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Abstract. The stacked contact process is a stochastic model for the spread of an
infection within a population of hosts located on the d-dimensional integer lattice.
Regardless of whether they are healthy or infected, hosts give birth and die at
the same rate and in accordance to the evolution rules of the neutral multitype
contact process. The infection is transmitted both vertically from infected parents
to their offspring and horizontally from infected hosts to nearby healthy hosts. The
population survives if and only if the common birth rate of healthy and infected
hosts exceeds the critical value of the basic contact process. The main purpose of
this work is to study the existence of a phase transition between extinction and
persistence of the infection in the parameter region where the hosts survive.

1. Introduction

This paper is concerned with the stacked contact process which has been re-
cently introduced and studied numerically in Court et al. (2013). This process is a
stochastic model for the spread of an infection within a population of hosts and is
based on the framework of interacting particle systems. The model assumes that all
the hosts give birth and die at the same rate regardless of whether they are healthy
or infected, and that the infection is transmitted both vertically from infected par-
ents to their offspring and horizontally from infected hosts to nearby healthy hosts.
More precisely, the state of the process at time t is a spatial configuration

ξt : Z
d −→ {0, 1, 2}

where state 0 means empty, state 1 means occupied by a healthy host, and state 2
means occupied by an infected host. The inclusion of an explicit spatial structure
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in the form of local interactions, meaning that hosts can only interact with nearby
hosts, is another important component of the model. In particular, the dynamics
is built under the assumption that the state at vertex x is updated at a rate that
only depends on the state at x and in the neighborhood

Nx := {y ∈ Z
d : y 6= x and maxi=1,2,...,d |yi − xi| ≤ L}.

Here, the parameter L is an integer which is referred to as the range of the inter-
actions. From this collection of interaction neighborhoods, one defines the fraction
of neighbors of every vertex x which are in state j as

fj(x, ξ) := card {y ∈ Nx : ξ(y) = j}/ card Nx.

The transition rates at x are then given by

0 → 1 at rate λ1 f1(x, ξ) 1 → 0 at rate 1

0 → 2 at rate λ1 f2(x, ξ) 2 → 0 at rate 1

1 → 2 at rate λ2 f2(x, ξ) 2 → 1 at rate δ.

The first four transition rates at the top indicate that healthy and infected hosts give
birth at the same rate λ1 and die at the same rate one. An offspring produced at x is
sent to a vertex chosen uniformly at random from the interaction neighborhood Nx

but the birth is suppressed when the target site is already occupied. Note that the
offspring is always of the same type as its parent. The process described exclusively
by these four transitions is the multitype contact process, completely analyzed
in Neuhauser (1992) under the assumption that both types die at the same rate. The
stacked contact process includes two additional transitions in which individuals can
also change type: an infected host chooses a vertex at random from its neighborhood
at rate λ2 and, when this vertex is occupied by a healthy host, infects this host,
which corresponds to a horizontal transmission of the infection, and an infected
host recovers at the spontaneous rate δ. For results about a more general process
in which the infection affects the birth rate of its host, we refer the reader to Foxall
and Lanchier (2016).

Main results in the general case – Interacting particle systems are ideally suited
to understand the role of space but are often difficult to study due to the inclusion
of local interactions that create spatial correlations; the smaller the dimension and
the range of the interactions, the stronger these correlations. The main question
about the process is whether the host population survives or goes extinct and, in
case of survival, whether the infection persists or not, where we say that

hosts survive when lim inft→∞ P (ξt(x) 6= 0) > 0 for all x ∈ Z
d

the infection persists when lim inft→∞ P (ξt(x) = 2) > 0 for all x ∈ Z
d

for the system starting from the configuration with only infected hosts. Our first
results are mainly qualitative but hold regardless of the spatial dimension and/or
the dispersal range, while our last result gives a more detailed picture of the phase
diagram of the process under the assumption that the range of the interactions is
large, which weakens spatial correlations.

Whether the host population survives or goes extinct can be easily answered by
observing that hosts evolve like a basic contact process. Indeed, defining

η1t (x) := 1{ξt(x) 6= 0} for all (x, t) ∈ Z
d × R+
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results in a spin system with transition rates

0 → 1 at rate λ1 f1(x, ξ) + λ1 f2(x, ξ) = λ1 f1(x, η
1)

1 → 0 at rate 1,

which is the contact process with birth rate λ1 and death rate one. It is known for
this process that there exists a critical value λc ∈ (0,∞) such that above this critical
value the hosts survive whereas at and below this critical value the population goes
extinct Bezuidenhout and Grimmett (1990). To avoid trivialities, we assume from
now on that λ1 > λc and study whether the infection persists or not.

Basic coupling techniques to compare processes starting from the same config-
uration but with different parameters does not imply that the probability that
the infection persist is nondecreasing with respect to the birth rate. However, as
proved in Lemma 2.2 below, a coupling argument shows that, everything else being
fixed, the probability that the infection persists is nondecreasing with respect to
the infection rate. This implies that there is at most one phase transition between
extinction and survival of the infection at some critical value

λ∗
2 = λ∗

2(λ1, δ) := inf {λ2 ≥ 0 : the infection persists}.
To study the existence of such a phase transition, we observe that, as pointed out
in Court et al. (2013), when the birth rate and the infection rate are equal: λ1 = λ2,
the set of infected hosts again evolves like a basic contact process. Indeed, since in
this case infected hosts give birth onto adjacent empty vertices and infect adjacent
healthy hosts at the same rate, letting λ be the common value of the birth and
infection rates, and defining

η2t (x) := 1{ξt(x) = 2} for all (x, t) ∈ Z
d × R+

results in a spin system with transition rates

0 → 1 at rate λ f2(x, ξ) = λ f1(x, η
2)

1 → 0 at rate 1 + δ,

which is the contact process with birth rate λ and death rate 1 + δ. This implies
that, when birth and infection rates are equal, the infection persists if and only
if λ > (1 + δ)λc. Using a coupling argument to compare the process in which
birth and infection rates are equal with the general stacked contact process, we can
improve this result as stated in the following theorem.

Theorem 1.1. For all recovery rate δ,

the infection dies out when max (λ1, λ2) ≤ (1 + δ)λc

the infection persists when min (λ1, λ2) > (1 + δ)λc.

This can be translated in terms of the critical value λ∗
2 as follows:

λ∗
2(λ1, δ) ≥ (1 + δ)λc when λ1 ≤ (1 + δ)λc

λ∗
2(λ1, δ) ≤ (1 + δ)λc when λ1 > (1 + δ)λc.

(1.1)

We now look at the remaining parameter region

min (λ1, λ2) ≤ (1 + δ)λc < max (λ1, λ2).

Our next theorem gives an improvement of the second part of (1.1) showing that
the critical infection rate is not only finite but also positive for all values of the birth



196 Nicolas Lanchier and Yuan Zhang

H
os

ts
 d

ie
 o

ut

Infection persists

Infection dies out

H
os

ts
 d

ie
 o

ut

Infection persists

λ2

λc (1 + δ)λc

TH 1.1

λ⋆
1

TH 1.2

λ2 = (1 + δ) λc − 1

λ2 = δ λc − 1

TH 1.3

TH 1.1

λ2 = (1 + δ) λc

λ1 λ1

λ2

1 + δ

1 + δ1

TH 1.4

δ

TH 1.1

TH 1.1

TH 1.4

TH 1.4

Figure 1.1. Summary of our results and phase diagram of the
stacked contact process with short range interactions on the left
and long range of interactions on the right.

rate and recovery rate. This implies the existence of exactly one phase transition
when λ1 > (1 + δ)λc.

Theorem 1.2. For all λ1 and δ, we have λ∗
2(λ1, δ) > 0.

Similarly, the next theorem gives an improvement of the first part of (1.1) showing
that the critical infection rate is not only positive but also finite. This, however,
only holds when the birth rate exceeds some finite universal critical value λ∗

1 that
depends on the spatial dimension and the range of the interactions but not on the
other parameters.

Theorem 1.3. There exists λ∗
1 < ∞ such that

λ∗
2(λ1, δ) < ∞ for all λ1 > λ∗

1 and δ ≥ 0.

Combining the previous two theorems with (1.1), we deduce that

λ∗
2 ∈ (0,∞) for all λ1 > min((1 + δ)λc, λ

∗
1)

which also implies that, for these values of the birth rate, there is exactly one phase
transition between extinction and survival of the infection.

For a summary of Theorems 1.1–1.3, we refer to the left-hand side of Figure 1.1.
Even though the analysis of the mean-field model below suggests that, provided
the birth parameter is supercritical to ensure survival of the host population, the
infection also persists when the infection parameter is large enough, we conjecture,
as represented in the picture, that this result is not true for the spatial model, i.e.,
there exists a critical value λ⋆

1 > λc such that the infection dies out when

λc < λ1 < λ⋆
1 regardless of λ2.

Here is the idea behind our intuition: when the set of occupied vertices percolates
at equilibrium, it is expected that the infection persists when the infection rate
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λ1 = 3.30 and δ = 2 λ1 = 3.50 and δ = 2

Figure 1.2. Realizations of the stacked contact process on the
torus Z/500Z with periodic boundary conditions until time 500 at
the bottom of the pictures. The color code is white for empty,
grey for occupied by a healthy host and black for occupied by an
infected host. In both pictures, all vertices are initially infected
and the infection rate is infinite. In the first realization, the birth
rate is only slightly larger than the critical value of the contact
process, which leads to extinction of the infection even when the
infection rate is infinite.

is large. In contrast, when the birth rate is only slightly larger than the critical
value of the contact process, the system mostly consists of very small clusters of
hosts far from each other. With high probability, an infected cluster either dies
out due to stochasticity or becomes healthy before it can cross another cluster of
hosts, thus leading to the extinction of the infection. Figure 1.2 shows an example
of realization where the birth rate is only slightly supercritical and the infection
dies out even when the infection rate is infinite, i.e., all the hosts contained in the
same connected component as an infected host get instantaneously infected. Now,
to explain the right end of the transition curve on the left-hand side of the figure,
we observe that, in the limit as λ1 tends to infinity, all vertices are occupied by a
host. More precisely, each time a host dies, it is instantaneously replaced by the
offspring of a neighbor, thus leading to the transition rates

1 → 2 at rate (λ2 + 1) f2(x, ξ)

2 → 1 at rate f1(x, ξ) + δ.

Using that δ ≤ f1(x, ξ) + δ ≤ 1 + δ, we can compare the process with two contact
processes and deduce that, in the limit as λ1 goes to infinity, we have

δ λc − 1 ≤ λ∗
2(∞, δ) ≤ (1 + δ)λc − 1

as represented in the picture. Note however that this observation does not provide
any universal lower bound for the critical value of the infection rate because the set
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Figure 1.3. Solution curves of the mean-field model when λ1 = 4,
λ2 = 2 and δ = 2.

of infected hosts is not monotone (for the inclusion) with respect to the birth rate.

Long range limits – Finally, we look at the spatial process when the range of the
interactions is very large. To give the intuition behind our last theorem, we first
study the non-spatial deterministic counterpart of the stochastic process called
mean-field approximation, which is obtained by assuming that the population is
well-mixing, which results in a deterministic system of ordinary differential equa-
tions for the density uj of vertices in state j = 0, 1, 2. In the case of the stacked
contact process, this system can be written as

u′
1 = λ1 u1 (1− u1 − u2)− u1 − λ2 u2 u1 + δ u2

u′
2 = λ1 u2 (1− u1 − u2)− u2 + λ2 u2 u1 − δ u2.

(1.2)

This system is only two-dimensional because the three densities sum up to one. To
understand whether the hosts survive or die out, we let u = u1 + u2 and note that

u′ = u′
1 + u′

2 = λ1 (u1 + u2)(1 − u1 − u2)− u1 − u2

= λ1 u (1− u)− u = (λ1 (1− u)− 1)u.

It is straightforward to deduce that, when u(0) > 0

(1) if λ1 ≤ 1, there is extinction: limt→∞ u(t) = 0,

(2) if λ1 > 1, there is survival: limt→∞ u(t) = u∗ := 1− 1/λ1.

To study whether the infection survives or dies out, we now assume that λ1 > 1
and look at the second equation in (1.2) along the stable manifold u1 + u2 = u∗.
This gives

u′
2 = λ1 u2 (1− u∗)− u2 + λ2 u2 (u∗ − u2)− δ u2

= (λ1 (1 − u∗)− 1 + λ2 (u∗ − u2)− δ)u2 = (λ2 (u∗ − u2)− δ)u2.

Again, it is straightforward to deduce that, when u2(0) > 0

(1) if u∗ ≤ δ/λ2, we have limt→∞ u2(t) = 0,

(2) if u∗ > δ/λ2, we have limt→∞ u2(t) = u∗ − δ/λ2 > 0.

In conclusion, starting with u2(0) > 0, the infection survives if and only if

λ2 u∗ = λ2 (1− 1/λ1) > δ. (1.3)
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We refer the reader to Figure 1.3 for a schematic illustration of the three fixed
points and stable manifold when (1.3) is satisfied, and the corresponding solution
curves. Our last result shows that, for any set of parameters such that (1.3) holds,
the infection survives as well for the stochastic process provided the dispersal range
is large enough.

Theorem 1.4. Assume (1.3). Then, the infection persists whenever the range of
the interactions L is sufficiently large.

For an illustration, see the right-hand side of Figure 1.1 where the parameter re-
gion (1.3) in which the infection persists corresponds to the region above the solid
curve.

2. Monotonicity and attractiveness

This section gives some preliminary results that will be useful later. To prove
these results as well as the theorems stated in the introduction, it is convenient
to think of the stacked contact process as being generated by a collection of in-
dependent Poisson processes, also called Harris’ graphical representation Harris
(1972). More precisely, the process starting from any initial configuration can be
constructed using the rules and Poisson processes described in Table 2.1. To begin
with, we use this graphical representation to prove that the stacked contact process
is attractive. Here, by attractiveness, we mean that replacing initially some healthy
hosts by infected hosts can only increase the set of infected hosts at later times.
More precisely, having two configurations of the stacked contact process ξ1 and ξ2,
we write ξ1 � ξ2 whenever

{x ∈ Z
d : ξ1(x) 6= 0} ⊂ {x ∈ Z

d : ξ2(x) 6= 0}
{x ∈ Z

d : ξ1(x) = 2} ⊂ {x ∈ Z
d : ξ2(x) = 2}.

Then, the process is attractive in the sense stated in the next lemma.

Lemma 2.1. Let ξ1t and ξ2t be two copies of the stacked contact process constructed
from the same collections of independent Poisson processes. Then,

ξ1t � ξ2t for all t ≥ 0 whenever ξ10 � ξ20 .

Proof: To begin with, we recall that the process that keeps track of the occupied
vertices is a basic contact process. Since in addition both processes are constructed
from the same graphical representation and start from the same set of occupied
vertices,

{x ∈ Z
d : ξ1t (x) 6= 0} = {x ∈ Z

d : ξ2t (x) 6= 0} for all t ≥ 0. (2.1)

In particular, we only need to prove that

{x ∈ Z
d : ξ1t (x) = 2} ⊂ {x ∈ Z

d : ξ2t (x) = 2} for all t ≥ 0. (2.2)

To prove (2.2), we first define the influence graph of a space-time point (x, t). We
will show that each of the updates that occurs along the influence graph preserves
the desired property. To define this graph, we say that there is a path from (y, s)
to (x, t) if there exist

x1 = x, x2, . . . , xn = y ∈ Z
d and s = t0 < t1 < · · · < tn = t

such that the following conditions hold:
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• For each j = 1, 2, . . . , n, there is no death mark along {xj} × (tj−1, tj).

• For each j = 1, 2, . . . , n− 1, either xj −→ xj+1 or xj 99K xj+1 at time tj .

Then, we define the influence graph of space-time point (x, t) as

G(x, t) = {(y, s) ∈ Z
d × R+ : there is a path from (y, s) to (x, t)}.

Note that the state at (x, t) can be determined from the initial configuration and
the structure of the influence graph. Also, to prove (2.2), we will prove that

(ξ1s (y) ≥ ξ2s (y) for all y ∈ Z
d such that (y, s) ∈ G(x, t)) (2.3)

for all 0 ≤ s ≤ t. Standard arguments Durrett (1995) imply that, with probability
one, there can only be a finite number of paths leading to a given space-time point
therefore the influence graph is almost surely finite which, in turn, implies that
the number of death and recovery marks in the influence graph and the number of
birth arrows and infection arrows that connect space-time points in the influence
graph are almost surely finite. In particular, they can be ordered chronologically
so the result can be proved by checking that each of the successive events occurring
along the influence graph going forward in time preserves the relationship to be
proved for the space-time points belonging to the influence graph. By assumption,
property (2.3) is true at time s = 0. Assuming that (2.3) holds until time s−
where s is the time of an update in the influence graph, we have the following
cases.

Death – Assume first that there is a death mark × at point (y, s). In this case,
(y, s−) is not in the influence graph but, regardless of the state at this space-time
point, vertex y is empty at time s for both processes therefore the property to be
proved is true at time s.

Recovery – If there is a recovery mark • at point (y, s) then (2.1) implies

ξ1s (y) = 1 {ξ1s−(y) 6= 0} = 1 {ξ2s−(y) 6= 0} = ξ2s (y) therefore ξ1s (y) ≤ ξ2s (y).

Birth – If there is a birth arrow (y, s) −→ (z, s) then the configuration can only
change if vertex z is empty (for both processes) in which case we have

ξ1s (z) = ξ1s−(y) ≤ ξ2s−(y) = ξ2s (z)

while the state at the other vertices remains unchanged.

Infection – If there is an infection arrow (y, s) 99K (z, s) then the configuration
can only change if both vertices y and z are occupied in which case we have

ξ1s (z) = max (ξ1s−(y), ξ
1
s−(z)) ≤ max (ξ2s−(y), ξ

2
s−(z)) = ξ2s (z)

while the state at the other vertices remains unchanged.

In all four cases, property (2.3) is true at time s and obviously remains true until
the time of the next update occurring in the influence graph so the result follows
by induction. �

Lemma 2.1 will be used in the last section to prove survival of the infected hosts
under the assumption of long range interactions. In the next lemma, we prove that
the conclusion of Lemma 2.1 remains true if we increase the infection parameter of
the second process. This result shows that, as explained in the introduction, the
birth and recovery parameters being fixed, there is at most one phase transition at
a certain critical infection rate.
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rate symbol effect on the stacked contact process

1 × at x for all x ∈ Z
d death at x when x is occupied

δ • at x for all x ∈ Z
d recovery at x when x is infected

λ1/N x −→ y for all x ∼ y birth at vertex y when x is occupied and y is empty

λ2/N x 99K y for all x ∼ y infection at vertex y when x is infected and y is in state 1

Table 2.1. Graphical representation of the stacked contact pro-
cess. The rates in the left column correspond to the different pa-
rameters of the independent Poisson processes, attached to either
each vertex (first two rows) or each oriented edge connected two
neighbors (last two rows). The number N denotes the neighbor-
hood size.

Lemma 2.2. Let ξ1t and ξ2t be two copies of the stacked contact process with the
same birth and recovery rates but different infection rates: λ1

2 < λ2
2. Then, there is

a coupling such that

ξ1t � ξ2t whenever ξ10 � ξ20 .

Proof: We construct the process ξ2t from the graphical representation obtained by
adding infection arrows at the times of Poisson processes with parameter

(λ2
2 − λ1

2)/ card Nx

to the graphical representation used to construct the process ξ1t . As previously, we
only need to prove that, for any arbitrary space-time point (x, t), we have

(ξ1s (y) ≤ ξ2s (y) for all y ∈ Z
d such that (y, s) ∈ G2(x, t)) (2.4)

for all 0 ≤ s ≤ t, where G2(x, t) is the influence graph of the second process, which
contains the influence graph of the first process. The same argument as in the proof
of Lemma 2.1 again implies that the result can be proved by checking that each
of the successive events occurring along the influence graph of the second process
preserves the relationship to be proved. Assume that (2.4) holds until time s−
where s is the time of an update in the influence graph of the second process. In
case there is an infection arrow (y, s) 99K (z, s) in the graphical representation of
the second process but not the first one, and assuming to avoid trivialities that y
and z are occupied at time s−,

ξ1s (z) = ξ1s−(z) ≤ ξ2s−(z) ≤ max (ξ2s−(y), ξ
2
s−(z)) = ξ2s (z)

while the state at the other vertices remains unchanged. In all the other cases, the
same mark or arrow appears simultaneously in both graphical representation so the
desired ordering is again preserved according to the proof of Lemma 2.1. �

To conclude this section, we note that the analysis of the mean-field model as
well as numerical simulations of the stochastic spatial model also suggest some
monotonicity of the survival probability of the infection with respect to the birth
rate, i.e., for any fixed infection rate, recovery rate, and translation invariant initial
distribution, the limiting probabilities

limt→∞ P (ξt(x) = 2) for x ∈ Z
d
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Figure 2.4. Basic coupling of stacked contact processes with dif-
ferent birth rates. The solid thick lines represent space-time points
occupied by an infected host while the dashed thick lines represent
the space-time points occupied by a healthy host. The picture
shows an example of realization for which the set of space-time
point which are infected is not larger for the process with the larger
birth rate.

are nondecreasing with respect to the birth rate λ1. This, however, cannot be
proved using a basic coupling, i.e., constructing the process with the larger birth rate
from the graphical representation obtained by adding birth arrows to the graphical
representation used to construct the process with the smaller birth rate. Figure 2.4
gives indeed an example of realization of this coupling for which the conclusion of
the previous two lemmas does not hold.

3. Proof of Theorem 1.1

The key idea to prove this theorem is to compare stacked contact processes with
different birth and infection parameters. These processes are coupled through their
graphical representation following the same approach as in Lemmas 2.1 and 2.2
though the coupling considered in this section is a little bit more meticulous. For
a picture of the processes used for comparison in the next two lemmas, which
respectively show the first and second parts of the theorem, we refer to Figure 3.5.

Lemma 3.1. Assume that max (λ1, λ2) ≤ (1 + δ)λc. Then,

limt→∞ P (ξt(x) = 2) = 0 for all x ∈ Z
d.
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Figure 3.5. Pictures related to the proof of Lemmas 3.1 and 3.2.

Proof: In view of the monotonicity with respect to λ2 established in Lemma 2.2, it
suffices to prove that the stacked contact process ξ1t with birth and infection rates

birth rate = λ1 ≤ λ2 = (1 + δ)λc

infection rate = λ2 = (1 + δ)λc

dies out starting from any initial configuration. To prove this result, we couple this
process with the stacked contact process ξ2t that has the same birth and infection
rates

birth rate = infection rate = λ2 = (1 + δ)λc

in which the set of infected hosts evolves according to a critical contact process.
Both processes have in addition the same death rate one and recovery rate δ. Basic
properties of Poisson processes imply that both processes can be constructed on the
same probability space using the graphical representation described in Table 3.2.
The next step is to show that, for this coupling and when both processes start from
the same initial configuration, we have

ξ1t (x) ≤ ξ2t (x) for all (x, t) ∈ Z
d × R+. (3.1)

Following the proofs of Lemmas 2.1 and 2.2, it suffices to check that each of the
successive events occurring along the influence graph of a space-time point (x, t)
going forward in time preserves the relationship to be proved whenever it is true at
time zero. Assume that (3.1) holds until time s− where s is the time of an update
in the influence graph. In case a death mark or a recovery mark occurs at that
time, the proof of Lemma 2.1 implies that the property to be proved remains true
after the update, while in case an arrow occurs, we have the following alternative.

Type 1 arrow – If there is an arrow (y, s)
1−→ (z, s) then

ξ1s (z) = max (ξ1s−(y), ξ
1
s−(z)) ≤ max (ξ2s−(y), ξ

2
s−(z)) = ξ2s (z)

while the state at the other vertices remains unchanged.

Type 2 arrow – If there is an arrow (y, s)
2−→ (z, s) then

ξ1s (z) ≤ max (ξ1s−(y), ξ
1
s−(z)) ≤ max (ξ2s−(y), ξ

2
s−(z)) = ξ2s (z)

while the state at the other vertices remains unchanged.

In all cases, property (3.1) is true at time s and remains true until the time of
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rate symbol effect on the process ξ1
t

effect on the process ξ2
t

1 × at y death at y when y is occupied death at y when y is occupied

δ • at y recovery at y when y is infected recovery at y when y is infected

λ1/N y
1

−→ z birth when y is occupied and z
is empty and infection when y is

infected and z is in state 1

birth when y is occupied and z
is empty and infection when y is

infected and z is in state 1

(λ2 − λ1)/N y
2

−→ z infection when y is infected and z
is in state 1

birth when y is occupied and z
is empty and infection when y is
infected and z is in state 1

Table 3.2. Coupling of the processes in the proof of Lemma 3.1.
In the left column, N is the neighborhood size.

the next update occurring in the influence graph, which proves (3.1). To conclude,
we recall that the set of infected hosts in the second process evolves according
to a critical contact process, which is known to die out starting from any initial
configuration, see Bezuidenhout and Grimmett (1990). This and (3.1) imply that

limt→∞ P (ξt(x) = 2) ≤ limt→∞ P (ξ1t (x) = 2)

≤ limt→∞ P (ξ2t (x) = 2) = 0 for all x ∈ Z
d

which completes the proof. �

Lemma 3.2. Assume that min (λ1, λ2) > (1 + δ)λc. Then,

lim inft→∞ P (ξt(x) = 2) > 0 for all x ∈ Z
d.

Proof: First, we note that there exists λ0 such that

(1 + δ)λc < λ0 < min (λ1, λ2).

Then, we compare the stacked contact process ξt with the basic contact process ηt
with birth parameter λ0 and death parameter 1 + δ, and where it is assumed for
convenience that occupied vertices are in state 2. Both processes can be constructed
on the same probability space using the graphical representation described in Ta-
ble 3.3, and we have

ηt(x) ≤ ξt(x) for all (x, t) ∈ Z
d × R+ (3.2)

provided this is satisfies at time zero. To prove (3.2), it again suffices to check that
each of the successive events occurring along the influence graph going forward in
time preserves the relationship to be proved. The fact that death marks, recovery
marks and type 0 arrows preserve this relationship follows from the same argument
as in Lemma 3.1. For type 1 and type 2 arrows, we simply observe that the state at
the tip of those arrows cannot decrease for the stacked contact process whereas they
have no effect on the basic contact process. This shows that (3.2) holds. Finally,
since ηt is a supercritical contact process, starting both processes with infinitely
many vertices in state 2 and such that the ordering (3.2) is satisfied at time zero,
we obtain

lim inft→∞ P (ξt(x) = 2) ≥ lim inft→∞ P (ηt(x) = 2) > 0 for all x ∈ Z
d

which completes the proof. �
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rate symbol effect on the process ξt effect on the process ηt

1 × at y death at y when y is occupied death at y when y is occupied

δ • at y recovery at y when y is infected death at y when y is occupied

λ0/N y
0

−→ z birth when y is occupied and z
is empty and infection when y is

infected and z in state 1

birth when y is occupied and z
is empty

(λ1 − λ0)/N y
1

−→ z birth when y is occupied and z
is empty

none

(λ2 − λ0)/N y
2

−→ z infection when y is infected and z
in state 1

none

Table 3.3. Coupling of the processes in the proof of Lemma 3.2.
In the left column, N is the neighborhood size.

4. Proof of Theorem 1.2 (extinction of the infection)

Recall from Lemma 2.2 that, the birth rate, death rate and recovery rate being
fixed, the survival probability of the infection when starting from the configuration
where all vertices are occupied by infected hosts is nondecreasing with respect to
the infection parameter. This implies the existence of at most one phase transition
between extinction of the infection and survival of the infection, and motivates the
introduction of the critical value

λ∗
2 = λ∗

2(λ1, δ) := inf {λ2 ≥ 0 : the infection persists}.
It directly follows from Lemma 3.1 that

(1 + δ)λc ≤ λ∗
2(λ1, δ) ≤ ∞ when λ1 ≤ (1 + δ)λc.

To establish Theorem 1.2, which states more generally that the critical infection rate
is strictly positive for all possible values of the birth rate and the recovery rate,
it suffices to show that, regardless of the initial configuration, the infection goes
extinct whenever the infection rate is positive but sufficiently small. Referring to
the left-hand side of Figure 4.6, the key to the proof is to show that, regardless of the
state of the stacked contact process along the bottom and peripheral boundaries of
the space-time box B, the probability that the infection reaches the smaller box A is
close to zero when boxes are large. From this, and covering the space-time universe
with such boxes, we will deduce that the probability that a given infection path
intersects n boxes decreases exponentially with n, which implies extinction of the
infection. To make the argument precise, we first turn our picture into equations:
let T be a large integer and consider the space-time boxes

A := [−T, T ]d × [T, 2T ] and B := [−2T, 2T ]d × [0, 2T ].

We also define the bottom and peripheral boundaries of B as

∂B1 := {(x, t) ∈ B : t = 0}
∂B2 := {(x, t) ∈ B : maxj=1,2,...,d |xj | = 2T }

as well as the lower boundary of the smaller region A as

∂A := {(x, t) ∈ A : t = T or maxj=1,2,...,d |xj | = T }.
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t4

t3

t2

t1

t0

Figure 4.6. Picture of the space-time regions A and B and ex-
ample of an invasion path.

In the next two lemmas, we collect upper bounds for the probability that the
infection reaches the lower boundary of A starting from the bottom or peripheral
boundary of B. In the next lemma, we start with the process with infection rate
zero, and extend the result to general infection rates in the subsequent lemma. To
avoid cumbersome notations, we only prove these results in the presence of nearest
neighbor interactions but our approach easily extends to any dispersal range.

Lemma 4.1. For λ2 = 0 and regardless of the states in ∂B1 and ∂B2,

P (ξt(x) = 2 for some space-time point (x, t) ∈ A) ≤ exp(−a1T )

for a suitable constant a1 = a1(λ1, δ) > 0.

Proof: We write (x, t−)  (y, t+), and say that there is an invasion path con-
necting both space-time points when there exist vertices and times

x1 = x, x2, . . . , xn = y ∈ Z
d and t− = t0 < t1 < · · · < tn = t+

such that the following conditions hold:

• For each j = 1, 2, . . . , n, we have

lim s↑tj−1
ξs(xj) = 0 and ξs(xj) 6= 0 for all s ∈ [tj−1, tj).

• For each j = 1, 2, . . . , n− 1, there is a birth arrow xj → xj+1 at time tj .

We call the time increment t+ − t− the temporal length of the invasion path.
Note that if a space-time point is occupied then there must be an invasion path
starting from time zero and leading to this point. In addition, this invasion path
is unique. To prove the lemma, the first ingredient is to find upper bounds for
the number of invasion paths that start at the bottom or peripheral boundary and
intersect the smaller space-time region A, as well as lower bounds for the temporal
length of these invasion paths. The number of invasion paths, say X1, starting
from ∂B1 is bounded by the number of vertices on this boundary, i.e.,

X1 ≤ (4T + 1)d with probability one (4.1)
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and the temporal length τ1 of any of these paths satisfies

τ1 ≥ T with probability one. (4.2)

Now, since the number X2 of invasion paths starting from ∂B2 is bounded by the
number of birth arrows starting from this boundary and since birth arrows occur
at rate λ1,

X2 � X̄2 := Poisson (2T (4T + 1)d−1 λ1).

where � means stochastically smaller than. In particular, standard large deviation
estimates for the Poisson random variable give the following bound:

P (X2 > 4T (4T + 1)d−1 λ1) ≤ P (X̄2 > 4T (4T + 1)d−1 λ1)

= P (X̄2 > 2E (X̄2)) ≤ exp(−a2T )
(4.3)

for a suitable constant a2 = a2(λ1) > 0. In addition, since invasion paths starting
from the peripheral boundary must have at least T birth arrows to reach ∂A, the
temporal length τ2 of any of these paths satisfies

τ2 � τ̄2 := Gamma (T, λ1)

where � means stochastically larger than. In particular, using again large deviation
estimates but this time for the Gamma distribution, we deduce that

P (τ2 < T/2λ1) ≤ P (τ̄2 < T/2λ1)

= P (τ̄2 < (1/2)E (τ̄2)) ≤ exp(−a3T )
(4.4)

for a suitable constant a3 = a3(λ1) > 0. To deduce that, with probability close
to one, none of the invasion paths can bring the infection into A, we observe that
recovery marks occur independently at each vertex at rate δ. This implies that the
number of recovery marks along a given invasion path is a Poisson random variable
with parameter δ times the temporal length of this path. In particular, letting Z
be the exponential random variable with rate δ and using that the infection can
reach the space-time region A only if there is at least one invasion path that does
not cross any recovery mark, we deduce that

P (ξt(x) = 2 for some (x, t) ∈ A)

≤ P (ξt(x) = 2 for some (x, t) ∈ A |
X1 ≤ (4T + 1)d and X2 ≤ 4T (4T + 1)d−1 λ1)

+ P (X1 > (4T + 1)d) + P (X2 > 4T (4T + 1)d−1 λ1)

≤ (4T + 1)d P (Z > T ) + 4T (4T + 1)d−1 λ1 (P (τ2 < T/2λ1)

+ P (Z > T/2λ1)) + P (X1 > (4T + 1)d)

+ P (X2 > 4T (4T + 1)d−1 λ1).

This and (4.1)–(4.4) imply that, regardless of the states in ∂B1 and ∂B2,

P (ξt(x) = 2 for some (x, t) ∈ A) ≤ (4T + 1)d exp(−δT )

+ 4T (4T + 1)d−1 λ1 (exp(−a3T )

+ exp(−δT/2λ1)) + exp(−a2T ) ≤ exp(−a1T )

for a suitable constant a1 = a1(λ1, δ) > 0. �

Lemma 4.2. For all λ2 ≥ 0 and regardless of the states in ∂B1 and ∂B2,

P (ξt(x) = 2 for some (x, t) ∈ A) ≤ exp(−a1T ) + 2T (4T + 1)d−1 λ2.
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Proof: Let X3 be the number of infection arrows that point at B. Then,

X3 = Poisson (2T (4T + 1)d−1 λ2) (4.5)

and is independent of the position of the birth arrows, death marks and recovery
marks. In addition, given that there is no infection arrow that points at B, like in
the previous lemma, the infection can reach the space-time region A only if there
is at least one invasion path that does not cross any recovery mark. In particular,
it follows from Lemma 4.1 and (4.5) that

P (ξt(x) = 2 for some (x, t) ∈ A)

≤ P (ξt(x) = 2 for some (x, t) ∈ A |X3 = 0) + P (X3 6= 0)

≤ exp(−a1T ) + 1− exp(−2T (4T + 1)d−1 λ2)

≤ exp(−a1T ) + 2T (4T + 1)d−1 λ2.

This completes the proof. �

Next, we compare the process properly rescaled with oriented site percolation:
we cover the space-time universe with translations of the boxes A and B by letting

A(z, n) := (2Tz, nT ) +A ∂A(z, n) := (2Tz, nT ) + ∂A

B(z, n) := (2Tz, nT ) +B ∂Bi(z, n) := (2Tz, nT ) + ∂Bi

for i = 1, 2, and each site (z, n) ∈ Z
d × Z+ and declare (z, n) to be

infected when ξt(x) = 2 for some (x, t) ∈ A(z, n)

healthy when ξt(x) 6= 2 for all (x, t) ∈ A(z, n).
(4.6)

The next lemma is the key ingredient to couple the set of infected sites with a
subcritical oriented site percolation process where paths can move horizontally in
all spatial directions and vertically going up following the direction of time.

Lemma 4.3. For all ǫ > 0, there exist T < ∞ and λ∗
2 = λ∗

2(T ) > 0 such that

P ((zi, ni) is infected for i = 1, 2, . . . ,m) ≤ ǫm for all λ2 ≤ λ∗
2

whenever |zi − zj | ∨ |ni − nj | ≥ 3 for all i 6= j.

Proof: Recalling a1 from the previous lemmas, we fix

T = T (a1) := −(1/a1) ln(ǫ/2) < ∞
λ∗
2 = λ∗

2(T ) := ǫ (4T (4T + 1)d−1)−1 > 0.
(4.7)

Since the graphical representation of the process is translation invariant in both
space and time, it follows from Lemma 4.2 that, for the specific values given in (4.7),

P ((z, n) is infected) = P (ξt(x) = 2 for some (x, t) ∈ A(z, n))

≤ exp(−a1T ) + 2T (4T + 1)d−1 λ2 ≤ ǫ

for all λ2 ≤ λ∗
2 and all (z, n) ∈ Z

d×Z+. Since in addition this bound holds regardless
of the states in the bottom boundary and peripheral boundary of B(z, n) and that

B(z, n) ∩ B(z′, n′) = ∅ whenever |z − z′| ∨ |n− n′| ≥ 3

the lemma follows. �
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To complete the proof of the theorem, we now turn the set of sites Zd ×Z+ into
a directed graph by adding the following collection of oriented edges:

(z, n) → (z′, n′) if and only if |z − z′| ∨ |n− n′| ≥ 3 and n ≤ n′

if and only if B(z, n) ∩ B(z′, n′) = ∅ and n ≤ n′

and define a percolation process with parameter ǫ by assuming that

P ((zi, ni) is open for i = 1, 2, . . . ,m) = ǫm

whenever |zi−zj|∨|ni−nj| ≥ 3 for all i 6= j. Then, there exists a critical value ǫc > 0
that only depends on the spatial dimension such that, for all parameters ǫ < ǫc, the
set of open sites does not percolate. See van den Berg et al. (1998, section 4) for
more details. In particular, calling wet site a site that can be reached by a directed
path of open sites starting at level n = 0, we have

limn→∞ P ((z, n) is wet) = 0 for all z ∈ Z
d when ǫ < ǫc. (4.8)

To deduce extinction of the infection, we fix ǫ ∈ (0, ǫc), and let T and λ∗
2 be defined

as in (4.7) for this specific value of ǫ. Then, it follows from Lemma 4.3 that the
interacting particle system and the percolation process can be coupled in such a way
that the set of open sites dominates the set of infected sites provided the infection
rate is less than λ∗

2. Since in addition the infection cannot appear spontaneously,
we have for this coupling

{(z, n) : ξt(x) = 2 for some (x, t) ∈ A(z, n)} ⊂ {(z, n) : (z, n) is wet}. (4.9)

Combining (4.8)–(4.9), we conclude that for all x ∈ 2Tz + [−T, T ]d

limt→∞ P (ξt(x) = 2) ≤ limn→∞ P ((z, n) is wet) = 0.

This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3 (survival of the infection)

In this section, we now study whether the critical infection rate λ∗
2 is finite,

meaning that the infection survives when the infection rate is sufficiently large, or
infinite, meaning that the infection dies out for all infection rates, depending on
the value of the birth and recovery rates. When the birth rate is subcritical, the
host population dies out so the infection dies out as well, showing that the critical
infection rate in this case is infinite. As pointed out in the introduction, we conjec-
ture that the infection again dies out when the birth rate is barely supercritical due
to the fact that the host population is too sparse to allow the infection to spread.
Theorem 1.3 states however that there exists a universal critical value λ∗

1 such that

λ∗
2(λ1, δ) < ∞ for all λ1 > λ∗

1 and δ ≥ 0.

To prove this result, the first step is to take the birth rate large enough to ensure
that the host population expands rapidly in order to provide some habitat for
the infection. Then, we will show that, even when the recovery rate is large, the
infection can invade this linearly growing set of hosts provided the infection rate is
sufficiently large. These two steps are proved in the next two lemmas respectively.
Note that the result is trivial when the critical value λ∗

1 can be chosen depending
on the recovery rate since Lemma 3.2 directly implies that

λ∗
2(λ1, δ) ≤ (1 + δ)λc < ∞ when λ1 > (1 + δ)λc
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x x + 1 x− 1 x x + 1 x− 1 x x + 1

A1 ∩ A2 configuration A3 ∩ A4

0

2T

T2

T1

x− 1

T3

4T

Figure 5.7. Illustration of the event A1 ∩ A2 on the left and
the event A3 ∩ A4 on the right. The picture at the center shows
the configuration resulting from these events. Only the infection
arrows that have an effect on the configuration are represented.
The solid thick lines represent space-time points occupied by an
infected host while the dashed thick lines represent the space-time
points occupied by a healthy host.

In particular, an important component of the proof is that λ∗
1 will be ultimately

a quantity that depends on the critical value of a certain oriented site percolation
process but not on the recovery rate. Like in the previous section, we focus on the
process with nearest neighbor interactions to avoid cumbersome notations but our
approach easily extends to any dispersal range. We first establish the result in one
dimension and will explain at the end of this section how to deduce the analog in
higher dimensions. To state our next two lemmas, for all ǫ > 0, we let

T = T (ǫ) := −(1/12) ln(1− ǫ/4) > 0

λ∗
1 = λ∗

1(ǫ) := −(1/T ) ln(ǫ/4) < ∞.
(5.1)

For this specific time and this specific value of the birth rate, we have the following
two lemmas that look respectively at the set of occupied and the set of infected
vertices.

Lemma 5.1. For all ǫ > 0 and λ1 > λ∗
1,

P (ξt(x− 1) ξt(x) ξt(x+ 1) 6= 0 for all t ∈ (2T, 4T ] |
ξ0(x− 1) ξ0(x) 6= 0) > 1− ǫ/2.

Proof: To begin with, we note that, given the conditioning, the event in the state-
ment of the lemma occurs whenever the two events

A1 := there are no death marks at x− 1 and x and x+ 1 by time 4T

A2 := there is a birth arrow x → x+ 1 by time 2T
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occur. Now, since death marks occur at each vertex at rate one,

P (A1) = P (Poisson (12T ) = 0) = exp(−12T ) (5.2)

while, since birth arrows x → x+ 1 occur at rate λ1/2,

P (A2) = P (Poisson (λ1T ) 6= 0) = 1− exp(−λ1T ). (5.3)

Recalling (5.1), combining (5.2)–(5.3) and using independence, we obtain

P (ξt(x− 1) ξt(x) ξt(x + 1) 6= 0 for all t ∈ (2T, 4T ] | ξ0(x− 1) ξ0(x) 6= 0)

≥ P (A1 ∩ A2) = P (A1)P (A2) = exp(−12T ) (1− exp(−λ1T ))

≥ exp(−12T ) (1− exp(−λ∗
1T )) = (1− ǫ/4)2 > 1− ǫ/2

(5.4)

for all λ1 > λ∗
1. This completes the proof. �

Lemma 5.2. For all ǫ > 0 and δ ≥ 0, there exists λ∗
2 < ∞ such that

P (ξ4T (x) = ξ4T (x+ 1) = 2 | ξ0(x− 1) = ξ0(x) = 2) > 1− ǫ

for all λ1 > λ∗
1 and λ2 > λ∗

2.

Proof: First of all, we let N denote the random number of recovery marks that
occur at any of the three vertices x− 1 or x or x+ 1 by time 4T . Also, we let

0 < T1 < T2 < T3 < · · · < TN < 4T

be the times at which these recovery marks appear. Given the conditioning in the
statement of the lemma, x and x+ 1 are infected at time 4T when A1 ∩ A2 and

A3 := between times Tj and Tj+1 for j = 1, 2, . . . , N − 1, there are

three infection arrows x− 1 → x and x → x− 1 and x → x+ 1

A4 := between times max (2T, TN) and 4T , there is an infection

arrow x− 1 → x followed by an infection arrow x → x+ 1

all occur. To compute the probability of these events, let

Xi := Exponential (λ2/2) for i = 1, 2, 3 and Z := Exponential (δ)

be independent. Now, we observe that, since recovery marks occur at each vertex
at rate δ, there exists an integer n > 0, fixed from now on, such that

P (N > n) = P (Poisson (3δT ) > n) < ǫ/8.

In particular, there exists λ′
2 < ∞ such that, for all λ2 > λ′

2,

P (A3) ≥ P (A3 |N ≤ n)P (N ≤ n)

≥ (P (max (X1, X2, X3) < Z))n−1 P (N ≤ n)

≥ (P (X1 < Z))3n P (N ≤ n) = (λ2/(λ2 + 2δ))3n P (N ≤ n)

≥ (1 − ǫ/8)(1− ǫ/8) > 1− ǫ/4.

(5.5)

Also, there exists λ′′
2 < ∞ such that, for all λ2 > λ′′

2 ,

P (A4) = min (P (X1 +X2 < 2T ), P (X1 +X2 < Z))

= min ((P (X1 < 2T ))2, (P (X1 < Z))2)

= min ((1− exp(−λ2T ))
2, (λ2/(λ2 + 2δ)2) > 1− ǫ/4.

(5.6)
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It follows from (5.4)–(5.6) that

P (ξ4T (x) = ξ4T (x+ 1) = 2 | ξ0(x − 1) = ξ0(x) = 2)

≥ P (A1 ∩ A2 ∩ A3 ∩A4) = P (A1 ∩ A2)P (A3 ∩ A4)

≥ P (A1 ∩ A2) (−1 + P (A3) + P (A4)) > (1 − ǫ/2)2 > 1− ǫ

for all λ2 > λ∗
2 where λ∗

2 = λ∗
2(ǫ, δ) := max (λ′

2, λ
′′
2 ). �

To complete the proof of Theorem 1.3, we again turn Z × Z+ into a directed
graph, but now consider a different collection of oriented edges, namely

(z, n) → (z′, n′) if and only if |z − z′| = 1 and n′ = n+ 1.

We define a percolation process with parameter 1− ǫ by assuming that

P ((zi, ni) is open for i = 1, 2, . . . ,m) = (1− ǫ)m

whenever |zi − zj | ∨ |ni − nj | ≥ 2 for all i 6= j. For this process, called oriented
site percolation, it is known that there exists a critical value ǫc > 0 such that, for
all ǫ < ǫc, the set of open sites percolates with probability one. See Durrett (1984,
section 10) for more details. To compare the stacked contact process with oriented
site percolation, we declare site (z, n) to be

infected when ξ4nT (2z) = ξ4nT (2z + 1) = 2.

Now, we fix ǫ ∈ (0, ǫc), and let T (ǫ) and λ∗
1(ǫ) be defined as in (5.1). Calling again

wet site in the percolation process a site that can be reached by a directed path
of open sites, it directly follows from Lemma 5.2 and Durrett (1995, section 4)
that the interacting particle system and the percolation process can be coupled in
such a way that the set of infected sites dominates the set of wet sites provided the
infection rate is larger than λ∗

2. In particular, under the assumptions of Lemma 5.2,

lim inft→∞ P (ξt(x) = 2) ≥ lim infn→∞ P ((z, n) is wet) > 0.

This completes the proof of Theorem 1.3 for the one-dimensional process. To deal
with the process in higher dimensions, we observe that adding birth and infection
arrows can only increase the probability of the events A2, A3 and A4 but does not
affect the probability of the event A1 which only involves death marks. Since in
addition, for all x ∈ Z, birth arrows

(x, 0, 0, . . . , 0) → (x± 1, 0, 0, . . . , 0)

for the d-dimensional process with birth parameter dλ1 occur at rate λ1/2, and
similarly for infection arrows, we deduce that, regardless of the spatial dimension,

P (ξ4T ((x, 0, . . . , 0)) = ξ4T ((x + 1, 0, . . . , 0)) = 2 |
ξ0((x− 1, 0, . . . , 0)) = ξ0((x, 0, . . . , 0)) = 2) > 1− ǫ

for all λ1 > dλ∗
1 and λ2 > dλ∗

2. This shows that Lemma 5.2 holds in any dimensions
provided the birth parameter and infection parameter are increased by the factor d.
The full theorem can be deduced as before using a coupling between the process
and oriented percolation.
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6. Proof of Theorem 1.4 (long range interactions)

This section is devoted to the proof of Theorem 1.4 which states that, for each set
of parameters inside the coexistence region of the mean-field model, the stochastic
process coexists as well provided the range of the interactions is sufficiently large.
The key to the proof is a multiscale argument in order to couple the stacked contact
process with supercritical oriented site percolation. To define this coupling, we first
follow Durrett and Zhang (2015) and introduce the box version of the process.

Box processes – To control the environment so that the infection can spread, we
need to introduce a process slightly smaller than the one considered in Durrett and
Zhang (2015). For some fixed ǫ0 > 0 which will be specified later, we let l be the
integer part of ǫ0L and divide space into small boxes

B̂x := 2lx+ (−l, l]d for all x ∈ Z
d. (6.1)

Note that this collection of boxes forms a partition of Zd. To define the box version
of a given process, the first step is to slightly reduce the interaction neighborhood
of each vertex using the collection of boxes (6.1). We define a new neighborhood
of vertex x by setting

N̂x := {y 6= x : ‖z1 − z2‖∞ ≤ L for all z1 ∈ B̂x′ and z2 ∈ B̂y′} (6.2)

where x′ and y′ are the unique vertices such that x ∈ B̂x′ and y ∈ B̂y′ . In words,

N̂x is the largest set contained in Nx that can be written as a union of boxes.

Lemma 6.1. For all x ∈ Z
d, we have

B∞(x, (1 − 4ǫ0)L) ⊂ N̂x ⊂ Nx where B∞(x, r) := {y 6= x : ‖x− y‖∞ ≤ r}.
Proof: According to (6.2), we have

y ∈ N̂x implies that y 6= x and ‖x− y‖∞ ≤ L

implies that y ∈ B∞(x, L) = Nx

which shows that N̂x ⊂ Nx. Moreover, whenever

‖x− y‖∞ ≤ (1− 4ǫ0)L and z1 ∈ B̂x′ and z2 ∈ B̂y′

the triangle inequality implies that

‖z1 − z2‖∞ ≤ ‖z1 − x‖∞ + ‖x− y‖∞ + ‖y − z2‖∞
≤ 2l + (1− 4ǫ0)L + 2l = 4 ⌊ǫ0L⌋+ (1− 4ǫ0)L ≤ L.

In particular, recalling (6.2), we have

y ∈ B∞(x, (1 − 4ǫ0)L)

implies that 0 < ‖x− y‖∞ ≤ (1− 4ǫ0)L

implies that 0 < ‖z1 − z2‖∞ ≤ L for all (z1, z2) ∈ B̂x′ × B̂y′

implies that y ∈ N̂x

therefore B∞(x, (1− 4ǫ0)L) ⊂ N̂x and the proof is complete. �

For every finite set A ⊂ Z
d and ξ̂ : Zd → {0, 1, 2}, we now let

f̂j(A, ξ̂) := (card N0)
−1 card {y ∈ A : ξ̂(y) = j}

= ((2L+ 1)d − 1)−1 card {y ∈ A : ξ̂(y) = j} for j = 0, 1, 2,
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be the number of type j vertices in the set A rescaled by the size of the original

interaction neighborhood. The box version ξ̂t of the stacked contact process is then
defined as the process whose transition rates at vertex x are given by

0 → 1 at rate λ1 (f̂1(Nx, ξ̂) + f̂2(Nx \ N̂x, ξ̂)) 1 → 0 at rate 1

0 → 2 at rate λ1 f̂2(N̂x, ξ̂) 2 → 0 at rate 1

1 → 2 at rate λ2 f̂2(N̂x, ξ̂) 2 → 1 at rate δ.

In words, hosts give birth and die, and infected hosts recover at the same rate as
in the original process. However, an infected host at vertex x can only infect hosts
or send infected offspring in the smaller neighborhood N̂x. In particular, we have
the following lemma.

Lemma 6.2. There is a coupling of ξt and ξ̂t such that ξ̂t � ξt when ξ̂0 � ξ0.

Proof: The stacked contact process ξt being constructed from the graphical repre-

sentation introduced in the previous section, the box version ξ̂t can be constructed
from the graphical representation obtained from the following two modifications:

(1) Remove all the infection arrows x 99K y such that y ∈ Nx \ N̂x.

(2) Label all the birth arrows x −→ y such that y ∈ Nx \ N̂x with a 1.

The box process is then constructed by assuming that

ξ̂s−(x) 6= 0, ξ̂s−(y) = 0 and (x, s)
1−→ (y, s) implies that ξ̂s(y) = 1

but otherwise using the same rules as for the original process. Since the birth
arrows and the death marks occur at the same rate for both processes and have the
same effect on whether vertices are empty or occupied, it follows that

{x ∈ Z
d : ξ̂t(x) 6= 0} = {x ∈ Z

d : ξt(x) 6= 0} for all t ≥ 0.

This can also be seen from adding the birth rates:

f̂1(Nx, ξ̂) + f̂2(Nx \ N̂x, ξ̂) + f̂2(N̂x, ξ̂)

= f̂1(Nx, ξ̂) + f̂2(Nx, ξ̂) = f1(x, ξ̂) + f2(x, ξ̂)

In particular, we only need to prove that

{x ∈ Z
d : ξ̂t(x) = 2} ⊂ {x ∈ Z

d : ξt(x) = 2} for all t ≥ 0

which follows from the same argument as in the proof of Lemma 2.2. �

Block construction – To complete the proof of the theorem, we compare the
process with long range interactions with the same oriented site percolation process
as in the previous section but using other space and time scales. Before going into
the details of the proof, we start with a brief overview of the key steps which are
illustrated in Figure 6.8. For simplicity, we only prove the result in one dimension
but our approach easily extend to higher dimensions. Let

b := λ2 (1− 1/λ1)− δ

B0 := 1 + δ

c := 8 (2B0 + 1)/b

T1 := (1 + c)T + 2ǫ−1
0

√
T

(6.3)



Some rigorous results for the stacked contact process 215

−2
√
TL
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Figure 6.8. Picture of the block construction.

where T is a large parameter to be fixed later and where ǫ0 has been defined above
to fix the size of the small boxes. Then, we declare site (z, n) ∈ Z × Z+ to be
infected when

card {x ∈ B̂0 + z
√
TL : ξt(x) 6= 0} ≥ l u∗ = l (1 − 1/λ1)

card {x ∈ B̂0 + z
√
TL : ξt(x) = 2} ≥ 2l exp(−T )

(6.4)

for some t ∈ [2nT1, (2n+ 1)T1]. The proof combines three ingredients.

(1) Growth of the hosts – First, we show that, given the first event in (6.4),
the population of hosts spreads so that, in the large space-time block drawn
with a thick frame in the picture, the density of hosts in each small box
is close to the mean-field equilibrium u∗. This provides a habitat that the
infection can invade. This is proved in Lemma 6.3.

(2) Growth of the infection – The next step is to prove that, in this large
space-time block, we can also increase the population of infected hosts as
long as their density is low. This implies that at least one of the following
two events must occur:
(a) The density of infected hosts in the small box at the center of the large

spatial block is larger than exp(−T/2) at the fixed time (1 + c)T .
(b) The density of infected hosts in some small box in the large spatial

block is larger than T−1 at some random time before (1 + c)T .
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This result is proved in Lemma 6.4.

(3) Moving the infection – The last key ingredient is to show that infected
hosts within a small box can quickly spread along a path of adjacent small
boxes contained in the large spatial block without the density of the infected
hosts decreasing too fast. This is used to prove that, each time event (b)
above occurs, we can re-center the infection to recover (a) after a short time
period, which is established rigorously in Lemmas 6.5–6.6.

Having step 1 allows us to repeat steps 2 and 3 a finite number of times so that
for a long time there is always a small box in the large spatial block that has a
reasonably large density of infected hosts. To complete the construction, we apply
again step 3 to create two small boxes with the desired density of infected hosts at
the center of the two adjacent blocks. To make this precise, we recall that hosts,
either healthy or infected, evolve according to a basic contact process ηt with birth
rate λ1 > 1, death rate one and dispersal range L. We consider the interval

IT := [−2
√
TL, 2

√
TL]

and let η̄t be this contact process modified so that births outside 2IT are not allowed,
i.e., offspring sent outside this box are instantaneously killed. Finally, we let

∆T := {x ∈ Z
d : B̂x ⊂ IT } and

ûj(x, η̄t) := (2l)−1
∑

y∈B̂x
1 {η̄t(y) = j}

be the fraction of type j vertices in box B̂x at time t. In the next lemma, we prove
that we can increase the population of hosts so that their density in each small box
is close to the mean-field equilibrium u∗.

Lemma 6.3. Assume that û1(0, η0) ≥ (1/2)u∗. Then, for all ρ > 0,

limL→∞ P (|û1(x, η̄t)− u∗| < ρ for all t ∈ [T, 4(1 + c)T ] and x ∈ ∆T ) = 1

whenever T is sufficiently large.

Proof: First, we note that

E (û1(x, η̄t)) = (2l)−1
∑

y∈B̂x
P (η̄t(y) = 1) (6.5)

Now, since the contact process is self-dual, we also have

P (η̄t(y) = 1) = P (η̄yt ∩B 6= ∅) where B := {z ∈ B̂0 : η̄0(z) = 1} (6.6)

and where η̄yt is the contact process starting with a single individual at vertex y.

In addition, since the initial fraction of occupied vertices in box B̂0 is larger
than (1/2)u∗,

card (B) = (2l)d û1(0, η̄0) ≥ (2l)d (1/2)u∗

≥ (2L)d exp(−((λ1 − 1)/2d) t) for all t large.

In particular, it follows from Durrett and Lanchier (2008, Lemma 3.4) that, for
all x ∈ ∆T ,

limL→∞ P (η̄yt ∩B 6= ∅) = u∗ for all t large and y ∈ B̂x. (6.7)

Combining (6.5)–(6.7), we deduce that, for all t large and x ∈ ∆T ,

|E (û1(x, η̄t))− u∗| = |(2l)−1
∑

y∈B̂x
(P (η̄t(y) = 1)− u∗)|

= |(2l)−1
∑

y∈B̂x
(P (η̄yt ∩B 6= ∅)− u∗)| < ρ/2

(6.8)
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for all L sufficiently large. In view of (6.8),

limL→∞ P (|û1(x, η̄t)− u∗| ≥ ρ for some t ∈ [T, 4(1 + c)T ] and x ∈ ∆T )

≤ limL→∞ P (|û1(x, η̄t)− E (û1(x, η̄t))| ≥ ρ/2

for some t ∈ [T, 4(1 + c)T ] and x ∈ ∆T )

which is equal to zero according to Durrett and Lanchier (2008, Lemma 3.5). �

To state our next lemma, we define

û2(x, ξ̄t) := (2l)−1
∑

y∈B̂x
1 {ξ̄t(y) = 2}

û1+2(x, ξ̄t) := (2l)−1
∑

y∈B̂x
1 {ξ̄t(y) 6= 0}

where the process ξ̄t is the stacked contact process modified so that hosts outside IT
cannot get infected and offspring sent outside this interval instantaneously recover.
According to Lemma 2.1, this process is dominated by the original stacked contact
process. In the next lemma, we show that we can increase the population of infected
hosts as long as their density is low.

Lemma 6.4. Assume that

û1+2(0, ξ̄0) > (1/2)u∗ and û2(0, ξ̄0) > exp(−T ).

Then, for T large and in the limit as L → ∞, one of the following two events holds

(1) û2(0, ξ̄(1+c)T ) ≥ exp(−T/2),

(2) û2(x, ξ̄t) ≥ T−1 for some t ∈ [T, (1 + c)T ] and B̂x ⊂ IT .

Proof: To begin with, we define the two events

A0 := {û2(0, ξ̄T ) > (1/2) exp(−T (1 +B0))}
A1 := {|û1+2(x, ξ̄t)− u∗| < ρ for all t ∈ [T, 4(1 + c)T ] and x ∈ ∆T }.

According to Durrett and Lanchier (2008, Lemma 3.1), the event A0 occurs with
probability arbitrarily close to one when the range of the interactions is large, which,
with Lemma 6.3, gives

limL→∞ P (A0) = limL→∞ P (A1) = 1 when T is large. (6.9)

Now, start a copy of the box version of the modified stacked contact process

with ξ̂T = ξ̄T at time T , both processes being constructed starting from this time
from the same graphical representation as in Lemma 6.2. Let

A2 := {û2(x, ξ̂t) < T−1 for all t ∈ [T, (1 + c)T ] and x ∈ ∆T }.

Then, on the event A1 ∩ A2 and for all (x, t) ∈ [−
√
TL,

√
TL]× [T, (1 + c)T ] such

that ξ̂t(x) = 2, this type 2 particle dies at rate 1+ δ and reproduces at rate at least

L−1 l (λ1 (1− u∗ − ρ) + λ2 (u∗ − ρ))

to every B̂y ⊂ Nx, which is a lower bound for the rate at which an infected host gives
birth plus the rate at which it infects a healthy host. Since b = λ2 (1−1/λ1)−δ > 0,

(1− 4ǫ0)(λ1 (1/λ1 − ρ) + λ2 (1− 1/λ1 − ρ))

= (1− 4ǫ0)(1 + λ2 (1− 1/λ1)− (λ1 + λ2) ρ)

= (1− 4ǫ0)(1 + δ + b− (λ1 + λ2) ρ) > 1 + δ + b/2 =: β
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rate symbol effect on the process ξt

1 × at y death at y when y is occupied

δ • at y recovery at y when y is infected

λ/N y
0

−→ z birth when y is occupied and z is empty and infec-
tion when y is infected and z in state 1

(λ1 − λ)/N y
1

−→ z birth when y is occupied and z is empty

(λ2 − λ)/N y
2

−→ z infection when y is infected and z in state 1

Table 6.4. Graphical Representation used in Lemma 6.5

for some ρ, ǫ0 > 0 fixed from now on. Now, we consider the basic contact process ζt
with birth rate β, death rate 1 + δ and dispersal range L − 4l, again modified
so that births outside IT are not allowed, i.e., offspring sent outside this box are
instantaneously killed. Then, according to Lemmas 6.1–6.2, the set of infected
hosts in the modified stacked contact process ξ̄t dominates the set of infected hosts

in its box version ξ̂t, which in turn dominates stochastically the set of occupied
vertices in ζt provided the corresponding sets are initially the same. This, together
with Durrett and Lanchier (2008, Lemma 4.3) applied to the contact process ζt
when the dispersal range goes to infinity, implies that

limL→∞ P ({û2(0, ξ̄(1+c)T ) < exp(−T/2)} ∩ A2 |A0 ∩ A1) = 0.

Finally, using (6.9) and again Lemma 6.2, we deduce that

limL→∞ P (û2(0, ξ̄(1+c)T ) ≥ exp(−T/2) or

û2(x, ξ̄t) ≥ T−1 for some t ∈ [T, (1 + c)T ] and B̂x ⊂ IT )

≥ limL→∞ P ({û2(0, ξ̄(1+c)T ) ≥ exp(−T/2)} ∪ Ac
2 |A0 ∩ A1)

= 1− limL→∞ P ({û2(0, ξ̄(1+c)T ) < exp(−T/2)} ∩ A2 |A0 ∩ A1) = 1.

This completes the proof. �

In the next two lemmas, we prove that, when event (b) occurs, infected hosts
within a small box can quickly spread along a path of adjacent small boxes without
the density of the infected hosts decreasing too fast, which will allow us to re-center
the infection and recover (a) after a short time period. To make this precise, we let

Hz,t := 2l û2(z, ξt) = card {x ∈ B̂z : ξt(x) = 2}

be the number of infected hosts in the small box B̂z at time t. In the proofs, the
stacked contact process is constructed from the graphical representation in Table 6.4
where λ := min (λ1, λ2).

Lemma 6.5. There exist a > 0 and L0 < ∞ such that, for all L > L0,

P (Hz,1 ≥ aH0,0 |H0,0 ≥ 2l exp(−T )) > 1− exp(−
√
L) for z = −1, 0, 1.

Proof: We begin with the case z = 0, which is easier. Let

G0 := {x ∈ B̂0 : ξ0(x) = 2 and there is no death

or recovery marks on the segment {x} × [0, 1]}.
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Since each x ∈ G0 is occupied by an infected host at time 1, expressing card G0 as
a binomial random variable and using standard large deviation estimates for this
distribution, we obtain

P (H0,1 ≥ aH0,0 |H0,0 ≥ 2l exp(−T ))

≥ P (card G0 ≥ aH0,0 |H0,0 ≥ 2l exp(−T ))

= P (Binomial (H0,0, exp(−(1 + δ))) ≥ aH0,0 |H0,0 ≥ 2l exp(−T ))

≥ P (Binomial (H0,0, exp(−(1 + δ))) ≥
(1/2) exp(−(1 + δ))H0,0 |H0,0 ≥ 2l exp(−T ))

≥ 1− exp(−(l/4) exp(−T ) exp(−(1 + δ))) ≥ 1− exp(−
√
L)

for all a ≤ (1/2) exp(−(1+δ)) and L sufficiently large. To prove the result when z =
±1, we again consider the set G0 defined above as well as

Gz := {y ∈ B̂z : there is no death or recovery marks on {y} × [0, 1]}.
Then, writing x → y to indicate that

there is a type-0 arrow (x, s)
0−→ (y, s) for some s ∈ (1/2, 1),

we have the inclusion

G′
z := {y ∈ Z

d : y ∈ Gz and there exists x ∈ G0 such that x → y}
⊂ {y ∈ B̂z : ξ1(y) = 2} = Hz,1.

(6.10)

In addition, card G0 and card Gz are equal in distribution to

card G0 = Binomial (H0,0, exp(−(1 + δ)))

card Gz = Binomial (2l, exp(−(1 + δ)))
(6.11)

while we have the conditional distribution

P (card G′
z = K | card G0 = K0 and card Gz = Kz)

= P (Binomial (Kz, 1− exp(−λK0/4L)) = K).
(6.12)

In particular, letting a = (1/4l)Kz (1− exp(−λK0/4L)) exp(T ) where

K0 := l × exp(−T ) exp(−(1 + δ)) and Kz := l × exp(−(1 + δ))

and combining (6.10)–(6.12), we deduce that

P (Hz,1 ≥ aH0,0 |H0,0 ≥ 2l exp(−T ))

≥ P (G′
z ≥ aH0,0 |H0,0 ≥ 2l exp(−T ))

≥ P (G′
z ≥ aH0,0 |H0,0 ≥ 2l exp(−T ) and

card G0 ≥ K0 and card Gz ≥ Kz)

× P (card G0 ≥ K0 and card Gz ≥ Kz |H0,0 ≥ 2l exp(−T ))

≥ P (Binomial (Kz, 1− exp(−λK0/4L))

≥ (1/2)Kz (1− exp(−λK0/4L)))

× P (Binomial (H0,0, exp(−(1 + δ))) ≥ K0 |H0,0 ≥ 2l exp(−T ))

× P (Binomial (2l, exp(−(1 + δ))) ≥ Kz)

≥ 1− exp(−(Kz/8)(1− exp(−λK0/4L)))− exp(−K0/4)− exp(−Kz/4)

≥ 1− exp(−
√
L)
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for all L sufficiently large. �

Applying O(
√
T ) times Lemma 6.5, we deduce the following result.

Lemma 6.6. Let T0 = ǫ−1
0

√
T and x ∈ Z with |x| ≤ T0. Then,

P (Hx,T0
≥ H0,0 exp(−T/4) |H0,0 ≥ 2l exp(−T/2)) ≥ 1− exp(−L1/4)

for all T large and all L larger than some finite L1 ≥ L0.

Proof: Let n be the integer part of T0. Then, there exist

x0 = 0, x1, . . . , xn = x such that |xi+1 − xi| ≤ 1 for i = 0, 1, . . . , n− 1.

Let T be sufficiently large so that an ≥ exp(−T/4). Then, by applying repeatedly
Lemma 6.5 along the corresponding path of adjacent small boxes, we obtain

P (Hx,T0
≥ H0,0 exp(−T/4) |H0,0 ≥ 2l exp(−T/2))

≥ P (Hx,T0
≥ an H0,0 |H0,0 ≥ 2l exp(−T/2))

≥ ∏
i=0,1,...,n−1 P (Hxi+1,i+1 ≥ aHxi,i |Hxi,i ≥ 2l ai exp(−T/2))

≥ (1 − exp(−
√
L))n ≥ 1− n exp(−

√
L) ≥ 1− exp(−L1/4)

for all L sufficiently large. �

Lemma 6.7. There exists T large such that

limL→∞ P ((1, 1) is infected | (0, 0) is infected) = 1.

Proof: To simplify the notation, we introduce

N̂1+2(z, t) := card {x ∈ B̂0 + z
√
TL : ξt(x) 6= 0}

N̂2(z, t) := card {x ∈ B̂0 + z
√
TL : ξt(x) = 2}

and observe that (z, n) is infected when

N̂1+2(z, t) ≥ l u∗ and

N̂2(z, t) ≥ 2l exp(−T ) for some t ∈ [2nT1, (2n+ 1)T1].

First, we apply Lemma 6.3 with ρ = (1/2)u∗ to get

limL→∞ P (N̂1+2(1, t) ≥ l u∗ for all t ∈ [2T1, 3T1] | (0, 0) is infected)
≥ limL→∞ P (|û1+2(x, ξt)− u∗| < (1/2)u∗

for all t ∈ [T, 4(1 + c)T ] and x ∈ ∆T |
û1+2(0, ξ0) ≥ (1/2)u∗) = 1

(6.13)

for all T large. This proves that the first condition for (1, 1) to be infected holds
with probability close to one when the parameters T and L are large. To deal with
the second condition, we let

B1 := {û2(0, ξ(1+c)T ) ≥ exp(−T/2)}
B2 := {û2(x, ξt) ≥ T−1 for some t ∈ [T, (1 + c)T ] and B̂x ⊂ IT }

be the two events introduced in Lemma 6.4. According to this lemma,

limL→∞ P (B1 ∪B2 | (0, 0) is infected) = 1 (6.14)

for all T large. In case B1 occurs, we do nothing, whereas in case B2\B1 occurs, we
use Lemma 6.6 to re-center the infected hosts towards zero. More precisely, since
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on the event B2 there is a small box with a fraction of infected hosts exceeding T−1

which is distance at most 2
√
TL from the origin, this lemma implies that

limL→∞ P (N̂2(0, t+ T0) ≥ 2l exp(−T/2) |B2)

= limL→∞ P (H0,t+T0
≥ 2l exp(−T/2) |B2)

≥ limL→∞ P (H0,t+T0
≥ 2l T−1 exp(−T/4) |B2) = 1

for all T large. Recalling (6.14) and the definition of B1, it follows that

limL→∞ P (N̂2(0, s) ≥ 2l exp(−T/2)

for some s ∈ [T, (1 + c)T + T0] | (0, 0) is infected)
≥ limL→∞ P (N̂2(0, s) ≥ 2l exp(−T/2)

for some s ∈ [T, (1 + c)T + T0] |B1 ∪B2)

P (B1 ∪B2 | (0, 0) is infected) = 1

(6.15)

Combining (6.13) and (6.15), we deduce

limL→∞ P (N̂1+2(0, s) ≥ l u∗ and N̂2(0, s) ≥ 2l exp(−T/2)

for some s ∈ [T, (1 + c)T + T0] | (0, 0) is infected) = 1
(6.16)

Now, define s0 := 0 and recursively for all i > 0,

si := inf {s : N̂1+2(0, s) ≥ l u∗ and N̂2(0, s) ≥ 2l exp(−T/2)

for some s ∈ [si−1 + T, si−1 + (1 + c)T + T0]}
where inf ∅ = ∞ by convention. Now, let n := ⌊2(1 + c) + 1⌋+ 1 and note that

2T1/T = (2(1 + c)T + 4T0)/T ≤ 2(1 + c) + 1 ≤ n for all T large.

Since n does not depend on T and L, it directly follows from the strong Markov
property and (6.16) that

limL→∞ P (sn < ∞| (0, 0) is infected)
=

∏
i=0,...,n−1 P (si+1 < ∞| si < ∞ and (0, 0) is infected) = 1.

(6.17)

In addition, on the event that sn < ∞, we have

si+1 − si ∈ [T, (1 + c)T + T0] = [T, T1 − T0] for i = 0, 1, . . . , n− 1

so there is i ≤ n such that si ∈ [2T1, 3T1 − T0]. This and (6.17) imply that

limL→∞ P (N̂1+2(0, s) ≥ l u∗ and N̂2(0, s) ≥ 2l exp(−T/2)

for some s ∈ [2T1, 3T1 − T0] | (0, 0) is infected)
≥ limL→∞ P (sn < ∞| (0, 0) is infected) = 1.

(6.18)

Applying again Lemma 6.6, we obtain

limL→∞ P (N̂1+2(1, s+ T0) ≥ l u∗ and N̂2(1, s+ T0) ≥ 2l exp(−T )

| N̂1+2(0, s) ≥ l u∗ and N̂2(0, s) ≥ 2l exp(−T/2)

for some s ∈ [2T1, 3T1 − T0]) = 1.

(6.19)

The lemma follows by observing that the conditional probability in the statement
is larger than the product of (6.18) and (6.19). �

Since the graphical representation is translation invariant in space and time,
Lemma 6.7 implies that the process can be coupled with oriented site percolation in
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which a way that the set of infected sites dominates the set of wet sites. Theorem 1.4
can then be deduced using the same argument as in the previous section.
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