equal to 0.

For a subset V of Rd, HV stands for the hitting time of (Sk)∞k=0 to V , i.e.,

HV := inf{k ≥ 0;Sk ∈ V },

and denote H(y) := H{y} for y ∈ Zd. Furthermore we define for x, y ∈ Zd,

e(x, y, ω) := Ex

[
exp

{
−
H(y)−1∑
k=0

ω(Sk)

}
1{H(y)<∞}

]
,
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where e(x, y, ω) := 1 if x = y. Let us now introduce the travel cost a(x, y, ω) from
x to y for the simple random walk in a potential ω as follows:

a(x, y, ω) := − log e(x, y, ω), x, y ∈ Zd.

Throughout this paper, we drop ω in the notation if there is no confusion.
Note that the strong Markov property shows the subadditivity

a(x, z) ≤ a(x, y) + a(y, z), x, y, z ∈ Zd,

see Proposition 2 of Zerner (1998a) for more details. In addition, since we now
treat i.i.d. potentials, the subadditive ergodic theorem shows the following essential
asymptotic for the travel cost. For the proof, we refer the reader to Zerner (1998a,
Proposition 4).

Theorem 1.1 (Zerner). Assume E[ω(0)] < ∞. Then there exists a norm α(·) on
Rd (which is called the Lyapunov exponent) such that for all x ∈ Zd, P-a.s. and in
L1(P),

lim
n→∞

1

n
a(0, nx) = lim

n→∞

1

n
E[a(0, nx)] = inf

n≥1

1

n
E[a(0, nx)] = α(x). (1.1)

Furthermore, α(·) is invariant under permutations of the coordinates and under
reflections in the coordinate hyperplanes, and satisfies

− logE[e−ω(0)] ≤ α(x)

‖x‖1
≤ log(2d) + E[ω(0)], (1.2)

where ‖ · ‖1 is the `1-norm on Rd.

Remark 1.2. The present paper always assumes that ω(0) has at least second mo-
ment (see hypotheses (A1) and (A2) below), so that, for simplicity, we assume
E[ω(0)] <∞ in the above theorem. However, it is known that the theorem is valid
under lower moments. In fact, Mourrat (2012, Theorem 1.1) proved the following:
If Z is the minimum of 2d i.i.d. random variables distributed as ω(0), then for each
x ∈ Zd,

E[Z] <∞ if and only if
1

n
a(0, nx) converges a.s.

1.2. Main results. We first introduce the following assumptions:

(A1) E[eγω(0)] <∞ for some γ > 0.
(A2) E[ω(0)2] <∞.
(A3) The law of ω(0) has strictly positive support.

The following two theorems are the main results of the present article. We have
the exponential concentration for the upper tail, and the Gaussian concentration
for the lower tail.

Theorem 1.3. Assume (A1). In addition, suppose that (A3) is valid if d = 2.
Then, there exist constants 0 < C1, C2 < ∞ such that for all large x ∈ Zd and for
all t ≥ 0,

P
(
a(0, x)− E[a(0, x)] ≥ t‖x‖1/21

)
≤ C1e

−C2t.
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Theorem 1.4. Assume (A2). In addition, suppose that (A3) is valid if d = 2.
Then, there exists a constant 0 < C3 <∞ such that for all large x ∈ Zd and for all
t ≥ 0,

P
(
a(0, x)− E[a(0, x)] ≤ −t‖x‖1/21

)
≤ e−C3t

2

.

In the case where the law of potentials has bounded and strictly positive support,
Ioffe and Velenik (2012, Lemma 4) and Sodin (2014, Theorem 1) proved the Gauss-
ian concentration: There exists a constant 0 < c <∞ such that for all sufficiently
large x ∈ Zd and for all t ≥ 0,

P
(
|a(0, x)− E[a(0, x)]| ≥ t‖x‖1/21

)
≤ e−ct

2

. (1.3)

On the other hand, there are few results for unbounded nonnegative potentials. In
this context, Sznitman (1996, Theorem 2.1) proved exponential concentrations for
Brownian motion in a Poissonian potential. Our work is a discrete space counterpart
of this model as well as an extension of the technique to unbounded potentials.

With these observations, Theorems 1.3 and 1.4 extend the aforementioned previ-
ous works on concentrations to the case where the law of potentials has unbounded
and (not strictly) positive support.

Finally, let us comment on the following problems:

• Show the upper Gaussian concentration under the same or a weaker as-
sumption as in Theorem 1.3 or a weaker one.
• Obtain the lower Gaussian concentration without additional hypothesis

(A3) for d = 2.

Intuitively, under the weighted measure appearing in e(0, x), the random walk tends
to pass through sites with small potentials to reach a target point x with lower cost.
If we do not assume (A3), then there will be typically big pockets where potentials
are equal to zero. In such regions the behavior of the random walk seems to be
similar to the ordinary simple random walk, so that the walker takes a lot of time
to pass such a region. This means that H(x) can be large, and this increases
the chance that the walker will also pass through sites with a large potential. In
the case when the potential is unbounded, the walker can encounter very large
potentials. Avoiding such potentials makes the walker deviate a lot from its target
point x, and both H(x) and the travel cost become large. With these observations,
for the above problems it is important to analyze the upper deviation of H(x).
However, presently we do not have enough information to establish the Gaussian
concentration (see Le, 2013, Lemmata 1 and 3 and Sznitman, 1995, Theorems 1.1
and 2.2), and seems to need an entirely different approach to do this. We would
like to address this problem in the future research.

1.3. Earlier literature. The simple random walk in random potentials is related to
a lot of models, e.g., first passage percolation, directed polymer in random environ-
ment, random walk in random environment, and so on. We first mention Kesten’s
works (Kesten, 1986, 1993) for the first passage percolation on Zd. Consider the
first passage time τ(x, y), which corresponds to the travel cost a(x, y), as follows:
Assign independently to each edge e of Zd a nonnegative random weight te with a
common distribution, and define

τ(x, y) := inf

{∑
e∈r

te; r is a path on Zd from x to y

}
, x, y ∈ Zd.
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The large deviation estimates for the first passage time were shown in Kesten
(1986) (Theorem 5.2 and Theorem 5.9, the former is a counterpart of Theorem 2.1
above). His idea is to construct a good self-avoiding path on Zd approximating
τ(0, x). Then the first passage time τ(0, x) may be regarded as a sum of i.i.d. random
variables indexed by edges of Zd, and a standard large deviation estimate works.
Our model has to treat the random walk, and we cannot control it around a given
self-avoiding path on Zd. Hence, Kesten’s approach does not work directly. We will
overcome this problem in the proofs of Theorem 2.1.

Kesten (1993, Theorem 1) also obtained the exponential concentration inequality
for the first passage time, and its proof is based on a method of bounded martingale
differences. More precisely, let {e1, e2, . . . } be an enumeration of edges of Zd, and
this method represents the difference between τ(0, x) and its expectation as the
sum of the martingale differences

∆i := E[τ(0, x)|Fi]− E[τ(0, x)|Fi−1], i ≥ 1,

where F0 is the trivial σ-field and Fi is the σ-field generated by te1 , . . . , tei . In view
of Azuma’s inequality, bounds for ∆i’s govern the concentration inequality, so that
we have to estimate ∆i’s suitably as in Lemmata 3.5 and 3.6, see Kesten (1993,
Theorem 3 and Section 2) for more details. This method can be applied to any
general random variable instead of the first passage time τ(0, x). In our model, it
is done by estimating the size of the range of the random walk under the weighted
measure appearing in e(0, x).

After that, Talagrand improved Kesten’s result to the Gaussian concentration by
using convex hull approximation, see Talagrand (1995, Proposition 8.3) or Ledoux
(2001, Theorem 8.15). We can apply this method to some Lipschitz functions. In
fact, for the proof of (1.3), Ioffe and Velenik (2012) and Sodin (2014) derived the
Lipschitz continuity of the travel cost a(0, x) in the case where the law of potentials
has bounded and strictly positive support. Its Lipschitz constant depends on the
maximum and the minimum of the support of the law of the potential, and the
constant c in (1.3) inherits this dependency (see the proofs of Lemma 4 in Ioffe and
Velenik, 2012 and Theorem 1 in Sodin, 2014). Our goal is to obtain concentration
inequalities for the travel cost in unbounded nonnegative potentials. Hence, the
scheme proposed by Talagrand does not seem to be easily applicable here, and our
line of approach is more in the spirit of Kesten. As mentioned above, the same
approach taken in Ioffe and Velenik (2012) and Sodin (2014) may work if we can
control the upper deviation of H(x).

As a related topic, Flury (2007) and Zygouras (2009) studied the annealed travel
cost b(x, y) and its Lyapunov exponent:

b(x, y) := − logE

[
Ex

[
exp

{
−
H(y)−1∑
k=0

ω(Sk)

}
1{H(y)<∞}

]]

and

lim
n→∞

1

n
b(0, nx) = inf

n≥1

1

n
E[b(0, nx)] = β(x).

In particular, Zygouras gave a sufficient condition for the equality of the quenched
and the annealed Lyapunov exponents in d ≥ 4.
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Flury (2008) also investigated the quenched and the annealed partition functions:
For β ≥ 0,

Zqu
β,n := ERW

[
exp

{
−β

n∑
k=0

ω(Xk)

}]
, Zan

β,n := E
[
ERW

[
exp

{
−

n∑
k=0

ω(Xk)

}]]
,

respectively. Here (Xk)∞k=0 is the random walk on Zd starting at 0 with constant
drift in the first coordinate direction and ERW is the expectation with respect to
its law. Theorem C of Flury (2008) shows that if the drift is positive and β is
sufficiently small, then

− 1

n
Zqu
β,n ∼ −

1

n
Zan
β,n as n→∞.

Moreover, the boundedness of potentials enables us to estimate its speed of the con-
vergence. To do this, Flury considered the quenched partition function conditioned
on the random walk trajectories whose range has a proper size (see page 1535 of
Flury, 2008). This derives the Lipschitz continuity, and Talagrand’s concentration
inequality works to compare the quenched and annealed partition functions.

The large deviation estimates and the concentration inequalities have also been
studied for the directed polymer in random environment. In this model, we consider
i.i.d. random variables (ω(x, k))x∈Zd,k≥0 as space-time potentials, and the simple

random walk (Sk)∞k=0 on Zd as a random walk. A main object of this model is
the quenched partition function Zqu

β,n as above. Refer the reader to articles and

lectures Comets et al. (2003, 2004); Comets and Yoshida (2006); den Hollander
(2009) for more details. In this model, due to superadditive arguments, it is known
that the upper tail of the large deviations is exponential for the quenched partition
function. Ben-Ari (2009) thus studied the explicit order of the lower tail large devi-
ations. Corollary 1 of Ben-Ari (2009) provides a necessary and sufficient condition
for order of the lower tail large deviations to be comparable to the exponential tail
of the potential. There are few results for the explicit rate function of this model.
In this context, Georgiou and Seppäläinen (2013) investigated the upper tail large
deviations for a version of the directed polymer in random environment, and they
explicitly gave the form of the upper tail large deviation rate function for the
(1 + 1)-dimensional log-gamma distributed potentials. We need additional research
to decide the lower tail large deviation rate function explicitly, see Remark 2.4 of
Georgiou and Seppäläinen (2013). In terms of the concentration inequalities, we
can find recent results in Carmona and Hu (2002); Liu and Watbled (2009); Moreno
(2010); Watbled (2012). Talagrand’s method for the Lipschitz function is basically
used in Carmona and Hu (2002); Moreno (2010); Watbled (2012). Under an ex-
ponential tail assumption for the potential, Liu and Watbled (2009) and Watbled
(2012) basically follow the martingale method with a generalization of Hoeffding’s
inequality. This works very well for the above partition function induced by the
simple random walk up to step n. Since our model is governed by the random walk
before hitting a site x, one has to derive a good upper tail estimate for H(x) under
the weighted measure. Thus, we cannot directly apply their method as mentioned
at the end of the above subsection.

For the standard random walk in random environment, we consider the travel
cost in the case where the potential is always equal to a positive constant, i.e., the
Laplace transform of the hitting time for the random walk in random environment.
It governs the rate function for the large deviation principle for the position of the
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random walk, see Kubota (2012); Rassoul-Agha et al. (2013); Zerner (1998b). The
rate function is given by the Legendre transform of the Lyapunov exponents, and
we expect that our analysis is useful for such a problem.

1.4. Organization of the paper. Let us now describe how the present article is or-
ganized. In Section 2, we prepare a large deviation inequality for the upper tail
to prove Theorem 1.3 (see Theorem 2.1). To this end, we introduce travel costs
restricted to suitable blocks and construct appropriate i.i.d. random variables. A
large deviation argument then derives the directional version of Theorem 2.1 (see
Lemma 2.3). To extend Lemma 2.3 uniformly for all directions, we need a modi-
fication of the so-called maximal lemma in Zerner (1998a, Lemma 7) under (A1),
which is Lemma 2.4.

The goal of Section 3 is to prove Theorem 1.3. Our main tool here is the mar-
tingale method as in Kesten (1993, Section 2) or Sznitman (1996, Section 2). To
apply this, we have to control an upper bound on how much a(0, x, ω) may change
when ω is changed. The rank-one perturbation formula, which is proved by Zerner
(1998a, Lemma 12), observes effect of a change at a single site (see Lemma 3.4).
Furthermore, by using Theorem 2.1, one gives a bound on how much a(0, x, ω) may
change when ω is changed at finitely many sites.

In Section 4, we will show Theorem 1.4. A main tool is the so-called entropy
method. The entropy has been well-studied in statistical mechanics, and is a fun-
damental tool for large deviation principles, see Ellis (1985) for example. Recently,
Ledoux (2001) and Boucheron et al. (2013) developed concentrations of measure
phenomenon by using the entropy method (based on certain logarithmic Sobolev
inequalities). For the proof of Theorem 1.4 we basically follow their approach as
well as Damron and Kubota (2014). The hypothesis of the theorem guarantees
that under the weighted measure appearing in e(0, x), the size of the range of the
random walk grows at most linearly in the `1-norm of a target point, see Proposi-
tion 4.3. This proposition has already mentioned in Le (2013, Lemma 2) with only
a comment on the proof. It plays a key role in the entropy method and we give its
detailed proof.

We close this section with some general notation. Write ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞
for the `1, `2 and `∞-norms on Rd, respectively. Moreover, in each section, we use
Ci, i = 1, 2, . . . , to denote constants with 0 < Ci < ∞, whose precise values are
not important to us, and whose value may be different in different sections.

2. A large deviation inequality for the upper tail

In this section, let us prove the following large deviation inequality for the upper
tail. A part of the proof of Theorem 1.3 relies on it.

Theorem 2.1. Assume (A1). Then, for all ε > 0 there exist constants C1, C2 such
that for all x ∈ Zd,

P(a(0, x)− α(x) ≥ ε‖x‖1) ≤ C1e
−C2‖x‖1 . (2.1)

To do this, we prepare some notation and lemmata. Write TV for the exit time
of (Sk)∞k=0 from a subset V of Rd, i.e.,

TV := inf{k ≥ 0;Sk 6∈ V }.
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Then, we consider the travel cost from x to y restricted to the random walk before
exiting V as follows:

aV (x, y) := − log eV (x, y),

where

eV (x, y) := Ex

[
exp

{
−
H(y)−1∑
k=0

ω(Sk)

}
1{H(y)<TV }

]
.

For any ξ ∈ Rd \ {0}, let Rξ be a rotation of Rd with

Rξ(e1) =
ξ

‖ξ‖2
,

where e1 is the first coordinate direction of Rd. Then, for n > m ≥ 0 and N ≥ 0
we consider a block

PNm,n(ξ) := Rξ
(
[m‖ξ‖2 −N,n‖ξ‖2 +N ]× [−N,N ]d−1

)
∩ Zd.

If mξ, nξ ∈ Zd, then write am,n(ξ) := a(mξ, nξ) and TNm,n(ξ) := TPNm.n(ξ), and let

aNm,n(ξ) be the travel cost from mξ to nξ restricted to the random walk before

exiting PNm,n(ξ), i.e.,

aNm,n(ξ) := aPNm,n(ξ)(mξ, nξ).

It is clear that am,n(ξ) ≤ aNm,n(ξ) and the sequence aNm,n(ξ), n > m ≥ 0, is subad-
ditive.

Lemma 2.2. For all ξ ∈ Zd \ {0}, aNm,n(ξ) converges decreasingly to am,n(ξ) as
N →∞.

Proof : Since the event {H(nξ) < TNm,n(ξ)} is increasing in N , 1{H(nξ)<TNm,n(ξ)}
converges increasingly to 1{H(nξ)<∞} as N → ∞. Therefore, the lemma follows
from the monotone convergence theorem. �

Lemma 2.3. Assume (A1). Then, for all ε > 0 and ξ ∈ Zd \ {0} there exist
constants C3 = C3(ξ), C4 = C4(ξ) such that

P(a0,n(ξ) ≥ n(α(ξ) + ε‖ξ‖1)) ≤ C3e
−C4n‖ξ‖1 , n ≥ 0. (2.2)

Proof : Let ε > 0 and ξ ∈ Zd \ {0} be given. By (1.1) we can choose ν = ν(ξ) ∈ N
such that

E[a0,ν(ξ)] ≤ ν
(
α(ξ) +

ε

5
‖ξ‖1

)
.

Note that if N ′ ∈ N is large enough, then we can pick a path r′ on Zd from 0 to νξ
which is contained in PN ′

0,ν(ξ). This implies that for all N ≥ N ′,

aN0,ν(ξ) ≤
∑
z∈r′

(ω(z) + log(2d)),

and Lemma 2.2 and Lebesgue’s dominated convergence theorem show

lim
N→∞

E[aN0,ν(ξ)] = E[a0,ν(ξ)].

With these observations, there is an N = N(ξ) such that

E[aN0,ν(ξ)] ≤ ν
(
α(ξ) +

2ε

5
‖ξ‖1

)
. (2.3)
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We now prove (2.2) with n = πν and π ∈ N. Since
⋃π−1
j=0 PNjν,(j+1)ν(ξ) = PN0,πν(ξ)

for π ∈ N, the subadditivity shows

aN0,νπ(ξ) ≤
π−1∑
j=0

aNjν,(j+1)ν(ξ), π ∈ N. (2.4)

The sequence aNjν,(j+1)ν(ξ), j ≥ 0, has the following properties:

• For L := d2Nν−1e + 2, aNjν,(j+1)ν(ξ)’s are L-dependent, i.e., any two se-

quences aNjν,(j+1)ν(ξ), j ∈ Λ, and aNjν,(j+1)ν(ξ), j ∈ Λ′, are independent

whenever Λ, Λ′ ⊂ N0 satisfy that |j − j′| > L for all j ∈ Λ, j′ ∈ Λ′.
• All aNjν,(j+1)ν(ξ)’s have the same distribution as aN0,ν(ξ).

These, together with (2.4) and Chebyshev’s inequality, imply that for γ′ ∈ (0, γ/2),

P
(
aN0,πν(ξ) ≥ πν

(
α(ξ) +

3ε

5
‖ξ‖1

))
≤
L−1∑
i=0

P

( ∑
0≤j≤π−1
j mod L=i

aNjν,(j+1)ν(ξ) ≥ 1

L
πν
(
α(ξ) +

3ε

5
‖ξ‖1

))

≤ L exp
{
−γ
′

L
πν
(
α(ξ) +

3ε

5
‖ξ‖1

)}
E
[
exp{γ′aN0,ν(ξ)}

]π/L
.

We now estimate the expectation above. By (2.3), one has

E
[
exp{γ′aN0,ν(ξ)}

]
≤ E

[
exp

{
γ′(aN0,ν(ξ)− E[aN0,ν(ξ)])

}]
exp
{
γ′ν
(
α(ξ) +

2ε

5
‖ξ‖1

)}
.

Since et ≤ 1 + tet for t ∈ R, this is smaller than(
1 + γ′E

[(
aN0,ν(ξ)− E[aN0,ν(ξ)]

)
exp
{
γ′
(
aN0,ν(ξ)− E[aN0,ν(ξ)]

)}])
× exp

{
γ′ν
(
α(ξ) +

2ε

5
‖ξ‖1

)}
.

(2.5)

Due to (A1), we can use Lebesgue’s dominated convergence theorem to get

lim
γ′↘0

E
[(
aN0,ν(ξ)− E[aN0,ν(ξ)]

)
exp
{
γ′
(
aN0,ν(ξ)− E[aN0,ν(ξ)]

)}]
= 0.

This enables us to take γ′ = γ′(ξ) ∈ (0, γ/2) such that

E
[(
aN0,ν(ξ)− E[aN0,ν(ξ)]

)
exp
{
γ′
(
aN0,ν(ξ)− E[aN0,ν(ξ)]

)}]
≤ ε

10
ν‖ξ‖1.

Combining this and (2.5), one has

E[exp{γ′aN0,ν(ξ)}] ≤
(

1 +
γ′ε

10
ν‖ξ‖1

)
exp
{
γ′ν
(
α(ξ) +

2ε

5
‖ξ‖1

)}
.

With these observations, we have for all π ∈ N,

P
(
aN0,πν(ξ) ≥ πν

(
α(ξ) +

3ε

5
‖ξ‖1

))
≤ L

((
1 +

γ′ε

10
ν‖ξ‖1

)
exp
{
−γ
′ε

5
ν‖ξ‖1

})π/L
≤ L exp

{
− γ′ε

10L
πν‖ξ‖1

}
,

and hence (2.2) immediately follows from the fact that a0,πν(ξ) ≤ aN0,πν(ξ) in this
case.
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If n = πν + τ with 0 < τ < ν, then the subadditivity yields

a0,n(ξ) ≤ aN0,n(ξ) ≤ aN0,πν(ξ) + aNπν,n(ξ).

We use Chebyshev’s inequality to obtain

P
(
aNπν,n(ξ) ≥ ε

5
n‖ξ‖1

)
≤ exp

{
−γε

5
n‖ξ‖1

}
E
[
exp{γ(ω(0) + log(2d))}

]τ‖ξ‖1
.

It follows that

P
(
a0,n(ξ) ≥ n

(
α(ξ) +

4ε

5
‖ξ‖1

))
≤ P

(
aN0,πν(ξ) ≥ n

(
α(ξ) +

3ε

5
‖ξ‖1

))
+ P

(
aNπν,n(ξ) ≥ ε

5
n‖ξ‖1

)
≤ L exp

{
− γ′ε

10L
(n− τ)‖ξ‖1

}
+ exp

{
−γε

5
n‖ξ‖1

}
E
[
exp{γ(ω(0) + log(2d))}

]τ‖ξ‖1
.

Accordingly, we complete the proof of (2.2) in all cases by choosing C3 and C4

suitably. �

To extend Lemma 2.3 uniformly for all directions, the next lemma is useful,
which is a modification of the maximal lemma proved by Zerner (1998a, Lemma 7).

Lemma 2.4. If (A1) holds, then there exist constants C5, C6 such that for all
η > 0 and x ∈ Zd,

P
(
sup{d(x, y); y ∈ Zd, ‖x− y‖1 < η‖x‖1} ≥ C5η‖x‖1

)
≤ e−C6η‖x‖1 , (2.6)

where d(x, y) := a(x, y) ∨ a(y, x).

Proof : For x, y ∈ Zd with ‖x− y‖1 < η‖x‖1, let r be the shortest path on Zd from
x to y. Use Chebyshev’s inequality to obtain that for any c > 0,

P(d(x, y) ≥ cη‖x‖1) ≤ P
(∑
z∈r

(ω(z) + log(2d)) ≥ cη‖x‖1
)

≤ e−cγη‖x‖1E
[
exp{γ(ω(0) + log(2d))}

]η‖x‖1+1
.

The union bound shows that

P
(
sup{d(x, y); y ∈ Zd, ‖x− y‖1 < η‖x‖1} ≥ cε‖x‖1

)
≤ (2η‖x‖1 + 1)de−cγη‖x‖1E

[
exp{γ(ω(0) + log(2d))}

]η‖x‖1
,

which proves (2.6) by choosing c large enough. �

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1: Since Sd−1 := {y ∈ Rd; ‖y‖1 = 1} is compact, we can
take a subset {v1, . . . , vl} of Sd−1 ∩Qd satisfying that for any x ∈ Rd \ {0}, there is
i(x) ∈ [1, l] such that ‖x/‖x‖1−vi(x)‖1 < ε/(6C3) and |α(x/‖x‖1)−α(vi(x))| < ε/3.

For each i ∈ [1, l], choose Mi ∈ N with Mivi ∈ Zd. Let x ∈ Zd be given and set

n(x) :=

⌊
‖x‖1
Mi(x)

⌋
, ξ(x) := Mi(x)vi(x).
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Lemma 2.3 implies

P
(
a0,n(x)(ξ(x)) ≥ n(x)

(
α(ξ(x)) +

ε

3
‖ξ(x)‖1

))
≤ C3(ξ(x))e−C4(ξ(x))n(x)‖ξ(x)‖1 .

Let C7 := max1≤i≤l C3(Mivi) and C8 := min1≤i≤l C4(Mivi). Since ξ(x) is of the
form Mivi, C3(ξ(x)) ≤ C7 and C4(ξ(x)) ≥ C8 uniformly in x. On the other hand,
for all large x ∈ Zd,

‖x− n(x)ξ(x)‖1 ≤ ‖x‖1
∥∥∥∥ x

‖x‖1
− vi(x)

∥∥∥∥
1

+ max
1≤i≤l

Mi <
ε

3C5
‖x‖1,

so that Lemma 2.4 implies

P(a(0, x)− α(x) ≥ ε‖x‖1)

≤ P
(
a0,n(x)(ξ(x)) ≥ n(x)

(
α(ξ(x)) +

ε

3
‖ξ(x)‖1

))
+ P

(
d(x, n(x)ξ(x)) ≥ ε

3
‖x‖1

)
≤ C7e

−C8n(x)‖ξ(x)‖1 + exp

{
−C6ε

3C5
‖x‖1

}
.

Notice that

n(x)‖ξ(x)‖1 ≥
(
‖x‖1
Mi(x)

− 1

)
Mi(x) ≥ ‖x‖1 − max

1≤i≤l
Mi,

and the theorem immediately follows. �

3. The concentration for the upper tail

To show Theorem 1.3, we basically follow from the strategy taken in Kesten
(1993, Section 2) or Sznitman (1996, Section 2). In Subsection 3.1, let us observe
how much a(0, x, ω) may change when ω is changed. Observations of Subsection 3.1
allow us to apply the martingale argument taken in Kesten (1993, Section 2). The
proof of Theorem 1.3 is done in Subsection 3.2.

3.1. Comparison of travel costs. For M ∈ N we consider the boxes B(q) := Mq +
[0,M)d, q ∈ Zd. These boxes form a partition of Rd, and let q(x) be the index such
that x ∈ B(q(x)). Fix κ > 0 satisfying P(ω(0) ≥ κ) > 0. Given ω ∈ Ω, B(q) is said
to be occupied if there is a site x ∈ B(q) such that ω(x) ≥ κ. Let τ0 = 0 and define
for i ≥ 0,

ρi+1 := inf{k > τi;Sk reaches an occupied box},
τi+1 := inf{k > ρi+1;Sk 6∈ B(q(Sρi+1))}.

Furthermore, an `1-lattice animal is a finite `1-connected set of Zd, when the adja-
cency relation of two sites v1, v2 ∈ Zd is defined as ‖v1 − v2‖1 = 1.

Lemma 3.1. There exist constants C1, C2, C3 such that if m is large enough,
then, on an event Am with P(Acm) ≤ C1e

−C2m, we have

e(0, x) ≤ e−C3m

for all x ∈ Zd with ‖x‖1 = m.
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Proof : Let A′l be the event that for any `1-lattice animal Γ containing 0 with
#Γ = l, ∑

q∈Γ

1{B(q) is occupied} ≥
l

2
.

Notice that the number of `1-lattice animals of size l is bounded by (2d)2l = 4dl

(see Lemma 1 of Cox et al., 1993). Since P(B(0) is occupied)→ 1 as M →∞, for
M large enough, standard exponential estimates on the binomial distribution show

P((A′l)
c) ≤ 4dlP

(∑
q∈Γ

1{B(q) is occupied} <
l

2

)
≤ e−C4l (3.1)

for some constant C4. Let Am be the event that for any `1-lattice animal Γ on Zd
containing 0 of the size bigger than m/M ,∑

q∈Γ

1{B(q) is occupied} ≥
#Γ

2
.

By (3.1), there exist some constants C1 and C2 such that

P(Acm) ≤
L∑
l=1

P((A′l)
c) ≤ C1e

−C2m,

where L := bm/Mc.
For x ∈ Zd with ‖x‖1 = m, the random walk from 0 to x must pass through at

least L boxes B(q). Hence, on the event Am,

e(0, x) ≤ E0

[
L∏
i=1

exp

{
−
τi−1∑
k=ρi

ω(Sk)

}]
.

If z ∈ Zd is in an occupied box, then

Ez

[
exp

{
−
τ1−1∑
k=0

ω(Sk)

}]
≤ Ez

[
exp

{
−
τ1−1∑
k=0

κ1{ω(Sk)≥κ}

}]
≤ 1− (1− e−κ)P z

(
max

0≤k<τ1
ω(Sk) ≥ κ

)
≤ 1− (1− e−κ)

( 1

2d

)M
.

We thus use the strong Markov property to obtain that on the event Am, there
exists a constant C3 such that

e(0, x) ≤
{

1− (1− e−κ)
( 1

2d

)M}L
≤ e−C3m,

which completes the proof. �

Proposition 3.2. Assume (A1). Then, there exist constants C5, C6, C7 such that
for x ∈ Zd \ {0} and for V = [−C5‖x‖1, C5‖x‖1]d,

P
(
a(0, x) < aV (0, x)− log 2

)
≤ C6e

−C7‖x‖1 (3.2)

and

sup
x∈Zd

∣∣E[aV (0, x)]− E[a(0, x)]
∣∣ <∞. (3.3)
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Proof : Put m(c) = dc‖x‖1e and V (c) := [−m(c),m(c)]d for c > 0. From Theo-
rem 2.1 and Lemma 3.1, the left side of (3.2) is bounded from above by

C1e
−C2c‖x‖1

+ P
(
{a(0, x) < aV (c)(0, x)− log 2, a(0, x)− α(x) ≤ ‖x‖1} ∩Am(c)

)
,

(3.4)

where Am(c) is the event as in Lemma 3.1. Our task is now to estimate the last
probability. Thanks to Lemma 3.1, there exists a constant C8 such that on the
event Am(c),

E0

[
exp

{
−
H(x)−1∑
k=0

ω(Sk)

}
1{TV (c)<H(x)<∞}

]

≤ E0

[
exp

{
−
TV (c)−1∑
k=0

ω(Sk)

}
1{TV (c)<∞}

]
≤ e−C8m(c).

It follows that on the event {a(0, x)− α(x) ≤ ‖x‖1} ∩Am(c),

α(x) + ‖x‖1 ≥ a(0, x) ≥ − log
(
e−C8m(c) + e−aV (c)(0,x)

)
. (3.5)

Choose c large enough. If aV (c)(0, x) > C8m(c) holds, then (1.2) and (3.5) derive

α(x) + ‖x‖1 ≥ − log 2 + C8m(c) > α(x) + ‖x‖1.

This is a contradiction, and hence aV (c)(0, x) ≤ C8m(c). This, combined with the
second inequality in (3.5), proves that on the event {a(0, x)−α(x) ≤ ‖x‖1}∩Am(c),

a(0, x) ≥ − log
(
e−aV (c)(0,x) + e−aV (c)(0,x)

)
= aV (c)(0, x)− log 2.

Therefore, the last probability in (3.4) is equal to zero, and we finished the proof
of (3.2). On the other hand, (3.3) is an immediate consequence of (3.2). �

Fix an arbitrary x ∈ Zd \ {0}, and define

ω̂(·) := ω(·) ∧ 4d

γ
log ‖x‖1

with γ as in assumption (A1). For V as in the above proposition, we consider

ã(0, x) := aV (0, x), â(0, x) := ã(0, x, ω̂).

Then, the next proposition, which is our goal in this subsection, observes that these
travel costs are comparable.

Proposition 3.3. Assume (A1). In addition, suppose that (A3) is valid if d = 2.
Then, there exists a constant C9 such that

P
(
ã(0, x)− â(0, x) ≥ u

)
≤ C9e

−(γ/2)u, u ≥ 0, (3.6)

and

sup
x∈Zd

∣∣E[ã(0, x)]− E[â(0, x)]
∣∣ <∞. (3.7)

For the convenience, we here refer to the following rank-one perturbation formula
obtained in Zerner (1998a, Lemma 12). This gives an upper bound on how much
a(0, x, ω) may change when ω is changed at a single site. We omit the proof and
refer the reader to that of Zerner (1998a, Lemma 12).
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Lemma 3.4 (Zerner). Let y ∈ Zd and ω, σ ∈ Ω such that ω(z) = σ(z) for z 6= y and
ω(y) ≤ σ(y). Then, for V = Zd or [−C5‖x‖1, C5‖x‖1]d, aV (0, x, σ)− aV (0, x, ω) is
nonnegative, and is bounded from above by the minimum of

− logQ0,x
ω (H(x) ≤ H(y))

and

σ(y)− ω(y) +
1

1−min{e−ω(y), P 0(H2(0) <∞)}
,

where H2(0) is the time of the second visit of 0 for the random walk, and Q0,x
ω is

the probability measure such that

dQ0,x
ω

dP 0
= e(0, x, ω)−1 exp

{
−
H(x)−1∑
k=0

ω(Sk)

}
1{H(x)<∞}.

Proof of Proposition 3.3: Recall V = [−C5‖x‖1, C5‖x‖1]d, and then let V ∩
Zd = {x1, . . . , xM}. To shorten notation, set ωi := ω(xi) for 1 ≤ i ≤ M . Since
ã(0, x, ω) depends only on configurations in V , we can write

f(ω1, . . . , ωM ) := ã(0, x, ω).

Then, one has

0 ≤ ã(0, x, ω)− â(0, x, ω) = f(ω1, . . . , ωM )− f(ω̂1, . . . , ω̂M )

=

M−1∑
i=0

{
f([ω̂, ω]i)− f([ω̂, ω]i+1)

}
,

where [ω̂, ω]0 := ω and

[ω̂, ω]i := (ω̂1, . . . , ω̂i, ωi+1, . . . , ωM ), 1 ≤ i ≤M.

Thanks to (A3) in d = 2 and transience of the simple random walk in d ≥ 3,
Lemma 3.4 shows that there exists a constant C10 such that the left side of (3.6)
is smaller than or equal to

P

(
M−1∑
i=0

{
f([ω̂, ω]i)− f([ω̂, ω]i+1)

}
≥ u

)

≤ P

(
M∑
i=1

1{ωi 6=ω̂i}
{
ωi − ω̂i + C10

}
≥ u

)

= P

(
M∑
i=1

1{ωi>(4d/γ) log ‖x‖1}

{
ωi −

4d

γ
log ‖x‖1 + C10

}
≥ u

)
.

Therefore, for sufficiently large x ∈ Zd, one has the following upper bound on the
left side of (3.6):

P

(
M∑
i=1

1{ωi>(4d/γ) log ‖x‖1}ωi ≥ u

)
.
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In addition, we can estimate this as follows:

e−(γ/2)u

{
1 +

∫ ∞
(4d/γ) log ‖x‖1

(e(γ/2)s − 1)P(ω(0) ∈ ds)
}M

≤ e−(γ/2)u
(
1 + ‖x‖−2d

1 E[eγω(0)]
)M

≤ exp
{
−γu

2
+M‖x‖−2d

1 E[eγω(0)]
}
.

Since V = [−C5‖x‖1, C5‖x‖1]d, M is of order ‖x‖d1. Hence, (3.6) follows. On the
other hand, (3.7) is an immediate consequence of (3.6). �

3.2. Proof of Theorem 1.3. For the proof of Theorem 1.3, our main tool is the
martingale method as in Kesten (1993) or Sznitman (1996). Throughout this sub-
section, we always assume (A1). In addition, suppose that (A3) is valid if d = 2.

For any sufficiently large x ∈ Zd, one has

P
(
a(0, x)− E[a(0, x)] ≥ t‖x‖1/21

)
≤ P

(
ã(0, x)− E[ã(0, x)] ≥ t

3
‖x‖1/21

)
+ P

(
E[ã(0, x)]− E[aV (0, x)] ≥ t

3
‖x‖1/21

)
.

Then, (3.3) of Proposition 3.2 shows that for t large enough, this is equal to

P
(
ã(0, x)− E[ã(0, x)] ≥ t

3
‖x‖1/21

)
.

From Proposition 3.3, this is smaller than

C9 exp
{
− γ

18
t‖x‖1/21

}
+ P

(
â(0, x)− E[â(0, x)] ≥ t

9
‖x‖1/21

)
. (3.8)

To estimate the last probability, we will prepare some notation and lemmata.
For the enumerations xi and ωi as in the proof of Proposition 3.3, let F0 be the
trivial σ-field and Fi σ-field generated by ω1, . . . , ωi. Moreover, define

∆i := E[â(0, x)|Fi]− E[â(0, x)|Fi−1], 1 ≤ i ≤M.

Lemma 3.5. Assume (A1). In addition, suppose that (A3) is valid if d = 2. Then,
there exist some constants C11, C12 independent of x such that for all 1 ≤ i ≤M ,

|∆i| ≤ C11 log ‖x‖1 (3.9)

and

E[∆2
i |Fi−1] ≤ C12E

[
Q0,x
ω̂ (H(x) > H(xi))

∣∣∣Fi−1

]
. (3.10)

Lemma 3.6. Assume (A1) and let

Ui := C12Q
0,x
ω̂ (H(x) > H(xi)).

Then, there exist some constants C13 and C14 independent of x such that C13 >
e2C2

11, and for all u ≥ C13‖x‖1,

P

(
M∑
i=1

Ui ≥ u

)
≤ e−C14u.
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Let us postpone the proofs of these lemmata. Given Lemmata 3.5 and 3.6, we
can apply (1.29) of Kesten (1993, Theorem 3). Then, there exist some constants
C15, C16, C17 such that for t ≤ C15‖x‖1,

P
(
â(0, x)− E[â(0, x)] ≥ t

9
‖x‖1/21

)
≤ C16e

−C17t. (3.11)

Note that

â(0, x) ≤
(

4d

γ
+ log(2d)

)
‖x‖1 log ‖x‖1,

so that the left side of (3.11) is equal to zero for t > 9{4d/γ+log(2d)}‖x‖1/21 log ‖x‖1.

Since 9{4d/γ + log(2d)}‖x‖1/21 log ‖x‖1 < C15‖x‖1 for all large x, (3.11) holds for
all t ≥ 0. The theorem immediately follows from this and (3.8). �

Proof of Lemma 3.5: We can represent ∆i as

∆i =

∫
Ω

{
â(0, x, [ω, ω′]i)− â(0, x, [ω, ω′]i−1)

}
P(dω′).

Thus, Schwarz’s inequality shows

∆2
i ≤

∫
Ω

{
â(0, x, [ω, ω′]i)− â(0, x, [ω, ω′]i−1)

}2 P(dω′) (3.12)

Lemma 3.4 proves that∣∣â(0, x, [ω, ω′]i)− â(0, x, [ω, ω′]i−1)
∣∣

≤ max
s=ω̂i,ω̂′

i

[
s+

(
1−min{e−s, P 0(H2(0) <∞)}

)−1
]
.

(3.13)

Thanks to (A3) in d = 2 and transience of the simple random walk in d ≥ 3,
the last term is bounded from above by max{ω̂i, ω̂′i}+ C18 for some constant C18.
Therefore,

∆2
i ≤

(
4d

γ
log ‖x‖1 + C18

)2

∨ E[(ω(0) + C18)2],

and (3.9) holds for all large x ∈ Zd.
We next show (3.10). By (3.12), E[∆2

i |Fi−1] is bounded by∫
Ω

∫
Ω

{
â(0, x, [ω, ω′]i)− â(0, x, [ω, ω′]i−1)

}2 P(dω′)P(dωi).

Moreover, by symmetry we can restrict the domain of the integration above to those
configurations with ω′i ≤ ωi. Consequently,

E[∆2
i |Fi−1]

≤ 2

∫
Ω

∫
Ω

{
â(0, x, [ω, ω′]i)− â(0, x, [ω, ω′]i−1)

}2
1{ω′

i≤ωi} P(dω′)P(dωi).

Apply Lemma 3.4 and (3.13) again, and the integration in the right side is smaller
than or equal to

E[(ω(0) + C18)2]P
(
Q0,x
ω̂ (H(x) ≤ H(xi)) < 1/2

∣∣Fi−1

)
+ E

[{
logQ0,x

ω̂ (H(x) ≤ H(xi))
}2

1{Q0,x
ω̂

(H(x)≤H(xi))≥1/2}

∣∣∣Fi−1

]
.
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Write I1 and I2 for the first and second terms above, respectively. Then,

I1 = E
[
(ω(0) + C18)2

]
P
(
Q0,x
ω̂ (H(x) > H(xi)) > 1/2

∣∣Fi−1

)
≤ 2E

[
(ω(0) + C18)2

]
E
[
Q0,x
ω̂ (H(x) > H(xi))

∣∣Fi−1

]
.

Using (log t)2 ≤ 1− t for t ∈ [1/2, 1], we have

I2 ≤ E
[
Q0,x
ω̂ (H(x) > H(xi))

∣∣Fi−1

]
,

and therefore

I1 + I2 ≤ (2E
[
(ω(0) + C18)2

]
+ 1)E

[
Q0,x
ω̂ (H(x) > H(xi))

∣∣Fi−1

]
.

With these observations, taking C12 large enough, we get bound (3.10). �

Proof of Lemma 3.6: By the definition of Ui, we have

P

(
M∑
i=1

Ui ≥ u

)
≤ P

(
EQ0,x

ω̂
[#A] ≥ C−1

12 u
)
, (3.14)

where A := {Sk; 0 ≤ k < H(x)}. Let c := − logE[e−(ω(0)∧(4d/γ))]. We use Jensen’s,
Chebyshev’s and Schwarz’s inequalities to obtain that for γ′ ∈ (0, γ∧1/2), the right
side of (3.14) is smaller than or equal to

P
(
a(0, x) + logE0

[
exp

{∑
z∈A

(c− ω̂(z))

}]
≥ cC−1

12 u

)

≤ exp
{
− cγ

′

C12
u
}
E

[
eγ

′a(0,x)E0

[
exp

{∑
z∈A

(c− ω̂(z))

}]γ′]

≤ exp
{
− cγ

′

C12
u
}
E
[
e2γ′a(0,x)

]1/2E[E0

[
exp

{∑
z∈A

(c− ω̂(z))

}]2γ′]1/2

.

Notice that

E
[
e2γ′a(0,x)

]1/2 ≤ eγ′‖x‖1 log(2d)E
[
e2γ′ω(0)

]‖x‖1/2
,

and if ‖x‖1 ≥ e, then

E
[
ec−ω̂(0)

]
≤ E

[
ec−(ω(0)∧(4d/γ))

]
= 1.

Hence Jensen’s inequality yields that

E

[
E0

[
exp

{∑
z∈A

(c− ω̂(z))

}]2γ′]1/2

≤ E
[
E0

[
exp

{∑
z∈A

(c− ω̂(z))

}]]γ′

= E0

[∏
z∈A

E[exp{c− ω̂(0)}]

]γ′

≤ 1.

With these observations, we have

P

(
M∑
k=1

Uk ≥ u

)
≤ exp

{
− cγ

′

C12
u+ γ′‖x‖1 log(2d) +

‖x‖1
2

logE
[
e2γ′ω(0)

]}
.

Taking

u0 := max

{
e2C2

10(log ‖x‖1)2, ‖x‖1
(

2C12

c
log(2d) +

C12

cγ′
logE

[
e2γ′ω(0)

])}
,
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one has for u ≥ u0,

P

(
M∑
k=1

Uk ≥ u

)
≤ exp

{
− cγ′

2C12
u
}
.

This completes the proof. �

4. The Gaussian concentration for the lower tail

In this section, we prove Theorem 1.4. To this end, we basically follow from
the strategy taken in Damron and Kubota (2014, Theorem 1.1). First, in Subsec-
tion 4.1 we introduce the entropy and estimate it from above by using the size of
the range of the random walk, see Proposition 4.1 below. Then we give a bound
for this size under the weighted measure Q0,x

ω as in Lemma 3.4, see Proposition 4.3
and Corollary 4.4 below. Finally, we shall complete the proof of Theorem 1.4 in
Subsection 4.3.

4.1. The entropy. As mentioned above, our approach is based on Damron and
Kubota (2014) for the Gaussian concentration. Accordingly, let us introduce the
entropy Ent(X) of a nonnegative random variable X with E[X] <∞, following the
notation used in Damron and Kubota (2014):

Ent(X) := E[X logX]− E[X] logE[X].

We have Ent(X) ≥ 0 by Jensen’s inequality. If µ is the probability measure defined
by µ(A) = E[X1A]/E[X], then the entropy of X is the relative entropy H(µ|P) of
Q with respect to P up to a normalizing constant multiple:

Ent(X)

E[X]
= H(µ|P).

This means that the following standard properties are inherited from the relative
entropy:

Ent(X) = sup
{
E[XW ];E[eW ] ≤ 1

}
(4.1)

and

Ent(X) ≤
∑
y∈Zd

E[Enty(X)], (4.2)

where Enty(X) is the entropy of X considered only as a function of ω(y) (with all
other configurations fixed).

The main object of this subsection is to obtain the following bound for the
entropy, which is the counterpart to Proposition 2.5 of Damron and Kubota (2014).

Proposition 4.1. Assume (A2). In addition, suppose that (A3) is valid if d = 2.
There exists a constant C1 such that for λ ≤ 0,

Ent(eλa(0,x)) ≤ C1λ
2E
[
eλa(0,x)Ê0,x

ω [#A]
]
, (4.3)

where A := {Sk; 0 ≤ k < H(x)} and Ê0,x
ω is the expectation with respect to the

probability measure Q0,x
ω as in Lemma 3.4.
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To this end, we prepare some notation and lemmata. For a given x ∈ Zd we set
U := a(0, x). In addition, for y ∈ Zd let Uy be the variable U in the configuration
in which the potential at y is replaced by its independent copy ω′(y). Write Ey and

Ey for averages only over the potential at y, and over both the potential at y and
its independent copy, respectively. The next lemma follows from the same strategy
taken in Lemma 2.7 of Damron and Kubota (2014). For the reader’s convenience,
we shall repeat the argument, since our model is different and the proof is not long.

Lemma 4.2. We have for λ ≤ 0 and y ∈ Zd,

Enty(eλU ) ≤ λ2Ey
[
eλU (Uy − U)2

+

]
. (4.4)

Proof : Since f(t) := t log t is convex on [0,∞), one has

f(Ey[X]) ≥ f ′(a)(Ey[X]− a) + f(a)

for suitable X and a > 0. This gives

Ey[f(X)]− f(Ey[X]) ≤ Ey[f(X)]− f(a)− Ey[(X − a)f ′(a)].

We now apply this with X = eλU and a = eλUy , and integrate over the independent
copy of the potential at y to obtain

Ey[f(eλU )]− f(Ey[eλU ])

≤ Ey
[
f(eλU )− f(eλUy )− (eλU − eλUy )f ′(eλUy )

]
.

This, together with the definition of f , shows

Enty(eλU ) ≤ Ey
[
eλUg(λ(Uy − U))

]
,

where g(t) := et − t− 1. Since g(t) = g(t+) + g(−t−), the right side is equal to

Ey
[
eλUg(λ(Uy − U)+)

]
+ Ey

[
eλUyeλ(U−Uy)g(−λ(Uy − U)−)

]
.

By symmetry, the second term is equal to

Ey
[
eλUeλ(Uy−U)+g(−λ(Uy − U)+)

]
.

With these observations, setting h(t) := t(et − 1), one has

Enty(eλU ) ≤ Ey
[
eλUh(λ(Uy − U)+)

]
,

and (4.4) follows from the fact that h(t) ≤ t2 for t ≤ 0. �

After the preparation above, let us prove Proposition 4.1.

Proof of Proposition 4.1: Combining Lemmata 3.4 and 4.2, one has

Enty(eλU ) ≤ λ2Ey
[
eλU

(
min

{
− logQ0,x

ω (H(x) ≤ H(y)), ω′(y) + C2

})2]
for some constant C2. The last expectation is bounded from above by

I1 + I2 := Ey
[
eλU (ω′(y) + C2)21{Q0,x

ω (H(x)≤H(y))<1/2}

]
+ Ey

[
eλU

(
logQ0,x

ω (H(x) ≤ H(y))
)2
1{Q0,x

ω (H(x)≤H(y))≥1/2}

]
.

We have

I1 = Ey
[
eλU (ω′(y) + C2)21{Q0,x

ω (H(x)>H(y))>1/2}

]
≤ 2E[(ω(0) + C2)2]Ey

[
eλUQ0,x

ω (H(x) > H(y))
]
.
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Since (log t)2 ≤ 1− t for 1/2 ≤ t ≤ 1, it holds that

I2 ≤ Ey
[
eλUQ0,x

ω (H(x) > H(y))
]
.

Therefore,

I1 + I2 ≤ (2E[(ω(0) + C2)2] + 1)Ey
[
eλUQ0,x

ω (H(x) > H(y))
]
.

This combined with (4.2) yields

Ent(eλU ) ≤
∑
y∈Zd

λ2(2E[(ω(0) + C2)2] + 1)E
[
Ey
[
eλUQ0,x

ω (H(x) > H(y))
]]

= (2E[(ω(0) + C2)2] + 1)λ2E
[
eλU Ê0,x

ω [#A]
]
,

which proves (4.3). �

4.2. The size of random lattice animals. First of all, let us prepare some notation
to mention the main object of this subsection. Given a potential ω ∈ Ω, we say that
a subset A of Zd is occupied if there exists z ∈ A such that ω(z) ≥ κ, otherwise A
is empty. Fix κ > 0 satisfying P(ω(0) ≥ κ) > 0. For sufficiently large l ∈ 2N, we
consider the cubes

C(q) :=
(
lq +

[
− l

2
,
l

2

)d)
∩ Zd, q ∈ Zd,

and set

Cx := {q ∈ Zd;∃q′ ∈ Zd with ‖q′ − q‖∞ ≤ 1 such that x ∈ C(q′)}.

We now define the successive times of travel of (Sk)∞k=0 at `∞-distance 3l/4 as
follows:

τ0 := 0,

τi+1 := inf{k > τi; ‖Sk − Sτi‖∞ ≥ 3l/4}, i ≥ 0.

Observe that Sτi and Sτi+1 lie in neighboring cubes C(q) for the neighboring relation
‖q − q′‖∞ ≤ 1. Furthermore, during the time interval [τi, τi+1], the walk cannot
visit more than 3d distinct cubes C(q). Therefore, if we denote

Ã := {q ∈ Zd;∃i ≥ 0 such that Sτi∧H(x) ∈ C(q)},

then Ã is Q0,x
ω -a.s. an `∞-lattice animal, i.e., a finite `∞-connected set of Zd with

the adjacency relation ‖v1 − v2‖∞ = 1, v1, v2 ∈ Zd. The definition of Ã implies

#A ≤ (3l)d#Ã Q0,x
ω -a.s. (4.5)

The following proposition is the main object of this subsection.

Proposition 4.3. Let Ω′ := {ω ∈ Ω; (−l/8, l/8)d is occupied} and let

χ := sup
‖z‖∞≤l/2
ω∈Ω′

Ez
[
exp

{
−
τ1−1∑
k=0

ω(Sk)

}]
.

Then, the following hold:

(1) We have χ ∈ (0, 1).
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(2) There exist constants C3, C4, C5, C6 such that on an event An with
P(Acn) ≤ C3e

−C4n, for all x ∈ Zd,

Ê0,x
ω

[
exp{C5#A}

]
≤ C6χ

−ne(0, x)−1.

This proposition is the counterpart to Sznitman (1995, Theorem 1.3) and it
has already been mentioned in Le (2013, Lemma 2) with only a comment on the
proof. (For the annealed setting, the similar result was obtained by Kosygina and
Mountford, 2012.) However, we have to review its proof more carefully to find the
event An. We will give the detailed proof of Proposition 4.3 to the end of this
subsection.

The next corollary is an immediate consequence of Proposition 4.3.

Corollary 4.4. Let C7 := (2/C5)(logχ−1 + 1) and define for x ∈ Zd,

Yx := Ê0,x
ω [#A]1{C7a(0,x)<Ê0,x

ω [#A]}.

Then, there exist constants C8, C9 such that for all large x ∈ Zd,

E[eC8Yx ] ≤ C9.

Proof : From Proposition 4.3,

P(Yx ≥ n) ≤ C3e
−(C4/C7)n

+ P
(
Adn/C7e ∩

{
Ê0,x
ω [#A] ≥ n, C7a(0, x) < Ê0,x

ω [#A]
})
,

On the event appearing in the last probability,

C5Ê
0,x
ω [#A] ≤ log Ê0,x

ω [exp{C5#A}]

≤ logC6 +
1

C7
(logχ−1 + 1)Ê0,x

ω [#A].

By the choice of C7, one obtains

C5Ê
0,x
ω [#A] ≤ logC6 +

C5

2
Ê0,x
ω [#A]

or

Ê0,x
ω [#A] ≤ 2

C5
logC6.

However, since Ê0,x
ω [#A] ≥ ‖x‖1, the inequality fails to hold for all x ∈ Zd with

‖x‖1 > (2/C5) logC6. This means that P(Yx ≥ n) ≤ C3e
−(C4/C7)n for all large

x ∈ Zd. Putting C8 := C4/(2C7), one has for all large x ∈ Zd,

E[eC8Yx ] ≤
∫ ∞

0

P
(
Yx ≥ C−1

8 log u
)
du ≤ 1 + C3e

C4/C7 ,

and the proof is complete. �

Proof of Proposition 4.3: (1) See page 7 of Le (2013) for the upper bound. Let
us only prove the lower bound. If l ∈ 2N is sufficiently large, then we can find
ω0 ∈ Ω′. Letting r be a path on Zd from 0 to a site outside (−3l/4, 3l/4)d, one has

χ ≥ exp

{
−
∑
z∈r

ω0(z)

}( 1

2d

)#r

> 0.
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(2) Let An be the event that for any `∞-lattice animal Γ containing 0 of the size
bigger than n, ∑

q∈Γ

1{lq + (−l/8, l/8)d is occupied} ≥
#Γ

2
.

By the same strategy as in Lemma 3.1, we have for some constants C3 and C4,

P(Acn) ≤ C3e
−C4n.

For z ∈ Zd, define Oc(z) := 1 if q ∈ Zd with z ∈ C(q) is not in Cx and lq +
(−l/8, l/8)d is occupied, otherwise Oc(z) := 0. Furthermore, let us introduce

M0 := 1,

Mm :=

m−1∏
i=0

χ−Oc(Sτi )1{τi+1<H(x)} exp

{
−
τm∧H(x)−1∑

k=0

ω(Sk)

}
, m ≥ 1.

We will prove that (Mm)∞m=0 is an (Fτm)∞m=0-supermartingale under P 0, where
Fτm is the σ-field associated to the stopping time τm. For the proof, we use the
strong Markov property to obtain

E0[Mm+1|Fτm ]

= Mm

(
1{τm≥H(x)}

+ 1{τm<H(x)}E
Sτm

[
χ−Oc(S0)1{τ1<H(x)} exp

{
−
τ1∧H(x)−1∑

k=0

ω(Sk)

}])
.

Observe that when Sτm ∈
⋃
q∈Cx C(q), Oc(S0) = 0 holds PSτm -a.s. and

ESτm

[
χ−Oc(S0)1{τ1<H(x)} exp

{
−
τ1∧H(x)−1∑

k=0

ω(Sk)

}]
≤ 1.

On the other hand, when Sτm 6∈
⋃
q∈Cx C(q), we have τ1 < H(x) PSτm -a.s., so that

ESτm

[
χ−Oc(S0)1{τ1<H(x)} exp

{
−
τ1∧H(x)−1∑

k=0

ω(Sk)

}]

= ESτm
[
χ−Oc(S0) exp

{
−
τ1−1∑
k=0

ω(Sk)

}]
.

If lq + (−l/8, l/8)d with Sτm ∈ C(q) is empty, then this is equal to

ESτm
[
exp

{
−
τ1−1∑
k=0

ω(Sk)

}]
≤ 1.

If lq + (−l/8, l/8)d with Sτm ∈ C(q) is occupied, then ‖Sτm − lq‖∞ ≤ l/2 and
(−l/8, l/8)d is occupied in the configuration ω(· + lq). Therefore the definition of
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χ implies

ESτm
[
χ−Oc(S0) exp

{
−
τ1−1∑
k=0

ω(Sk)

}]
= χ−1ESτm−lq

[
exp

{
−
τ1−1∑
k=0

ω(Sk + lq)

}]
≤ 1.

With these observations,

E0[Mm+1|Fτm ] ≤Mm

(
1{τm≥H(y)} + 1{τm<H(y)}

)
= Mm,

which proves that (Mm)∞m=0 is an (Fτm)∞m=0-supermartingale under P 0.
Using Fatou’s lemma and the martingale convergence theorem, we can see that

E0[M∞] ≤ 1. Fix ω ∈ An. Then, Q0,x
ω -a.s. either #Ã ≤ n or∑

q∈Ã

1{lq + (−l/8, l/8)d is occupied} ≥
#Ã

2
.

Hence, by (4.5),

Ê0,x
ω

[
exp
{ 1

2(3l)d
(logχ−1)#A

}]
≤ Ê0,x

ω

[
exp
{1

2
(logχ−1)#Ã

}]
≤ χ−n/2e(0, x)−1 + Ê0,x

ω

[
exp

{
(logχ−1)

∑
q∈Ã

1{lq + (−l/8, l/8)d is occupied}

}]
.

Note that∑
q∈Ã

1{lq + (−l/8, l/8)d is occupied} ≤
∞∑
i=0

Oc(Sτi)1{τi+1<H(x)} + #Cx,

and thus

Ê0,x
ω

[
exp

{
logχ−1

∑
q∈Ã

1{lq + (−l/8, l/8)d is occupied}

}]
≤ E0[M∞]χ−#Cxe(0, x)−1

≤ χ−#Cxe(0, x)−1.

This implies

Ê0,x
ω

[
exp
{ 1

2(3l)d
logχ−1#A

}]
≤ (χ−n/2 + χ−#Cx)e(0, x)−1.

Since #Cx = 3d and χ ∈ (0, 1), the proof is complete. �

4.3. Proof of Theorem 1.4. For the proof, we follow the strategy taken in Section 3
of Damron and Kubota (2014). Define for λ ≤ 0,

ψ(λ) := logE[eλ(a(0,x)−E[a(0,x)])] = logE[eλa(0,x)]− λE[a(0, x)].

Note that ψ(λ) is nonnegative by Jensen’s inequality.
The following proposition plays a key role in the proof of Theorem 1.4.
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Proposition 4.5. Assume (A2). In addition, suppose that (A3) is valid if d = 2.
There exists constants C10, C11 such that for all λ ∈ [−C10, 0] and for all large
x ∈ Zd,

ψ(λ) ≤ C11λ
2‖x‖1. (4.6)

Proof : Let us first show that there exist constants C10, C11 such that for all λ ∈
[−C10, 0] and for all large x ∈ Zd,

Ent(eλa(0,x)) ≤ C11λ
2‖x‖1E[eλa(0,x)]. (4.7)

To this end,

E
[
eλa(0,x)Ê0,x

ω [#A]
]
≤ C7E[eλa(0,x)a(0, x)] + E[eλa(0,x)Yx].

By Chebyshev’s association inequality (see Boucheron et al., 2013, Theorem 2.14),
the first term is bounded by

C7E[eλa(0,x)]E[a(0, x)].

By choosing W = C8Yx−logE[eC8Yx ] in (4.1), a standard relative entropy inequality
derives the following bound for the second term:

C8E[eλa(0,x)Yx] ≤ E[eλa(0,x)] logE[eC8Yx ] + Ent(eλa(0,x)).

With these observations, Proposition 4.1 enables us to see that

E
[
eλa(0,x)Ê0,x

ω [#A]
]
≤ C7E[eλa(0,x)]E[a(0, x)] + C−1

8 E[eλa(0,x)] logE[eC8Yx ]

+ C−1
8 C1λ

2E
[
eλa(0,x)Ê0,x

ω [#A]
]

or

E
[
eλa(0,x)Ê0,x

ω [#A]
]

≤
(

1− C1λ
2

C8

)−1(
C7E[a(0, x)] + C−1

8 logE[eC8Yx ]
)
E[eλa(0,x)].

Thanks to Corollary 4.4, there exists a constant C12 such that for all large x ∈ Zd,
C7E[a(0, x)] + C−1

8 logE[eC8Yx ] ≤ C12‖x‖1.

Therefore, put C10 := {C8/(2C1)}1/2 and use Proposition 4.1 again to obtain that
for all λ ∈ [−C10, 0] and for all large x ∈ Zd,

Ent(eλa(0,x)) ≤ C1C12λ
2

(
1− C1λ

2

C8

)−1

‖x‖1E[eλa(0,x)]

≤ 2C1C12λ
2‖x‖1E[eλa(0,x)],

which implies (4.7) by taking C11 := 2C1C12.
Let us prove (4.6). It is clear in the case λ = 0, so that we treat the case λ < 0.

Notice that

ψ′(λ) =
E[a(0, x)eλa(0,x)]

E[eλa(0,x)]
− E[a(0, x)].

Since

λψ′(λ)− ψ(λ) =
Ent(eλa(0,x))

E[eλa(0,x)]
,
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(4.7) shows that for all λ ∈ [−C10, 0) and for all large x ∈ Zd,

λψ′(λ)− ψ(λ) ≤ C11λ
2‖x‖1.

Dividing this by λ2, we have

d

dλ

(ψ(λ)

λ

)
=
λψ′(λ)− ψ(λ)

λ2
≤ C11‖x‖1.

Because ψ(λ)/λ ↗ 0 as λ ↗ 0, this implies that for all λ ∈ [−C10, 0) and for all
large x ∈ Zd,

ψ(λ)

λ
≥ λC11‖x‖1,

and the proof is complete. �

Once Proposition 4.5 is proved, the proof of Theorem 1.4 is straightforward as
follows.

Proof of Theorem 1.4: Proposition 4.5 implies that for all λ ∈ [−C10, 0] and for
all large x ∈ Zd,

P(a(0, x)− E[a(0, x)] ≤ −s‖x‖1) ≤ esλ‖x‖1eψ(λ) ≤ e(sλ+C11λ
2)‖x‖1 .

Set λ = −s/(2C11) for the bound

P(a(0, x)− E[a(0, x)] ≤ −s‖x‖1) ≤ exp

{
− s2

4C11
‖x‖1

}
, 0 ≤ s ≤ 2C10C11.

Substituting s = t‖x‖−1/2
1 , one has for t ∈ [0, 2C10C11‖x‖1/21 ],

P
(
a(0, x)− E[a(0, x)] ≤ −t‖x‖1/21

)
≤ exp

{
− t2

4C11

}
.

For t > 2C10C11‖x‖1/21 , we choose a constant C13 satisfying C13‖x‖1 ≥ E[a(0, x)].

Then, for t ∈ (2C10C11‖x‖1/21 , C13‖x‖1/21 ],

P
(
a(0, x)− E[a(0, x)] ≤ −t‖x‖1/21

)
≤ P(a(0, x)− E[a(0, x)] ≤ −2C10C11‖x‖1) ≤ e−C

2
10C11‖x‖1 ,

which is bounded by exp{−(C2
10C11/C

2
13)t2}. In addition, for t > C13‖x‖1/21 ,

P
(
a(0, x)− E[a(0, x)] ≤ −t‖x‖1/21

)
≤ P

(
E[a(0, x)] ≥ t‖x‖1/21

)
≤ P(E[a(0, x)] > C13‖x‖1) = 0.

Therefore the proof is complete. �
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