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Abstract. We consider a fractional counting process with jumps of amplitude 1,2, . . . ,k,
with k∈N, whose probabilities satisfy a suitable system of fractional difference-differential
equations. We obtain the moment generating function and the probability law of the result-
ing process in terms of generalized Mittag-Leffler functions. We also discuss two equiv-
alent representations both in terms of a compound fractional Poisson process and of a
subordinator governed by a suitable fractional Cauchy problem. The first occurrence time
of a jump of fixed amplitude is proved to have the same distribution as the waiting time
of the first event of a classical fractional Poisson process, this extending a well-known
property of the Poisson process. When k = 2 we also express the distribution of the first
passage time of the fractional counting process in an integral form. Finally, we show that
the ratios given by the powers of the fractional Poisson process and of the counting process
over their means tend to 1 in probability.

1. Introduction and background

Fractional Poisson processes and related counting processes are attracting the attention
of several authors. Most of the recent papers on this topic are centered on certain fractional
versions (time-fractional, space-fractional, space-time fractional) of the Poisson process,
as well as some fractional birth processes (see, for instance, the review in Orsingher, 2013
and Alipour et al., 2015). Moreover, Beghin and Orsingher (2010) study the properties of
Poisson-type fractional processes, governed by fractional recursive differential equations,
obtained substituting regular derivatives with fractional derivatives. Mainardi et al. (2004)
provide a generalization of the pure and compound Poisson processes via fractional calcu-
lus, by resorting to a renewal process-based approach involving waiting time distributions
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expressed in term of the Mittag-Leffler function. A different approach has been developed
by Laskin (2003) and Laskin (2009), where a fractional non-Markov Poisson stochastic
process based on a fractional generalization of the Kolmogorov-Feller equations, and some
interesting applications including a fractional compound Poisson process have been con-
sidered. More recently, Meerschaert et al. (2011) show that a Poisson process, with the
time variable replaced by an independent inverse stable subordinator, is also a fractional
Poisson process. Other recent results on fractional Poisson process can be found in Goren-
flo and Mainardi (2012) and Gorenflo and Mainardi (2013).

Counting processes with jumps of amplitude larger than 1 are employed in various ap-
plications, since they are useful to describe simultaneous but independent Poisson streams
(see Adelson (1966), for instance). The case of fractional compound Poisson processes
has been investigated by Scalas (2012), Beghin and Macci (2012) and Beghin and Macci
(2016+), for instance. Moreover, Beghin and Macci (2014) consider two fractional ver-
sions of nonnegative, integer-valued compound Poisson processes, and prove that their
probability mass function solve certain fractional Kolmogorov forward equations. Certain
fractional growth processes including the possibility of jumps of amplitude larger than 1
have been obtained recently through the interesting space-fractional Poisson process (cf.
Orsingher and Polito (2012)) and, more generally, through the class of point processes
studied in Orsingher and Toaldo (2015) and Polito and Scalas (2016). The relevance of
fractional compound Poisson processes in applications in ruin theory and their long-range
dependence are investigated in Biard and Saussereau (2014) and Maheshwari and Vel-
laisamy (2016+).

Following the lines of the papers above, here we analyse a suitable extension of the frac-
tional Poisson process, say Mν(t), which performs k kinds of jumps of amplitude 1,2, . . . ,k
with rates λ1,λ2, . . . ,λk respectively. (Throughout the paper we refer to the fractional de-
rivative in the Caputo sense, also known as Dzherbashyan-Caputo fractional derivative).
We first obtain the moment generating function and the probability law of the process, and
discuss its equivalent representation in terms of a subordinator governed by a suitable frac-
tional Cauchy problem.

Along the same lines as Beghin and Orsingher (2010), in Section 2 we consider the
difference-differential equations governing the probability mass function of Mν(t) and in-
volving the time-fractional derivative of order ν ∈ (0,1]. The solution of the resulting
Cauchy problem represents the probability distribution of the fractional counting process
Mν(t). Hence, we obtain E

[
esMν (t)

]
and pν

k (t) = P{Mν (t) = k} in terms of a generalized
Mittag-Leffler function. We also show two useful representations for Mν(t):
(i) We prove that Mν(t) can be expressed as a compound fractional Poisson process. This
representation is essential to obtain a waiting time distribution.
(ii) We show that Mν(t) can be regarded as a homogeneous Poisson process with k kinds
of jumps stopped at a random time. Such random time is the sole component of this subor-
dinating relationship affected by the fractional derivative, since its distribution is obtained
from the fundamental solution of a fractional diffusion equation.

In Section 3 we face the problem of determining certain waiting time and first-passage-
time distributions. Specifically, we evaluate the probability that the first jump of size j,
j = 1,2, . . . ,k, for the process Mν(t) occurs before time t > 0. Interestingly, we prove that
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the first occurrence time of a jump of amplitude j has the same distribution as the waiting
time of the first event of the classical fractional Poisson process defined with parameter
λ j, for j ∈ {1,2, . . . ,k}. This is an immediate extension of a well-known result. Indeed,
for a Poisson process with intensity λ1 +λ2 and such that its events are classified as type
j via independent Bernoulli trials with probability λ j

λ1+λ2
, the first occurrence time of an

event of type j is distributed as the interarrival time of a Poisson process with intensity λ j,
j = 1,2. In Theorem 3.1 we extend this result to the fractional setting. The remarkable
difference is that the exponential density of the interarrival times of the Poisson process is
replaced by the corresponding density of the fractional Poisson process, which depends on
the (two-parameter) Mittal-Leffler function. In Section 3 we also study, when k = 2, the
distribution of the first passage time of Mν(t) to a fixed level. We express it in an integral
form which involves the joint distribution of the fractional Poisson process.

Finally, in Section 4 we obtain a formal expression of the moments of Mν(t), and show
that both the ratios given by the powers of the fractional Poisson process and of the process
Mν(t) over their means tend to 1 in probability. This result is useful in some applications.
In fact, from a physical point of view, it means that the distance between the distributions
of such processes at time t and their equilibrium measures is close to 1 until some deter-
ministic ‘cutoff time’ and is close to 0 shortly after.

In the remaining part of this section we briefly recall some well-known results on the
fractional Poisson process which will be used throughout the paper. Consider the fractional
Poisson process {

N ν

λ
(t); t ≥ 0

}
, ν ∈ (0,1], λ ∈ (0,∞), (1.1)

namely the renewal process with i.i.d. interarrival times U j distributed according to the
following density, for j = 1,2, . . . and t ∈ (0,∞) (see Beghin and Orsingher, 2010):

f ν
1 (t) = P

{
U j ∈ d t

}
/d t = λ tν−1Eν ,ν(−λ tν), (1.2)

where

Eα,β (x) =
∞

∑
r=0

xr

Γ(αr+β )
, α,β ∈ C, Re(α),Re(β )> 0, x ∈ R

is the (two-parameter) Mittag-Leffler function. From the Laplace transform

L{ f ν
1 (t) ;s}= λ

sν +λ

it follows that the density of the waiting time of the k-th event, Tk = ∑
k
j=1 U j, possesses

the Laplace transform

L{ f ν
k (t) ;s}= λ k

(sν +λ )k .

Its inverse can be obtained by applying formula (2.5) of Prabhakar (1971), i.e.

L
{

tγ−1E δ

β ,γ

(
ωtβ

)
;s
}
=

sβδ−γ(
sβ −ω

)δ
, (1.3)

(where Re(β )> 0, Re(γ)> 0, Re(δ )> 0 and s> |ω|
1

Re(β ) ). By setting β = ν , γ = kν , δ = k
and ω =−λ we have

f ν
k (t) = P{Tk ∈ d t}/d t = λ

kt kν−1E k
ν ,kν(−λ tν), (1.4)
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where

Eγ

α,β (z) =
∞

∑
r=0

(γ)r zr

r!Γ(αr+β )
, α,β ,γ ∈ C, Re(α),Re(β ),Re(γ)> 0 (1.5)

is a generalized Mittag-Leffler function and, as usual, (γ)r = γ(γ + 1) . . .(γ + r− 1), r =
1,2, . . . , (γ)0 = 1, is the Pochhammer symbol.

The corresponding distribution function can be obtained by integrating (1.4), thus obtain-
ing (see Eq. (2.20) of Beghin and Orsingher, 2010)

F ν
k (t) = P{Tk < t} = λ

ktkν Ek
ν ,kν+1(−λ tν). (1.6)

Taking into account (1.6), the probability mass function of the process N ν

λ
(t) can be easily

computed as follows (see, also, Eq. (2.21) of Beghin and Orsingher, 2010):

P
{

N ν

λ
(t) = n

}
= P(Tn ≤ t < Tn+1) = (λ tν)

n En+1
ν ,nν+1(−λ tν). (1.7)

Moreover, recalling Eq. (2.29) of Beghin and Orsingher (2010), we have that the moment
generating function of the process N ν

λ
(t), t ≥ 0, can be expressed as

E
[
esN ν

λ
(t)
]
= Eν ,1 (λ (es−1) t ν) , s ∈ R. (1.8)

The mean and the variance of N ν

λ
(t) read (see Eqs. (2.7) and (2.8) of Beghin and Orsingher,

2009)

E
[
N ν

λ
(t)
]
=

λ tν

Γ(ν +1)
, Var

[
N ν

λ
(t)
]
=

2(λ tν)2

Γ(2ν +1)
− (λ tν)2

(Γ(ν +1))2 +
λ tν

Γ(ν +1)
. (1.9)

In general, the analytical expression for the mth order moment of the fractional Poisson
process is given by (cf. Laskin (2009), Eq. (40))

E
[(

N ν

λ
(t)
)m]

=
m

∑
l=0

Sν (m, l)(λ tν)
l
, (1.10)

where Sν (m, l) is the fractional Stirling number defined by Eq. (32) of Laskin (2009).

2. Fractional counting process

Let {M1(t); t ≥ 0} be a counting process defined by following rules:
(1) M1(0) = 0 a.s.;
(2) M1(t) has stationary and independent increments;
(3) P{M1(h) = j}= λ jh+o(h), for j = 1,2, . . . ,k;
(4) P{M1(h)> k}= o(h),

where k ∈ N≡ {1,2, . . .} is fixed, and λ1,λ2, . . . ,λk > 0. From the above assumptions we
have that the probability distribution p j(t) = P

{
M1 (t) = j

}
, for j ∈ N0 ≡ {0,1,2, . . .},

satisfies the following system of difference-differential equations:

dp j(t)
dt

=
k

∑
r=1

λr p j−r(t)− (λ1 + . . .+λk) p j(t), t > 0, (2.1)

where p j(t) = 0 for j < 0.
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In this section we examine a fractional extension of {M1(t); t ≥ 0}. We obtain a proper
probability distribution and explore the main properties of the corresponding fractional
process.

2.1. The probability law. With reference to the fractional derivatives

dν f (t)
dtν

=


1

Γ(1−ν)

∫ t
0
(d/ds) f (s)
(t−s)ν ds, 0 < ν < 1,

f ′ (t) ν = 1,

let us now introduce a fractional extension of the process M1(t). For all fixed ν ∈ (0,1] and
k∈N, let {Mν(t); t ≥ 0} be a counting process, and assume that the probability distribution

pν
j (t) = P{Mν (t) = j} , j ∈ N0 (2.2)

satisfies the following system of fractional difference-differential equations

dpν
0 (t)

dtν
=−Λ pν

0 (t)

dpν
j (t)

dtν
= ∑

j
r=1 λr pν

j−r(t)−Λ pν
j (t), j = 1,2, . . . ,k−1

dpν
j (t)

dtν
= ∑

k
r=1 λr pν

j−r(t)−Λ pν
j (t), j = k,k+1, . . . ,

(2.3)

for Λ = λ1 +λ2 + . . .+λk, together with the condition

p j(0) =

{
1, j = 0
0, j ≥ 1.

(2.4)

Clearly, when ν = 1 the system (2.3) identifies with the difference-differential equations
of process M1(t) given in (2.1). Furthermore, when k = 1 the process Mν(t) identifies with
the process N ν

λ
(t) considered in Section 1.

Hereafter we will obtain the solution to (2.3)-(2.4) in terms of the generalized Mittag-
Leffler function (1.5) and show that it represents a true probability distribution of Mν(t).
To this purpose we first obtain the moment generating function of Mν(t) in terms of the
Mittag-Leffler function.

Proposition 2.1. For all fixed ν ∈ (0,1] and k ∈ N, the moment generating function of
Mν(t) is given by

E
[
esMν (t)

]
= Eν ,1

( k

∑
j=1

λ j
(
e js−1

)
t ν

)
, t ≥ 0, s ∈ R. (2.5)

Proof : From system (2.3) and condition (2.4) we have that the probability generating func-
tion G(z, t) := E

[
zMν (t)

]
satisfies the Cauchy problem

∂G(z, t)
∂ tν

=−
k

∑
j=1

λ j
(
1− z j) G(z, t)

G(z,0) = 1.

By adopting a Laplace-transform approach we obtain

L{G(z, t);s}= sν−1

sν +∑
k
j=1 λ j(1− z j)

.
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Eq. (2.5) thus follows recalling Eq. (1.3). �

We remark that the use of the Caputo fractional derivative permits us to avoid fractional
initial conditions in the previous proof since, in general,

L{ f ν ;s}= sνL{ f ;s}− sν−1 f
∣∣∣∣
x=0

, ν ∈ (0,1].

Let us now show that Mν(t) can be expressed as a compound fractional Poisson process.

Proposition 2.2. For all fixed ν ∈ (0,1] we have

Mν(t) d
=

N ν
Λ
(t)

∑
i=1

Xi, t ≥ 0, (2.6)

where N ν
Λ
(t) is a fractional Poisson process, defined as in (1.1), with intensity Λ = λ1 +

λ2 + . . .+λk. Moreover, {Xn : n≥ 1} is a sequence of i.i.d. random variables, independent
of N ν

Λ
(t), such that for any n ∈ N

P{Xn = j}=
λ j

Λ
, j = 1,2, . . . ,k (2.7)

and where both N ν
Λ
(t) and Xn depend on the same parameters λ1,λ2, . . . ,λk.

Proof : The moment generating function of Y (t) := ∑
N ν

Λ
(t)

i=1 Xi, t ≥ 0, can be expressed as

E
[
esY (t)

]
= E

[
E
[
esY (t)

∣∣∣N ν
Λ(t)

]]
= E

[(
E
[
esX1
])N ν

Λ
(t)
]
.

Hence, since

E
[
esX1
]
=

1
Λ

k

∑
j=1

λ j e js,

we have

E
[
esY (t)

]
= E

[
eN ν

Λ
(t) ln

(
1
Λ ∑

k
j=1 λ j e js

)]
.

Finally, making use of Eq. (1.8) we immediately obtain that the moment generating func-
tion of Y (t) identifies with the right-hand-side of (2.5). This completes the proof. �

We remark that, due to Proposition 2.2, Mν(t) can be regarded as a special case of
the process defined in Eq. (7) of Beghin and Macci (2014), under a suitable choice of
the probability mass function (qk)k≥1 and the parameter λ . Furthermore, according to
Definition 7.1.1 of Bening and Korolev (2002), the process Mν(t) is a compound Cox
process, since Beghin and Orsingher (2010) show that N ν

Λ
(t) is a Cox process with a

proper directing measure. Moreover, Mν(t) is a compound fractional process, and thus it
is neither Markovian nor Lèvy (cf. Scalas, 2012).

We are now able to obtain the probability mass function (2.2) of Mν(t). Indeed, the
following Proposition holds true.

Proposition 2.3. The solution pν
j (t) of the Cauchy problem (2.3)-(2.4), for j ∈ N0, ν ∈

(0,1] and t ≥ 0, is given by

pν
j (t) =

j

∑
r=0

∑
α1+α2+...+αk=r

α1+2α2+...+kαk= j

(
r

α1,α2, . . . ,αk

)
λ

α1
1 λ

α2
2 . . .λ

αk
k trν Er+1

ν ,rν+1(−Λtν). (2.8)
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FIGURE 2.1. Probability distribution of Mν(t), given in (2.8), for j =
0,1, . . . ,11, with k = 3, ν = 0.5, λ1 = λ2 = λ3 = 1, (a) t = 1 and (b)
t = 2. The displayed probability mass is (a) 0.797292 and (b) 0.629278.

Proof : From (2.6) and from a conditioning argument we have

pν
j (t) = P{Mν (t) = j}=

j

∑
r=0

P{X1 +X2 + . . .+Xr = j}P{N ν
Λ(t) = r} .

Since X1,X2, . . . ,Xr are independent and identically distributed (cf. (2.7)), it follows that

P{X1 +X2 + . . .+Xr = j}= ∑
α1+α2+...+αk=r

α1+2α2+...+kαk= j

(
r

α1,α2, . . . ,αk

)

×
(

λ1

Λ

)α1
(

λ2

Λ

)α2

. . .

(
λk

Λ

)αk

,

where the sum is taken in order to consider all the possible ways of having r jumps, with
α1 jumps of size 1, . . ., αk jumps of size k, and such that the total amplitude, i.e. α1 +
2α2 + . . .+ kαk, equals j. Hence, recalling formula (1.7), the Proposition follows. �

Proposition 2.3 is an extension of Proposition 2 of Di Crescenzo et al. (2015), which is
concerning with case k = 2. Some plots of probabilities (2.8) are shown in Figure 2.1 and
Figure 2.2.

From (2.8) we note that, for ν ∈ (0,1],

pν
0 (t) = Eν ,1(−Λtν), t ≥ 0.

Moreover, making use of Eqs. (1.5) and (2.8) we obtain hereafter the distribution of the
process Mν(t) in the special case ν = 1.

Corollary 2.4. The probability mass function p1
j(t), for j ∈ N0 and t ≥ 0, is given by

p1
j(t) =

j

∑
r=0

∑
α1+α2+...+αk=r

α1+2α2+...+kαk= j

λ
α1
1 λ

α2
2 . . .λ

αk
k

α1!α2! . . . αk!
tre−Λt . (2.9)

2.2. Equivalent representation. We will now examine an interesting relationship between
the process Mν(t) and the process M1(t). In fact, we show that the following representation
holds:

Mν(t) d
= M1 (T2ν (t)

)
,



298 A. Di Crescenzo et al.

FIGURE 2.2. Probability distribution of Mν(t), given in (2.8), for 0 ≤
t ≤ 2, with k = 3, λ1 = λ2 = λ3 = 1, (a) ν = 0.5 and (b) ν = 1.

where T2ν (t) is a suitable random process, and thus Mν(t) can be considered as a homo-
geneous Poisson-type counting process with jumps of sizes 1,2, . . . ,k stopped at a random
time T2ν (t).

Let us denote by g(z, t) = g2ν (z, t) the solution of the Cauchy problem
∂ 2ν g(z,t)

∂ t 2ν = ∂ 2g(z,t)
∂ z2 , t > 0, z ∈ R

g(z,0) = δ (z) , 0 < ν < 1
∂g(z,t)

∂ t

∣∣∣∣
t=0

= 0, 1
2 < ν < 1.

(2.10)

It is well-known that (see Mainardi, 1996b and Mainardi, 1996a)

g2ν (z, t) =
1

2tν
W−ν ,1−ν

(
−|z|

tν

)
, t > 0, z ∈ R, (2.11)

where

Wα,β (x) =
∞

∑
k=0

xk

k!Γ(αk+β )
, α >−1, β > 0, x ∈ R (2.12)

is the Wright function. Let

ḡ2ν (z, t) =

{
2g2ν (z, t) , z > 0
0, z < 0

(2.13)

be the folded solution to (2.10) and let T2ν (t) be a random process (independent from the
process M1 (t)) whose transition density P

{
T2ν (t) ∈ dz

}
/dz is given in (2.13).

Remark 2.5. It has been proved in Orsingher and Beghin (2004) that the solution g2ν to
(2.10) can be alternatively expressed as

g2ν (z, t) =
1

2Γ(1−ν)

∫ t

0
(t−w)−ν fν (w, |z|)dw, z ∈ R,

where fν (·,y) is a stable law Sν (µ,β ,σ) of order ν , with parameters µ = 0,β = 1 and

σ =
(
zcos πν

2

) 1
ν .

Proposition 2.6. The process Mν (t) and the process M1
(
T2ν (t)

)
are identically dis-

tributed.
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Proof: From (2.2) and (2.13) we have

P
{

M1 (T2ν (t)
)
= n
}
=
∫

∞

0
p1

n(z) ḡ2ν (z, t)dz.

Hence, making use of (2.9) and (2.12) we get

P
{

M1 (T2ν (t)
)
= n
}
=

n

∑
j=0

∑
α1+α2+...+αk= j

α1+2α2+...+kαk=n

λ
α1
1 λ

α2
2 . . .λ

αk
k

α1!α2! . . . αk!

× 1
tν

∫
∞

0
e−Λz z j W−ν ,1−ν

(
− z

tν

)
dz.

For y = Λz, the last expression identifies with (2.8) due to the following integral represen-
tation of the generalized Mittag-Leffler function in terms of the Wright function, proposed
by Beghin and Orsingher (2010):

Ek+1
ν ,kν+1(−Λtν) =

1
k!Λk+1 t(k+1)ν

∫
∞

0
e−y yk W−ν ,1−ν

(
− y

Λtν

)
dy.

This completes the proof. �

Remark 2.7. Since the transition density (2.13) coincides with the probability density func-
tion of the standard inverse ν-stable subordinator Eν(t) (see Meerschaert et al., 2011), the
result given in Proposition 2.6 can be stated also as follows: The process Mν (t) and the
process M1 (Eν(t)) are identically distributed.

Remark 2.8. In Beghin and Orsingher (2010) Beghin and Orsingher proved an analogous
subordination relationship, i.e.

N ν

λ
(t) d

= N 1
λ
(T2ν (t)),

where N ν

λ
(t) is the fractional Poisson process defined in (1.1) and T2ν (t) is the random

time defined above.

Remark 2.9. By taking ν = 1
2 , from Proposition 2.6 we have that M1/2 (t) and M1

(
T1 (t)

)
are identically distributed. We note that the random time T1 (t), t > 0, becomes a reflecting
Brownian motion. Indeed, in this case equation (2.10) reduces to the heat equation{

∂g
∂ t =

∂ 2g
∂ z2 , t > 0, z ∈ R

g(z,0) = δ (z) ,

and the solution g1 (z, t) is the density of a Brownian motion B(t) , t > 0, with infinitesimal
variance 2. After folding up the solution, we find the following probability mass

P
{

M1 (T1 (t)
)
= n
}
=
∫

∞

0
p1

n(z)
e−

z2
4t

√
πt

dz

= P
{

M1 (|B(t)|) = n
}
,

so that M1/2 (t) is a jump process at a Brownian time.

Remark 2.10. It is worth noticing that both the compositions of the fractional Poisson
process N ν

λ
(t) defined in (1.1) and of the fractional process Mν(t) defined in (2.2) with the

random time T2ν (t) yields again fractional processes of different order, i.e.

N ν

λ
(T2ν (t))

d
= N ν2

λ
(t) and Mν(T2ν (t))

d
= Mν2

(t).
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Taking into account the subordinating relationships examined in Proposition 2.6 and in
Remark 2.8, this fact follows immediately from Remark 3.1 of Kumar et al. (2011), since,
in general, the composition of two stable subordinators of indexes β1 and β2 respectively
is a stable subordinator of index β1β2.

Remark 2.11. Bearing in mind Proposition 2.2, setting

Sr = Λ ·E[X r] =
k

∑
j=1

jr
λ j, r = 1,2

and recalling (1.9), we can compute more effortlessly the mean and the variance of the
process. In fact, by Wald’s equation we have

E [Mν(t)] = E[X ] ·E [N ν
Λ (t)]

=
S1 tν

Γ(ν +1)
, t ≥ 0.

Moreover, by the law of total variance we get

Var [Mν(t)] = Var [X ] ·E [N ν
Λ(t)]+(E [X ])2 ·Var [N ν

Λ(t)]

=
S2 tν

Γ(ν +1)
+S 2

1 t2ν Z(ν), t ≥ 0,

where

Z(ν) :=
1
ν

(
1

Γ(2ν)
− 1

νΓ2(ν)

)
.

As a consequence it is not hard to show that Var [Mν(t)]−E [Mν(t)]> 0, or, equivalently,
that the process Mν(t) exhibits overdispersion, since Z(ν)> 0 for all ν ∈ (0,1) and Z(1) =
0. Finally, we point out that a formal expression for the moments of process Mν(t) is
provided in Lemma 4.1.

3. Waiting times and first-passage times

We evaluate the probability distribution function of the waiting time until the first oc-
currence of a jump of size i, i = 1,2, . . . ,k, for the process Mν(t). We first observe that the
following decomposition holds:

Mν(t) =
k

∑
j=1

j Mν
j (t), t ≥ 0,

where

Mν
j (t) :=

N ν
Λ
(t)

∑
i=1

1{Xi= j}, j = 1,2, . . . ,k, (3.1)

and thus Mν
j (t) counts the number of jumps of amplitude j performed by Mν(t) in (0, t].

Furthermore, we introduce the random variables

H j := inf
{

s > 0 : Mν
j (s) = 1

}
and G j ∼ Geo

(
λ j

Λ

)
, j = 1,2, . . . ,k.

In other words, H j represents the first occurrence time of a jump of amplitude j for process

Mν(t), whereas G j is a geometric random variable with parameter λ j
Λ

that describes the
order of the first jump of amplitude j in the sequence of jumps of Mν(t). We prove that H j
is distributed as the waiting time of the first event of the fractional Poisson process defined
in (1.1) with parameter λ j. Indeed, the following result holds.
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Theorem 3.1. Let j ∈ {1,2, . . . ,k}. Then

P
{

H j ≤ t
}
= λ jtν Eν ,ν+1 (−λ jtν) , t > 0. (3.2)

Proof: By conditioning on G j, for t > 0, due to Eqs. (2.6) and (1.6) we have

P
{

H j ≤ t
}
= EG j

[
P
{

H j ≤ t | G j}]
=

+∞

∑
n=1

P
{

H j ≤ t | G j = n
}
P
{

G j = n
}

=
+∞

∑
n=1

F ν
n (t)

λ j

Λ

(
1−

λ j

Λ

)n−1

=
+∞

∑
n=1

Λ
ntnν En

ν ,nν+1(−Λtν)
λ j

Λ

(
1−

λ j

Λ

)n−1

= λ jtν
+∞

∑
n=0

Λ
ntnν

(
1−

λ j

Λ

)n

En+1
ν ,(n+1)ν+1(−Λtν).

By using formula (2.3.1) of Mathai and Haubold (2008), i.e.

1
Γ(α)

∫ 1

0
uγ−1 (1−u)α−1 E δ

β ,γ

(
zuβ

)
du = E δ

β ,γ+α
(z) ,

(where Re(α) > 0,Re(β ) > 0 and Re(γ) > 0) for α = β = ν , γ = nν + 1, δ = n+ 1 and
z =−Λtν , we get

P
{

H j ≤ t
}
=

λ jtν

Γ(ν)

+∞

∑
n=0

Λ
ntnν

(
1−

λ j

Λ

)n ∫ 1

0
unν (1−u)ν−1 E n+1

ν ,nν+1 (−Λ tν uν)du

=
λ jtν

Γ(ν)

∫ 1

0
(1−u)ν−1

+∞

∑
n=0

[
Λtν

(
1−

λ j

Λ

)
uν

]n

E n+1
ν ,nν+1 (−Λ tν uν)du.

Due to formula (2.30) of Beghin and Orsingher (2010), i.e.
+∞

∑
n=0

(λwtν)
n E n+1

ν ,νn+1 (−λ tν) = Eν ,1 (λ (w−1) tν) (|w| ≤ 1, t > 0),

we have

P
{

H j ≤ t
}
=

λ jtν

Γ(ν)

∫ 1

0
(1−u)ν−1 Eν ,1 (−λ j tν uν)du

By making use of formula (2.2.14) of Mathai and Haubold (2008), i.e.∫ 1

0
zβ−1 (1− z)σ−1 Eα,β (xzα)dz = Γ(σ)Eα,σ+β (x) ,

(where α > 0; β ,σ ∈C; Re(β )> 0 and Re(σ)> 0), for σ = α = ν , β = 1 and x =−λ jtν ,
we get

P
{

H j ≤ t
}
= λ jtν Eν ,ν+1 (−λ jtν) , t ≥ 0.

Therefore H j is distributed as the waiting time of the first event of the fractional Poisson
process defined in (1.1) (cf. (1.6)). �

The result shown in Theorem 3.1 is an immediate extension of the well-known result for
the Poisson process, i.e. for ν = 1, by which H j is exponentially distributed with parameter
λ j.
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We will now be concerned with the distribution of the first passage time to a fixed level
for the process Mν(t), denoted as

τn = inf{s > 0 : Mν (s) = n} , n ∈ N. (3.3)

The following result is concerning the case k = 2, i.e. when the process Mν(t) performs
jumps of sizes 1 and 2.

Theorem 3.2. The cumulative distribution function of the first passage time τk when k = 2
reads

P{τn ≤ t}=
+∞

∑
h=n

h

∑
j=d h

2 e

j

∑
i=1

(
i

n− i

)(
j− i

h−n− j+ i

)(
λ1

λ1 +λ2

)2 j−h(
λ2

λ1 +λ2

)h− j

×
∫ t

0
P
{

N ν

λ1+λ2
(t) = j,N ν

λ1+λ2
(s) = i

}
ds, t > 0. (3.4)

Proof: Since the process Mν(t) performs jumps of size 1 and 2, and has non-independent
increments, the computation of the cumulative distribution function of the first passage
time (3.3) can be carried out as follows:

P{τn ≤ t}=
+∞

∑
h=n

∫ t

0
P{Mν (t) = h,Mν (s) = n}ds

=
+∞

∑
h=n

h

∑
j=d h

2 e

j

∑
i=1

∫ t

0
P
{

Mν (t) = h,Mν (s) = n | N ν

λ1+λ2
(t) = j,N ν

λ1+λ2
(s) = i

}
×P

{
N ν

λ1+λ2
(t) = j,N ν

λ1+λ2
(s) = i

}
ds.

Making use of Proposition 2.2 we have:

P{τn ≤ t}=
+∞

∑
h=n

h

∑
j=d h

2 e

j

∑
i=1

∫ t

0
P

{
j

∑
r=1

Xr = h,
i

∑
l=1

Xl = n

}

×P
{

N ν

λ1+λ2
(t) = j,N ν

λ1+λ2
(s) = i

}
ds

=
+∞

∑
h=n

h

∑
j=d h

2 e

j

∑
i=1

∫ t

0
P

{
i

∑
l=1

Xl = n,
j

∑
r=i+1

Xr = h−n

}

×P
{

N ν

λ1+λ2
(t) = j,N ν

λ1+λ2
(s) = i

}
ds

=
+∞

∑
h=n

h

∑
j=d h

2 e

j

∑
i=1

∫ t

0
P

{
i

∑
l=1

Xl = n

}
P

{
j

∑
r=i+1

Xr = h−n

}

×P
{

N ν

λ1+λ2
(t) = j,N ν

λ1+λ2
(s) = i

}
ds

=
+∞

∑
h=n

h

∑
j=d h

2 e

j

∑
i=1

(
i

n− i

)(
λ1

λ1 +λ2

)2i−n(
λ2

λ1 +λ2

)n−i

×
(

j− i
h−n− j+ i

)(
λ1

λ1 +λ2

)2 j−2i+n−h(
λ2

λ1 +λ2

)h−n− j+i

×
∫ t

0
P
{

N ν

λ1+λ2
(t) = j,N ν

λ1+λ2
(s) = i

}
ds,
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this giving Eq. (3.4). �

To the best of our knowledge, the bivariate distribution shown in the right-hand-side
of (3.4), i.e. P

{
N ν

λ1+λ2
(s) = i,N ν

λ1+λ2
(t) = j

}
, cannot be expressed in a closed form. Ors-

ingher and Polito (2013) derived an expression in terms of Prabhakar integrals, i.e.:

P
{

N ν

λ1+λ2
(s) = i,N ν

λ1+λ2
(t) = j

}
= (λ1 +λ2)

j
(

Ei
ν ,ν i,−(λ1+λ2);(t−s)+

(
E j−i

ν ,ν( j−i−1)+1,−(λ1+λ2);(z+s−t)+

× yν−1Eν ,ν(−(λ1 +λ2)yν)

)
(z)
)
(t),

where (
Eγ

ρ,µ,ω;a+φ

)
(x) =

∫ x

a
(x− t)µ−1 Eγ

ρ,µ

(
ω (x− t)ρ

)
φ (t)dt

is the Prabhakar integral (see Prabhakar (1971) for details). Politi et al. (2011), instead,
evaluate the joint probability given in (3.4) by introducing the random variable Yi which de-
notes the residual lifetime at s (that is the time to the next epoch) conditional on Nν

λ1+λ2
(s)=

i, i.e. Yi
de f
=
[
τi− s | N ν

λ1+λ2
(s) = i

]
whose cumulative distribution function is denoted by

FYi(y). Therefore,

P
{

N ν

λ1+λ2
(s) = i,N ν

λ1+λ2
(t) = j

}
=P
{

N ν

λ1+λ2
(t)−N ν

λ1+λ2
(s) = j− i | N ν

λ1+λ2
(s) = i

}
×P

{
N ν

λ1+λ2
(s) = i

}
,

where

P
{

N ν

λ1+λ2
(t)−N ν

λ1+λ2
(s) = j− i | N ν

λ1+λ2
(s) = i

}
=

{∫ t−s
0 P

{
Nν

λ1+λ2
(t− s− y) = j− i−1

}
dFYi(y), if j− i≥ 1,

1−FYi(t− s), if j− i = 0.

It is meaningful to stress that when k = 2 the passage of Mν(t) to a level n is not sure. In
fact, the process can cross state n without visiting it due to the effect of a jump having size
2.

4. Convergence results

For the processes N ν

λ
(t) and Mν(t), defined respectively in (1.1) and in (2.2), we now

focus on a property related to their asymptotic behavior as the relevant parameters grow
larger.

Proposition 4.1. Let ν ∈ (0,1]. Then for a fixed t > 0 we have

N ν

λ
(t)

E
[
N ν

λ
(t)
] Prob−−−−→

λ→+∞

1.
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Proof: We study the convergence in mean of the random variable
N ν

λ
(t)

E[N ν

λ
(t)]

to 1. Due to the

triangular inequality we have

E

[∣∣∣∣∣ N ν

λ
(t)

E
[
N ν

λ
(t)
] −1

∣∣∣∣∣
]
≤ 2.

Therefore, we can apply the dominated convergence theorem and calculate the following
limit:

lim
λ→+∞

E

[∣∣∣∣∣ N ν

λ
(t)

E
[
N ν

λ
(t)
] −1

∣∣∣∣∣
]
= lim

λ→+∞

+∞

∑
j=0

∣∣∣∣∣ j
λ tν

Γ(ν+1)

−1

∣∣∣∣∣(λ tν)
j E j+1

ν , jν+1(−λ tν). (4.1)

Taking account of the behavior of the generalized Mittag-Leffler function for large z (see
Saxena et al. (2004) for details), i.e.:

Eδ

α,β (z)∼ O
(
|z|−δ

)
, |z|> 1,

we can conclude that limit (4.1) equals 0. This fact proves the result since convergence in
mean implies convergence in probability. �

The previous result can be extended to a more general setting. Recalling the expression
(1.10) for the moments of N ν

λ
(t), the proof of the next proposition is similar to that of

Proposition 4.1 and thus is omitted.

Proposition 4.2. Let ν ∈ (0,1] and r ∈ N. Then, for a fixed t > 0,[
N ν

λ
(t)
]r

E
{[

N ν

λ
(t)
]r} Prob−−−−→

λ→+∞

1.

In order to prove an analogous result for Mν(t), in the following lemma we give a formal
expression for the moments of such a process.

Lemma 4.1. The mth order moment of the process Mν(t), t ≥ 0, reads

E
{
[M ν(t)]m

}
=

m

∑
r=0

trν

Γ(rν +1) ∑
i1+...+ik=r

(
r

i1, . . . , ik

)
λ

i1
1 . . .λ

ik
k

× ∑
n1+...+nk=m

(
m

n1, . . . ,nk

)[
d n1

dsn1

(
es−1

)i1 . . .
d nk

dsnk

(
eks−1

)ik
]∣∣∣∣

s=0
.

(4.2)

Proof: By applying Hoppe’s formula in order to evaluate the derivatives of the moment
generating function of the process M ν(t), cf. (2.5), we have

E
{
[M ν(t)]m

}
=

m

∑
r=0

(Eν ,1(z))
(r) ∣∣

z=∑
k
j=1 λ j(e js−1)tν

r!
Am,r

(
k

∑
j=1

λ j
(
e js−1

)
tν

)∣∣∣∣∣
s=0

,

where

Am,r

(
k

∑
j=1

λ j
(
e js−1

)
tν

)
=

r

∑
h=0

(
r
h

)(
−

k

∑
j=1

λ j
(
e js−1

)
tν

)r−h

× dm

dsm

(
k

∑
j=1

λ j
(
e js−1

)
tν

)h

.

Finally, after using rather cumbersome algebra, we obtain (4.2). �
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It is now immediate to verify the following result for Mν(t).

Proposition 4.3. Let ν ∈ (0,1] and m ∈ N. Then, for i ∈ {1,2, . . . ,k} and for a fixed t > 0,
we have

[M ν(t)]m

E{[M ν(t)]m}
Prob−−−−→

λi→+∞

1.

Proof: By virtue of (4.2), convergence in probability can be obtained by proving conver-
gence in mean, as in Proposition 4.1. �

The results presented in this section deserve interest in some physical contexts. We
recall that a family of random variables U (λ ) exhibits cut-off behavior at mean times if
(see, for instance, Definition 1 of Barrera et al., 2009)

U (λ )

E
[
U (λ )

] Prob−−−−→
λ→+∞

1.

Hence, Propositions 4.1, 4.2 and 4.3 show that the processes
[
Nν

λ
(t)
]m and [Mν (t)]m,

m ∈ N, exhibit cut-off behavior at mean times with respect to the relevant parameters or,
roughly speaking, that they somehow converge very abruptly to equilibrium.

We finally remark that in this context the sufficient condition given in Proposition 1 of
Barrera et al. (2009) is not useful to prove Proposition 4.1, since such condition holds only
when ν = 1.
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