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Abstract. The fringe of a B-tree with parameter m is considered as a particular
Pólya urn with m colors. More precisely, the asymptotic behaviour of this fringe,
when the number of stored keys tends to infinity, is studied through the composition
vector of the fringe nodes. We establish its typical behaviour together with the fluc-
tuations around it. The well known phase transition in Pólya urns has the following
effect on B-trees: for m ≤ 59, the fluctuations are asymptotically Gaussian, though
for m ≥ 60, the composition vector is oscillating; after scaling, the fluctuations of
such an urn strongly converge to a random variable W . This limit is C-valued and
it does not seem to follow any classical law. Several properties of W are shown: ex-
istence of exponential moments, characterization of its distribution as the solution
of a smoothing equation, existence of a density relatively to the Lebesgue measure
on C, support of W . Moreover, a few representations of the composition vector for
various values of m illustrate the different kinds of convergence.

Received by the editors July 29, 2015; accepted June 28, 2016.
2010 Mathematics Subject Classification. 60J80, 68W40, 68Q87.
Key words and phrases. B-tree, fringe analysis, Pólya urn, urn model, martingale, multitype
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1. Introduction

B-trees are a fundamental structure in computer science, they have been intro-
duced in the early seventies by Bayer (1971); Bayer and McCreight (1972), to store
large quantities of data. These particular search trees are conceived in order to
have all their leaves at the same level. The nodes at the deepest level are called the
fringe nodes. A precise description can be found in Section 2 where are presented
two classical algorithms giving a B-tree. The actual writing of these algorithms can
be found for example in Cormen et al. (2001) for one of them (the so-called prudent
algorithm in the sequel), in Kruse and Ryba (1999) for the other one (called the
optimistic algorithm in the sequel).

The fringe analysis of B-trees goes back to Yao (1977/78) and has been devel-
opped by many authors (see for example the survey Baeza-Yates, 1995), both for
B-trees and B+-trees (where all the keys are stored in the fringe nodes). In Yao
(1977/78) appears the Pólya urn model, which we develop in this article. Indeed,
the fringe of a B-tree with parameter m (where m is a positive integer) can be
considered as a particular Pólya urn with m colors, so that a lot of information can
be obtained concerning the asymptotic behaviour of this fringe, when the number
of stored keys tends to infinity. Besides, it turns out that the same Pólya urn
mechanism occurs for the insertion into the leaves of a paged binary search tree.
Paged binary search trees are a variation of binary search trees where a subtree of
size less than a given capacity is replaced by a bucket. Mahmoud (2002) has been
the first to consider the evolution of a random bucket tree as an urn model.

Let us describe a Pólya urn process as follows. Consider an urn that contains
balls of, say, d different colors. Start with a finite number of different color balls
as initial composition (possibly monochromatic). At each discrete time n, draw a
ball at random, check its color, put it back into the urn and add balls according
to the following rule: if the drawn ball is of color i, add ai,j balls of color j, where
the ai,j are integer-valued. Thus, the replacement rule is described by the so-called
replacement matrix, which is a dimension d matrix, whose coefficients are the ai,j ,
for i and j in {1, . . . , d}.

Usually, the integers ai,j are assumed to be nonnegative for i 6= j and the
integers ai,i are nonpositive or nonnegative. A negative coefficient ai,i means that,
if a ball of color i is drawn, then ai,i balls of color i are removed from the urn.
In this case, we have to ensure that at least ai,i balls of color i exist in the urn.
This quality is called the tenability of the urn. To ensure that an urn with a
negative coefficient ai,i is tenable, it is necessary and sufficient to have the following
arithmetical condition (this can be easily proved by induction on n). Fix an initial
composition (α1, . . . , αd), meaning that there are αj balls of colour j at time zero
in the urn, then the tenability condition can be written as

− ai,i divides αi, a1,i, . . . , ad,i. (1.1)

Moreover, in the present paper, the urn is assumed to be balanced, which means
that the total number of balls added at each step is a constant: there exists an

integer S such that, for any i in {1, . . . , d},
∑d
j=1 ai,j = S.

Let us emphasize that “drawing a ball at random” means choosing uniformly
among the balls contained in the urn. That is why this model is related to many sit-
uations in mathematics, algorithmics or theoretical physics where a uniform choice
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among objects determines the evolution of a process. See Johnson and Kotz (1977);
Mahmoud (2009); Flajolet et al. (2006) for many examples. For a general prob-
abilistic treatment of Pólya urns, see Pouyanne (2008), Janson (2004) or Mailler
(2014).

In the paper Yao (1977/78), the focus is on the average number of nodes in
the B-tree. Nevertheless, the main ideas are already there, namely the dynamics
transforming a tree of size n into a tree of size n+ 1, which is the same dynamics
as in a Pólya urn process. The recent progresses in Pólya urn processes and their
asymptotic behaviour (Pouyanne, 2008; Chauvin et al., 2011, 2015, Janson, 2004,
Mailler, 2014) lead to a more complete landscape for the B-trees. Our aim in
this article is to present in a hopefully concise form a collection of results about the
asymptotic behaviour of the fringe nodes in a B-tree, namely their typical behaviour
and the fluctuations around it. Our main interest is focused on these fluctuations,
which happen to have a phase transition: for m ≤ 59, the fluctuations are of order√
n and have a Gaussian limit in distribution. But for m ≥ 60, the fluctuations are

of order nσ, where σ is larger than 1/2 and increases to 1 when m tends to infinity.
Moreover, an oscillating and significative phenomenon occurs in the fluctuation
term. After scaling, the fluctuations strongly converge (meaning almost surely) to
a random limit, here called W . The random variable W is C-valued and does not
seem to follow any classical law.

The paper is organized as follows. In Section 2 are presented two classical al-
gorithms allowing to construct a B-tree. In that section is also precised how the
insertion dynamics is that of a suitable Pólya urn. In Section 3 are introduced the
random vectors which describe the fringe of a B-tree. In Section 4 is established the
phase transition, and we get the precise asymptotic behaviour of the fringe nodes,
in Corollary 4.4 of Theorem 4.3. For m ≥ 60, the fluctuations around the drift are
expressed via a random variable W , which is studied in the last sections. Thanks
to an embedding into continuous time (Section 5), a multitype branching process
is put forward. Properties of the continuous-time limit process can be translated
to the discrete-time process, via an explicit connection. Several properties of W
are proved in Section 6: W admits a density on the whole complex plane; it has
exponential moments; it is the unique solution of a certain “smoothing equation”
in a convenient probability distribution space. Finally, in Section 7, a few pictures
provide a synthetic and concrete illustration of the different kinds of convergence,
depending on whether m ≤ 59 or m ≥ 60.

2. B-tree algorithms

2.1. Description of a B-tree. For a positive integer m ≥ 2, a B-tree with parameter
m is a search1 tree, where the keys are stored into the internal nodes and the leaves2

represent insertion possibilities (we call them gaps), they do not contain any key;
furthermore all the leaves are at the same depth. A fringe node is an internal
node whose only descendants are leaves. In the literature, these fringe nodes are
sometimes called final internal nodes or leaf-nodes, or internal leaves. We try to

1A search tree is a tree where internal nodes contain sorted keys and where a node containing

k keys x1, . . . , xk defines k+1 intervals such that, for j = 1, . . . , k+1, the keys in the j-th subtree
belong to the j-th interval.

2The leaves, sometimes called external nodes, are the nodes without any descendant.
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be non-ambiguous in the following, and use the terms fringe nodes and fringe node
process. In the figures below, internal nodes are represented by ellipses and leaves
by squares.

As is the case for the leaves, the fringe nodes of a B-tree are at the same depth.
Moreover, each internal node (fringe or otherwise) has a capacity; the root contains
between 1 and C(m) keys, and the other internal nodes between c(m) and C(m)
keys. When a node contains C(m) keys, we say that the node is saturated.

The minimal – c(m) – and maximal – C(m) – values depend both on the param-
eter m and on the precise definition of the B-tree, which is itself closely related to
the exact insertion algorithm, of which we present two versions below. Let us just
state that c(m) = m− 1 and C(m) = 2m− 1 for the first algorithm, and c(m) = m
and C(m) = 2m for the second one. In both cases we want to insert a new key into
a tree of size n, i.e. having already n keys in its internal nodes, and consequently
n+ 1 leaves, or insertion possibilities.

• •

• • • • • •

Figure 2.1. An example of B-tree of size 8. Here m = 2,
nodes contain between 1 and 3 keys. There are 3 fringe nodes
and 9 leaves. One fringe node is saturated.

2.2. The prudent algorithm. In what we call here the prudent algorithm for inser-
tion into a B-tree with parameter m, the nodes contain between m− 1 and 2m− 1
keys. An insertion of a new key concerns a given leaf, so that a branch (the nodes
between the root and this leaf) is determined for this insertion. The algorithm
proceeds by going down from the root to the leaf, along this branch. We begin
by checking the root: if it is saturated, it is split, a new root is created with a
single key which is the median of the keys of the old root (remember that it has an
odd number of keys, hence the median is defined without any ambiguity) and two
sons, and the height of the tree increases by 1. If the root is not saturated, we do
not modify it. We then proceed along the branch to the insertion gap. When we
meet a (non-root) saturated node, the median key of that node moves to the parent
node (which is not saturated – if it initially was, we have already taken care of it)
and the saturated node is split. Then, when we finally arrive at a fringe node, we
split it when necessary, and the insertion of the new key always takes place into a
non-saturated fringe node: the saturated nodes are dealt with before we find the
node in which the insertion of the new key will take place. This algorithm, which
can be presented both recursively and iteratively (there being only a descent from
the root to a leaf), is found, e.g., in the book Cormen et al. (2001). If we consider
the fringe nodes, insertion on a saturated node (with 2m − 1 keys) gives rise to 2
new fringe nodes with respectively m and m− 1 keys. See Figure 2.2.
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• •

• • • • • •

• • •

• • • • • •

Figure 2.2. An example of insertion in a B-tree, for the prudent
algorithm. Here m = 2, nodes contain between 1 and 3 keys. The
middle key in red moves to the parent node.

2.3. The optimistic algorithm. In what we call here the optimistic algorithm, for
insertion into a B-tree with parameter m−1, the nodes contain between m−1 and
2m−2 keys. Here the saturated nodes are dealt with after we have found the place
for insertion. An insertion of a new key concerns a given leaf. If the corresponding
fringe node is not saturated, the insertion occurs in this node; if it is saturated,
the algorithm has to create a non-saturated node into which we can insert the new
key. It needs to find what would be the place of the new key among the (already
sorted) 2m− 2 keys; the middle key among these 2m− 2 + 1 = 2m− 1 keys moves
to the parent node, and the saturated node is split into 2 new fringe nodes with
m−1 keys. If the parent node is saturated, a key is pushed up into the grandparent
node, etc... all the way up to the root if necessary; if the root is saturated, it is
split as well and the height of the tree increases by 1. This algorithm proceeds by
going down from the root to the gap of insertion, and then up to (some node on)
the branch from that leaf to the root, and is possibly best understood recursively.
Figure 2.3 illustrates an insertion on a saturated node for a B-tree with parameter
m = 3.

• •

• • • • • • • • •

• • •

• • • • • • • • •

Figure 2.3. An example of insertion in a B-tree, for the op-
timistic algorithm. Here m = 3, nodes contain between 2 and 4
keys. The middle key in red is determined among the 4 keys of the
saturated node and the new key, and moves to the parent node.

2.4. Insertion as the evolution of a Pólya urn. For both the prudent and the opti-
mistic algorithms, let us define different types of fringe nodes: we say that a fringe
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node is of type k, when it contains m+k− 2 keys and has thus m+k− 1 gaps. For
the prudent algorithm, k varies between 1 and m+ 1; for the optimistic algorithm,
k varies between 1 and m.

We analyse the fringe of the tree through the so-called composition vector Ln,
which counts the number of fringe nodes of each type in a B-tree of parameter m,
at time n, i.e., assuming that we start from an empty tree and add the keys one

by one, when the tree contains n keys. Thus, L
(k)
n , the k-th coordinate of Ln, is

the number of fringe nodes of type k. For the prudent algorithm, Ln is a vector of
dimension m+1, whereas it is a vector of dimension m for the optimistic algorithm.

For both algorithms, we define Gn as the composition vector of gaps at time n.
We say that a gap is of type k, when it is attached to a fringe node of type k. Thus

G
(k)
n , the k-th coordinate of Gn, is the number of gaps of type k. In other words:

(m+ k − 1)L(k)
n = G(k)

n . (2.1)

For both algorithms, the process (Gn)n∈N is a Pólya urn process, as defined in
the Introduction, where the balls are the gaps and the colors are the different types.
Indeed, when the keys are randomly chosen under the so-called random permutation
model, meaning that the keys are independently identically distributed (i.i.d.), then
the insertion of a new key in a B-tree of size n occurs uniformly on any of the n+ 1
gaps of the tree.

• In the prudent algorithm, the number of keys in a fringe node ranges from
m− 1 to 2m− 1, there are m+ 1 types, and the vector Ln is of dimension m+ 1.
The replacement matrix of the gap process is of dimension m+ 1 and equal to3

rm =



−m (m+ 1)
−(m+ 1) (m+ 2)

. . .
. . .

. . . 2m
m (m+ 1) −2m

 .

Figure 2.4 illustrates the same insertion as in Figure 2.2, taking into account the
different types (colors) of the fringe nodes.

• In the optimistic algorithm, the number of keys in a fringe node ranges from
m − 1 to 2m − 2, there are m types, and the vector Ln is of dimension m. The
replacement matrix of the gap process is of dimension m and equal to

Rm =


−m m+ 1

−(m+ 1) m+ 2
. . .

−(2m− 2) 2m− 1
2m −(2m− 1)

 .

This matrix appears in the paper Mahmoud (2002) as a replacement matrix
in the so-called paged binary search trees model. Indeed, in the bucket tree, the
insertion mechanism induces the same dynamics on the leaves.

Figure 2.5 illustrates the same insertion as in Figure 2.3, taking into account the
different types (colors) of the fringe nodes.

3An empty entry stands for a zero in all the matrices of this article.
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• •

• • • • • •

• • •

• • • • • •

Figure 2.4. An example of insertion in a B-tree, for the prudent
algorithm. Here m = 2, nodes contain between 1 and 3 keys, there
are 3 colors, white, pink and red.

• •

• • • • • • • • •

• • •

• • • • • • • • •

Figure 2.5. An example of insertion in a B-tree, for the opti-
mistic algorithm. Here m = 3, nodes contain between 2 and 4 keys,
there are 3 colors, white, pink and red.

Observe that both replacement matrices rm and Rm are balanced (any row sums
to 1), which is an immediate consequence of the dynamics, since one key (one ball)
is added at each unit of time.

All the results in this paper hold for both algorithms, including the phase tran-
sition depending on whether m ≤ 59 or m ≥ 60. However, the proofs and results
for the optimistic algorithm being somewhat simpler than those for the prudent
algorithm, we choose to present them and to leave the other case to the reader:
from now on,

we consider a B-tree constructed by the optimistic algorithm.

3. Gaps of a B-tree as a Pólya urn

Let us remind from Section 2 that a fringe node of a B-tree contains from m− 1
to 2m− 2 keys and from m to 2m− 1 gaps. For any k ∈ {1, . . . ,m}, a fringe node
that contains m + k − 2 keys is called of type k. We are interested in the fringe
node composition vector Ln of a B-tree at time n, whose k-th coordinate counts
the number of fringe nodes of type k.
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Notation

Let (ek)1≤k≤m be the canonical basis of Rm. Denote by w1, . . . , wm the vectors
defined by {

wk = −ek + ek+1, 1 ≤ k ≤ m− 1
wm = 2e1 − em.

(3.1)

The wk’s are the increment vectors of the fringe node dynamics: when a key is
inserted in a fringe node of type k ∈ {1, . . . ,m− 1}, the fringe node is replaced by
a fringe node of type k + 1 (addition of vector wk) and when a key is inserted in
a fringe node of type m, the fringe node is replaced by two fringe nodes of type 1
(addition of vector wm). When the keys are randomly drawn under the permutation
model, the insertion is uniform on the gaps and the fringe node composition process
of a B-tree is modelized by the Rm-valued Markov chain (Ln)n∈N defined as follows
by its transition probabilities.

Definition of the (discrete-time) fringe node process

For any k ∈ {1, . . . ,m},

P
(
Ln+1 = Ln + wk

∣∣∣Ln) =
(m+ k − 1)〈Ln, ek〉

Kn
(3.2)

where the scalar product 〈Ln, ek〉 = L
(k)
n is the k-th coordinate of Ln and where

Kn denotes the total number of gaps at time n. Of course, when the process starts
initially with N0 keys at time 0, then Kn = 1 + N0 + n. Note that, considering
the B-tree, the number of gaps in a fringe node of type k is m+ k − 1 whereas the
total number of gaps in the tree at time n is exactly Kn so that Formulae (3.2)
completely define a Markov process; it reflects the uniform insertions of the keys in
the gaps.

Alternatively, one can consider the gap process. A gap is called of type k when
it is contained in a fringe node of type k. Note once more that a fringe node of
type k contains m + k − 1 gaps. Expressed in terms of gaps, the dynamics of key
insertion in the B-tree is the following: when the key is inserted in a gap of type
k ∈ {1, . . . ,m − 1}, then m + k − 1 gaps of type k disappear and are replaced by
m+ k gaps of type k+ 1; when the key is inserted in a gap of type m, then 2m− 1
gaps of type m disappear and are replaced by 2m gaps of type 1. Moreover, under
the random permutation model, the gaps are drawn uniformly. In other words, the
gap composition process of a B-tree is modelized by the following m-color Pólya
urn process (Gn)n∈N, having Rm as replacement matrix and (m, 0, . . . , 0) as initial
composition.

Definition of the (discrete-time) gap process

Denote by (Gn)n∈N the m-color Pólya urn process defined by the m-dimensional
replacement matrix

Rm =


−m m+ 1

−(m+ 1) m+ 2
. . .

−(2m− 2) 2m− 1
2m −(2m− 1)

 .

Its balance, namely its common row sum, equals 1. Note that the diagonal entries
are negative. Nevertheless, the urn is tenable because, in any column, all entries
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are multiple of the diagonal coefficient: when a ball of color 2 is drawn, m+1 extra
balls must be withdrawn from the urn which is always possible because balls of
type 2 are put m+ 1 by m+ 1 in the urn as can be seen on Rm’s second column.
The same phenomenon occurs for any color. Of course, these negative diagonal
entries imply that one must necessarily take an initial composition that satisfies
such divisibility conditions as well: for any k ∈ {1, . . . ,m}, the initial number of
balls of type k satisfies

m+ k − 1 divides 〈L0, ek〉.
The symbol 〈., .〉 denotes here the standard scalar product on Rm. Thus, the
condition (1.1) is fulfilled.

Both Markov processes (Ln)n and (Gn)n are related by Relation (3.4), stated
hereunder. Let P be the m-dimensional diagonal invertible matrix

P = Diag (m,m+ 1, . . . , 2m− 1) . (3.3)

When V ∈ Nm \ {0}, denote by
(
LVn
)
n≥0 the fringe node process starting with

L0 = V and by
(
GVn
)
n≥0 the gap process starting from G0 = V . Then, for any

V ∈ Nm \ {0}, one has4 immediatly from (2.1)(
GPVn

)
n∈N

L
=
(
PLVn

)
n∈N . (3.4)

In particular, denoting by |V | the sum of V ’s coordinates, the total number of gaps
in the B-tree at time n is

Kn = n+ |PV | =
m∑
k=1

(m+ k − 1)〈LVn , ek〉 =

m∑
k=1

〈GPVn , ek〉.

In the following, when no confusion is possible, we lighten the notation GPVn into
Gn, and LVn into Ln, like in Theorems 4.1 and 4.3 below.

4. Phase transition: small and large B-trees

With regard to the asymptotics of their composition vector, Pólya urns are
subject to a well known phase transition. See the above references on Pólya urns
for a general treatment. Let us translate the phenomenon for our B-urns, looking
at the spectral properties of the replacement matrix.

4.1. Spectral decomposition of the ambient space. In this section, we state notations
relative to the spectral decomposition of the matrix Rm. These notations are used
all along the paper. The (unitary) characteristic polynomial of Rm turns out to be

χm(X) =

2m−1∏
k=m

(X + k)− (2m)!

m!
. (4.1)

Since the matrix Rm belongs to a particular family of matrices studied in Annexe B
of the thesis Hennequin (1991), one can see that its complex roots are all simple, the
one having the largest real part one being 1. Furthermore, two distinct eigenvalues
that have the same real part are conjugated. We denote by

λ2 = σ2 + iτ2 (4.2)

4 When no confusion is possible, we denote by PV the product of the square matrix P by the

vector V ∈ Rm instead of the correct form P tV .
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the eigenvalue of Rm having the second largest real part σ2 and a positive imaginary
part τ2. We adopt also the following notations:

Hm+1(X) =

m∑
k=1

1

X + k

v(λ) =
1

(m+ λ)Hm+1(m+ λ− 1)
×

(
1,

m+ 1

m+ 1 + λ
,

(m+ 1)(m+ 2)

(m+ 1 + λ)(m+ 2 + λ)
, . . . ,

(m+ 1) . . . (2m− 1)

(m+ 1 + λ) . . . (2m− 1 + λ)

)

〈v(λ), ek〉 =
1

(m+ λ)Hm+1(m+ λ− 1)

k−1∏
j=1

m+ j

m+ j + λ

u(λ) (x1, . . . , xm) =

m∑
k=1

k−2∏
j=0

λ+m+ j

1 +m+ j

xk

= x1 +
λ+m

1 +m
x2 +

(λ+m)(λ+m+ 1)

(1 +m)(2 +m)
x3 + · · ·

+
(λ+m) . . . (λ+ 2m− 2)

(1 +m) . . . (2m− 1)
xm.

(4.3)
When λ is an eigenvalue of Rm, the vector v(λ) is an eigenvector of tRm associated
with λ. The linear form u(λ) is an eigenform of tRm associated with λ, which
means that for any (column) vector V , u(λ)

(
tRmV

)
= λu(λ)(V ). Moreover, if λ

and µ are eigenvalues of Rm, then u(λ) [v(µ)] = δλ,µ (Kronecker). In other words,
(v(λ))λ∈Sp(Rm) and (u(λ))λ∈Sp(Rm) are dual basis of respectively eigenvectors and

eigenforms of tRm.

In the sequel, for more simplicity, we denote

v1 = v(1) =
1

Hm+1(m)

(
1

m+ 1
,

1

m+ 2
, . . . ,

1

2m

)

u1 (x1, . . . , xm) = u(1) (x1, . . . , xm) =

m∑
k=1

xk

v2 = v(λ2) and u2 = u(λ2).

(4.4)

The complex vector space Cm admits the decomposition as direct sum of tRm-
stable lines

Cm =
⊕

λ∈Sp(Rm)

Cv(λ)

and the corresponding projection on any line Cv(λ) is u(λ)v(λ). In the real field,
we use the decomposition

Rm = Rv1 ⊕ V1 (4.5)
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where V1 is the only subspace which is simultaneously tRm-stable and supplemen-
tary to Rv1. It is generated by the vectors respectively constituted by the real
parts and the imaginary parts of the coordinates of the complex vectors v(λ),
λ ∈ Sp (Rm)\{1}. In the same vein, we denote by V2 the only tRm-stable subspace
of Rm that satisfies

Rm = Rv1 ⊕ R< (v2)⊕ R= (v2)⊕ V2.

4.2. Phase transition for gaps and fringe nodes. The phase transition on urns is
expressed on the gap process (Gn)n in the following result. Note the two very
different convergence modes: a weak one for small phases vs a strong one with
periodic phenomena for large phases. See simulations in Section 7 for an illustration.

Theorem 4.1. Let m ≥ 2. Let V ∈ Nm be a non zero vector and let (Gn)n≥0 be

the (discrete-time) gap process starting with the initial condition G0 = PV . Then,
with notations (4.3) and (4.4),

(i) (Small phases)

if m ≤ 59, as n tends to infinity,
Gn − nv1√

n
converges in distribution to a centered

Gaussian vector;

(ii) (Large phases)
if m ≥ 60, as n tends to infinity,

Gn = nv1 + 2<
(
nλ2WDT v2

)
+ o (nσ2) , (4.6)

almost surely and in any Lp, p ≥ 1, where WDT is a complex-valued random variable

with expectation
Γ (|PV |)

Γ (|PV |+ λ2)
u2(PV ) ( Γ denotes Euler Gamma function).

Proof : These results come from the general theory of balanced Pólya urn processes.
See Janson (2004) or Pouyanne (2008). The numerical values of σ2 leading to the
phase transition are given in the Appendix. �

Remark 4.2. The phase transition at m = 59 is stated in Mahmoud (2002), section
8.1 for the same Pólya urn, seen as the evolution model of the so called paged
binary search trees.

In Mahmoud’s paper is given the mean of the composition vector Gn as well as
the Gaussian asymptotic behaviour of a scalar random variable derived from the
vector Gn, in the case m ≤ 59.

In Theorem 4.1(ii), for any p ∈]0, 1[, the asymptotics is also valid in the (not
locally convex) complete metric space Lp defined by the usual quasi-norm. This is
true for Theorem 4.3, Corollary 4.4, Theorem 5.1, Theorem 5.2 and Remark 5.3 as
well.

When V is a complex vector, <(V ) denotes the vector made of real parts of
V ’s coordinates. The random variable WDT , which is more deeply studied below,
appears as a martingale limit in the field of urn theory. It can be also described as
the almost sure limit of Gn after normalisation and projection along the principal
direction defined by v2:

WDT = lim
n→∞

1

nλ2
u2 (Gn) .
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Of course, the phase transition and the asymptotics can be straightforwardly trans-
lated on the fringe node process (Ln)n via the diagonal matrix P defined in (3.3).
The random variable WDT that appears for large phases in Theorem 4.3 has the
same law as the one of the gap process in Theorem 4.1.

Theorem 4.3. Let m ≥ 2. Let V ∈ Nm be a non zero vector and let (Ln)n≥0 be

the (discrete-time) fringe node process starting with the initial condition L0 = V .
Then, with notations (4.3), (4.4) and (3.3),

(i) (Small phases)

if m ≤ 59, as n tends to infinity,
Ln − nP−1v1√

n
converges in distribution to a

centered Gaussian vector;

(ii) (Large phases)
if m ≥ 60, as n tends to infinity,

Ln = nP−1v1 + 2<
(
nλ2WDTP−1v2

)
+ o (nσ2) , (4.7)

almost surely and in any Lp, p ≥ 1, where WDT is a complex-valued random
variable which has the same distribution as in the variable named the same way in
Theorem 4.1.

Geometrically speaking, expansion (4.6) (and expansion (4.7) as well) can be
understood as follows. Notice that an analogous explanation holds for expansions
(5.4) and (5.5) in Theorem 5.1 and Theorem 5.2 respectively.

<(v2)

=(v2)

v1

Figure 4.6. Spiral

Let us denote by ϕ any argument of the complex number WDT . The trajectory
of the random vector Gn, projected in the 3-dimensional real vector space spanned
by the vectors (<(v2),=(v2), v1) is almost surely asymptotic to the (random) spiral xn = 2|W |nσ2 cos(τ2 log n+ ϕ),

yn = −2|W |nσ2 sin(τ2 log n+ ϕ),
zn = n,

drawn on the (random) revolution surface

4|W |2z2σ2 = x2 + y2,

when n tends to infinity (see Figure 4.6).

As is well known in the field of Pólya urn processes, the phase transition is due to
the number σ2. When σ2 < 1/2, the Pólya urn is small and admits a weak Gaussian
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asymptotics. On the contrary, when σ2 > 1/2, the urn is large and has a strong
and oscillating (λ2 is nonreal) asymptotic behaviour. Considering the replacement
matrix Rm, it turns out that σ2 is an increasing function of m and that:
• when m = 59, λ2 = (0.49534...) + (9.10305...)i
while
• when m = 60, λ2 = (0.50378...) + (9.10270...)i.
These numerical values have been computed by a Newton approximation algo-

rithm, which can be found in the Appendix. The monotonicity of σ2 as a function
of m (it increases to 1 when m tends to infinity) has been evoked by Hennequin
(1991) in a figure. Qualitatively, let us emphasize the fact that for large values of m
(which is the actual use in computer science, since m amounts to several hundreds),
the fluctuation term with WDT is highly significant.

We deduce from these theorems the asymptotic behaviour of the composition
vector of the fringe nodes of different types in a B-tree, which is a particular case
of Theorem 4.3 with the initial condition V = (1, 0, . . . , 0). We stated the theorems
above for arbitrary initial conditions because of the further study of the limit law
WDT that requires these wider statements.

Corollary 4.4. Let m ≥ 2. Let Ln be the composition vector at time n of the
fringe nodes of different types in a B-tree with minimum degree m. Then, as n goes
of to infinity, with notations (3.3) and (4.4),

(i) when m ≤ 59,
Ln − nP−1v1√

n
converges in distribution to a centered Gaussian

vector;

(ii) when m ≥ 60, Ln = nP−1v1 + 2<
(
nλ2WB−tree

m P−1v2
)

+ o (nσ2), almost

surely and in any Lp, p ≥ 1, where WB−tree
m is a complex-valued random variable

with expectation
m!

Γ (m+ λ2)
.

5. Embeddings into continuous time

Going further and obtaining significant properties of the random limit WDT is
not so easy. As can be seen in this section, the classical method of embedding in
continuous time turns out to be very fruitful: this idea of embedding discrete urn
models in continuous-time branching processes goes back at least to Athreya and
Karlin (1968). A description is given in the book Athreya and Ney (1972, Section
9). The method has been recently revisited and developed by Janson (2004), it is
the core of recent results on Pólya urns in Chauvin et al. (2011, 2015).

5.1. Definition of the continuous-time fringe node process. Denote by (L(t))t∈R≥0

the Nm \ {0}-valued continuous time Markov process having G as infinitesimal
generator, where G is defined, for any function f : Nm \ {0} → V (V is any real or
complex vector space) and for any nonzero X = (x1, . . . , xm) ∈ Nm, by

G(f)(X) =

m∑
k=1

(m+ k − 1)xk

[
f (X + wk)− f (X)

]
where the increment vectors wk have already be defined by (3.1).

This process is a multitype branching process, embedding of the Markov chain
(Ln)n into continuous time, as classically done (see for example Bertoin, 2006). One
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can think of it the following way. At each (real) time t ≥ 0, one gets particles of m
different types named 1, 2, . . . ,m. Each particle is equipped with a clock that rings
at random times. The clock of any particle of type k is exponentially distributed,
with parameter m+ k− 1 and all the clocks are independent. The dynamics of the
process is the same as in discrete time: for any k ∈ {1, . . . ,m− 1}, when the clock
of a particle of type k rings, the particle disappears and is replaced by a particle
of type k + 1; when the clock of a particle of type m rings, the particle disappears
and is replaced by two particles of type 1.

Having the same dynamics, the distributions of the processes
(
Ln
)
n∈N and(

L(t)
)
t∈R≥0

are as usual related by the finite-time connection

(Ln)n∈N
L
=
(
L
(
τ(n)

))
n∈N (5.1)

where τ(n) denotes the n-th splitting time (the n-th ringing time). This relation
allows us to transfer results on one process to the other. In particular, the re-

sults below strongly rely on the fact that (e−(
tRm)tL(t))t∈R≥0

is a vector-valued
martingale (see Janson, 2004 or Athreya and Ney, 1972 for this).

5.2. Definition of the continuous-time gap process.
Define the vector-valued continuous-time Markov process (G(t))t∈R≥0

as being

the embedding into continuous time of the discrete-time urn process (Gn)n∈N. It
takes its values in the set of vectors of the form PV where V ∈ Nm \ {0}. With
notations as above, its infinitesimal generator is given by

H(f)(X) =

m∑
k=1

xk

[
f (X + Pwk)− f (X)

]
,

the increment vectors Pwk being the rows of the urn replacement matrix Rm.

One can think of this process the following way. Take an urn that contains
clocks of m different colors named 1, . . . ,m. Each clock rings at a random time,
exponentially distributed with parameter 1 and all the clocks are independent. As
soon as a clock rings, the following replacement mechanism occurs: if the ringing
clock has color k ∈ {1, . . . ,m−1}, then it disappears together with m+k−2 other
clocks of color k and m + k clocks of color k + 1 arise in the urn; if the ringing
clock has color m, then it disappears together with 2m − 2 other clocks of color
k and 2m clocks of color 1 arise in the urn. The fact that the ringing times are
exponentially distributed allows to think as if all clocks were restarted as soon as
one of them rings. Note that the fact that many clocks disappear at the same time
prevents (G(t))t∈R≥0

from being a multitype branching process.

As in the preceding case, the processes (Gn)n∈N and (G(t))t∈R≥0
have the same

dynamics, so that

(Gn)n∈N
L
=
(
G
(
τ ′(n)

))
n∈N

, (5.2)

where τ ′(n) denotes the n-th ringing time.

When V ∈ Nm \{0}, denote by
(
L(t)V

)
t≥0 the fringe node process starting with

L(0) = V and by
(
G(t)V

)
t≥0 the gap process starting from G(0) = V . Then, as in

the discrete-time case in (3.4), for any V ∈ Nm \ {0},(
G(t)PV

)
t≥0

L
=
(
PL(t)V

)
t≥0 , (5.3)
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where P is the diagonal matrix defined in (3.3).

5.3. Asymptotics of both continuous-time processes.
The asymptotics of the continuous-time processes admit the same kind of phase

transition as in discrete time. We state this asymptotics for both continuous-time
processes in Theorems 5.2 and 5.1. Since G is the image of L by P , any of these
theorem implies the other one. Nevertheless, as explained below, we prove both of
them together using results on branching processes and results on Pólya urns.

Theorem 5.1. Let m ≥ 2. Let V ∈ Nm be a non zero vector and let (G(t))t∈R≥0

be the continous-time gap process that satisfies G(0) = PV . Then, with nota-
tions (4.3),

(i) (Small phases)
when m ≤ 59, as t tends to infinity, e−tG(t) converges almost surely and in any

Lp, p ≥ 1, to ξv1 where ξ is a positive random variable which is Gamma-distributed
with parameter |PV |. Furthermore, if one writes G(t) = G1(t) + G′1(t) where the
random vector G1(t) is proportional to v1 and where G′1(t) is V1-valued (see(4.5)),
then e−tG1(t) converges almost surely and in any Lp to ξv1 while e−t/2G′1(t) con-
verges in distribution to

√
ξN where N is a centered V1-valued Gaussian vector

independent of ξ.

(ii) (Large phases)
when m ≥ 60, as t tends to infinity,

G(t) = etξv1 (1 + o(1)) + 2<
(
eλ2tWCT v2

)
(1 + o(1)) + o

(
eσ2t

)
(5.4)

almost surely and in any Lp, p ≥ 1, where WCT is a complex-valued random variable
with expectation u2(PV ) and ξ a positive random variable that is Gamma distributed
with parameter |PV |. The almost sure remainder o (eσt) is a V2-valued random
vector.

Theorem 5.2. Let m ≥ 2. Let V ∈ Nm be a non zero vector and let (L(t))t∈R≥0

be the continous-time fringe node process that satisfies L(0) = V . Then, with
notations (4.3) and (3.3),

(i) (Small phases)
when m ≤ 59, as t tends to infinity, e−tL(t) converges almost surely and in

any Lp, p ≥ 1, to ξP−1v1 where ξ is a positive random variable which is Gamma-
distributed with parameter |PV |. Furthermore, if one writes L(t) = L1(t) + L′1(t)
where the random vector L1(t) is proportional to P−1v1 and where L′1(t) is P−1V1-
valued (see(4.5)), then e−tL1(t) converges almost surely and in any Lp to ξP−1v1
while e−t/2L′1(t) converges in distribution to

√
ξN ′ where N ′ is a centered P−1V1-

valued Gaussian vector independent of ξ.

(ii) (Large phases)
when m ≥ 60, as t tends to infinity,

L(t) = etξP−1v1 (1 + o(1)) + 2<
(
eλ2tWCTP−1v2

)
(1 + o(1)) + o

(
eσ2t

)
(5.5)

almost surely and in any Lp, p ≥ 1, where WCT is a complex-valued random variable
with expectation u2(PV ) and ξ a positive random variable that is Gamma distributed
with parameter |PV |. The almost sure remainder o (eσt) is a P−1V2-valued random
vector.
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Note that the random variables ξ and WCT that appear in both theorems have
been denoted the same way because their distributions are the same in both cases.
This comes immediately from (5.3).

Proof of Theorems 5.1 and 5.2: Despite the fact that similar results can be found
in Janson (2004) and Mailler (2014), the particular case of our processes is not
properly contained in their statement. The proofs are essentially made the same
way as in both papers Chauvin et al. (2014, 2012), which deal with m-ary search
trees. Despite m-ary search trees are a close model, where replacement matrices
belong to the same family of matrices studied by Hennequin (1991), precise results
contained in Theorems 5.1 and 5.2 as well as smoothing equations (6.2) and (6.3)
below cannot be directly deduced from analogous results in Chauvin et al. (2014,
2012).

We give hereunder the general scheme of the argumentation. The first tool
comes from the fact that the normalised projection (e−tu1(G(t)))t≥0 is always a
convergent positive martingale. The random variable ξ is its limit.

(i) Small phases. The process (L(t))t∈R≥0
is a multitype branching process so

that (i) in Theorem 5.2 is covered by Athreya and Ney (1972) and Janson (2004).
Relation (5.3) thus implies (i) in Theorem 5.1.

(ii) Large phases. As for the first projection,
(
e−λ2tu2(G(t))

)
t≥0 is a martingale,

which is convergent if, and only if σ2 > 1/2, i.e. when m ≥ 60. The complex-
valued random variable WCT is its limit. The oscillating term <

(
eλ2tWCTP−1v2

)
in Theorem 5.2 is a consequence of Athreya and Ney (1972) and Janson (2004)’s
results. In order to establish the almost sure remainders o (eσ2t), we use results on
discrete-time Pólya urns shown in Pouyanne (2008). The work is done on the gap
process (G(t))t viewed as an embedded urn into continuous time. For any t ≥ 0,
decompose G(t) as the sum G(t) = G1(t) +G2(t) +G`(t) +Gs(t) of its respective
following projections on the described supplementary subspaces:
• G1(t) is the projection on Rv1 as before;
• G2(t) is the projection on the real plane generated by the real part and the

imaginary part of v2;
• G`(t) is the projection on the subspace of Rm generated by the real and imag-

inary parts of the eigenvectors v(λ) for all eigenvalues λ different from 1 and λ2
such that < (λ) > 1/2 (large projections);
• finally, Gs(t) is the projection on the subspace of Rm generated by the real and

imaginary parts of the eigenvectors v(λ) for all eigenvalues λ such that < (λ) ≤ 1/2
(small projections).

As seen before, e−tG1(t) converges to ξv1 almost surely and in Lp, p ≥ 1, by
martingale techniques; this gives rise to the first term etξv1 in the asymptotics
of G(t). Since G2(t) = 2< [u2 (G2(t)) v2] and because of the convergence in Lp,
p ≥ 1, of the complex martingale

(
e−λ2tu2(G(t))

)
t≥0 mentioned above, one gets

the second term <
(
eλ2tWCT v2

)
of G(t)’s asymptotics. The remainder o (eσ2t) is

obtained from G` and Gs asymptotics. As for G2, if λ is an eigenvalue of Rm
such that <(λ) > 1/2, by martingale arguments, the complex projection of G(t) on
any eigenline Cv(λ) is equivalent to eλtWλ almost surely and in any Lp where Wλ

is a complex-valued random variable. In particular, the whole projection G`(t) is
o (eσ2t), almost surely and in any Lp.
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To make the proof complete, it remains to show that Gs(t) is o (eσ2t) as well. To
prove this fact, we use the technique detailed in Chauvin et al. (2014) (Theorem 4.1
and Lemma 4.2). It consists in considering the same projection for the discrete-time
urn process (Gn)n, in using the moment bounds proven in Pouyanne (2008) for small
projections of discrete-time Pólya urns and in coming back to continuous time by
Relation (5.2). By this means, one shows after some probabilistic arguments that for

any η > 0, the whole projection Gs satisfies that e−(η+ 1
2 )tGs(t) is bounded, almost

surely and in Lp, p ≥ 1, implying the expected result on G(t). The corresponding
asymptotics of L(t) is obtained by taking the image of G(t) by P−1. �

Remark 5.3. For m ≥ 60, we deduce from these theorems the asymptotic behaviour
of the continuous-time fringe node process, denoted by (L(t))t, starting from the
B-tree initial condition V = (1, 0, . . . , 0):

L(t) = etξP−1v1 (1 + o(1)) + 2<
(
eλ2tWCTP−1v2

)
(1 + o(1)) + o

(
eσ2t

)
(5.6)

almost surely and in any Lp, p ≥ 1, whereWCT is a complex-valued random variable
with expectation m and ξ a positive random variable that is Gamma distributed
with parameter m. The almost sure remainder o (eσt) is a P−1V2-valued random
vector.

For large phases, the finite time connections (5.2) or (5.1) lead to a relation
between the random variables W in discrete and continuous times. This rela-
tion, commonly named martingale connection will be stated and used below in
the article. We indicate hereafter how one can get it. Take for instance Re-
lation (5.2) concerning the gap processes (Gn)n and (G(t))t starting with the
same initial condition G0 = G(0) = PV . Using Theorems 4.1 and 5.1, since
τ(n) tends almost surely to +∞ as n goes of to infinity, one gets successively

ξ = limt→∞ e−tu1 (G(t)) = limn→∞ e−τ(n)u1(Gn) = limn→∞ ne−τ(n) on one hand.
On the other hand, WCT = limt→∞ e−λ2tu2 (G(t)) = limn→∞ e−λ2τ(n)u2(Gn) =

limn→∞ [ne−τ(n) ]
λ2
[
n−λ2u2(Gn)

]
. This entails the martingale connection

WCT L= ξλ2WDT . (5.7)

We just recall here that the random variable ξ is Gamma-distributed with expec-
tation |PV |.

6. Limit law of large B-trees

In this section appear the benefits of the embedding in continuous time. Indeed,
the branching property applied to the fringe node process (L(t))t, together with
the asymptotics proved in Theorem 5.2, allow us to see the limit WCT as a solution
of a distributional equation. This is detailed in Section 6.1. It is the starting
point to deduce several properties of WCT : its distribution is the unique solution
of such an equation in a convenient space of probability distributions (Theorem 6.2
in Section 6.3); it admits exponential moments in a neighborhood of 0 (Theorem
6.5 in Section 6.4); up to a change of function, its Laplace transform is a solution
of the quite simple (but unsolvable!) differential equation y(m) = y2 (Theorem
6.6 in Section 6.5); it admits a density relatively to Lebesgue measure on C and
its support is the whole complex plane (Theorem 6.7 in Section 6.6). Thanks to
connection (5.7) between WCT and WDT , corresponding results are true for WDT

and consequently for WB−tree
m .
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6.1. Dislocation equations in continuous time. In this section, using the branching
property of the continuous-time process (L(t))t, we show that the complex-valued
random variable WCT is solution of a very simple distributional equation.

In order to simplify the notations, for any k ∈ {1, . . . ,m}, denote by Wk the
limit random variable WCT (or its distribution) of the continuous-time fringe node
process (L(t)ek)t that starts with one particle of type k, which means that its initial
composition L(0) is the k-th vector ek of Rm canonical basis. Denote also by τk the
first splitting time of the process (L(t)ek)t; its is exponentially distributed, with
parameter m+ k − 1.

Because of the branching property of the process (L(t))t, for any time t ≥ τ1,
the processes (L(t)e1)t≥0 and (L(t)e2)t≥0 are related by the distributional equation

L(t)e1
L
= L(t− τ1)e2 .

In the asymptotic form given by Theorem 5.2, consider the second order term on
both sides of the equality, which consists in projecting, normalizing and letting t
tend to infinity. This leads to the distributional equality

W1 = e−λ2τ1W2,

the random variables W2 and τ1 being independent. Doing the same for all values
of k ∈ {1, . . . ,m} leads to the distributional system:

W1
L
= e−λ2τ1W2

W2
L
= e−λ2τ2W3

...

Wm−1
L
= e−λ2τm−1Wm

Wm
L
= e−λ2τm

(
W

(1)
1 +W

(2)
1

)
(6.1)

where
• for any k ∈ {1, . . . ,m − 1}, the random variables τk and Wk+1 of the k-th

equation’s right-hand sides are independent;

• in the right-hand side of the last equation, the random variables W
(1)
1 and

W
(2)
1 are independent copies of W1, both being independent of τm as well.
We recall that for any k ∈ {1, . . . ,m}, the random variable τk is exponentially

distributed, with parameter m+k−1 (see Section 5). In particular, W1 is a solution
of the following distributional equation, sometimes called fixed point equation or
smoothing equation in some branching processes contexts (see Liu, 1998 or Biggins
and Kyprianou, 2005).

W1
L
= Bλ2

(
W

(1)
1 +W

(2)
1

)
(6.2)

where
• the random variables W

(1)
1 and W

(2)
1 are independent copies of W1;

• B is a random variable, independent of W
(1)
1 and W

(2)
1 , Beta distributed with

parameters (m,m) which means that it admits tm−1(1− t)m−111[0,1](t) as a density
(11A denotes the indicatrix function of the set A).

The distribution of B is computed the following way. By immediate computa-
tion from System (6.1), one sees that B = e−(τ1+τ2+···+τm), the variables τk being
mutually independent. To recognize the Beta(m,m) law, one can make a direct
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computation of its density or compute its moments (a Beta distribution is charac-
terized by its moments because its support is compact).

6.2. Smoothing equation in discrete time. In a general setting ofm-color Pólya urns,
including the case of negative entries on the diagonal of the replacement matrix,
Mailler (2014) proves that WDT is a solution of a distributional equation which
turns to be in our case

W
L
= Bλ2

1 W (1) +Bλ2
2 W (2), (6.3)

where
• the random variables W (1) and W (2) are independent copies of W ;
• (B1, B2) is a random vector, independent of W (1) and W (2), Dirichlet dis-

tributed with parameters (m,m), which means that B1 +B2 = 1 and that B1 and
B2 are Beta distributed with parameters (m,m).

Remark 6.1. One proof of this result in Mailler (2014) uses the tree structure of
the urn. Nevertheless, we do not actually understand what kind of “divide-and-
conquer” type argument, applied to B-trees, could lead to this equation. Indeed,
in other cousin models, like m-ary search trees (see Fill and Kapur, 2004), such a
backward decomposition leads to a finite time decomposition equation and passing
to the limit, it gives the distributional equation.

6.3. Contraction methods. The question of existence and unicity of solutions of
equations like (6.2) or (6.3) is classically solved using the Banach fixed point theo-
rem. One point of view, frequent in analysis of algorithms, consists in starting from
a decomposition property of the algorithm at finite time, deduce a distributional
equation on a cost variable, and pass to the limit to get a smoothing equation on
the limit random variable. See Knape and Neininger (2014) for Pólya urns, and
also the general paper by Neininger and Rüschendorf (2004) or the survey Neininger
and Rüschendorf (2006) for many examples of this so-called contraction method.
Another point of view (in this article) consists in taking advantage of the dynamics
of the algorithm and exhibiting a martingale limit, solution of a smoothing equa-
tion. Thus, the existence is automatically achieved. In both points of view, to get
the unicity, the contraction property has to be established, in a convenient space of
probability distributions, classically equipped with a Wasserstein distance to get a
complete metric space of measures.

We do not prove here the theorem below, since for equation (6.2), it is done
in a general framework by Mailler (2014, Prop 1 in Section 5.2) and for equation
(6.3), a similar proof is done in Janson (2004, proof of Th 3.9 (iii)). Remark that
conditions (tenability, irreducibility and balance of the replacement matrix Rm)
needed in these results are fullfilled, as already noticed in Section 3. The same
kind of results can be found in Knape and Neininger (2014) even if the only case
ai,i ≥ −1 is considered there. See also Chauvin et al. (2014, 2012).

Theorem 6.2. When A is a complex number, letM2 (A) be the space of probability
distributions on C that have A as expectation and a finite second moment, endowed
with a complete metric space structure by the Wasserstein distance. Let λ ∈ C be
any root of the characteristic polynomial (4.1) such that <(λ) > 1

2 . Then,

(i) Each of the two equations

W
L
= Bλ1W

(1) +Bλ2W
(2)
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where W (1) and W (2) are independent copies of W , and where (B1, B2) is
a random vector, independent of W (1) and W (2), Dirichlet distributed with
parameters (m,m), and

W
L
= Bλ

(
W (1) +W (2)

)
where W (1) and W (2) are independent copies of W , and where B is inde-
pendent of W (1) and W (2), Beta distributed with parameters (m,m),

have a unique solution in M2 (A).
(ii) For m ≥ 60, the variable WB−tree

m , defined in Corollary 4.4, is the unique

solution of (6.3) having
m!

Γ (m+ λ2)
as expectation and a finite second mo-

ment.
(iii) For m ≥ 60, the variable WCT , defined in (5.6), is the unique solution of

(6.2) having m as expectation and a finite second moment.

6.4. Cascades and exponential moments. Let λ ∈ C be any root of the character-
istic polynomial (4.1) such that <(λ) > 1

2 and let B be a Beta distribution with

parameters (m,m). A simple computation leads to 2E
(
Bλ
)

= 1. This is coherent
with equation

W
L
= Bλ

(
W (1) +W (2)

)
. (6.4)

Moreover, for any positive real s,

2E (Bs) =
(2m) . . . (m+ 1)

(2m− 1 + s) . . . (m+ s)
< 1⇐⇒ s > 1.

Consequently, when 2<(λ) > 1, one has

2E
(
|Bλ|2

)
< 1. (6.5)

Theorem 6.5 below states that any solution W of Equation (6.4) admits exponential
moments in a neighbourhood of 0, so that the moment exponential generating
series of W defines an analytic function in a neighbourhood of the origin. Another
consequence is that the law of W is determined by its moments.

The proof relies on a Mandelbrot’s cascade here defined in a complex setting
(see Barral et al., 2010 for complex Mandelbrot’s cascades).

To lighten the notations, denote for a while A := Bλ and let Au, u ∈ U be
independent copies of A, indexed by all finite sequences of 0 and 1:

u = u1 . . . un ∈ U :=
⋃
n≥1

{0, 1}n.

Let Y0 = m, Y1 = 2mA and for n ≥ 2,

Yn =
∑

u1...un−1∈{0,1}n−1

2mAAu1
Au1u2

. . . Au1...un−1
.

By the branching property, and using 2EA = 1, it is easy to see that (Yn)n is a
martingale with expectation m. This martingale has been studied by many authors
in the real-valued random variable case, especially in the context of Mandelbrot’s
cascades, see for example Liu (2001) and the references therein. It can be easily
seen that

Yn+1 = Bλ
(
Y (1)
n + Y (2)

n

)
(6.6)
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where Y
(1)
n and Y

(2)
n are independent of each other and independent of Bλ and each

has the same distribution as Yn. Therefore for n ≥ 1, Yn is square-integrable and

VarYn+1 = 2E|Bλ|2 VarYn + (4E|Bλ|2 − 1)

where VarX = E
(
|X − EX|2

)
denotes the variance of X. Since 2E|Bλ|2 < 1, the

martingale (Yn)n is bounded in L2, so that the following result holds.

Lemma 6.3. Let λ ∈ C be any root of the characteristic polynomial (4.1) such
that <(λ) > 1

2 and let B be a Beta distribution with parameters (m,m). When
n→ +∞,

Yn → Y∞ a.s. and in L2,

where Y∞ is a (complex-valued) random variable with variance

Var(Y∞) =
4E|Bλ|2 − 1

1− 2E|Bλ|2
.

Notice that, passing to the limit in (6.6) gives a new proof of the existence of
a solution W of Eq. (6.4) with a given expectation and finite second moment
whenever <(λ) > 1/2. From Section 6.3, we have the uniqueness of solution of this
equation so that Theorem 6.5 below will be proved as soon as it holds for Y∞.

Lemma 6.4. There exist some constants C > 0 and ε > 0 such that for all t ∈ C
with |t| ≤ ε, we have

Ee〈t,Y∞〉 ≤ em<(t)+C|t|
2

. (6.7)

Proof : By Fatou lemma, it is sufficient to prove the existence of C > 0 and ε > 0
such that for all t ∈ C with |t| ≤ ε, and for every integer n,

Ee〈t,Yn〉 ≤ em<(t)+C|t|
2

. (6.8)

Denote ϕn(t) := Ee〈t,Yn〉 and notice that ϕn+1(t) = E
(
ϕ2
n(tBλ)

)
thanks to Equa-

tion (6.6), allowing to prove (6.8) by recursion on n ≥ 0. For n = 0,

ϕ0(t) := Ee〈t,Y0〉 = em<(t)

and by the recursion assumption,

ϕn+1(t) ≤ E
(
e
2C|t|2|Bλ|2+2m<

(
tBλ

))
= em<(t)+C|t|

2

f(t1, t2)

where for any t ∈ C, written t = t1 + it2 with t1, t2 ∈ R,

f(t1, t2) = E
(
e
C|t|2(2|Bλ|2−1)+2m<

(
tBλ

)
−m<(t)

)
,

so that it is sufficient to prove that (0, 0) is a local maximum of f . Writing λ =
σ + iτ , with σ, τ ∈ R,

f(t1, t2) = E exp
[
C(t21 + t22)(2B2σ − 1) + 2mBσ(t1 cos(τ) + t2 sin(τ))−mt1

]
.

Remembering 2E
(
Bλ
)

= 1, which means 2E (Bσ cos(τ)) = 1 and E (Bσ sin(τ)) = 0,
we get that the first derivatives vanish at (0, 0) which is a critical point. Moreover,
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the calculation of the second partial derivatives gives

∂2f

∂t1
(0, 0) = E

[
(2mBσ cos(τ)−m)

2
+ 2C

(
2B2σ − 1

)]
,

∂2f

∂t2
(0, 0) = E

[
(2mBσ sin(τ))

2
+ 2C

(
2B2σ − 1

)]
,

∂2f

∂t1∂t2
(0, 0) = E (2mBσ cos(τ)−m) (2mBσ sin(τ)) .

By (6.5), E
(
2B2σ − 1

)
< 0, so that the Hessian matrix at (0, 0) is definite negative

for C > 0 large enough which implies that (0, 0) is a local maximum of f . �

The following theorem is a direct consequence of Lemma 6.4, like in Chauvin
et al. (2014).

Theorem 6.5. Let λ ∈ C be a root of the characteristic polynomial (4.1) with
<(λ) > 1/2 and let W be a solution of Eq. (6.4). There exist some constants C > 0
and ε > 0 such that for all t ∈ C with |t| ≤ ε,

Ee〈t,W 〉 ≤ em<(t)+C|t|
2

and Ee|tW | ≤ 4em|t|+2C|t|2 . (6.9)

6.5. Laplace transform. Theorem 6.5 above concerning WCT and Theorem 7 (ii)
in Mailler (2014) (which establishes that the Laplace series of WDT has an infinite
radius of convergence) answer the question of the convergence of the Laplace series
of WDT and WCT . Nevertheless, a natural investigation consists in searching more
information about these Laplace transforms coming from the smoothing equations.

Indeed, the dislocation equations (6.1) lead to a system of differential equations
on the Laplace transforms

∀k = 1, 2, . . . ,m, ϕk(z) := E
(
e<z,Wk>

)
, (6.10)

where we recall that Wk is the limit random variable WCT of the continuous-time
fringe node process (L(t)ek)t that starts with one particle of type k. Using the
independence between the splitting times τk (which are exponentially distributed,
with parameter m+ k − 1) and the Wk, for k = 1, 2, . . . ,m− 1,

ϕk(z) =

∫ +∞

0

ϕk+1

(
ze−λ2t

)
(m+ k − 1)e−(m+k−1)tdt,

and after a change of variable, and derivation, for k = 1, 2, . . . ,m− 1,

m+ k − 1

λ2
ϕk(z) + zϕ′k(z) = ϕk+1(z),

and for k = m,
2m− 1

λ2
ϕm(z) + zϕ′m(z) = ϕ2

1(z).

Thanks to a convenient change of function, a simple calculation gives the following
theorem about the Laplace transforms of the Wk, for k = 1, 2, . . . ,m.

Theorem 6.6. For k = 1, 2, . . . ,m, let ϕk be the Laplace transform of Wk defined
in (6.10), and let

ψk(z) :=
(
−λ2

)m+k−1 ϕk

(
z−λ2

)
zm+k−1 ,
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(for any determination of the logarithm). Then the functions ψk satisfy the simple
differential system {

ψ′k = ψk+1, ∀k ∈ {1, . . . ,m− 1},
ψ′m = ψ2

1 .

In particular, ψ1 is a solution of the differential equation

y(m) = y2.

6.6. Density and support. Liu’s method has been developped in Liu (1999, 2001)
for positive real-valued random variables solution of smoothing equations of the
same type as (6.2) or (6.3). Adapting this method to C-valued random variables,
Mailler (2014) gets the support and the existence of a density for the limit law of
a d-color Pólya urn. The theorem below is a particular case.

Theorem 6.7. Let m ≥ 2. Let V ∈ Nm be a non zero vector and let WDT and
WCT be the W -distributions of the respective discrete-time and continuous-time
fringe node processes having V as initial composition (see (ii) in Theorem 4.3 and
Theorem 5.2). Then

(i) the supports of WDT and WCT are both the whole complex plane C;

(ii) WDT and WCT are absolutely continuous relatively to Lebesgue’s measure
on C;

(iii) as |t| → ∞, Eei〈t,WDT 〉 = O(|t|−a) for each a ∈
]
0,

m

<(λ2)

[
, and the same

is true for the Fourier transform of WCT as well.

6.7. Perspectives. Some open questions remain about WDT and WCT , let us say
W :

- can the W distribution be expressed by means of usual distributions? Same
question for |W | and Arg(W )?

- how heavy are the tails of W?
- what is the order of magnitude of W ’s p-th moment as p tends to +∞?

7. Simulations

Let us here summarize and illustrate the asymptotic results concerning the fringe
of a random B-trees. We only show the behaviour of the gap process (Gn)n and
illustrate Theorem 4.1; nevertheless, the simulations would be analogous for the
fringe node process (Ln)n to illustrate Corollary 4.4.

In all the simulations below, sequences of 107 random keys have been inserted in
a B-tree for different value of the parameter m. Notice that in “real life” computer
science implementations, m is most of the time taken around 100 or more.

7.1. Simulations of Gn. Figures 7.7 and 7.8 represent the trajectories of three coor-
dinates of the random vector Gn: for any given value m = 10, 30, 55, 65, 100 or 237
of the parameter, we make one random drawing of a sequence of 107 keys and insert
them in a B-tree. On the pictures, the x-axis represents the time n ∈ {0, . . . , 107}
while the y-axis represents the number G

(k)
n of gaps of type k for k = 1, bm/2c and

m. In each case, the picture illustrates the almost sure asymptotics Gn ∼ nv1 when
n tends to infinity (remember that v1 is a non random m-dimensional vector).
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In Figure 7.7, m is small (m = 10, 30, 55). One can already catch sight of the
Gaussian fluctuations around the deterministic vector nv1. Notice that the variance
of the Gaussian limit increases with m, so that the amplitude of the fluctuation
becomes more visible for m = 30 and even more for m = 55.

m = 10 m = 30 m = 55

Figure 7.7. Simulations for 3 coordinates of the gap process
(Gn)n for small m.

In Figure 7.8, m is large (m = 65, 100, 237). On can see the almost sure
oscillations around nv1 appear and become more visible when m grows. Notice
that they are particularly clear for m = 237, which is the threshold value when the
third largest real part of the roots of χm becomes larger than 1

2 . See the Appendix
for more details.

m = 65 m = 100 m = 237

Figure 7.8. Simulations for 3 coordinates of the gap process
(Gn)n for large m.

Of course, one can make similar graphs for trajectories of the vector Gn
n which

converges to the deterministic vector v1. This is done in Figure 7.9 where the con-
vergence can be seen on the three drawn coordinates. Once more, the fluctuations
around the limit v1 are of different nature depending on m ≤ 59 or m ≥ 60, which
is also illustrated on this figure. In particular, on can see the “cos log n” almost
sure oscillations arise when m ≥ 60 and become more evident when m increases.
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m = 10 m = 30 m = 55

m = 65 m = 100 m = 237

Figure 7.9. Simulations of 3 coordinates of Gn
n for small and

large values of m.

7.2. Simulations of Gn after scaling. A second kind of simulations focus on the
possible scalings of the centered gap process (Gn − nv1)n. In order to get conver-
gence, according to Theorem 4.1, one has to divide Gn − nv1 by

√
n when m ≤ 59

and by nσ2 when m ≥ 60. Figures 7.10 and 7.11 represent trajectories of the me-
dian coordinate (the bm/2c-th) of the normalized vector process. Hereunder, Xn

denotes this median coordinate Xn = G
bm/2c
n .

Figure 7.10 deals with small values of m, namely m = 10, 30, 55 again. On the x-

axis, time n ∈ {0, . . . , 107} ; on the y-axis, the normalized coordinate
Xn − nvbm/2c1√

n
which converges in distribution to a normal law. Note that even if the random vector
Gn − nv1√

n
converges in distribution, it almost surely diverges, which is illustrated

by its brownian-like trajectory. One can refer to Gouet (1993) for more details on
this continuous type process limit.

Figure 7.11 deals with m = 65, 100, 237 which are large values of m. On the

y-axis: the normalized coordinate
Xn − nvbm/2c1

nσ2
, which is almost surely equivalent
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m = 10 m = 30 m = 55

Figure 7.10. Simulations of one coordinate of Gn after normal-
isation, for small values of m.

to some ρ cos (τ2 log n+ ϕ) when n tends to infinity, where ρ is a positive random
variable (random amplitude), ϕ a [0, 2π[-valued random variable (random phase)
and τ2 the imaginary part of the complex eigenvalue λ2 = σ2 + iτ2. The random
variables ρ and ϕ are proportional to the module and the argument of the complex-
valued random variable Wm in Theorem 4.1.

m = 65 m = 100 m = 237

Figure 7.11. Simulations of one coordinate of Gn after normal-
ization, for large values of m.

8. Appendix. The phase transition and σ2(m)

The phase transition that occurs for B-trees with parameter m relies on the roots
of the characteristic polynomial

χm(X) =

2m−1∏
k=m

(X + k)− (2m)!

m!
.

Denote by λ2 = λ2(m) the root of χm having the second largest real part and a
positive imaginary part. Denote also σ2 = σ2(m) the real part of λ2(m).

As shown in Section 4, the B-tree admits a Gaussian central limit theorem when
m ≤ 59 (small régime) whereas it admits an almost sure nonnormal fluctuation
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term of order nσ2(m) around the drift when m ≥ 60 (large régime). Coming from
Pólya urn theory, this asymptotic behaviour depends on whether σ2(m) < 1/2
(small régime) or σ2(m) > 1/2 (large régime).

Let F the two-variable meromorphic function defined by

F (x, y) =
Γ (x+ 2y) Γ (1 + y)

Γ (1 + 2y) Γ (x+ y)

where Γ denotes Euler’s Gamma function. For a given m ≥ 2, λ2 = λ2(m) = σ2+iτ2
is the root of equation F (X,m) = 1 having the the second largest real part σ2 (the
first one being reached by the evident root 1) and a positive imaginary part τ2.
Denote by ψ the classical Digamma function, the logarithmic derivative of Euler’s
Gamma. Since ∂

∂xF (x, 1/y) = ψ (x+ 2/y)−ψ (x+ 1/y) = log 2+O(y) as y tends to
0, the analytic implicit function theorem shows that λ2(m) is an analytic function
of 1/m as m tends to +∞. Using the expansion

log Γ(z) = z log z − z − 1

2
log z +

1

2
log 2π +O

(
1

z

)
mod 2iπ

as |z| tends to infinity (the mod coming from the determination of the logarithm),
writing λ2(m) as a power series in 1/m and putting the first terms of this expansion
of in the equation logF (λ2(m),m) = 0 mod 2iπ, one gets by identification

σ2(m) = 1− π2

log3 2
× 1

m
+O

(
1

m2

)

τ2(m) =
2π

log 2
+

π

2 log2 2
× 1

m
+O

(
1

m2

)
as m tends to infinity. The graph of the function m 7→ σ2(m) is given in Figure 8.12.
Numerical values of the expansions give σ2 ≈ 1− 29.63/m+ . . . while τ2 ≈ 9.06 +
3.27/m+ . . .

Figure 8.12. The graph of the sequence m 7→ σ2(m).

Moreover, the numerical values of σ2 around m = 60 are the following ones in
the next table, showing more accurately that σ2(m) < 1/2 if, and only if m ≤ 59.
These numerical values have been computed applying the Newton method to the
χm function starting from the point 0.5+9.0i, as suggested by the above expansions
of σ2 and τ2.
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m σ2(m)
57 0.4775726941
58 0.4866133472
59 0.4953467200
60 0.5037882018
61 0.5119521623
62 0.5198520971

In order to justify the choice of m = 237 in our drawings, denote by σ3(m) the
third largest real part of the roots of χm. The threshold value when σ3(m) becomes
larger than 1

2 is m = 237. It is a matter of fact that, using general statements on

Pólya urns, a second almost sure phenomenon with magnitude nλ3 is added to
the one we describe in Theorem 4.1 as soon as m ≥ 238. That is the reason why
the above figures have been selected for m = 237; indeed, for m increasing from 60
until 237, the asymptotic expansion of Gn contains the oscillating term of amplitude
nσ2(m) more and more visible compared to Brownian terms in n

1
2 . For m > 237, the

second oscillating term of amplitude nσ3(m) appears, making the nσ2(m) oscillation
less visible. The numerical values of σ3(m) around m = 237 are the following ones.

m σ3(m)
236 0.4971039325
237 0. 4992277960
238 0.5013338161
239 0.5034221856

The threshold value m = 237 could be called a “second phase transition” as
in Chern and Hwang (2001, Section 9), where they conjectured “further phase
transitions” or different “convergence rates” about m-ary search trees.
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