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Abstract. We discuss a family of time-reversible, scale-invariant diffusions with
singular coefficients. In analogy with the standard Gaussian theory, a correspond-
ing family of generalized characteristic functions provides a useful tool for prov-
ing limit theorems resulting in non-Gaussian, scale-invariant diffusions. We apply
the generalized characteristic functions in combination with a martingale construc-
tion to prove a simple invariance principle starting from a spatially inhomogeneous
nearest-neighbor random walk.

1. Introduction

The determination of “effective” laws for suitable functionals of a collection of
random variables is a basic problem in probability theory. Generalized to stochas-
tic processes, as in Donsker’s invariance principle (Donsker, 1951), this problem
becomes the question of whether a process follows an effective, and hopefully sim-
pler, law when “viewed from afar.” The emergence of effective limiting laws over
large scales is also a key problem in statistical physics and applied mathematics,
in relation to coarse graining, renormalization group analysis, and universality of
critical phenomena.

A general perspective on this question is obtained by rescaling. Given a process
t 7→ Xt, where t is a time parameter and Xt takes values in a vector space, one
typically attempts to characterize large scale behavior by proving a limit theorem
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as N →∞ for the rescaled processes N−αXNt. Here the characteristic exponent α
must be chosen precisely to give convergence in law to a non-trivial limit process
Lt. A notable, if trivial, feature of this approach is that the law of the limit process
will be scale-invariant : N−αLNt must have the same distribution as Lt.

Thus processes with scale-invariant laws are singled out as the possible effective
laws for the large-scale behavior of stochastic dynamics. These scaling limits take
a macroscopic view in which scale specific features of the dynamical law recede to a
microscopic level as a scale-invariant picture emerges. The most prominent example
is Brownian motion (the Wiener process), which is the limit law for Donsker’s
invariance principle Donsker (1951). Other well-known examples of scale-invariant
limit laws include Mittag-Leffler processes Darling and Kac (1957); Chen (1999),
Brownian motions time-changed by Mittag-Leffler processes Papanicolaou et al.
(1977); Höpfner and Löcherbach (2003); Chen (2000), Bessel processes Csáki et al.
(2009); Alexander (2011); Lamperti (1962), and stable processes Mellet et al. (2011);
Jara et al. (2009); Meerschaert and Scheffler (2004). For a classification of one-
dimensional scale-invariant Markovian diffusions see DeBlassie (2000).

The focus of this article is on scale-invariant diffusions (xt)t≥0 associated to
Kolmogorov generators of the form

L(ν) =
1

2

d

dx

1

|x|ν
d

dx
, for ν > 0. (1.1)

These processes have the scale invariance

Lx
(
(xt)t≥0

)
= L

N
1
ν+2 x

((
N−

1
ν+2 xNt

)
t≥0

)
, N > 0 ,

where Lx denotes the law of the process with x0 = x.
For a given value of ν, the process (xt)t≥0 formally satisfies the stochastic dif-

ferential equation

dxt =
1

|xt|
ν
2
dωt − ν

xt
|xt|ν+2

dt ,

with ωt a standard Brownian motion; although, the singular coefficients preclude
directly integrating this equation to construct the process. However, we may con-
struct the process directly from the Dirichlet form associated to L(ν); or, roughly
equivalently, from the transition kernel φt(x, x

′), which solves the heat equation

∂tφ
(ν)
t (x, x′) = L(ν)φ

(ν)
t (x, x′) , φ

(ν)
0 (x, x′) = δ(x− x′) .

Remarkably, there is an explicit formula for φ
(ν)
t , see eq. (2.1), involving modified

Bessel function of the first kind of order ±ν+1
ν+2 . A detailed construction and further

properties of the processes (xt)t≥0 may be found in Sec. 2 below.

When ν = 0 the operator L(ν) is the Laplacian, φ
(ν)
t is the usual heat kernel,

and the corresponding (xt)t≥0 process is Brownian motion. In this case, a potent
technique for deriving limit theorems is the method of characteristic functions,
which originated in Laplace’s work on the central limit theorem. Given a process
(Xt)t≥0, we define its characteristic function

ϕ
(0)
t (q) = E

[
eiqXt

]
. (1.2)

An invariance principle, with Brownian motion as the limit, may be proved, in part,
by showing that

ϕ
(0)
Nt(N

− 1
2 q)

N→∞−−−−→ e−Dtq
2

,
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with D a positive constant. (At a technical level, this only proves a central limit

theorem for the random variable N−
1
2XNt; to obtain a limit law for the process

we must consider characteristic functions depending on the values of the process
at an arbitrary finite number of times. This extension is not difficult for Markov
processes, such as considered below.)

The central point of the present paper is that a similar program is effective for
limits converging to the process (xt)t≥0 associated to L(ν). For each ν, we define a

generalized characteristic function using the eigenfunctions of L(ν) in place of the
complex-exponential eigenfunctions of L(0) in (1.2). Specifically,

ϕ
(ν)
t (q) := E

[
e(ν)(qXt)

]
, (1.3)

where

e(ν)(x) := Cν |x|
ν+1
2

[
J− ν+1

ν+2

( |x| ν2+1

ν
2 + 1

)
+ i sgn(x)J ν+1

ν+2

( |x| ν2+1

ν
2 + 1

)]
,

with Jα the ordinary Bessel function of the first kind of order α. As we will show
below, for each q the function e(ν)(qx) is an eigenfunction of L(ν), with eigen-
value − 1

2 |q|
ν+2, Furthermore, using known properties of the Hankel transform, it

is straightforward to show that this is a complete set of eigenfunctions.

Limit Theorem. To illustrate the utility of the generalized characteristic functions

φ
(ν)
t (q), we prove Theorem 4.1, which we summarize here as follows:

Theorem. Let (Xt)t≥0 be a continuous-time reversible random walk on Z with
jump rates

P (Xt+dt = n+ 1|Xt = n) = Rndt ,

where

Rn =
1

2|n|ν
+ O

(
1

|n|ν+1

)
.

For each N > 0, let X
(N)
t = N−

1
ν+2XNt where the process Xt starts at X0 = xN ,

with xN ∈ Z. If N−
1
ν+2xN → x0 ∈ R, then

E
[
e(ν)(qX

(N)
t )

]
N→∞−−−−→ E

[
e(ν)(qxt)

]
= e−t

|q|ν+2

2 e(ν)(qx0) , (1.4)

where the process (xt)t≥0 has generator L(ν) and starts from x0. It follows that(
X

(N)
t

)
t≥0 converges in law to

(
xt
)
t≥0 as N →∞.

Remark. Using slightly messier estimates, we can replace O
(
|n|−ν−1) in the as–

ymptotics for Rn above by o
(
|n|−ν

)
.

We are particularly interested in the “spectral” technique described here because
of the possibility that it may be generalized to settings for which stochastic tools
are not available. For instance, there are central limit theorems and invariance
principles for the evolution of quantum observables, see, e.g., De Roeck et al. (2010);
Kang and Schenker (2009). These were necessarily phrased in terms of convergence
of certain mean values, such as characteristic functions, since the precise value of an
observable is given no meaning in quantum mechanics. We believe the characteristic
functions presented here will be useful in the analysis of the large scale behavior of
certain physical systems. We describe one such system below.
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Motivation. Our interest in the processes (xt)t≥0, stems from the apparent rela-
tion of the ν = 2 case to a functional limit theorem for the momentum of a particle
moving in a randomly shifting force field, in either classical or quantum mechanics.
To motivate what follows, let us start by sketching the connection.

First consider the case of classical dynamics. Let (Qt, Pt)t≥0 be a stochastic
process in R2 satisfying the pair of differential equations

dQt = Ptdt and dPt = −dV
dq

(Qt + ωt) dt , (1.5)

where (ωt)t≥0 is a standard Brownian motion and V ∈ C2(R) is non-negative
and periodic with period one. The equations (1.5) describe a one-dimensional
Newtonian particle with position Qt and momentum Pt under the influence of a
randomly shifting periodic force: Ft(q) := −dVdq (q + ωt).

The particle’s energy is not conserved, as a consequence of the random shifting.
Instead Ito’s formula implies that the energy Ht := 1

2P
2
t + V (Qt + ωt) obeys the

differential equation

dHt =
dV

dq
(Qt + ωt)dωt +

1

2

d2V

dq2
(Qt + ωt)dt . (1.6)

Due to the continual input of randomness, the particle will typically accelerate to
high energies Ht � 1 over long time periods. At high energy the speed |Pt| =√

2Ht − 2V (Qt + ωt) is large and the argument Qt + ωt appearing in (1.6) passes
quickly through the period cells of V (q) at an approximate frequency(∫ 1

0

da
1√

2Ht − 2V (a)

)−1
≈
√

2Ht � 1 .

This swift cycling through the period cells generates an averaging effect reminiscent
of the adiabatic regimes studied by Freidlin and Wentzell (1994) in which Hamil-
tonian flows are perturbed by comparatively slow-acting white noises; it suggests

that we may replace the coefficients dV
dq (Qt + ωt) and 1

2
d2V
dq2 (Qt + ωt) appearing

in (1.6) with the respective high-energy averaged forms given by

√
2Ht

∫ 1

0

da

∣∣dV
dq (a)

∣∣2√
2Ht − 2V (a)

≈ σ and

√
2Ht

∫ 1

0

da

1
2
d2V
dq2 (a)√

2Ht − 2V (a)
=
√

2Ht

∫ 1

0

da
− 1

2

∣∣dV
dq (a)

∣∣2
(2Ht − 2V (a))

3
2

≈ −σ
4Ht

,

where σ :=
∫ 1

0
da
∣∣dV
dx (x)

∣∣2 and the equality follows from integrating by parts. Thus,
taking into account self-averaging at high energy, the equation (1.6) is approxi-
mately equivalent to that of a dimension- 12 Bessel process: dHt ≈

√
σdω′t − σ

4Ht
dt

where ω′ is a standard Brownian motion.
The above heuristic considerations suggest that the rescaled energy process

(N−
1
2HNt

σ
)t≥0 approaches a dimension- 12 Bessel process in law as N → ∞. The

process (xt)t≥0, with generator L(2), has the property that 1
2x2

t is a dimension- 12
Bessel process (see Proposition 2.3 below). Since the momentum Pt is a signed pro-
cess whose absolute value is approximately equal to

√
2Ht, we are lead to conjecture
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the following functional convergence for large N :(
N−

1
4PNt

σ
, N−

5
4QNt

σ

)
t≥0

L
=⇒

(
xt ,

∫ t

0

dr xr

)
t≥0

. (1.7)

(Convergence of the rescaled position process would follow from that for the mo-
mentum process, since the position is merely a time integral of the momentum.)

We further expect some of what was said above to carry over to the quantum
version of this system. In that case, we cannot speak of the precise position Qt and
Pt of the particle at time t. Instead, the state of the quantum system is described
by a wave function ψ(x, t) solving the time dependent Schrödinger equation

i
∂ψ(x, t)

∂t
= −1

2

∂2ψ(x, t)

∂x2
+ V (x+ ωt)ψ(x, t) . (1.8)

The amplitude squared |ψ(·, t)|2 is interpreted, according to the axioms of quantum
mechanics, as giving a probability density for the position Qt of the particle at time

t. The probability density for the momentum Pt is given by |ψ̂(·, t)|2 where ψ̂ is
the (ordinary) Fourier transform of ψ(·, t). Although it no longer makes sense to
talk about “the momentum process,” we can consider its generalized characteristic
function

ϕ
(2)
t (q) :=

∫
R

e(2)(qp)|ψ̂(p, t)|2dp .

A semi-classical analysis of the system at high energies, leads us to conjecture that

lim
N→∞

ϕ
(2)
Nt
σ

(
N−

1
4 q
)

= e−t
|q|4
2 . (1.9)

From this convergence would follow, for instance, the super ballistic propagation of
the wave function: ∫

R
|x||ψ(x, t)|2dx ∼ t

5
4 .

The invariance principles (1.7) and (1.9) will be the subject of forthcoming work.
For the present paper, we direct our attention to the processes (x)t≥0 generated by

L(ν), the associated generalized characteristic functions, and a limit theorem for a
simple random walk with (xt)t≥0 as a scaling limit law.

The remainder of this article is outlined as follows: In Sec. 2 we discuss con-
structions and elementary properties of the process (xt)t≥0. In Sec. 3 we discuss

the generalized characteristic function and the eigenfunctions of the generator L(ν).
Sections 4 contains a proof of the functional central limit theorem outlined above,
yielding the law of (xt)t≥0 starting from an inhomogeneous simple random walk.

2. Properties of the scale-invariant diffusion

Since the generator (1.1) is singular at zero, we should be careful about how the
corresponding process is defined. There are, however, a number of constructions at
our disposal. In the following lemma we use results from Fukushima et al. (1994)
on stochastic processes determined by Dirichlet forms.

Lemma 2.1. Let the Dirichlet form E : D × D → R be defined by E (u, v) =∫
R dx

1
|x|ν

du
dx (x) dvdx (x) on the domain

D =

{
w ∈ L2(R) ∩H1

loc(R)

∣∣∣∣∣
∫
R
dx

1

|x|ν

∣∣∣∣dwdx (x)

∣∣∣∣2 <∞
}
.
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The form E determines a strong Markov process (xt)t∈R+ with continuous trajecto-
ries. The corresponding transition semigroup is strongly continuous on Lp(R) for

1 ≤ p <∞ and has explicit transition densities φ
(ν)
t (x, x′) of the form

φ
(ν)
t (x, x′) =

|xx′| ν+1
2

t(ν + 2)
e
− |x|

ν+2+|x′|ν+2

2t( ν
2
+1)2

(
I− ν+1

ν+2

( |xx′| ν2+1

t(ν2 + 1)2

)
(2.1)

+ sgn(xx′) I ν+1
ν+2

( |xx′| ν2+1

t(ν2 + 1)2

))
, (2.2)

(2.3)

where sgn(y) = y
|y| and Iα is the modified Bessel function of the first kind of order

α.

Remark 2.2. The explicit form of the transition semigroup (2.1) is similar to the
explicit formula for Bessel processes Revuz and Yor (1999, Appx. 7). Note that for
x = 0 the expression (2.1) reduces to the form

φ
(ν)
t (0, x′) = N−1ν t−

1
ν+2 e

− |x′|ν+2

2t( ν
2
+1)2 with Nν := 2

ν+1
ν+2 Γ

(
1

ν + 2

)
(ν + 2)−

ν
ν+2 .

(2.4)

Also note that φ
(ν)
t (x, x′) is nonnegative since I−α(r) ≥ Iα(r) for all r, α > 0.

Proof : In the terminology of Fukushima et al. (1994), the form (E ,D) is regular
and closed. By Fukushima et al. (1994, Thm 7.2.1) there exists a symmetric Hunt
process (xt)t∈R+ with corresponding form E . Since E (u, v) = 0 when u, v ∈ D have
disjoint compact supports, the trajectories of the process are continuous Fukushima
et al. (1994, Thm 4.5.1). Strong continuity of the corresponding semi-group on
Lp(R) is a standard result for symmetric Markov semi-groups, see for example
Davies (1989, Thm. 1.4.1).

The generator (1.1) is defined by the standard Friedrichs construction on the
domain

D(L(ν)) = {u ∈ D | E (v, u) ≤ C‖v‖2 for some C <∞} .

The domain includes the set {u ∈ H1 | 1
|x|ν

du
dx ∈ H

1}. It follows for fixed x ∈ R and

t > 0, that φ
(ν)
t (x, ·) ∈ D(L(ν)) and by explicit computation, using the modified

Bessel equation x2 d
2Iα
dx2 + xdIαdx = (x2 + α2)Iα, that

d

dt
φ
(ν)
t (x, ·) = L(ν)φ

(ν)
t (x, ·) . (2.5)

(There is an easier method to verify this differential equation, using the eigenfunc-
tions of the generator L(ν); see Sec. 3.)

For φ
(ν)
t (x, x′) to be the heat kernel, we need the initial condition limt↘0 φ

(ν)
t (x, ·)

d
= δx(·) in addition to (2.5). For x = 0 the convergence can be shown using the
form (2.4). For x 6= 0 the convergence can be shown using the asymptotic form of
the modified Bessel functions Olver et al. (2010, Eq. 9.7.1):

Iα(r) =
er√
2πr

(
1 +O(|r|−1)

)
, r � 1.
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It follows that φ
(ν)
t (x, x′) may be approximated for small t by

|xx′| ν4
2(2πt)

1
2

(
1 + sgn(xx′)

)
e
−

(
|x|

ν
2
+1−|x′|

ν
2
+1
)2

2t( ν
2
+1)2 . (2.6)

The distributional convergence of (2.6) to δx(x′) as t ↘ 0 is easily seen upon
changing variables to y′ = sgn(x′)|x′| ν2+1. �

The expression (2.1) for the semigroup suggests an alternative construction of
the process (xt)t≥0. Indeed, (2.1) and the Markov property imply explicit formulae
for all finite time marginals. From these we obtain a version of the process by
Kolomogorov extension. It follows from well-known results, e.g., Liggett (2010,
Theorem 3.26), that there is a Feller process version of (xt)t≥0. The existence of
a version with continuous sample paths follows from Kolomogorov’s condition, see,
e.g., Liggett (2010, Theorem 3.27).

Proposition 2.3. Let (xt)t≥0 be the diffusion defined in Lem. 2.1. Then

(1). mt := sgn(xt)|xt|ν+1 is a martingale formally satisfying the stochastic differ-
ential equation

dmt = (ν + 1) sgn(mt)|mt|
ν

2ν+2 dωt .

(2). bt := 2
ν+2 |xt|

ν
2+1 is a dimension- 2

ν+2 Bessel process:

dbt = dωt −
ν

2ν+4

bt
dt .

(3). st := 4
(ν+2)2 |xt|

ν+2 is a dimension- 2
ν+2 squared Bessel process. In particular,

the increasing part in the Doob-Meyer decomposition for st increases linearly:

dst = 2
√

st dωt +
2

ν + 2
dt .

In (1), (2) and (3), ωt denotes a standard Brownian motion.

Parts (1) and (3) of Prop. 2.3 give key martingales related to (xt)t≥0. In proving
functional limit theorems that yield the law (xt)t≥0 as a limit in Sec. 4, it will
be useful to find analogous martingales defined in terms of the pre-limit processes.
The submartingale in part (3) may be used to understand the expected amount of
time that (xt)t≥0 spends in regions around the origin. For instance if ςa is the time
that xt hits ±a when starting from the origin, then ςa = ν+2

2 (sςa −Mςa) where

Mt = 2
∫ t
0
dωr
√

sr is a martingale. The optional stopping theorem gives

E0[ςa] =
ν + 2

2
E0[sςa ] =

2

ν + 2
aν+2 . (2.7)

The Hausdorff dimension of the zero set for (xt)t≥0 is a.s. ν+1
ν+2 ; see, e.g., Bertoin

(1999, p. 21).

3. Bessel characteristic functions

For α ∈ R let Jα : R+ → R be the Bessel function of the first kind of order α.
This is a solution of the Bessel equation

x2Z ′′(x) + xZ ′(x) + (x2 − α2)Z(x) = 0 (3.1)
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with the asymptotic forms

Jα(x) =
1

Γ(1 + α)

(x
2

)α
+O(x2+α) , as x↘ 0, (3.2)

and

Jα(x) =

√
2

πx
cos
(
x− απ

2
− π

4

)
+O(x−

3
2 ) , as x↗∞; (3.3)

see, e.g., Olver et al. (2010, Ch. 10). For α 6∈ Z, Jα and J−α are linearly independent
solutions of (3.1).

For ν > 0 define e(ν) : R→ C as

e(ν)(x) := uν |x|
ν+1
2

[
J− ν+1

ν+2

(
|x| ν2+1

ν
2 + 1

)
+ i sgn(x)J ν+1

ν+2

(
|x| ν2+1

ν
2 + 1

)]
, (3.4)

where the normalization constant uν := Γ( 1
ν+2 )(ν + 2)−

ν+1
ν+2 is chosen so that

e(ν)(0) = 1. Note that e(ν) is C1. Indeed, it is real analytic for x 6= 0 and
continuously differentiable at 0 due to the asymptotic eq. (3.2). When ν = 0, e(0)

is a complex exponential e(0)(x) = eix. By eq. (3.3),

e(ν)(x) = uν

√
ν + 2

π
|x| ν4

[
cos

(
|x| ν2+1

ν
2 + 1

+
π

4

ν

ν + 2

)

+ i sgn(x) cos

(
|x| ν2+1

ν
2 + 1

− π

4

3ν + 4

ν + 2

)]
+ O(|x|−1− ν4 ) ,

as x→∞. Since e(ν) is continuous, there is Cν <∞ such that

|e(ν)(x)| ≤ Cν
(
1 + |x| ν4

)
. (3.5)

Proposition 3.1. Consider the one-parameter collection of functions (e
(ν)
q )q∈R

defined by e
(ν)
q (x) := e(ν)(qx). Then

(1). (e
(ν)
q )q∈R is a complete set of eigenfunctions for the generator L(ν):

L(ν)e(ν)
q = −1

2
|q|ν+2e(ν)

q .

(2). The functions e
(ν)
q satisfy the orthogonality relation∫

R
dx e(ν)(qx)e(ν)(q′x) = 4u2νδ(q − q′)

in the sense that for any g ∈ L2(R), the limit

g̃(ν)(q) := L2 − lim
R→∞

∫
|x|<R

e(ν)(qx)g(x)

exists and the following generalized Plancherel formula holds for all g, h ∈
L2(R), ∫

R
dx g(x)h(x) = 4u2ν

∫
R
dq g̃(ν)(q)h̃(ν)(q) .

(3). The heat kernel φ
(ν)
t (x, x′) can be written in the form

φ
(ν)
t (x, x′) =

1

4u2ν

∫
R
dq e−

t
2 |q|

ν+2

e(ν)(qx)e(ν)(qx′) . (3.6)
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Proof : The functions e
(ν)
q are seen to be eigenfunctions of L(ν) by direct computa-

tion using the Bessel equation (3.1). The completeness and orthogonality relation of

the collection (e
(ν)
q )q∈R follow from the analogous L2 theory for Hankel transforms

due to Watson (1933), see also Titchmarsh (1986, Chap. VIII), since

uν |qx|
ν+1
2 J− ν+1

ν+2

( |qx| ν2+1

ν
2 + 1

)
and iuν sgn(qx)|qx|

ν+1
2 J ν+1

ν+2

( |qx| ν2+1

ν
2 + 1

)
are the even and odd components of e

(ν)
q (x), respectively, and the formal relation∫ ∞

0

dx |qx|
ν+1
2 Jα

( |qx| ν2+1

ν
2 + 1

)
|q′x|

ν+1
2 Jα

( |q′x| ν2+1

ν
2 + 1

)
= δ
(
|q| − |q′|

)
(3.7)

is equivalent through a change of variables to the usual form∫ ∞
0

dx |q| 12 Jα
(
|qx|

)
|q′| 12 Jα

(
|q′x|

)
= δ
(
|q| − |q′|

)
.

The expression for the heat kernel follows from part (2). The explicit formula

(2.1) for φ
(ν)
t can be proved directly from (3.6) using Weber’s second exponen-

tial integral DLMF, http://dlmf.nist.gov/10.22.E67, see also Watson (1995,
§13.31). �

The definition of the generalized Fourier transform g 7→ g̃(ν) in Prop. 3.1 makes
use of the L2 theory for generalized transforms of Watson (1933). It follows that
the inverse transform is given by

g(x) = L2 − lim
R→∞

1

4u2ν

∫
|q|<R

e(ν)(qx)g̃(ν)(q) (3.8)

for g ∈ L2(R). In general the improper integral on the right hand side of (3.8) and
the improper integral defining g̃(ν) may not converge absolutely. Instead the L2

limits exist due to the oscillations of e(ν)(x), despite the growth in magnitude of

|e(ν)(x)| as x→∞ — see (3.5).
To proceed, we introduce the measure dm(x) = (1 + |x| ν4 )dx and define

g̃(ν)(q) =

∫
R
dx e(ν)(qx)g(x) , (3.9)

whenever g ∈ L1(dm). The integral on the right hand side converges absolutely
by (3.5) and for g ∈ L2(R) ∩ L1(dm) agrees with the previous definition of g̃(ν)

by dominated convergence. As in the case of the usual Fourier transform, we may
extend the transform to g ∈ L2(R) + L1(dm).

Lemma 3.2.

(1). There is a constant Cν such that |g̃(ν)(q)| ≤ Cν‖g‖L1(dm)(1 + |q| ν4 ) for all

g ∈ L1(dm).
(2). (Riemann-Lebesgue Lemma) If g ∈ L1(dm) then g̃(ν) is continuous and

lim
q→∞

g̃(ν)(q)

1 + |q| ν4
= 0 . (3.10)

(3). If g ∈ D(L(ν)) ∩ L1(dm) and L(ν)g ∈ L1(dm), then there is C <∞ such that

|g̃(ν)(q)| ≤ C 1

1 + |q| 3ν4 +2
,

http://dlmf.nist.gov/10.22.E67
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in particular g̃(ν) ∈ L1(dm).
(4). If g ∈ L2(R) + L1(dm) and g̃(ν) ∈ L1(dm), then for a.e. x ∈ R

g(x) =
1

4u2ν

∫
R
dq e(ν)(qx)g̃(ν)(q) .

Remark 3.3. Note that the hypothesis of part (3) holds for any g ∈ C2
c (R) such

that g is constant in a neighborhood of 0.

Proof : Part (1) is a consequence of (3.5).
Turning to part (2), note that the continuity of g̃(ν) for g ∈ L1(dm) follows from

the continuity of e(ν)(qx) and dominated convergence. The estimate (3.10) follows
from part (1) and part (3) in much the same way as the usual Riemann-Lebesgue
lemma is proved. First note that (3.10) is trivial for a function in C2

c (R \ {0}) on
account of the remark following the lemma and part (3). Since g ∈ L1(dm) may
be approximated in the L1(dm) norm as well as we like using such functions, we
conclude from part (1) that lim supq(1 + |q|)− ν4 |g̃(ν)(q)| < ε for any ε.

To prove the bound in part (3), first note that for g ∈ D(L(ν)) we have

˜[L(ν)g
](ν)

(q) = −1

2
|q|ν+2g̃(ν)(q) .

If furthermore L(ν)g, g ∈ L1(dm) we conclude that
(
1 + |q|(ν+2)

)
|g̃(ν)(q)| ≤ C(1 +

|q| ν4 ), and the estimate follows.
Finally, let g ∈ L2(R) + L1(dm) and suppose g̃(ν) ∈ L1(dm). Then g ∈ L2(R) +

L1(R). Since L(ν) generates a strongly continuous contractive semigroup on L1 as
well as L2, the absolutely convergent integral

gt(x) =

∫
R
dx′ φt(x, x

′)g(x′)

defines a family of functions that converge to g in the L2(R) + L1(R) norm as
t→ 0.1 However for each t > 0 we have

gt(x) =

∫
R
dq e(ν)(xq)e−

t
2 |q|

ν+2

g̃(ν)(q)

by part (3) of Prop. 3.1. Passing to a subsequence tj → 0, we obtain a sequence
such that gtj (x) → g(x) almost everywhere and the result follows by dominated
convergence. �

In the proofs of our limit theorems, we use the following generalized characteristic

function of a probability measure, defined in terms of the eigenfunctions e
(ν)
q .

Definition 3.4 (L(ν)-characteristic functions). Let the measure µ ∈M1(R) satisfy∫
R dµ(x)|x| ν4 <∞. We define the L(ν)-characteristic function by

ϕ(ν)
µ (q) :=

∫
R
dµ(x)e(ν)(qx) .

By the remark above Prop. 3.1, ϕ
(ν)
µ is equal to the standard characteristic

function for ν = 0. Our main use of the L(ν)-characteristic function is as a tool to
prove vague convergence of measures.

1Recall that the L2(R) + L1(R) norm of f is the infimum over ‖φ‖2 + ‖ψ‖1 where f = φ+ ψ.
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Proposition 3.5. Let {µn}n∈N∪{∞} be probability measures on R satisfying the

condition supn
∫
R dµn(x)|x| ν4 < ∞. If ϕ

(ν)
µn converges pointwise to ϕ

(ν)
µ∞ , then µn

converges vaguely to µ∞ as n→∞.

Proof : It suffices to show that
∫
R dµn(x)g(x) converges to

∫
R dµ∞(x)g(x) for all g

in a subset S ⊂ C0(R) dense in C0(R) in the uniform norm. A convenient choice
of S is the set mentioned in the remark following Lem. 3.2, i.e.,

S =
{
g ∈ C2

c (R)
∣∣ for some ε > 0 g(x) = g(0) if |x| < ε

}
.

Then S is easily seen to be dense in C0(R) and, furthermore S ⊂ D(L(ν))∩L1(dm)
and L(ν)S ⊂ L1(dm). Thus by part (3) of Lem. 3.2 we conclude that g̃(ν) ∈ L1(dm)
whenever g ∈ S. Hence, by part (4) of Lem. 3.2 and Fubini’s Theorem,∫

R
dµn(x)g(x) =

∫
R
dµn(x)

∫
R
dq
[
e(ν)(qx)g̃(ν)(q)

]
=

1

4u2ν

∫
R
dq g̃(ν)(q)φ(ν)µn (q),

if g ∈ S. Since |φ(ν)µn (q)| ≤ (1 + |q| ν4 ) supn
∫
R dµn(x)(1 + |x| ν4 ) the result follows by

dominated convergence. �

We also define f
(ν)
q (y) := e

(ν)
q

(
s(y)|y|

1
ν+1
)
. These are eigenfunctions for the

backwards generator G(ν) := 1
2 (ν + 1)2|y|

ν
ν+1 d2

dy2 of the martingale mt defined in

Prop. 2.3:

−|q|ν+2f (ν)q (y) = (ν + 1)2|y|
ν
ν+1

d2f
(ν)
q

du2
(y) . (3.11)

Parts (2) and (3) of the proposition below list some useful asymptotic bounds for

the derivatives of the functions e
(ν)
q and f

(ν)
q .

Proposition 3.6.

(1). For any n ∈ N, ν ∈ R+ and q ∈ R, there is a Cn,ν,q > 0 such that for all x ∈ R∣∣∣ dn
dxn

e(ν)
q (x)

∣∣∣ ≤ Cn,ν,q
(
1 + |x|ν+1−n1|x|≤1 + |x| ν2n+ ν

4 1|x|≥1
)
.

(2). For any n ∈ N, ν ∈ R+ and q ∈ R, there is a Cn,ν,q > 0 such that for all y ∈ R∣∣∣ dn
dyn

f (ν)q (y)
∣∣∣ ≤ Cn,ν,q

(
(δn,0 + |y|

ν+2
ν+1−n)1|y|≤1 + |y|

ν
2ν+2 (

1
2−n)1|y|≥1

)
.

Proof : This follows from the derivative formula http://dlmf.nist.gov/10.6.E2

in DLMF and the asymptotic forms (3.2) and (3.3). �

4. An invariance principle for a nearest-neighbor random walk

In this section we will consider the long-time limiting behavior for a continuous-
time random walk (Xt)t≥0 on Z with generator LR operating on functions F : Z→
R as

(LRF )(n) = R−n
[
F (n− 1)− F (n)

]
+R+

n

[
F (n+ 1)− F (n)

]
. (4.1)

We suppose that the jump rates R±n > 0 satisfy the symmetry R+
n = R−n+1 and

have the asymptotic form

R+
n =

1

2|n|ν
+ O

( 1

|n|ν+1

)
, |n| � 1. (4.2)

http://dlmf.nist.gov/10.6.E2
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The process (Xt)t≥0 is a simple, time-reversible random walk for which the invariant
measure is counting measure. The following limit theorem is the main result of this
section.

Theorem 4.1. Define X
(N)
t := N−

1
ν+2XNt where Xt is a random walk generated

by (4.1) with initial condition X0 = xN . If N−
1
ν+2xN → x̂ as N →∞, then there

is convergence in law as processes over any bounded time interval:

X
(N)
t

L
=⇒ xt ,

where x0 = x̂. The convergence in law above is with respect to the uniform metric
on paths.

The convergence in law for the processes will follow by standard techniques once

we verify the one-dimensional convergence in law of X
(N)
t to xt as N → ∞ for a

single time t. By Prop. 3.5, X
(N)
t converges in law to xt if there is convergence as

N →∞ of the generalized characteristic functions for all q ∈ R:

Ex̂N
[
e(ν)
q

(
X

(N)
t

)]
−→ Ex̂

[
e(ν)
q (xt)

]
for x̂N := N−

1
ν+2xN . (4.3)

Here and below the subscript a ∈ R of an expectation Ea refers to the initial value
of whichever Markovian process happens to sit in the argument of the expectation.

Define Y (x) := sgn(x)|x|ν+1 and ŷ := Y (x̂). Note that Ex̂

[
e
(ν)
q (xt)

]
=

Eŷ

[
f
(ν)
q (mt)

]
, where the functions f

(ν)
q were defined in Sec. 3 and mt = Y (xt) is the

martingale defined in Prop. 2.3. Similarly, Ex̂
[
e
(ν)
q

(
X

(N)
t

)]
= Ex̂

[
f
(ν)
q

(
Y
(
X

(N)
t

))]
.

Thus we may establish (4.3) by bounding the difference∣∣∣Ex̂N [f (ν)q

(
Y
(
X

(N)
t

))]
− Eŷ

[
f (ν)q (mt)

]∣∣∣ ,
where to accomplish this we will further approximate Y

(
X

(N)
t

)
with a martingale

M
(N)
t defined below. To this end we make the following observations:

Proposition 4.2.

(1). The process Mt := Ŷ (Xt) is a martingale for Ŷ : Z→ R defined by

Ŷ (n) := σ(ν + 1)

|n|∑
m=1

1

R−σσm
,

where σ = ± is the sign of n ∈ Z.

(2). The predictable quadratic variation for Mt has the form 〈M〉t =
∫ t
0
drQ̂(Xr)

for Q̂ : Z→ R+ defined by

Q̂(n) := (ν + 1)2
( 1

R+
n

+
1

R−n

)
.

(3). The predictable, increasing part in the Doob-Meyer decomposition of the sub-

martingale |Mt|
ν+2
ν+1 has the form

∫ t
0
drÂ(Xr) for

Â(n) := R−n

[∣∣Ŷ (n− 1)
∣∣ ν+2
ν+1 −

∣∣Ŷ (n)
∣∣ ν+2
ν+1

]
+ R+

n

[∣∣Ŷ (n+ 1)
∣∣ ν+2
ν+1 −

∣∣Ŷ (n)
∣∣ ν+2
ν+1

]
.

The proof is essentially by direct computation. We see that Mt is a martingale

because LRŶ = 0.
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4.1. Proof of Theorem 4.1. We begin by stating certain estimates required in the
proof. The proofs of these technical lemmas are in Sec. 4.2. Throughout we will
use C to denote an arbitrary positive finite constant that may depend on the order
ν and the time interval [0, T ] but which is independent of other parameters, unless
otherwise indicated. The value of C may change from line to line.

The following lemma gives bounds on the difference between the functions YN (x),

QN (x) and their respective N → ∞ limits. Let Ŷ (Z) denote the image of Ŷ and

let Ŵ : Ŷ (Z) → Z be the function inverse of Ŷ . Define Q : R → [0,∞) by

Q(y) := (ν + 1)2|y|
ν
ν+1 , and notice that Q(y) is the diffusion coefficient for (mt)t≥0

in (3.11).

Lemma 4.3. Let YN : N−
1
ν+2Z → R and QN , AN : N−

ν+1
ν+2 Ŷ (Z) → R be defined

through

YN (x) := N−
ν+1
ν+2 Ŷ

(
N

1
ν+2x

)
, QN (y) := N−

ν
ν+2 Q̂

(
Ŵ
(
N

ν+1
ν+2 y

))
and AN (y) := Â

(
Ŵ
(
N

ν+1
ν+2 y

))
.

Then there exists C > 0 such that the following inequalities hold for all N > 1,

x ∈ N−
1
ν+2Z, and y ∈ N−

ν+1
ν+2 Ŷ (Z):

(1).
∣∣YN (x)− Y (x)

∣∣ ≤ CN−
1
ν+2 |x|ν

(2).
∣∣QN (y)−Q(y)

∣∣ ≤ CN−
ν
ν+2 δ0(y) + CN−

1
ν+2 |y|

ν−1
ν+1
(
1− δ0(y))

(3). AN (y) > C−1

(4). |Y (x)| ≤ C|YN (x)|, |YN (x)| ≤ C|Y (x)|, QN (y) ≤ C
(
1 +Q(y)

)
To state the next lemma, we make the following definition.

Definition 4.4. Suppose given for each N > 1 a real-valued stochastic process(
X

(N)
t ; t ∈ [0, T ]

)
. We say that the family

{(
X

(N)
t ; t ∈ [0, T ]

) ∣∣N > 1
}

is C-tight at
infinity if for any sequence Nj →∞,

(1). the sequence
(
X

(Nj)
t ; t ∈ [0, T ]

)
is tight with respect to the uniform metric,

and
(2). if

(
X

(Nj)
t ; t ∈ [0, T ]

)
converges in law to some limit, then the limit process has

continuous sample paths.

The next lemma states uniform in N bounds on the moments of X
(N)
r and M

(N)
r

and the associated tightness of the processes.

Lemma 4.5. Let M
(N)
t := YN

(
X

(N)
t

)
.

(1). For any n ≥ 1 there is a Cn > 0 such that for all t ∈ R+, x ∈ R, and N > 1

Ex
[

sup
0≤r≤t

∣∣X(N)
r

∣∣n] ≤ Cn
(
1 + |x|n + t

n
ν+2
)
.

(2). There is a C > 0 such that for all t ∈ R+, y ∈ R, 0 < α ≤ 1, and N > 1∫ t

0

drPy
[
|M (N)

r | ≤ N−α
]
≤ CN

−α
ν+1
(
1 + t

ν+1
ν+2
)
.

(3). Suppose that the initial values x̂N := X
(N)
0 are uniformly bounded for all

N > 1. The family of processes
(
X

(N)
t ; t ∈ [0, T ]

)
for N > 1 is C-tight at

infinity.
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Now we proceed with the proof of Thm. 4.1. To begin we prove convergence

in law at a single time, (4.3). Denote x̂N := N−
1
ν+2xN . The difference between

Ex̂N
[
e
(ν)
q

(
X

(N)
t

)]
and Ex̂

[
e
(ν)
q (xt)

]
is bounded by the sum of terms∣∣∣Ex̂N [e(ν)

q

(
X

(N)
t

)]
− Ex̂

[
e(ν)
q (xt)

]∣∣∣≤∣∣∣∣Ex̂N[f (ν)q

(
Y (X

(N)
t )

)]
− Ex̂N

[
f (ν)q

(
YN (X

(N)
t )

)]∣∣∣∣
+
∣∣∣EŷN [f (ν)q

(
M

(N)
t

)]
− EŷN

[
f (ν)q (mt)

]∣∣∣
+
∣∣∣EŷN [f (ν)q (mt)

]
− Eŷ

[
f (ν)q (mt)

]∣∣∣ , (4.4)

where Y (x) := sgn(x)|x|ν+1, ŷN := YN (x̂N ), and ŷ := Y (x̂). In (4.4) we have used

that M
(N)
t = YN

(
X

(N)
t

)
and f

(ν)
q

(
Y (x)

)
= e

(ν)
q (x). We will bound the three terms

on the right side of (4.4) in (i)-(iii) below.

(i). The first term on the right side of (4.4) is smaller than∣∣∣∣Ex̂N [f (ν)q

(
Y
(
X

(N)
t

))]
− Ex̂N

[
f (ν)q

(
YN
(
X

(N)
t

))]∣∣∣∣ (4.5)

≤
(

sup
y∈R

∣∣∣∣df (ν)q

dy
(y)

∣∣∣∣)Ex̂N [∣∣∣Y (X(N)
t

)
− YN

(
X

(N)
t

)∣∣∣]
≤ CN−

1
ν+2

(
sup
y∈R

∣∣∣∣df (ν)q

dy
(y)

∣∣∣∣)Ex̂N [∣∣X(N)
t

∣∣ν]
= O

(
N−

1
ν+2
)
. (4.6)

The derivative of f
(ν)
q is uniformly bounded by part (2) of Prop. 3.6, the second

inequality follows from part (1) of Lem. 4.3, and the expectation on the second line
is uniformly bounded as N →∞ by part (1) of Lem. 4.5.

Part (ii): Since the function YN is one-to-one, M
(N)
t is a Markov process, and we

denote its backwards generator by G
(N)
R . So G

(N)
R is a linear operator that acts as

follows (
G

(N)
R F

)( Ŷ (n)

N
ν+1
ν+2

)
=
∑
±
NR±n

[
F

(
Ŷ (n± 1)

N
ν+1
ν+2

)
− F

(
Ŷ (n)

N
ν+1
ν+2

)]
(4.7)

on functions F defined on the state space of M
(N)
t , which is the set N−

ν+1
ν+2 Ŷ (Z).

We can expand the difference of semi-groups with a Duhamel formula to get

EŷN
[
f (ν)q

(
M

(N)
t

)]
− EŷN

[
f (ν)q (mt)

]
=

(∫ t

0

dre(t−r)G
(N)
R

(
G

(N)
R −G(ν)

)
erG

(ν)

f (ν)q

)
(ŷN ) ,

and since f
(ν)
q is an eigenfunction of G(ν) with eigenvalue − 1

2 |q|
ν+2

=

(∫ t

0

dre−
r
2 |q|

ν+2

e(t−r)G
(N)
R

(
G

(N)
R −G(ν)

)
f (ν)q

)
(ŷN ) .
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Defining the set SN :=
{
|y| ≤ Nδ− ν+1

ν+2

}
for some 2ν

2ν+1
ν+1
ν+2 < δ < ν+1

ν+2 we can split

this expression as follows:

=

(∫ t

0

dre−
r
2 |q|

ν+2

e(t−r)G
(N)
R 1y∈SN

(
G

(N)
R −G(ν)

)
f (ν)q

)
(ŷN )︸ ︷︷ ︸

I

+

(∫ t

0

dre−
r
2 |q|

ν+2

e(t−r)G
(N)
R 1y/∈SN

(
G

(N)
R −G(ν)

)
f (ν)q

)
(ŷN ) . (4.8)

The insertion of complementary indicator functions 1y∈SN and 1y/∈SN in the second
equality above will help us avoid the singular behavior in the higher derivatives of

f
(ν)
q near zero when using Taylor expansions. The second term on the right hand

side of (4.8) can be rewritten as the sum

−|q|
ν+2

2

(∫ t

0

dre−
r
2 |q|

ν+2

e(t−r)G
(N)
R 1y/∈SN

QN (y)−Q(y)

Q(y)
f (ν)q

)
(ŷN )︸ ︷︷ ︸

II

+

(∫ t

0

dre−
r
2 |q|

ν+2

e(t−r)G
(N)
R 1y/∈SNEN

)
(ŷN )︸ ︷︷ ︸

III

, (4.9)

where EN : N−
ν+1
ν+2 Ŷ (Z)→ R is defined so that the following relation holds

EN

(
Ŷ (n)

N
ν+1
ν+2

)
=
∑
±

NR±n
2

∫ Ŷ (n±1)−Ŷ (n)

N

ν+1
ν+2

0

dy y2
d3f

(ν)
q

dy3

(
Ŷ (n± 1)

N
ν+1
ν+2

− y
)
. (4.10)

In the above, recall that for σ = sgn(n)

Ŷ (n± 1) − Ŷ (n) = σ
ν + 1

R±σn
.

To equate the last term of (4.8) with (4.9), we have used (4.7) and second-order

Taylor expansions of f
(ν)
q around y = Ŷ (n)

N
ν+1
ν+2

to obtain

(
G

(N)
R f (ν)q

)( Ŷ (n)

N
ν+1
ν+2

)
=

1

2
QN

(
Ŷ (n)

N
ν+1
ν+2

)
d2f

(ν)
q

dy2

(
Ŷ (n)

N
ν+1
ν+2

)
+ EN

(
Ŷ (n)

N
ν+1
ν+2

)
. (4.11)

Note that the first-order term is zero since LRŶ ≡ 0. Moreover, G(ν)f
(ν)
q =

1
2Q(y)

d2f (ν)q

dy2 = − |q|
ν+2

2 f
(ν)
q by (3.11), so the above is equal to

= − |q|
ν+2

2

QN

(
Ŷ (n)

N
ν+1
ν+2

)
Q
(
Ŷ (n)

N
ν+1
ν+2

) f (ν)q

(
Ŷ (n)

N
ν+1
ν+2

)
+ EN

(
Ŷ (n)

N
ν+1
ν+2

)
.

We will bound the absolute values of I, II and III below.

I. We have

|I| =

∣∣∣∣( ∫ t

0

dre−
r
2 |q|

ν+2

e(t−r)G
(N)
R 1y∈SN

(
G

(N)
R −G(ν)

)
f (ν)q

)
(ŷN )

∣∣∣∣
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≤
(∫ t

0

drPŷN
[∣∣M (N)

r

∣∣ ≤ Nδ− ν+1
ν+2

])
sup

|Ŷ (n)|≤Nδ

∣∣∣∣((G(N)
R −G(ν)

)
f (ν)q

)( Ŷ (n)

N
ν+1
ν+2

)∣∣∣∣
≤ C

(
1 + t

ν+1
ν+2
)
N

δ
ν+1−

1
ν+2

× sup
|Ŷ (n)|≤Nδ

(∣∣∣∣(G(N)
R f (ν)q

)( Ŷ (n)

N
ν+1
ν+2

)∣∣∣∣+

∣∣∣∣(G(ν)f (ν)q

)( Ŷ (n)

N
ν+1
ν+2

)∣∣∣∣) , (4.12)

where the second inequality above applies part (2) of Lem. 4.5. We will show below
that the supremum on the last line is uniformly bounded for N > 1.

The term
∣∣∣(G(ν)f

(ν)
q

)( Ŷ (n)

N
ν+1
ν+2

)∣∣∣ in the supremum on the last line of (4.12) is equal

to 1
2 |q|

ν+2
∣∣∣f (ν)q

(
Ŷ (n)

N
ν+1
ν+2

)∣∣∣ by (3.11), which is close to 1
2 |q|

ν+2 for |Ŷ (n)| ≤ Nδ and

large N since f
(ν)
q (0) = 1. The expression for

∣∣∣(G(N)
R f

(ν)
q

)( Ŷ (n)

N
ν+1
ν+2

)∣∣∣ can be rewritten

using a first-order Taylor formula around y = Ŷ (n)

N
ν+1
ν+2

as follows

∣∣∣∣(G(N)
R f (ν)q

)( Ŷ (n)

N
ν+1
ν+2

)∣∣∣∣ =

∣∣∣∣∣∑
±
NR±n

∫ Ŷ (n±1)−Ŷ (n)

N

ν+1
ν+2

0

dy y
d2f

(ν)
q

dy2

(
Ŷ (n± 1)

N
ν+1
ν+2

− y
)∣∣∣∣∣ ,

where again the first-order terms cancel since Ŷ (Xt) is a martingale. This expres-
sion is, in turn, bounded by

≤ Cδ0(n) + C
(
1− δ0(n)

)( 1

|R+
n |

+
1

|R−n |

)∣∣Ŷ (n)
∣∣− ν

ν+1 ≤ C ,

where the first inequality above follows because
∣∣d2f (ν)q

dy2

∣∣ is bounded by a constant

multiple of |y|−
ν
ν+1 over the domain |y| ≤ 1 by part (2) of Prop. 3.6. The second

inequality holds since 1
|R+
n |

+ 1
|R−n |

is bounded by a constant multiple of |Ŷ (n)|
ν
ν+1

for all n 6= 0 as a consequence of the asymptotics (4.2).

Thus I is O
(
N

δ
ν+1−

1
ν+2
)

and decays for large N by our assumption that δ < ν+1
ν+2 .

II. By part (2) of Lem. 4.3, we can bound
∣∣∣QN (y)−Q(y)

Q(y)

∣∣∣ by CN−
1
ν+2 |y|−

1
ν+1 for

y 6= 0. Thus the absolute value of II is smaller than

N−
δ
ν+1

∫ t

0

dre−
r
2 |q|

ν+2

∫
R

(
e(t−r)G

(N)
R

)
(ŷN , y)

∣∣f (ν)q (y)
∣∣

≤ N−
δ
ν+1

∫ t

0

drEŷN
[∣∣f (ν)q

(
M (N)
r

)∣∣] .
Recall that

∣∣f (ν)q (y)
∣∣ is bounded by a constant multiple of 1 + |y|

ν
4(ν+1) . Moreover,∣∣M (N)

r

∣∣ is bounded by a constant multiple of
∣∣X(N)

r

∣∣ν+1
since M

(N)
r = YN

(
X

(N)
r

)
and

∣∣YN (x)
∣∣ ≤ C|x|ν+1 by part (4) of Lem. 4.3. Thus the above is bounded by the

following:

≤CtN−
δ
ν+1Ex̂N

[
1 + sup

0≤r≤t

∣∣X(N)
r

∣∣ ν4 ]
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≤CtN−
δ
ν+1

(
1 + |x̂N |

ν
4 + t

ν
4(ν+2)

)
.

The last inequality is by part (1) of Lem. 4.5. Since x̂N converges to x̂ for large N

and thus is a bounded sequence, we have that II is O
(
N−

δ
ν+1
)
.

III. By applying part (2) of Prop. 3.6 to bound the values of
d3f (ν)q

dy3 in the for-

mula (4.10), we have that for all n ∈ Z and N > 1 with |Ŷ (n)| > Nδ,∣∣∣∣EN( Ŷ (n)

N
ν+1
ν+2

)∣∣∣∣ ≤ CN−δ 2ν+1
ν+1

(
1

(R+
n )2

+
1

(R−n )2

)
. (4.13)

Thus we have the following bounds:

|III| =

∣∣∣∣( ∫ t

0

dre−
r
2 |q|

ν+2

e(t−r)G
(N)
R 1y/∈SNEN

)
(ŷN )

∣∣∣∣
≤ t sup

r∈[0,t]
EŷN

[ ∣∣∣EN(M (N)
r

)∣∣∣χ(∣∣M (N)
r

∣∣ > Nδ− ν+1
ν+2

)]
≤ CtN−δ

2ν+1
ν+2 sup

r∈[0,Nt]
ExN

[
1

(R+
Xr

)2
+

1

(R−Xr )
2

]
≤ CtN−δ

2ν+1
ν+1

(
1 + ExN

[
sup

r∈[0,Nt]

∣∣Xr

∣∣2ν])
= O

(
N

2ν
ν+2−δ

2ν+1
ν+1

)
.

The first inequality above uses that
(
erG

(N)
R EN

)
(ŷN ) = EŷN

[
EN
(
M

(N)
r

)]
, the sec-

ond inequality is by (4.13), and the third inequality holds by the asymptotic as-
sumption (4.1) on the jump rates R±n . The order equality is by part (1) of Lem. 4.5.
The last line is decaying for large N by our assumption that δ > 2ν

2ν+1
ν+1
ν+2 .

(iii). For the third term on the right side of (4.4), we can use that f
(ν)
q is an

eigenvector of G(ν) again∣∣∣EŷN [f (ν)q (mt)
]
− Eŷ

[
f (ν)q (mt)

]∣∣∣ =
∣∣∣(etG(ν)

f (ν)q

)
(ŷN )−

(
etG

(ν)

f (ν)q

)
(ŷ)
∣∣∣

= e−
t
2 |q|

ν+2
∣∣∣f (ν)q (ŷN )− f (ν)q (ŷ)

∣∣∣
≤
∣∣ŷN − ŷ

∣∣ sup
y∈R

∣∣∣∣df (ν)q

dy
(y)

∣∣∣∣ = o(1) .

The difference ŷN − ŷ = YN (x̂N )−Y (x̂) converges to zero since Y (x) is continuous
and YN (x) converges uniformly to Y (x) over compact sets as a result of part (1)

of Lem. 4.3. As remarked above the derivative of f
(ν)
q is uniformly bounded. Thus,

all the terms on the right side of (4.4) vanish for large N and the convergence of
the one-dimensional distributions is established.

We have proved convergence of the processes X
(N)
t to xt at a single time. More

precisely, we have proved weak convergence of the transition measures φ
(N)
t (x̂N ,x

′)dx′

for X
(N)
t to φt(x̂, x

′)dx′ whenever x̂N → x̂. However, by part (3) of Lem. 4.5 the

family X
(N)
t with X

(N)
0 = x̂N and N > 1 is tight. Thus there are subsequences

Nj →∞ such that the processes converge in law to some limit process. To complete
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the proof it suffices to prove that any such subsequential limit process is xt with
x0 = x̂. However, any limit process is necessarily Markovian and since its transition
measures are φt(x, x

′)dx′ it must be xt. �

4.2. Proofs of the technical lemmas. We begin with Lem. 4.3.

Proof of Lemma 4.3:
Part (1): Since R±n > 0 is bounded away from zero on finite subsets of Z and has

the limiting form (4.1), we see that for all n ∈ Z and x = nN−
1
ν+2∣∣∣∣ 1

2N
ν
ν+2R±n

− |x|ν
∣∣∣∣ ≤ CN−

1
ν+2 |x|ν−1 . (4.14)

Let us assume x > 0. For all x ∈ N−
1
ν+2Z and N > 1, we have the relations

∣∣YN (x)− Y (x)
∣∣ = (ν + 1)

∣∣∣∣∣N− 1
ν+2

N
1
ν+2 x∑
n=1

1

2N
ν
ν+2

1

R−n
−
∫ x

0

da|a|ν
∣∣∣∣∣

≤ CN−
1
ν+2

∫ x

0

da aν−1

= CN−
1
ν+2 |x|ν ,

where the inequality uses a Riemann sum approximation and (4.14).

Part (2): Define W (y) := sgn(y)|y|
1
ν+1 , i.e., the function inverse of Y . First we will

show that for x ∈ N−
1
ν+2Z∣∣W (YN (x)

)
− x
∣∣ ≤ CN−

1
ν+2 . (4.15)

Note that the left-hand side is zero for x = 0. For x 6= 0 we have sgn(YN (x)) =
sgn(Y (x)) = sgn(x). Since W is concave on (−∞, 0) and (0,∞) we may bound the
difference between W

(
YN (x)

)
and x as∣∣W (YN (x)

)
− x
∣∣ =

∣∣W (YN (x)
)
−W

(
Y (x)

)∣∣ ≤ 1

ν + 1
|Y (x)|−

ν
ν+1

∣∣YN (x)− Y (x)
∣∣

= C|x|−ν
∣∣YN (x)− Y (x)

∣∣
≤ CN−

1
ν+2 .

The second inequality applies part (1).

To bound |QN (y)−Q(y)|, note that Q(y) = (ν + 1)2
∣∣W (y)|ν . Define WN (y) :=

N−
1
ν+2 Ŵ

(
N

ν+1
ν+2 y

)
and n := N

1
ν+2WN (y). Notice that (4.15) implies∣∣W (y)−WN (y)

∣∣ ≤ CN−
1
ν+2 . (4.16)

By the triangle inequality and (4.14), we get the inequalities∣∣QN (y)−Q(y)
∣∣ ≤ C

(∣∣∣ 1

N
ν
ν+2R+

n

+ 1

N
ν
ν+2R−n

−
∣∣WN (y)

∣∣ν∣∣∣+
∣∣∣∣∣WN (y)

∣∣ν − ∣∣W (y)
∣∣ν∣∣∣)

≤ C
(
N−

ν
ν+2 +N−

1
ν+2

∣∣WN (y)
∣∣ν−1 +

∣∣∣∣∣WN (y)
∣∣ν − ∣∣W (y)

∣∣ν∣∣∣) .
Applying (4.16) gives the further bound

≤ C
[
N−

ν
ν+2 +N−

1
ν+2

∣∣WN (y)
∣∣ν−1 +N−

1
ν+2 max

(
|WN (y)|ν−1, |W (y)|ν−1

)]
.
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The inequality (4.16) also implies that c|W (y)| ≤ |WN (y)| ≤ C|W (y)|, and thus∣∣QN (y)−Q(y)
∣∣ ≤ CN− 1

1+ν |y|
ν−1
ν+1

for y 6= 0 and N > 1 as claimed.

Part (3): Using two first-order Taylor expansions of f(y) = |y|
ν+2
ν+1 around y = Ŷ (n),

we can write Â(n) in the form

Â(n) =
ν + 2

(R+
n )2

∫ 1

0

dy
(
1− y

)(
y
ν + 1

R+
n

+ Ŷ (n)
)− ν

ν+1

+
ν + 2

(R−n )2

∫ 1

0

dy
(
1− y

)(
− y ν + 1

R−n
+ Ŷ (n)

)− ν
ν+1

.

The values of Â(n) are strictly positive, and for large n it follows from the asymp-
totics (4.2) that

Â(n) ≈
(
ν + 2

(R+
n )2

+
ν + 2

(R−n )2

)(
Ŷ (n)

)− ν
ν+1 = 8(ν + 2) + O

( 1

n

)
.

Hence Â(n) is bounded away from zero and AN (y) is also.

Part (4): These inequalities follow from parts (1) and (2).
�

Before going into the proof of Lem. 4.5, we state the following lemma, which

bounds the size of the jumps of the martingale
(
M

(N)
r

)
r≥0.

Lemma 4.6. For r ∈ R+, define ∆
(N)
r := M

(N)
r+ −M (N)

r− . There is a C > 0 such
that for all t > 0 and N > 1

sup
0≤r≤t

∣∣∆(N)
r

∣∣ ≤ C

N
1
ν+1

sup
0≤r≤t

∣∣M (N)
r

∣∣ ν
ν+2 .

Proof : Recall that M
(N)
r := N−

ν+1
ν+2 Ŷ (XNt) and that

Ŷ (n) = σ(ν + 1)

n∑
k=1

1

R−σk
,

where σ ∈ {±} is the sign of n ∈ Z. Since R+
k = R−k+1, the jumps

∣∣∆(N)
r

∣∣ of M
(N)
r

have the form N−
ν+1
ν+2 ν+1

R±n
for n = XNr. The result follows from the asymptotic

formula (4.2), which implies that

Ŷ (n) =
1

2
n1+ν + O(nν) .

�

Proof of Lemma 4.5:
Part (1): By Jensen’s inequality we have the first inequality below:

Ex
[

sup
0≤r≤t

∣∣X(N)
r

∣∣n] ≤ Ex
[

sup
0≤r≤t

∣∣Y (X(N)
r

)∣∣2n] 1
2ν+2

≤ CEy
[

sup
0≤r≤t

∣∣M (N)
r

∣∣2n] 1
2ν+2

,

(4.17)
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where y := YN (x). The second inequality holds since M
(N)
t := YN (X

(N)
t ) and Y (x)

is bounded by a constant multiple of YN (x); see part (4) of Lem. 4.3. Also as a
consequence of part (4) of Lem. 4.3,

|y|
1
ν+1 =

∣∣YN (x)
∣∣ 1
ν+1 ≤ C|x| . (4.18)

With (4.17) and (4.18), it sufficient to show that Ey
[

sup0≤r≤t
∣∣M (N)

r

∣∣2n] is bounded

by a constant multiple of 1 + |y|2n + t
2n(ν+1)
ν+2 for all t ∈ R+ and N > 1 since

|y|
1
ν+1 =

∣∣YN (x)
∣∣ 1
ν+1 is bounded by a constant multiple of |x|. Applying Doob’s

maximal inequality to the submartingale
∣∣M (N)

r

∣∣2 gives us the first inequality below:

Ey
[

sup
0≤r≤t

∣∣M (N)
r

∣∣2n]
≤ CEy

[∣∣M (N)
t

∣∣2n] = Ey
[∣∣∣y +

∫ t

0

dM (N)
r

∣∣∣2n]
≤ C|y|2n + CEy

[∣∣∣ ∫ t

0

dM (N)
r

∣∣∣2n] ,
where the second inequality is simply (a + b)2n ≤ 4n(a2n + b2n). Define ∆

(N)
r :=

M
(N)
r+ −M (N)

r− . By Rosenthal’s inequality,

≤ C|y|2n + CEy
[∣∣∣ ∫ t

0

drQN
(
M (N)
r

)∣∣∣n] + CEy
[

sup
0≤r≤t

∣∣∆(N)
r

∣∣2n] .
We can bound the second term above using Lemma 4.6:

≤ C|y|2n + Ctn−1Ey
[ ∫ t

0

dr
∣∣QN(M (N)

r

)∣∣n] +
C

N
2n
ν+1

Ey
[

sup
0≤r≤t

∣∣M (N)
r

∣∣ 2nνν+1

]
.

By part (4) of Lem. 4.3, the above is smaller than

≤ C|y|2n + Ctn−1Ey
[ ∫ t

0

dr
(

1 +
∣∣M (N)

r

∣∣ nνν+1

)]
+

C

N
2n
ν+1

Ey
[

sup
0≤r≤t

∣∣M (N)
r

∣∣ 2nνν+1

]
≤ C|y|2n + Ctn

(
1 + Ey

[
sup

0≤r≤t

∣∣M (N)
r

∣∣ nνν+1

])
+

C

N
2n
ν+1

Ey
[

sup
0≤r≤t

∣∣M (N)
r

∣∣ 2nνν+1

]
≤ C|y|2n + Ctn

(
1 + Ey

[
sup

0≤r≤t

∣∣M (N)
r

∣∣2n] ν
2(ν+1)

)
+

C

N
2n
ν+1

Ey
[

sup
0≤r≤t

∣∣M (N)
r

∣∣2n] ν
ν+1

.

(4.19)

The last inequality is Jensen’s.
For large enough N , (4.19) implies that

Ey
[

sup
0≤r≤t

∣∣M (N)
r

∣∣2n] ≤ C + C|y|2n + Ctn
(

1 + Ey
[

sup
0≤r≤t

∣∣M (N)
r

∣∣2n] ν
2(ν+1)

)
.

As it stands, the above holds trivially if Ey
[

sup0≤r≤t
∣∣M (N)

r

∣∣2n] were∞. However,

we may replace M
(N)
r by a the martingale M

(N,L)
r := M

(N)
r∧τL where τL is the first
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time that |M (N)
r | = L. The same reasoning as above shows that for UN,L,t :=

Ey
[

sup0≤r≤t
∣∣M (N)

r∧τL
∣∣2n]
UN,L,t ≤ C + C|y|2n + Ctn + CtnU

ν
2(ν+1)

N,L,t (4.20)

for all y ∈ R, t ∈ R+ and N > 1 with a constant that is uniform in L > 0.
Multiplying and dividing by an arbitrary λ > 0 in the last term of (4.20) and
applying Young’s inequality, we find that

UN,L,t ≤ C
(

1 + |y|2n + tn +
ν + 2

2(ν + 1)
λ−

2(ν+1)
ν+2 t

2n(ν+1)
ν+2

)
+C

ν

2(ν + 1)
λ

2(ν+1)
ν UN,L,t .

Since UN,L,t ≤ L2n is finite, we conclude by choosing λ sufficiently small that in

fact UN,t is uniformly bounded by a multiple of 1 + |y|2n+ t
2n(ν+1)
ν+2 . Taking L→∞

yields the desired bound on Ey
[

sup0≤r≤t
∣∣M (N)

r

∣∣2n].
Part (2): We can write the expression that we wish to bound as follows:∫ t

0

drPy
[∣∣M (N)

r

∣∣ ≤ N−α] = Ey
[
T

(N)
t

]
for T

(N)
t :=

∫ t

0

drχ
(∣∣M (N)

r

∣∣ ≤ N−α) .
In words T

(N)
t is the amount of time that the process |M (N)

r | spends below N−α

over the interval [0, t]. If the initial value y is greater than N−α it is clear that

Ey
[
T

(N)
t

]
≤ EN−α

[
T

(N)
t

]
and similarly for y < −N−α. Hence we may assume

without loss of generality that |y| ≤ N−α.

It will be useful to partition the trajectory of
(
M

(N)
r

)
r≥0 into a series of incursions

and excursions from the set |y| ≤ N−α. Set ς0 = ς ′1 = 0, and define the stopping
times ςj , ς

′
j such that for j ≥ 1,

ς ′j = min
{
r ∈ [ςj−1,∞)

∣∣∣ ∣∣M (N)
r

∣∣ ≤ N−α} and

ςj = min
{
r ∈ [ς ′j ,∞)

∣∣∣ ∣∣M (N)
r

∣∣ ≥ 2N−α
}
.

The above definition uses that
∣∣M (N)

0

∣∣ ≤ N−α as otherwise we should begin only
with ς0 = 0. Let nt be the number ς ′j ’s for j ≥ 1 less than t. In other words, nt is

the number of up-crossings of
∣∣M (N)

r

∣∣ from N−α to 2N−α that have been completed
or begun by time t. The definitions give us the inequality

Tt ≤
nt∑
j=1

ςj − ς ′j .

Next observe that

Ey
[
Tt

]
≤ Ey

[
nt∑
j=1

ςj − ς ′j

]
≤ Ey

[
nt
]

sup
j∈N

E
[
ςj − ς ′j

∣∣ j ≤ nt
]
. (4.21)

With the above, we have an upper bound for Ey
[
Tt

]
in terms of the expectation of

the number of up-crossings nt and the expectation for the duration of a single up-
crossing ςj − ς ′j conditioned on the event j ≤ nt. By the submartingale up-crossing
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inequality Karatzas and Shreve (1988, Thm. 1.3.8), we have the first inequality
below:

Ey
[
nt
]
≤

Ey
[∣∣M (N)

t

∣∣]+N−α

2N−α −N−α
≤ CNαEy

[
1 +

∣∣X(N)
t

∣∣ν+1
]
≤ CNα

(
1 + t

ν+1
ν+2
)
.

(4.22)

The second inequality holds by part (4) of Lem. 4.3 since M
(N)
t = YN

(
X

(N)
t

)
, and

the third inequality is by part (1) above.
We now focus on the expectation of the incursion lengths ςj − ς ′j appearing

in (4.21). Whether or not the event j ≤ nt occurred will be known at time ς ′j , so
the strong Markov property implies that

sup
j∈N

E
[
ςj − ς ′j

∣∣ j ≤ nt
]
≤ sup
|a|≤N−α

Ea[ς1] .

Moreover, we can apply an argument similar to that leading to (2.7) to bound the

expectation of the stopping time ς1. Recall from Prop. 4.3 that S
(N)
t :=

∣∣M (N)
t

∣∣ ν+2
ν+1

is a submartingale for which the increasing part of its Doob-Meyer decomposition

is given by
∫ t
0
drAN (Sr). The value of

∣∣M (N)
r

∣∣ at the time r = ς1 has the bound∣∣M (N)
ς1

∣∣ ≤ 2N−α +
∣∣∆(N)

ς1

∣∣ ,
where

∣∣∆(N)
ς1

∣∣ is the size of the last jump of M
(N)
r out of the set

{
|y| ≤ 2N−α

}
. By

similar reasoning as Lemma 4.6, we can bound
∣∣∆(N)

ς1

∣∣ using the value of M
(N)
ς1−

≤ 2N−α + CN−
1
ν+1

∣∣2N−α∣∣ ν
ν+1

≤CN−α .
The last inequality holds by our assumption that α ≤ 1. The above gives us the
first equality below:

C
ν+2
ν+1N−α

ν+2
ν+1 ≥ Ea

[∣∣M (N)
ς1

∣∣ ν+2
ν+1

]
= Ea

[ ∫ ς1

0

drAN
(
M (N)
r

)]
≥ c−1Ea[ς1] .

(4.23)

The equality in (4.23) follows from the optional stopping theorem. For the third
inequality, we apply part (3) of Lem. 4.3 to get a uniform lower bound for AN (y).

Applying the results (4.22) and (4.23) in (4.21), we have that for all t ∈ R+,
y ∈ R, α ≤ 1, and N > 1

Ey
[
Tt

]
≤ CN

−α
ν+1
(
1 + t

ν+1
ν+2
)
. �

Part (3): Since Y : R → R has a continuous inverse, it is sufficient to show that

the family of processes
(
Y
(
X

(N)
t

)
; t ∈ [0, T ]

)
with N > 1 is tight. Moreover,

it is sufficient to prove tightness for M
(N)
t = YN

(
X

(N)
t

)
; to see this note that

supt∈[0,T ]

∣∣Y (X(N)
t

)
− YN

(
X

(N)
t

)∣∣ converges to zero in probability as N → ∞ be-

cause by part (1) of Lem. 4.3 we have the inequality

Ex̂N
[

sup
0≤t≤T

∣∣∣Y (X(N)
t

)
− YN

(
X

(N)
t

)∣∣∣]≤ CN− 1
ν+1Ex̂N

[
sup

0≤t≤T

∣∣X(N)
t

∣∣ν]= O
(
N−

1
ν+1
)
.

The order equality follows from part (1).
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Since the initial values ŷN := YN (x̂N ) lie on a compact set for N > 1, it is
sufficient for us to show that for any ε, δ > 0 we can pick n > 1 large enough so
that

lim sup
N→∞

PŷN
[

sup
0≤m<n

sup
0≤t≤Tn

∣∣∣M (N)

t+mT
n

−M (N)
mT
n

∣∣∣ > δ

]
< ε . (4.24)

The above condition for tightness follow easily, for instance, from Billingsley (1999,
Theorem 7.3). By Chebyshev’s and Jensen’s inequalities, we have the first inequal-
ity below:

PŷN
[

sup
0≤m<n

sup
0≤t≤Tn

∣∣∣M (N)

t+mT
n

−M (N)
mT
n

∣∣∣ > δ

]

≤ 1

δ
EŷN

[
n−1∑
m=0

sup
0≤t≤Tn

∣∣∣M (N)

t+mT
n

−M (N)
mT
n

∣∣∣4] 1
4

=
1

δ
EŷN

[
n−1∑
m=0

E
[

sup
0≤t≤Tn

∣∣∣M (N)

t+mT
n

−M (N)
mT
n

∣∣∣4 ∣∣∣∣F (N)
mT
n

]] 1
4

≤ C

δ
EŷN

[
n−1∑
m=0

E
[∣∣∣M (N)

(m+1)T
n

−M (N)
mT
n

∣∣∣4 ∣∣∣∣F (N)
mT
n

]] 1
4

, (4.25)

where F (N)
r is the information known about the process (M

(N)
t )t≥0 up to time

r ∈ R+. The second inequality above is an application of Doob’s maximal inequality
to each conditional expectation. By Rosenthal’s inequality, (4.25) is bounded by

≤ C

δ
EŷN

[
n−1∑
m=0

E
[(∫ (m+1)T

n

mT
n

drQN
(
M (N)
r

))2

+ sup
mT
n ≤r≤

(m+1)T
n

∣∣∆(N)
r

∣∣4 ∣∣∣∣F (N)
mT
n

]] 1
4

,

where ∆
(N)
r := M

(N)
r+ −M

(N)
r− . Applying Lemma 4.6 to the second term, the above

is smaller than

≤ C

δ
EŷN

[
n−1∑
m=0

E
[
T

n

∫ (m+1)T
n

mT
n

∣∣QN(M (N)
r

)∣∣2 +N−
4

1+ν sup
mT
n ≤r≤

(m+1)T
n

∣∣M (N)
r

∣∣ 4ν
ν+1

∣∣∣∣F (N)
mT
n

]] 1
4

=
C

δ
EŷN

[
T

n
sup

0≤r≤T

∣∣QN(M (N)
r

)∣∣2 + N−
4

1+ν sup
0≤r≤T

∣∣M (N)
r

∣∣ 4ν
ν+1

] 1
4

≤ C

δ
EŷN

[
T

n
sup

0≤r≤T

(
1 +

∣∣M (N)
r

∣∣ ν
ν+1

)2
+ N−

4
1+ν sup

0≤r≤T

∣∣M (N)
r

∣∣ 4ν
ν+1

] 1
4

, (4.26)

where the last inequality uses part (4) of Lem. 4.3 to bound the first term.
Finally, applying part (1) to (4.26) we can obtain an inequality of the form

PŷN
[

sup
0≤m<n

sup
0≤t≤Tn

∣∣∣M (N)

t+mT
n

−M (N)
mT
n

∣∣∣ > δ

]
≤ C

δ

(
n−

1
4 + N−

1
ν+1

)
.

Thus we can pick n,N � 1 to be large enough to make the left-hand side of (4.24)
arbitrarily small. �
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