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Abstract. Consider a sequence (ηN (t) : t ≥ 0) of continuous-time, irreducible
Markov chains evolving on a fixed finite set E. Denote by RN (η, ξ) the jump
rates of the Markov chain ηNt , and assume that for any pair of bonds (η, ξ), (η′, ξ′)
arctan{RN (η, ξ)/RN (η′, ξ′)} converges as N ↑ ∞. Under a hypothesis slightly
more restrictive (cf. (2.6) below), we present a recursive procedure which provides

a sequence of increasing time-scales θ1
N , . . . , θ

p
N , θjN � θj+1

N , and of coarsening

partitions of the set E, {Ej1, . . . ,E
j
nj ,∆

j}, 1 ≤ j ≤ p, with the following property.

Let φj : E → {0, 1, . . . , nj} be the projection defined by φj(η) =
∑nj

x=1 x1{η ∈ Ejx}.
For each 1 ≤ j ≤ p, we prove that the hidden Markov chain Xj

N (t) = φj(η
N (tθjN ))

converges to a Markov chain on {1, . . . , nj}.

1. Introduction

This article has two motivations. On the one hand, the metastable behavior of
non-reversible Markovian dynamics has attracted much attention recently, see Met-
zner et al. (2009); Maes and O’Kelly de Galway (2013); Benois et al. (2013); Landim
(2014); Misturini (2016); Cirillo et al. (2015); Bianchi and Gaudillière (2016); Chle-
boun and Grosskinsky (2015); Fernandez et al. (2015, 2016). On the other hand,
the emergence of large complex networks gives a particular importance to the prob-
lem of data and model reduction, see Lu and Vanden-Eijnden (2014); Cameron and
Vanden-Eijnden (2014); Avena and Gaudillière (2013). This issue arises in as di-
verse contexts as meteorology, genetic networks or protein folding, and is very
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closely related to the identification of slow variables, a fundamental tool in decreas-
ing the degrees of freedom of a system, see Singer et al. (2009).

Not long ago, Beltrán and one of the authors of this article introduced a gen-
eral approach to derive the metastable behavior of continuous-time Markov chains,
particularly convenient in the presence of several valleys with the same depth, see
Beltrán and Landim (2010, 2012, 2015). In the context of finite state Markov
chains, see Beltrán and Landim (2011), it permits to identify the slow variables
and to reduce the model.

More precisely, denote by E a finite set, by ηNt a sequence of E-valued continuous-
time, irreducible Markov chains, and by E1, . . . ,En,∆ a partition of the set E. Let
E = ∪1≤x≤nEx and let φE : E → {0, 1, . . . , n} be the projection defined by

φE(η) =

n∑
x=1

x1{η ∈ Ex} .

In general, XN (t) = φE(ηNt ) is not a Markov chain, but only a hidden Markov
chain. We say that φE is a slow variable if there exists a time-scale θN for which
the dynamics of XN (tθN ) is asymptotically Markovian.

The set ∆ plays a special role in the partition, separating the sets E1, . . . ,En,
called valleys. The chain remains a negligible amount of time in the set ∆ in the
time-scale θN at which the slow variable evolves.

Slow variables provide an efficient mechanism to contract the state space and
to reduce the model in complex networks, as it allows to represent the original
evolution through a simple Markovian chain XN (t) which takes value in a much
smaller set, without losing the essential features of the dynamics. It may also reveal
aspects of the dynamics which may not be apparent at first sight.

When the number of sets in the partition is reduced to 2, n = 2, and the Markov
chain which describes the asymptotic behavior of the slow variable has one absorb-
ing point and one transient point, the chain presents a metastable behavior. In a
certain time-scale, it remains for an exponential time on a subset of the state space
after which it jumps to another set where it remains for ever. By extension, and
may be inappropriately, we say that the chain ηNt exhibits a metastable behavior
among the valleys E1, . . . ,En in the time-scale θN whenever we prove the existence
of a slow variable.

We present in this article a recursive procedure which permits to determine all
slow variables of the chain. It provides a sequence of time-scales θ1

N , . . . , θ
p
N and of

partitions {Ej1, . . . ,E
j
nj ,∆j}, 1 ≤ j ≤ p, of the set E with the following properties.

• The time-scales are increasing: limN→∞ θjN/θ
j+1
N = 0 for 1 ≤ j < p. This

relation is represented as θjN � θj+1
N .

• The partitions are coarser. Each set of the (j + 1)-th partition is obtained
as a union of sets in the j-th partition. Thus nj+1 < nj and for each a in
{1, . . . , nj+1}, Ej+1

a = ∪x∈AEjx for some subset A of {1, . . . , nj}.
• The sets ∆j , which separates the valleys, increase: ∆j ⊂ ∆j+1. Actually,

∆j+1 = ∆j ∪x∈B Ejx for some subset B of {1, . . . , nj}.
• The projection Ψj

N (η) =
∑

1≤x≤nj
x1{η ∈ Ejx} + N 1{η ∈ ∆j} is a slow

variable which evolves in the time-scale θjN .

We prove three further properties of the partitions {Ej1, . . . ,E
j
nj ,∆j}.
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• As mentioned above, the amount of time the chain remains in the set ∆j

in the time-scale θjN is negligible. We refer to condition (H3) below for a
mathematical formulation of this assertion.
• Starting from any configuration in Ejx, the chain ηNt attains the set ∪y 6=xEjy

at a time which is asymptotically exponential in the time-scale θjN (cf.
Remark 2.4).
• With a probability asymptotically equal to 1, the chain ηNt visits all points

of the set Ejx before hitting another set Ejy of the partition. In the terminol-
ogy of Freidlin and Wentzell (1998), the sets of the first partition, denoted
by E1

x, are cycles while the set of the following partitions are cycles of cycles.

These results have been proved in Beltrán and Landim (2011) for finite state
reversible Markovian dynamics. We remove in this article the assumption of re-
versibility and we simplify some proofs.

In contrast with other approaches, see Manzo et al. (2004); Olivieri and Vares
(2005); E and Vanden-Eijnden (2006); Metzner et al. (2009); Cirillo et al. (2015);
Fernandez et al. (2015, 2016), we do not describe the tube of typical trajectories
in a transition between two valleys, nor do we identify the critical configurations
which are visited with high probability in such transitions.

The arguments presented here have been designed for sequences of Markov
chains. The examples we have in mind are zero-temperature limits of non-reversible
dynamics in a finite state space. It is not clear whether the analysis can be adapted
to handle the case of a single fixed dynamics as in Cameron and Vanden-Eijnden
(2014); Lu and Vanden-Eijnden (2014); Avena and Gaudillière (2013).

The approach presented in this article is based on a multiscale analysis. The
sequence of increasing time-scales is defined in terms of the depth of the different
valleys. In this sense, the method is similar to the one proposed by Scoppola (1993),
and developed by Olivieri and Scoppola (1995, 1996), but it does not require the
valleys to have exponential depth, nor the jump rates to be expressed in terms of
exponentials. Actually, one of its main merit is that it relies on a minimal hypothe-
sis, presented in (2.6) below, which is very easy to check since it is formulated only
in terms of the jump rates.

The article is organized as follows. In Section 2 we state the main results. In
the following three sections we introduce the tools needed to prove these results,
which is carried out in the last three sections.

2. Notation and main results

This section is divided in four subsections. In the first one, we establish the
notation and recall some known results which are used throughout the article. In
the second subsection, we introduce the central hypothesis of the article, and, in the
third one, we state the first main result of the article, Theorem 2.7, which describes
the metastable behavior of the chain in the slowest time-scale. Finally, in the last
subsection, we present in Theorem 2.12 all the time scales at which a metastable
behavior is observed.

2.1. Preliminaries. Consider a finite set E. The elements of E are called config-
urations and are denoted by the Greek letters η, ξ, ζ. Consider a sequence of
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continuous-time, E-valued, irreducible Markov chains {ηNt : t ≥ 0}. Denote the
jump rates of ηNt by RN (η, ξ), and by µN the unique invariant probability measure.

Denote by D(R+, E) the space of right-continuous functions x : R+ → E with
left-limits endowed with the Skorohod topology, and by Pη = PNη , η ∈ E, the

probability measure on the path space D(R+, E) induced by the Markov chain ηNt
starting from η. Expectation with respect to Pη is represented by Eη.

Fix a proper subset A of E and denote by ηAt the trace of the Markov chain ηNt
on the set A. The trace process is obtained by stopping the clock when the chain
leaves the set A and by switching it on when it returns to the set A. More precisely,
denote by T (t) the total time spent on A before time t:

T (t) =

∫ t

0

1{ηNs ∈ A} ds ,

where 1{B} represents the indicator of the set B. Note that the function T is
piecewise differentiable and that its derivative takes only the values 1 and 0. It is
equal to 1 when the process is in A and it is equal to 0 when it is not. Let S(t) be
the generalized inverse of T :

S(t) = sup{s ≥ 0 : T (s) ≤ t} .

The trace process is defined as ηAt = ηNS(t). It is shown in Beltrán and Landim

(2010, Proposition 6.1) that ηAt is a continuous-time, A-valued, irreducible Markov
chain whose jump rates can be expressed in terms of the probabilities of hitting
times of the original chain.

Denote by HA, H+
A , A ⊂ E, the hitting time and the time of the first return to

A:

HA = inf
{
t > 0 : ηNt ∈ A

}
, H+

A = inf
{
t > τ1 : ηNt ∈ A

}
, (2.1)

where τ1 represents the time of the first jump of the chain ηNt : τ1 = inf{t > 0 :
ηNt 6= ηN0 }.

Denote by λN (η), η ∈ E, the holding rates of the Markov chain ηNt and by
pN (η, ξ), η, ξ ∈ E, the jump probabilities, so that RN (η, ξ) = λN (η)pN (η, ξ). For
two disjoint subsets A, B of E, denote by capN (A,B) the capacity between A and
B:

capN (A,B) =
∑
η∈A

µN (η)λN (η)Pη[HB < H+
A ] . (2.2)

Consider a partition E1, . . . ,En, ∆ of the set E, which does not depend on the
parameter N and such that n ≥ 2. Fix two sequences of positive real numbers αN ,
θN such that αN � θN , where this notation stands for limN→∞ αN/θN = 0.

Let E = ∪x∈SEx, where S = {1, . . . , n}. Denote by {ηEt : t ≥ 0} the trace of
{ηNt : t ≥ 0} on E, and by RE

N : E×E→ R+ the jump rates of the trace process ηEt :

RE
N (η, ξ) = λN (η)PNη

[
Hξ = H+

E

]
, η , ξ ∈ E , η 6= ξ .

We refer to Section 6 of Beltrán and Landim (2010) for a proof of this identity.
Denote by rEN (Ex,Ey) the mean rate at which the trace process jumps from Ex to
Ey:

rEN (Ex,Ey) =
1

µN (Ex)

∑
η∈Ex

µN (η)
∑
ξ∈Ey

RE
N (η, ξ) . (2.3)
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Assume that for every x 6= y ∈ S,

rE(x, y) := lim
N→∞

θN r
E
N (Ex,Ey) ∈ R+ ,

and that
∑
x∈S

∑
y 6=x

rE(x, y) > 0 .
(H1)

The symbol := in the first line of the previous displayed equation means that
the limit exists, that it is denoted by rE(x, y), and that it belongs to R+. This
convention is used throughout the article.

Assume that for every x ∈ S for which Ex is not a singleton and for all η 6= ξ ∈ Ex,

lim inf
N→∞

αN
capN (η, ξ)

µN (Ex)
> 0 . (H2)

Finally, assume that in the time scale θN the chain remains a negligible amount
of time outside the set E: For every t > 0,

lim
N→∞

max
η∈E

Eη
[ ∫ t

0

1{ηNsθN ∈ ∆} ds
]

= 0 . (H3)

Denote by ΨN : E → {1, . . . , n, N} the projection defined by ΨN (η) = x if
η ∈ Ex, ΨN (η) = N , otherwise:

ΨN (η) =
∑
x∈S

x1{η ∈ Ex} + N 1{η ∈ ∆} .

Recall from Landim (2015) the definition of the soft topology.

Theorem 2.1. Assume that conditions (H1)–(H3) are in force. Fix x ∈ S and
a configuration η ∈ Ex. Starting from η, the speeded-up, hidden Markov chain
XN (t) = ΨN

(
ηN (θN t)

)
converges in the soft topology to the continuous–time

Markov chain XE(t) on {1, . . . , n} whose jump rates are given by rE(x, y) and which
starts from x.

This theorem is a straightforward consequence of known results. We stated it
here in sake of completeness and because all the analysis of the metastable behav-
ior of ηNt relies on it. Its proof is presented in Section 6. We first show, using
assumptions (H1) and (H2), that the trace process ηEt converges in the Skorohod
topology to the continuous-time Markov chain XE(t). We combine this result with
assumption (H3) to conclude the convergence of the process XN (t) to XE(t) in the
soft topology.

One can not expect the convergence of the process XN (t) to XE(t) in any of
the Skorohod topologies due to the very short excursions of the speeded-up process
ηN (tθN ) in the set ∆. To overcome this difficulty, the soft topology has been
introduced.

Remark 2.2. Theorem 2.1 states that in the time scale θN , if we just keep track of
the set Ex where ηNt is and not of the specific location of the chain, we observe an
evolution on the set S close to the one of a continuous-time Markov chain which
jumps from x to y at rate rE(x, y).

Remark 2.3. The function ΨN represents a slow variable of the chain. Indeed,
we will see below that the sequence α−1

N stands for the order of magnitude of the
jump rates of the chain. Theorem 2.1 states that on the time scale θN , which is
much longer than αN , the variable ΨN (ηNt ) evolves as a Markov chain. In other
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words, under conditions (H1)–(H3), one still observes a Markovian dynamics after
a contraction of the configuration space through the projection ΨN . Theorem 2.1
provides therefore a mechanism of reducing the degrees of freedom of the system,
keeping the essential features of the dynamics, as the ergodic properties.

Remark 2.4. It also follows from assumptions (H1)–(H3) that the exit time from a

set Ex is asymptotically exponential. More precisely, let Ĕx, x ∈ S, be the union of
all sets Ey except Ex:

Ĕx =
⋃
y 6=x

Ey . (2.4)

For every x ∈ S and η ∈ Ex, under Pη the distribution of H
Ĕx
/θN converges to an

exponential distribution.

Remark 2.5. Under the assumptions (H1)–(H3), the sets Ex are cycles in the sense
of Freidlin and Wentzell (1998). More precisely, for every x ∈ S for which Ex is a
not a singleton, and for all η 6= ξ ∈ Ex,

lim
N→∞

Pη
[
Hξ < H

Ĕx

]
= 1 .

This means that starting from η ∈ Ex, the chain visits all configurations in Ex
before hitting the set Ĕx.

2.2. The main assumption. We present in this subsection the main and unique
hypothesis made on the sequence of Markov chains ηNt . Fix two configurations
η 6= ξ ∈ E. We assume that the jump rate from η to ξ is either constant equal to
0 or is always strictly positive:

RN (η, ξ) = 0 for all N ≥ 1 or RN (η, ξ) > 0 for all N ≥ 1 .

This assumption permits to define the set of ordered bonds of E, denoted by B, as
the set of ordered pairs (η, ξ) such that RN (η, ξ) > 0:

B =
{

(η, ξ) ∈ E × E : η 6= ξ , RN (η, ξ) > 0
}
.

Note that the set B does not depend on N .
Our analysis of the metastable behavior of the sequence of Markov chain ηNt

relies on the assumption that the set of ordered bonds can be divided into equivalent
classes in such a way that the all jump rates in the same equivalent class are of
the same order, while the ratio between two jump rates in different classes either
vanish in the limit or tend to +∞. Some terminology is necessary to make this
notion precise.

Ordered sequences: A set of sequences (arN : N ≥ 1) of nonnegative real numbers,
indexed by some finite set r ∈ R, is said to be ordered if for all r 6= s ∈ R the
sequence arctan{arN/asN} converges as N ↑ ∞.

In the examples below the set R will be the set of configurations E or the set
of bonds B. Let Z+ = {0, 1, 2, . . . }, and let Am, m ≥ 1, be the set of functions
k : B→ Z+ such that

∑
(η,ξ)∈B k(η, ξ) = m.

Assumption 2.6. We assume that for every m ≥ 1 the set of sequences{ ∏
(η,ξ)∈B

RN (η, ξ)k(η,ξ) : N ≥ 1
}
, k ∈ Am

is ordered.
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We assume from now on that the sequence of Markov chains ηNt fulfills Assump-
tion 2.6. In particular, the sequences {RN (η, ξ) : N ≥ 1}, (η, ξ) ∈ B, are ordered.

2.3. The shallowest valleys, the fastest slow variable. We identify in this subsection
the shortest time-scale at which a metastable behavior is observed, we introduce
the shallowest valleys, and we prove that these valleys form a partition which fulfills
conditions (H1)–(H3).

We first identify the valleys. Let

1

αN
=
∑
η∈E

∑
ξ:ξ 6=η

RN (η, ξ) .

We could also have defined α−1
N as max{RN (η, ξ) : (η, ξ) ∈ B}. Thus, α−1

N represents
the order of magnitude of the largest jump rate. Denote by ξNt the Markov chain

ηNt speeded-up by αN , ξNt = ηNtαN
, and by RξN (η, ξ) the jump rates of the Markov

chain ξNt : RξN (η, ξ) = αNRN (η, ξ).
By Assumption 2.6, for every η 6= ξ ∈ E, αNRN (η, ξ) → R(η, ξ) ∈ [0, 1]. In

particular, the Markov chain ξNt converges, in the Skorohod topology, to a Markov
chain, denoted by XR(t), whose jump rates are given by R(η, ξ). Note that this
Markov chain might not be irreducible. However, by definition of αN , there is at
least one bond (η, ξ) ∈ B such that R(η, ξ) > 0.

Let λ(η) =
∑
ξ 6=η R(η, ξ) ∈ R+, and denote by E0 the subset of points of E such

that λ(η) > 0. For all η ∈ E0, let p(η, ξ) = R(η, ξ)/λ(η). It is clear that for all η, ζ
in E, ξ ∈ E0,

lim
N→∞

αN λN (η) = λ(η) , lim
N→∞

pN (ξ, ζ) = p(ξ, ζ) . (2.5)

Denote by E1,E2, . . . ,En the recurrent classes of the Markov chain XR(t), and
by ∆ the set of transient points, so that {E1, . . . ,En,∆} forms a partition of E:

E = E t∆ , E = E1 t · · · t En . (2.6)

Here and below we use the notation A t B to represent the union of two disjoint
sets A, B: A tB = A ∪B, and A ∩B = ∅.

Note that the sets Ex, x ∈ S = {1, . . . , n}, do not depend on N . If n = 1, the
chain does not possess valleys. This is the case, for instance, if the rates RN (x, y)
are independent of N . Assume, therefore, and up to the end of this subsection,
that n ≥ 2.

Since the set Ex is a recurrent class for the chain XR(t), and since the process
ξNt converges to XR(t), the chain ξNt does not leave the set Ex if it starts there.
This means that the chain ηNt remains in the set Ex in the time-scale αN if it starts
from a point in this set. That is, the set Ex is a well for the chain ηNt .

To observe the chain leaving the set Ex, one has to wait a much longer time. The

correct time-scale for this event is given by µN (Ex)/capN (Ex, Ĕx). In particular,
a metastable behavior of the chain ηNt will be observed in the smallest of these
time-scales. For this reason, let θN be defined by

1

θN
=
∑
x∈S

capN (Ex, Ĕx)

µN (Ex)
. (2.7)
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Since the sum is of the order of the maximum, θN is of the order of the smallest of

the sequences µN (Ex)/capN (Ex, Ĕx), and, as explained above, it is on this time-scale
that a metastable behavior is expected to occur.

Theorem 2.7. The partition E1, . . . ,En,∆ and the time scales αN , θN fulfill the
conditions (H1)–(H3). Moreover, For every x ∈ S and every η ∈ Ex, there exists
mx(η) ∈ (0, 1] such that

lim
N→∞

µN (η)

µN (Ex)
= mx(η) . (H0)

Remark 2.8. The jump rates rE(x, y) which appear in condition (H1) are introduced
in Lemma 7.1. It follows from Theorems 2.1 and 2.7 that in the time-scale θN the
chain ηNt evolves among the sets Ex, x ∈ S, as a Markov chain which jumps from
x to y at rate rE(x, y).

In the next three remarks we present some outcomes of Theorem 2.1 and 2.7
on the evolution of the chain ηNt in a time-scale longer than θN . These remarks
anticipate the recursive procedure of the next subsection.

Remark 2.9. The jump rates rE(x, y) define a Markov chain on S, represented by
XE(t). Denote by T the set of transient points of this chain and assume that T 6= ∅.
It follows from Theorem 2.1 that in the time-scale θN , starting from a set Ex, x ∈ T ,
the chain ηNt leaves the set Ex at an asymptotically exponential time, and never
returns to Ex after a finite number of visits to this set. In particular, if we observe
the chain ηNt in a longer time-scale than θN , starting from Ex the chain remains
only a negligible amount of time at Ex.

Remark 2.10. Denote by A the set of absorbing points of XE(t), and assume that
A 6= ∅. In this case, in the time-scale θN , starting from a set Ex, x ∈ A, the chain
ηNt never leaves the set Ex. To observe a non-trivial behavior starting from this set
one has to consider longer-time scales.

Remark 2.11. Finally, denote by C1, . . . ,Cp the equivalent classes of XE(t). Suppose
that there is a class, say C1, of recurrent points which is not a singleton. In this
case, starting from a set Ex, x ∈ C1, in the time-scale θN , the chain ηNt leaves the
set Ex at an asymptotically exponential time, and returns to Ex infinitely many
times.

Suppose now that there are at least two classes, say C1 and C2, of recurrent
points. This means that in the time-scale θN , starting from a set Ex, x ∈ C1, the
process never visits a set Ey for y ∈ C2. For this to occur one has to observe the
chain ηNt in a longer time-scale.

Denote by R1, . . . , Rm the recurrent classes of XE(t). In the next subsection,
we derive a new time-scale at which one observes jumps from sets of the form
Fa = ∪x∈Ra

Ex to sets of the form Fb = ∪x∈Rb
Ex.

2.4. The deep valleys and slow variables. We obtained in the previous subsection
two time-scales αN , θN , and a partition E1, . . . ,En,∆ of the state space E which
satisfy conditions (H0)–(H3). We present in this subsection a recursive procedure.
Starting from two time-scales β−N , βN , and a partition F1, . . . ,Fp,∆F of the state
space E satisfying the assumptions (H0)–(H3) and such that p ≥ 2, it provides a
longer time-scale β+

N and a coarser partition G1, . . . ,Gq,∆G which fulfills conditions

(H0)–(H3) with respect to the sequences βN , β+
N .
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Consider a partition F1, . . . ,Fp, ∆F of the set E and two sequences β−N , βN such

that β−N/βN → 0. Assume that p ≥ 2 and that the partition and the sequences β−N ,
βN satisfy conditions (H0)–(H3). Denote by rF(x, y) the jump rates appearing in
assumption (H1).

The coarser partition. Let P = {1, . . . , p} and let XF(t) be the P -valued Markov
chain whose jumps rates are given by rF(x, y).

Denote by G1, G2, . . . , Gq the recurrent classes of the chain XF(t), and by Gq+1

the set of transient points. The sets G1, . . . , Gq+1 form a partition of P . We claim
that q < p. Fix x ∈ P such that

∑
y 6=x rF(x, y) > 0, whose existence is guaranteed

by hypothesis (H1). Suppose that the point x is transient. In this case the number
of recurrent classes must be smaller than p. If, on the other hand, x is recurrent, the
recurrent class which contains x must have at least two elements, and the number
of recurrent classes must be smaller than p.

Let Q = {1, . . . , q},

Ga =
⋃
x∈Ga

Fx , ∆∗ =
⋃

x∈Gq+1

Fx , ∆G = ∆F ∪∆∗ , a ∈ Q . (2.8)

Since, by (2.6), {F1, . . . ,Fp,∆F} forms a partition of E, {G1, . . . ,Gq,∆G} also forms
a partition of E:

E = G t∆G , G = G1 t · · · t Gq . (2.9)

The longer time-scale. For a ∈ Q = {1, . . . , q}, let Ğa be the union of all sets Gb
except Ga:

Ğa =
⋃
b 6=a

Gb .

Assume that q > 1, and let β+
N be given by

1

β+
N

=
∑
a∈Q

capN (Ga, Ğa)

µN (Ga)
. (2.10)

Theorem 2.12. The partition G1, . . . ,Gq, ∆G and the time scales (βN , β
+
N ) satisfy

conditions (H0)–(H3).

Remark 2.13. It follows from Theorems 2.1 and 2.12 that the chain ηNt exhibits a
metastable behavior in the time-scale β+

N if q > 1. We refer to Remarks 2.2, 2.3,
2.4 and 2.5.

Remark 2.14. As q < p and as we need p to be greater than or equal to 2 to apply
the iterative procedure, this recursive algorithm ends after a finite number of steps.

If q = 1, βN is the longest time-scale at which a metastable behavior is observed.
In this time-scale, the chain ηNt jumps among the sets Fx as does the chain XF(t)
until it reaches the set G1 = ∪x∈G1Fx. Once in this set, it remains there for ever
jumping among the sets Fx, x ∈ G1, as the Markov chain XF(t), which restricted
to G1 is an irreducible Markov chain.

The successive valleys: Observe that the valleys Ga were obtained as the recur-
rent classes of the Markov chain XF(t): Ga = ∪x∈Ga

Fx, where Ga is a recurrent
class of XF(t). In particular, at any time-scale the valleys are formed by unions of
the valleys obtained in the first step of the recursive argument, which were denoted
by Ex in the previous subsection. Moreover, by (H0), each configuration in Ga has
measure of the same order.
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Remark 2.15. The recursive procedure (2.8) creates a rooted tree, constructed from
the leaves to the root. All vertices of this tree are subsets of E, each generation
forms a partition of the set E, and the sets E1, . . . ,En,∆, introduced in Subsection
2.3, compose the leaves of the tree. Equation (2.8) describes the parents of a
generation: If F1, . . . ,Fp,∆F represent the vertices of the k-th generation, the sets
G1, . . . ,Gq,∆G given by (2.8) form the generation k − 1. The iteration ends, with
two sets G1 and ∆G, when the set Q, introduced just before (2.8), is a singleton.
To complete the construction of the tree we define the set E as the root.

Observe that the length of the rooted tree corresponds to the number of time-
scales at which a metastable behavior is observed minus 1, and that each generation
is formed by disjoint subsets of the previous generation. In particular, the genera-
tions form a sequence of partitions of E, strictly finer at each step.

Remark 2.16. Scoppola (1993) and Olivieri and Scoppola (1995, 1996) proposed a
similar construction for discrete-time Markov chains assuming that the jump rates
pN (η, ξ), η, ξ ∈ E, of the chain satisfy

lim
N→∞

1

N
log pN (η, ξ) = ∆(η, ξ)

for some non-negative function ∆ : B → R+. This condition is replaced here by
Assumption 2.6.

Conclusion: We presented an iterative method which provides a finite sequence of
time-scales and of partitions of the set E satisfying conditions (H0)–(H3). At each
step, the time scales become longer and the partitions coarser. By Theorem 2.1,
to each pair of time-scale and partition corresponds a metastable behavior of the
chain ηNt . This recursive algorithm provides all time-scales at which a metastable
behavior of the chain ηNt is observed, and all slow variables associated to the dy-
namics.

3. What do we learn from Assumption 2.6?

We prove in this section that the jump rates of the trace processes satisfy As-
sumption 2.6, and that some sequences, such as the one formed by the measures of
the configurations, are ordered.

Assertion 3.A. Let F be a proper subset of E and denote by RFN (η, ξ), η 6= ξ ∈ F ,
the jump rates of the trace of ηNt on F . The jump rates RFN (η, ξ) satisfy Assumption
2.6.

Proof : We prove this assertion by removing one by one the elements of E \ F .
Assume that F = E \ {ζ} for some ζ ∈ E. By Corollary 6.2 in Beltrán and Landim
(2010) and by the equation following the proof of this corollary, for η 6= ξ ∈ F ,
RFN (η, ξ) = RN (η, ξ) +RN (η, ζ)pN (ζ, ξ). Hence,

RFN (η, ξ) =

∑
w∈E RN (η, ξ)RN (ζ, w) +RN (η, ζ)RN (ζ, ξ)∑

w∈E RN (ζ, w)
· (3.1)

It is easy to check from this identity that Assumption 2.6 holds for the jump rates
RFN . It remains to proceed recursively to complete the proof. �

Lemma 3.1. The sequences {µN (η) : N ≥ 1}, η ∈ E, are ordered.
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Proof : Fix η 6= ξ ∈ E and let F = {η, ξ}. By Beltrán and Landim (2010,
Proposition 6.3), the stationary state of the trace of ηNt on F , denoted by µFN ,
is given by µFN (η) = µN (η)/µN (F ). As µFN is the invariant probability mea-
sure, µFN (η)RFN (η, ξ) = µFN (ξ)RFN (ξ, η). Therefore, µN (η)/µN (ξ) = µFN (η)/µFN (ξ) =
RFN (ξ, η)/RFN (η, ξ). By Assertion 3.A, the sequences {RFN (a, b) : N ≥ 1}, a 6= b ∈
{η, ξ} are ordered. This completes the proof of the lemma. �

The previous lemma permits to divide the configurations of E into equivalent
classes by declaring η equivalent to η′, η ∼ η′, if µN (η)/µN (η′) converges to a real
number belonging to (0,∞).

Assertion 3.B. Let F be a proper subset of E. For every bond (η′, ξ′) ∈ B and
every m ≥ 1 the set of sequences{ ∏

(η,ξ)∈B

RFN (η, ξ)k(η,ξ)RN (η′, ξ′) : N ≥ 1
}
, k ∈ Am

is ordered.

Proof : We proceed as in the proof of Assertion 3.A, by removing one by one the
elements of E \ F . Fix ζ ∈ E \ F . It follows from (3.1) and from Assumption 2.6
that the claim of the assertion holds for F ′ = E \ {ζ}.

Fix ζ ′ ∈ E \ F , ζ ′ 6= ζ. By using formula (3.1), to express the rates RE\{ζ,ζ
′} in

terms of the rates RE\{ζ}, and the statement of this assertion for F ′ = E \ {ζ} we
prove that this assertion also holds for F ′ = E \{ζ, ζ ′}. Iterating this algorithm we
complete the proof of the assertion. �

Denote by cN (η, ξ) = µN (η)RN (η, ξ), (η, ξ) ∈ B, the (generally asymmetric)
conductances.

Lemma 3.2. The conductances {cN (η, ξ) : N ≥ 1}, (η, ξ) ∈ B, are ordered.

Proof : Consider two bonds (η, ξ), (η′, ξ′) in B. As in the proof of Lemma 3.1, we
may express the ratio of the conductances as

cN (η, ξ)

cN (η′, ξ′)
=

µN (η)RN (η, ξ)

µN (η′)RN (η′, ξ′)
=

RFN (η′, η)RN (η, ξ)

RFN (η, η′)RN (η′, ξ′)
,

where F = {η, η′). It remains to recall the statement of assertion 3.B to complete
the proof of the lemma. �

Denote by Bs the symmetrization of the set B, that is, the set of bonds (η, ξ)
such that (η, ξ) or (ξ, η) belongs to B:

Bs =
{

(η, ξ) ∈ E × E : η 6= ξ , (η, ξ) ∈ B or (ξ, η) ∈ B
}
.

Denote by csN (η, ξ), (η, ξ) ∈ Bs, the symmetric part of the conductance:

csN (η, ξ) =
1

2

{
cN (η, ξ) + cN (ξ, η)

}
. (3.2)

Next result is a straightforward consequence of the previous lemma.

Corollary 3.3. The symmetric conductances {csN (η, ξ) : N ≥ 1}, (η, ξ) ∈ Bs, are
ordered.
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As in Lemma 3.1, the previous corollary permits to divide the set Bs into
equivalent classes by declaring (η, ξ) equivalent to (η′, ξ′), (η, ξ) ∼ (η′, ξ′), if
csN (η, ξ)/csN (η′, ξ′) converges to a number in (0,∞).

It is possible to deduce from Assumption 2.6 that many other sequences are
ordered. We do not present these results here as we do not use them below.

4. Cycles, sector condition and capacities

We prove in this section that the generator of a Markov chain on a finite set
can be decomposed as the sum of cycle generators and that it satisfies a sector
condition. This last bound permits to estimate the capacity between two sets by
the capacity between the same sets for the reversible process.

Throughout this section, E is a fixed finite set and L represents the generator
of an E-valued, continuous-time Markov chain. We adopt all notation introduced
in Section 2, removing the index N since the chain is fixed. We start with some
definitions.

In a finite set, the decomposition of a generator into cycle generators is very
simple. The problem for infinite sets is much more delicate. We refer to Gabrielli
and Valente (2012) for a discussion of the question.

Cycle: A cycle is a sequence of distinct configurations (η0, η1, . . . , ηn−1, ηn = η0)
whose initial and final configuration coincide: ηi 6= ηj ∈ E, i 6= j ∈ {0, . . . , n− 1}.
The number n is called the length of the cycle.

Cycle generator : A generator L of an E-valued Markov chain, whose jump rates
are denoted by R(η, ξ), is said to be a cycle generator associated to the cycle
c = (η0, η1, . . . , ηn−1, ηn = η0) if there exists reals ri > 0, 0 ≤ i < n, such that

R(η, ξ) =

{
ri if η = ηi and ξ = ηi+1 for some 0 ≤ i < n ,

0 otherwise .

We denote this cycle generator by Lc. Note that

(Lcf)(η) =

n−1∑
i=0

1{η = ηi} ri [f(ηi+1)− f(ηi)] .

Sector condition: A generator L of an E-valued, irreducible Markov chain, whose
unique invariant probability measure is denoted by µ, is said to satisfy a sector
condition if there exists a constant C0 <∞ such that for all functions f , g : E → R,

〈Lf, g〉2µ ≤ C0〈(−Lf), f〉µ 〈(−Lg), g〉µ .

In this formula, 〈f, g〉µ represents the scalar product in L2(µ):

〈f, g〉µ =
∑
η∈E

f(η) g(η)µ(η) .

We claim that every cycle generator satisfies a sector condition and that every
generator L of an E-valued Markov chain, stationary with respect to a probability
measure µ, can be decomposed as the sum of cycle generators which are stationary
with respect to µ.
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Assertion 4.A. Consider a cycle c = (η0, η1, . . . , ηn−1, ηn = η0) of length n ≥ 2
and let L be a cycle generator associated to c. Denote the jump rates of L by
R(ηi, ηi+1). A measure µ is stationary for L if and only if

µ(ηi)R(ηi, ηi+1) is constant . (4.1)

The proof of the previous assertion is elementary and left to the reader. The
proof of the next one can be found in Komorowski et al. (2012, Lemma 5.5.8).

Assertion 4.B. Let L be a cycle generator associated to a cycle c of length n. Then,
L satisfies a sector condition with constant 2n: For all f , g : E → R,

〈Lf, g〉2µ ≤ 2n 〈(−Lf), f〉µ 〈(−Lg), g〉µ .

Lemma 4.1. Let L be a generator of an E-valued, irreducible Markov chain.
Denote by µ the unique invariant probability measure. Then, there exists cycles
c1, . . . , cp such that

L =

p∑
j=1

Lcj ,

where Lcj are cycle generators associated to cj which are stationary with respect to
µ.

Proof : The proof consists in eliminating successively all 2-cycles (cycles of length
2), then all 3-cycles and so on up to the |E|-cycle if there is one left. Denote by
R(η, ξ) the jump rates of the generator L and by C2 the set of all 2-cycles (η, ξ, η)
such that R(η, ξ)R(ξ, η) > 0. Note that the cycle (η, ξ, η) coincide with the cycle
(ξ, η, ξ).

Fix a cycle c = (η, ξ, η) ∈ C2. Let c̄(η, ξ) = min{µ(η)R(η, ξ), µ(ξ)R(ξ, η)} be the
minimal conductance of the edge (η, ξ), and let Rc(η, ξ) be the jump rates given by
Rc(η, ξ) = c̄(η, ξ)/µ(η), Rc(ξ, η) = c̄(η, ξ)/µ(ξ). Observe that Rc(ζ, ζ

′) ≤ R(ζ, ζ ′)
for all (ζ, ζ ′), and that Rc(ξ, η) = R(ξ, η) or Rc(η, ξ) = R(η, ξ).

Denote by Lc the generator associated the the jump rates Rc. Since µ(η)Rc(η, ξ)
= c̄(η, ξ) = µ(ξ)Rc(ξ, η), by (4.1), µ is a stationary state for Lc (actually, reversible).
Let L1 = L − Lc so that

L = L1 + Lc .

As Rc(ζ, ζ
′) ≤ R(ζ, ζ ′), L1 is the generator of a Markov chain. Since both L and Lc

are stationary for µ, so is L1. Finally, if we draw an arrow from ζ to ζ ′ if the jump
rate from ζ to ζ ′ is strictly positive, the number of arrows for the generator L1 is
equal to the number of arrows for the generator L minus 1 or 2. This procedure
has therefore strictly decreased the number of arrows of L.

We may repeat the previous algorithm to L1 to remove from L all 2-cycles (η, ξ, η)
such that R(η, ξ)R(ξ, η) > 0. Once this has been accomplished, we may remove all
3-cycles (η0, η1, η2, η3 = η0) such that

∏
0≤i<3R(ηi, ηi+1) > 0. At each step at least

one arrow is removed from the generator which implies that after a finite number
of steps all 3-cycles are removed.

Once all k-cycles have been removed, 2 ≤ k < |E|, we have obtained a decom-
position of L as

L =

|E|−1∑
k=2

Lk + L̂ ,
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where Lk is the sum of k-cycle generators and is stationary with respect to µ, and
L̂ is a generator, stationary with respect to µ, and with no k-cycles, 2 ≤ k < |E|.
If L̂ has an arrow, as it is stationary with respect to µ and has no k-cycles, L̂ must
be an |E|-cycle generator, providing the decomposition stated in the lemma. �

Remark 4.2. Observe that a generator L is reversible with respect to µ if and only
if it has a decomposition in 2-cycles. Given a measure µ on a finite state space, for
example the Gibbs measure associated to a Hamiltonian at a fixed temperature, by
introducing k-cycles satisfying (4.1) it is possible to define non-reversible dynamics
which are stationary with respect to µ. The previous lemma asserts that this is the
only way to define such dynamics.

Corollary 4.3. The generator L satisfies a sector condition with constant bounded
by 2|E|: For all f , g : E → R,

〈Lf, g〉2µ ≤ 2|E| 〈(−Lf), f〉µ 〈(−Lg), g〉µ .

Proof : Fix f and g : E → R. By Lemma 4.1,

〈Lf, g〉2µ =
( p∑
j=1

〈Lcjf, g〉µ
)2

,

where Lcj is a cycle generator, stationary with respect to µ, associated to the cycle
cj . By Assertion 4.B and by Schwarz inequality, since all cycles have length at most
|E|, the previous sum is bounded by

2|E|
p∑
j=1

〈(−Lcjf), f〉µ
p∑
k=1

〈(−Lckg), g〉µ = 2|E| 〈(−Lf), f〉µ 〈(−Lg), g〉µ ,

as claimed �

Denote by Rs(η, ξ) the symmetric part of the jump rates R(η, ξ):

Rs(η, ξ) =
1

2

{
R(η, ξ) +

µ(ξ)

µ(η)
R(ξ, η)

}
. (4.2)

Denote by ηst the E-valued Markov chain whose jump rates are given by Rs. The
chain ηst is called the reversible chain.

For two disjoint subsets A, B of E, denote by cap(A,B) (resp. caps(A,B))
the capacity between A and B (for the reversible chain). Next result follows from
Corollary 4.3 and Lemmas 2.5 and 2.6 in Gaudillière and Landim (2014).

Corollary 4.4. Fix two disjoint subsets A, B of E. Then,

caps(A,B) ≤ cap(A,B) ≤ 2|E| caps(A,B) .

We conclude the section with an identity and an inequality which will be used
several times in this article. Let A and B be two disjoint subsets of E. By definition
of the capacity

cap(A,B) =
∑
η∈A

µ(η)λ(η)Pη
[
HB < H+

A

]
=
∑
η∈A

µ(η)λ(η)
∑
ξ∈B

Pη
[
Hξ = H+

A∪B
]
.

Therefore, if we denote by RA∪B(η, ξ), η 6= ξ ∈ A ∪B, the jump rates of the trace
of the chain ηt on the set A ∪B, by Beltrán and Landim (2010, Proposition 6.1),

cap(A,B) =
∑
η∈A

µ(η)
∑
ξ∈B

RA∪B(η, ξ) . (4.3)
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Let A be a non-empty subset of E and denote by RA(η, ξ) the jump rates of the
trace of ηt on A. We claim that for all η 6= ξ ∈ A,

µ(η)RA(η, ξ) ≤ cap(η, ξ) . (4.4)

Denote by λA(ζ) the holding rates of the trace process on A and by pA(ζ, ζ ′) the
jump probabilities. By definition,

RA(η, ξ) = λA(η) pA(η, ξ) = λA(η)Pη[Hξ = H+
A ] ≤ λA(η)Pη[Hξ < H+

η ] .

Multiplying both sides of this inequality by µA(η) = µ(η)/µ(A), by definition of
the capacity we obtain that

µA(η)RA(η, ξ) ≤ capA(η, ξ) ,

where capA(η, ξ) stands for the capacity with respect to the trace process on A.
To complete the proof of (4.4), it remains to recall formula (A.10) in Beltrán and
Landim (2012).

5. Reversible chains and capacities

We present in this section some estimates for the capacity of reversible, finite
state Markov chains obtained in Beltrán and Landim (2011). These results are
useful since we proved in Corollary 4.4 that the capacity between two disjoint
subsets A, B of E is of the same order as the capacity with respect to the reversible
chain.

Recall from (3.2) that we denote by csN (η, ξ) the symmetric conductance of the
bond (η, ξ). Fix two disjoint subsets A, B of E. A self-avoiding path γ from A to
B is a sequence of configurations (η0, η1, . . . , ηn) such that η0 ∈ A, ηn ∈ B, ηi 6= ηj ,
i 6= j, csN (ηi, ηi+1) > 0, 0 ≤ i < n. Denote by ΓA,B the set of self-avoiding paths
from A to B and let

csN (γ) = min
0≤i<n

csN (ηi, ηi+1) , csN (A,B) = max
γ∈ΓA,B

csN (γ) . (5.1)

For two configurations η, ξ, we represent csN ({η}, {ξ}) by csN (η, ξ). Note that
csN (η, ξ) ≤ csN (η, ξ), with possibly a strict inequality.

Fix two disjoint subsets A, B of E and a configuration η 6∈ A∪B. We claim that

csN (A,B) ≥ min{csN (A, η) , csN (η,B)} . (5.2)

Indeed, there exist a self-avoiding path γ1 from A to η, and a self-avoiding path
γ2 from η to B such that csN (A, η) = csN (γ1), csN (η,B) = csN (γ2). Juxtaposing the
paths γ1 and γ2, we obtain a path γ from A to B. Of course, the path γ may not
be self-avoiding, may return to A before reaching B, or may reach B before hitting
η. In any case, we may obtain from γ a subpath γ̂ which is self-avoiding and which
connects A to B. Subpath in the sense that all bonds (ηi, ηi+1) which appear in γ̂
also appear in γ. In particular,

csN (γ̂) ≥ csN (γ) = min{csN (γ1) , csN (γ2)} = min{csN (A, η) , csN (η,B)} .

To complete the proof of claim (5.2), it remains to observe that csN (A,B) ≥ csN (γ̂).
Fix two disjoint subsets A, B of E and configurations ηi 6∈ A ∪ B, 1 ≤ i ≤ n,

such that ηi 6= ηj , i 6= j. Iterating inequality (5.2) we obtain that

csN (A,B) ≥ min{csN (A, η1) , csN (η1, η2) , . . . , csN (ηn−1, ηn) , csN (ηn,B)} . (5.3)
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We conclude this section relating the symmetric capacity between two sets A,
B of E to the symmetric conductances csN (A,B). By Corollary 3.3, the sequences
of symmetric conductances {csN (η, ξ) : N ≥ 1}, (η, ξ) ∈ Bs, are ordered. It follows
from this fact and from the proof of Lemmas 4.1 in Beltrán and Landim (2011)
that there exists constants 0 < c0 < C0 <∞ such that

c0 < lim inf
N→∞

capsN (A,B)

csN (A,B)
≤ lim sup

N→∞

capsN (A,B)

csN (A,B)
≤ C0 . (5.4)

6. Proof of Theorem 2.1

In view of Theorem 5.1 in Landim (2015), Theorem 2.1 follows from from con-
dition (H3) and from Propositions 6.1 below. Denote by ψE : E → {1, . . . , n} the
projection defined by ψE(η) = x if η ∈ Ex:

ψE(η) =
∑
x∈S

x1{η ∈ Ex} .

Proposition 6.1. Fix x ∈ S and a configuration η ∈ Ex. Starting from η, the
speeded-up, hidden Markov chain XN (t) = ψE

(
ηE(θN t)

)
converges in the Skorohod

topology to the continuous-time Markov chain XE(t), introduced in Theorem 2.1,
which starts from x.

Lemma 6.2. For every x ∈ S for which Ex is not a singleton and for all η 6= ξ ∈ Ex,

lim
N→∞

capN (Ex, Ĕx)

capN (η, ξ)
= 0 .

Proof : Fix x ∈ S. By (4.3), applied to A = Ex, B = Ĕx, and by assumption (H1),

lim
N→∞

θN
capN (Ex, Ĕx)

µN (Ex)
=
∑
y 6=x

rE(x, y) ∈ R+ .

The claim of the lemma follows from this equation, from assumption (H2) and from
the fact that αN/θN → 0. �

Proof of Proposition 6.1: In view of Theorem 2.1 in Beltrán and Landim (2012),
the claim of the proposition follows from condition (H1), and from Lemma 6.2. �

7. Proof of Theorem 2.7

The proof of Theorem 2.7 is divided in several steps.

1. The measure of the metastable sets. We start proving that condition (H0)
is in force. Recall from Section 2 that we denote by XR(t) the E-valued chain which
jumps from η to ξ at rate R(η, ξ). Denote by C1, . . . ,Cm the equivalent classes of
the chain XR(t).

Assertion 7.A. For all 1 ≤ j ≤ m, and for all η 6= ξ ∈ Cj , there exists m(η, ξ) ∈
(0,∞) such that

lim
N→∞

µN (η)

µN (ξ)
= m(η, ξ) .



Metastability of finite state Markov chains 741

Proof : Fix 1 ≤ j ≤ m and η 6= ξ ∈ Cj . By assumption, there exists a path
(η = η0, . . . , ηn = ξ) such that R(ηi, ηi+1) > 0 for 0 ≤ i < n. On the other hand,
since µN is an invariant probability measure,

λN (ξ)µN (ξ) =
∑

ζ0,ζ1,...,ζn−1∈E

µN (ζ0)λN (ζ0) pN (ζ0, ζ1) · · · pN (ζn−1, ξ)

≥ µN (η0)λN (η0) pN (η0, η1) · · · pN (ηn−1, ξ) .

Therefore,
µN (ξ)

µN (η)
≥ λN (η)

λN (ξ)
pN (η, η1) · · · pN (ηn−1, ξ) .

Since R(ηi, ηi+1) > 0 for 0 ≤ i < n, by (2.5), pN (ηi, ηi+1) converges to p(ηi, ηi+1) >
0. For the same reason, αNλN (η) converges to λ(η) ∈ (0,∞). Finally, as ξ and η
belong to the same equivalent class, there exists a path from ξ to η with similar
properties to the one from η to ξ, so that αNλN (ξ) converges to λ(ξ) ∈ (0,∞). In
conclusion,

lim inf
N→∞

µN (ξ)

µN (η)
> 0 .

Replacing η by ξ we obtain that lim inf µN (η)/µN (ξ) > 0. Since by Lemma 3.1 the
sequences {µN (ζ) : N ≥ 1}, ζ ∈ E, are ordered, µN (η)/µN (ξ) must converge to
some value in (0,∞). �

By the previous assertion for every x ∈ S and η ∈ Ex,

mx(η) := lim
N→∞

µN (η)

µN (Ex)
∈ (0, 1] , (7.1)

where we adopted the convention established in condition (H1) of Section 2.

2. The time-scale. In this subsection, we introduce a time-scale γN , we prove
that it is much longer than αN and that it is of the same order of θN . In particular
the requirement αN/θN → 0 is in force.

Denote by {ηEt : t ≥ 0} the trace of ηNt on the set E, and by RE
N : E × E → R+

the jump rates of ηEt . Let

1

γN
=
∑
x∈S

∑
η∈Ex

∑
ξ∈Ĕx

RE
N (η, ξ) , (7.2)

where Ĕx has been introduced in (2.4). The sequence γN represents the time needed

to reach the set Ĕx starting from Ex for some x ∈ S. This time scale might be longer
for other sets Ey, y 6= x, but it is of the order γN at least for one x ∈ S. We could
as well have defined γN as maxx∈S maxη∈Ex

maxξ∈Ĕx
RE
N (η, ξ).

Assertion 7.B. The time scale γN is much longer than the time-scale αN :

lim
N→∞

αN
γN

= 0 .

Proof : We have to show that αNR
E
N (η, ξ) converges to 0 as N ↑ ∞, for all η ∈ Ex,

ξ ∈ Ey, x 6= y ∈ S. Fix x 6= y ∈ S, η ∈ Ex, ξ ∈ Ey. Since Ex is a recurrent
class, R(η, ζ) = 0 for all ζ 6∈ Ex. On the other hand, by Beltrán and Landim (2010,
Proposition 6.1) and by the strong Markov property,

RE
N (η, ξ) = λN (η)Pη[Hξ = H+

E ] = RN (η, ξ) +
∑
ζ 6∈E

RN (η, ζ)Pζ [Hξ = HE] .
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Since R(η, ζ) = 0 for all ζ 6∈ Ex, it follows from the previous identity and from the
definition of R(η, ζ) that αNR

E
N (η, ξ)→ 0, as claimed. �

By Assertion 3.A, for all x ∈ S, η ∈ Ex, ξ ∈ Ĕx, with the convention adopted in
condition (H1) of Section 2,

rE(η, ξ) := lim
N→∞

γN R
E
N (η, ξ) ∈ [0, 1] . (7.3)

Assertion 7.C. For all x ∈ S,

`x := lim
N→∞

γN
capN (Ex, Ĕx)

µN (Ex)
∈ R+ . Moreover , ` =

∑
x∈S

`x > 0 .

Proof : By (4.3), applied to A = Ex, B = Ĕx, by (7.1) and by (7.3),

lim
N→∞

γN
capN (Ex, Ĕx)

µN (Ex)
=

∑
η∈Ex

mx(η)
∑
ξ∈Ĕx

rE(η, ξ) ∈ R+ ,

which completes the proof of the first claim of the assertion.
By (7.2) and by definition of rE(η, ξ),∑

x∈S

∑
η∈Ex

∑
ξ∈Ĕx

rE(η, ξ) = 1 ,

so that

` =
∑
x∈S

`x =
∑
x∈S

∑
η∈Ex

mx(η)
∑
ξ∈Ĕx

rE(η, ξ) ≥ min
x∈S

min
η∈Ex

mx(η) > 0 ,

which is the second claim of the assertion. �

It follows from Assertion 7.C that the time-scale γN is of the same order of θN
in the sense that γN/θN converges as N ↑ ∞:

lim
N→∞

γN
θN

= ` ∈ (0,∞) . (7.4)

3. The average jump rate, condition (H1). Denote by rN (Ex,Ey) the mean
rate at which the trace process jumps from Ex to Ey:

rN (Ex,Ey) =
1

µN (Ex)

∑
η∈Ex

µN (η)
∑
ξ∈Ey

RE
N (η, ξ) . (7.5)

Next lemma follows from (7.1), (7.3) and (7.4).

Lemma 7.1. For every x 6= y ∈ S,

rE(x, y) := lim
N→∞

θN rN (Ex,Ey) =
1

`

∑
η∈Ex

mx(η)
∑
ξ∈Ey

rE(η, ξ) ∈ R+

4. Inside the metastable sets, condition (H2). Next assertion shows that
condition (H2) is in force.

Assertion 7.D. For every x ∈ S for which Ex is not a singleton and for all η 6= ξ ∈
Ex, there exist constants 0 < c0 < C0 <∞ such that

c0 ≤ lim inf
N→∞

αN
capN (η, ξ)

µN (Ex)
≤ lim sup

N→∞
αN

capN (η, ξ)

µN (Ex)
≤ C0 .
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Proof : Fix x ∈ S for which Ex is not a singleton, and η 6= ξ ∈ Ex. On the one
hand, by definition of the capacity

αN
capN (η, ξ)

µN (Ex)
≤ µN (η)

µN (Ex)
αN λN (η) .

By (2.5) and (7.1), the right hand side converges to λ(η)mx(η) <∞, which proves
one of the inequalities.

On the other hand, as Ex is an equivalent class which is not a singleton, λ(ζ) > 0
for all ζ ∈ Ex, or, in other words, Ex ⊂ E0. Since η ∼ ξ, there exists a path
(η = η0, . . . , ηn = ξ) such that R(ηi, ηi+1) > 0 for 0 ≤ i < n. Since,

Pη
[
Hξ < H+

η

]
≥ pN (η, η1) · · · pN (ηn−1, ξ) ,

in view of the formula (2.2) for the capacity, we have that

αN
capN (η, ξ)

µN (Ex)
≥ µN (η)

µN (Ex)
αN λN (η) pN (η, η1) · · · pN (ηn−1, ξ) .

The right hand side converges to mx(η)λ(η)p(η, η1) · · · p(ηn−1, ξ) > 0, which com-
pletes the proof of the assertion. �

5. Condition (H3) holds. To complete the proof of Theorem 2.7 it remains to
show that the chain ηNt spends a negligible amount of time on the set ∆ in the time
scale θN .

Lemma 7.2. For every t > 0,

lim
N→∞

max
η∈E

Eη
[ ∫ t

0

1{ηNsθN ∈ ∆} ds
]

= 0 .

Proof : Since αN/θN → 0, a change of variables in the time integral and the Markov
property show that for every η ∈ E, for every T > 0 and for every N large enough,

Eη
[ ∫ t

0

1{ηNsθN ∈ ∆} ds
]
≤ 2t

T
max
ξ∈E

Eξ
[ ∫ T

0

1{ηNsαN
∈ ∆} ds

]
.

Note that the process on the right hand side is speeded up by αN instead of θN .
We estimate the expression on the right hand side of the previous formula. We

may, of course, restrict the maximum to ∆. Let T1 be the first time the chain ηNt
hits E and let T2 be the time it takes for the process to return to ∆ after T1:

T1 = HE , T2 = inf
{
s > 0 : ηNT1+s ∈ ∆

}
.

Fix η ∈ ∆ and note that

Eη
[ 1

T

∫ T

0

1{ηNsαN
∈ ∆} ds

]
≤ Pη

[
T1 > t0αN

]
+ Pη

[
T2 < TαN

]
+

t0
T

(7.6)

for all t0 > 0 because the time average is bounded by 1 and because on the set
{T1 ≤ t0αN}∩{T2 ≥ TαN} the time average is bounded by t0/T . By Assertion 7.E
below, the first term on the right hand side vanishes as N ↑ ∞ and then t0 ↑ ∞.
On the other hand, by the strong Markov property, the second term is bounded
by maxξ∈E Pξ[H∆ ≤ TαN ]. By definition of the set E, for every η ∈ E and every
ξ ∈ ∆, αNRN (η, ξ) → 0 as N ↑ ∞. This shows that for every T > 0 the second
term on the right hand side of (7.6) vanishes as N ↑ ∞, which completes the proof
of the lemma. �
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Assertion 7.E. For every η ∈ ∆,

lim
t→∞

lim sup
N→∞

Pη
[
HE ≥ tαN

]
= 0 .

Proof : Recall that we denote by XR(t) the continuous-time Markov chain on E
which jumps from η to ξ at rate R(η, ξ) = limN αNRN (η, ξ). Note that the set E

consists of recurrent points for the chain XR(t), while points in ∆ are transient.
Since the jump rates converge, the chain ηNtαN

converges in the Skorohod topology
to XR(t). Therefore, for all t > 0, η ∈ ∆,

lim sup
N→∞

Pη
[
HE ≥ t αN

]
≤ Pη

[
HE ≥ t

]
,

where Pη stands for the law of the chain XR(t) starting from η. Since the set of
recurrent points for XR(t) is equal to E = ∆c, the previous probability vanishes as
t ↑ ∞. �

We conclude this section with an observation concerning the capacities of the
metastable sets Ex.

Assertion 7.F. The sequences {capN (Ex, Ĕx)/µN (Ex) : N ≥ 1}, x ∈ S, are ordered.

Proof : Fix x ∈ S. By (4.3) applied to A = Ex, B = Ĕx,

capN (Ex, Ĕx) =
∑
η∈Ex

µN (η)
∑
ξ∈Ĕx

RE
N (η, ξ) .

The claim of the assertion follows from this identity, from Assertion 3.A and from
(7.1). �

8. Proof of Theorem 2.12

Theorem 2.12 is proved in several steps.

1. The measure of configurations in Ga. We assumed in (H0) that all configu-
rations in a set Fx have measure of the same order. We prove below in Assertion 8.A
that a similar property holds for the sets Ga.

Let

λFN (Fx) =
∑
y:y 6=x

rFN (Fx,Fy) , pFN (Fx,Fy) =
rFN (Fx,Fy)

λFN (Fx)
if λFN (Fx) > 0 .

Denote by P0 the subset of points in P such that λF(x) =
∑
y 6=x rF(x, y) > 0. For

all x ∈ P0 let pF(x, y) = rF(x, y)/λF(x). It follows from assumption (H1) that for
all x, z in P , y ∈ P0,

lim
N→∞

βN λ
F
N (Fx) = λF(x) , lim

N→∞
pFN (Fy,Fz) = pF(y, z) . (8.1)

Recall that XF(t) is the P -valued Markov chain which jumps from x to y at rate
rF(x, y). Denote by Ca, a ∈ P1 = {1, . . . , q1}, the equivalent classes of the Markov
chain XF(t), and let Ca = ∪x∈Ca

Fx. All configurations in a set Ca have probability
of the same order.

Assertion 8.A. For all equivalent classes Ca, a ∈ P1, and for all η 6= ξ ∈ Ca, there
exists m(η, ξ) ∈ (0,∞) such that

lim
N→∞

µN (η)

µN (ξ)
= m(η, ξ) .
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Proof : The argument is very close to the one of Assertion 7.A Denote by X̄N (t)
the chain ηF(t) in which each set Fx has been collapsed to a point. We refer to the
Section 3 of Gaudillière and Landim (2014) for a precise definition of the collapsed
chain and for the proof of the results used below.

The chain X̄N (t) takes value in the set P , its jump rate from x to y, denoted
by r̄N (x, y), is equal to rFN (Fx,Fy) introduced in (2.3), and its unique invariant
probability measure, denoted by µ̄N (x), is given by µ̄N (x) = µN (Fx)/µN (F).

Fix an equivalent class Ca and η 6= ξ ∈ Ca. If η and ξ belong to the same set Fx,
the claim follows from Assumption (H0). Suppose that η ∈ Fx, ξ ∈ Fy for some
x 6= y ∈ Ca. By assumption, there exists a path (x = x0, . . . , xn = y) such that
rF(xi, xi+1) > 0 for 0 ≤ i < n.

Denote by λ̄N (x), x ∈ P , the holding rates of the collapsed chain X̄N (t), and by
p̄N (x, y), x 6= y ∈ P , the jump probabilities. Since µ̄N is the invariant probability
measure for the collapsed chain,

λ̄N (y) µ̄N (y) =
∑

z0,z1,...,zn−1∈P
µ̄N (z0) λ̄N (z0) p̄N (z0, z1) · · · p̄N (zn−1, y)

≥ µ̄N (x0) λ̄N (x0) p̄N (x0, x1) · · · p̄N (xn−1, y) .

Therefore,

µ̄N (y)

µ̄N (x)
≥ λ̄N (x)

λ̄N (y)
p̄N (x, x1) · · · p̄N (xn−1, y) .

Since rF(xi, xi+1) > 0 for 0 ≤ i < n, by (8.1), p̄N (xi, xi+1) converges to
pF(xi, xi+1) > 0. For the same reason, βN λ̄N (x) = βNλ

F
N (Fx) converges to

λF(x) ∈ (0,∞). As y and x share the same properties, inverting their role we
obtain that βN λ̄N (y) converges to λF(y) ∈ (0,∞). In conclusion,

lim inf
N→∞

µ̄N (x)

µ̄N (y)
> 0 .

Replacing x by y we obtain that lim inf µ̄N (y)/µ̄N (x) > 0. By Gaudillière and
Landim (2014), µ̄N (z) = µN (Fz), z ∈ P . To complete the proof it remains to recall
the statement of Lemma 3.1 and Assumption (H0). �

By the previous assertion for every a ∈ Q and η ∈ Ga,

m∗a(η) := lim
N→∞

µN (η)

µN (Ga)
∈ (0, 1] . (8.2)

Thus, assumption (H0) holds for the partition {G1, . . . ,Gq,∆G}.
2. The time scale. We prove in this subsection that the time-scale β+

N introduced
in (2.10) is much longer than βN .

Assertion 8.B. We have that

lim
N→∞

βN

β+
N

= 0 .

Proof : We have to show that

lim
N→∞

βN
capN (Ga, Ğa)

µN (Ga)
= 0
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for each a ∈ Q. Fix a ∈ Q and recall from (2.8) the definition of the set Ga. Since
Ga is a recurrent class for the chain XF(t), rF(x, y) = 0 for all x ∈ Ga, y ∈ P \Ga.
By definition of the capacity,

capN (Ga, Ğa)

µN (Ga)
=
∑
η∈Ga

µN (η)

µN (Ga)
λN (η)Pη

[
H

Ğa
< H+

Ga

]
≤
∑
η∈Ga

µN (η)

µN (Ga)
λN (η)Pη

[
HF\Ga

< H+
Ga

]
.

By Beltrán and Landim (2010, Proposition 6.1), this sum is equal to∑
η∈Ga

µN (η)

µN (Ga)

∑
ξ∈F\Ga

RF
N (η, ξ) =

∑
x∈Ga

µN (Fx)

µN (Ga)

∑
y∈P\Ga

rFN (x, y) .

Since rF(x, y) = 0 for all x ∈ Ga, y ∈ P \Ga, by assumption (H1) the previous sum
multiplied by βN converges to 0 as N ↑ ∞. �

3. Condition (H1) is fulfilled by the partition {G1, . . . ,Gq,∆G}. We first
obtain an alternative formula for the time-scale β+

N . The arguments and the ideas
are very similar to the ones presented in the previous section. Let

1

γN
=
∑
a∈Q

∑
η∈Ga

∑
ξ∈Ğa

RG
N (η, ξ) .

By Assertion 3.A, for all a ∈ Q, η ∈ Ga, ξ ∈ Ğa, with the convention adopted in
condition (H1) of Section 2,

rG(η, ξ) := lim
N→∞

γN R
G
N (η, ξ) ∈ [0, 1] . (8.3)

Assertion 8.C. For all a ∈ Q,

λ̂G(a) := lim
N→∞

γN
capN (Ga, Ğa)

µN (Ga)
∈ R+ . Moreover , λ̂G =

∑
a∈Q

λ̂G(a) > 0 .

Proof : Fix a ∈ Q. By (4.3), applied to A = Ga, B = Ğa, by (8.2) and by (8.3),

lim
N→∞

γN
capN (Ga, Ğa)

µN (Ga)
=
∑
η∈Ga

m∗a(η)
∑
ξ∈Ğa

rG(η, ξ) ∈ R+ ,

which completes the proof of the first claim of the assertion.
By definition of γN and by definition of rG(η, ξ),∑

a∈Q

∑
η∈Ga

∑
ξ∈Ğa

rG(η, ξ) = 1 ,

so that

λ̂G =
∑
a∈Q

λ̂G(a) =
∑
a∈Q

∑
η∈Ga

m∗a(η)
∑
ξ∈Ğa

rG(η, ξ) ≥ min
a∈Q

min
η∈Ga

m∗a(η) > 0 ,

which is the second claim of the assertion. �
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It follows from the previous assertion that the time-scale γN is of the same order
of β+

N :

lim
N→∞

γN

β+
N

= λ̂G ∈ (0,∞) . (8.4)

Denote by rGN (Ga,Gb) the mean rate at which the trace process jumps from Ga
to Gb:

rGN (Ga,Gb) :=
1

µN (Ga)

∑
η∈Ga

µN (η)
∑
ξ∈Gb

RG
N (η, ξ) . (8.5)

Lemma 8.1. For every a 6= b ∈ Q,

rG(a, b) := lim
N→∞

β+
N r

G
N (Ga,Gb) =

1

λ̂G

∑
η∈Ga

m∗a(η)
∑
ξ∈Gb

rG(η, ξ) ∈ R+

Moreover, ∑
a∈Q

∑
b:b 6=a

rG(a, b) = 1 .

Proof : The first claim of this lemma follows from (8.2), (8.3) and (8.4). On the

other hand, by the explicit formula for rG(a, b) and by the formula for λ̂G(a) ob-
tained in the previous assertion,∑

a∈Q

∑
b:b 6=a

rG(a, b) =
1

λ̂G

∑
a∈Q

∑
η∈Ga

m∗a(η)
∑
b:b 6=a

∑
ξ∈Gb

rG(η, ξ) =
1

λ̂G

∑
a∈Q

λ̂G(a) .

This expression is equal to 1 by definition of λ̂G. �

4. Condition (H2) is fulfilled by the partition {G1, . . . ,Gq,∆G}. The proof
of condition (H2) is based on the next assertion.

Assertion 8.D. For every a ∈ Q for which Ga is not a singleton and for all η 6= ξ ∈
Ga,

lim inf
N→∞

βN
capN (η, ξ)

µN (Ga)
> 0 .

Proof : Throughout this proof c0 represents a positive real number independent
of N and which may change from line to line. Fix a ∈ Q for which Ga is not a
singleton, and η 6= ξ ∈ Ga. By definition, Ga = ∪x∈Ga

Fx. If η and ξ belongs to the
same Fx, the result follows from assumption (H2) and from Assertion 8.A.

Fix η ∈ Fx and ξ ∈ Fy for some x 6= y, Fx ∪ Fy ⊂ Ga. Recall that we denote
by capsN (A,B) the capacity between two disjoint subsets A, B of E with respect
to the reversible chain introduced in (4.2).

Since Ga is a recurrent class for the chain XF(t), there exists a sequence (x =
x0, x1, . . . , xn = y) such that rF(xi, xi+1) > 0 for 0 ≤ i < n. In view of assumptions
(H0) and (H1), there exist ξi ∈ Fxi , ηi+1 ∈ Fxi+1 such that βNR

F
N (ξi, ηi+1) ≥ c0.

Therefore, by Corollary 4.4 and (4.4),

βN capsN (ξi, ηi+1) ≥ βN
2|E|

capN (ξi, ηi+1) ≥ c0 µN (ξi) , (8.6)

so that, by (5.4), βN csN (ξi, ηi+1) ≥ c0 µN (ξi).
Since the configuration η and ξ0 belongs to the same set Fx, by assumption (H2),

β−NcapN (η, ξ0)/µN (Fx) ≥ c0. A similar assertion holds for the pair of configurations
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ηi, ξi, 1 ≤ i < n, and for the pair ηn, ξ. Hence, if we set η0 = η, ξn = ξ, by Corollary
4.4 and (5.4), we have that

β−NcsN (ηi, ξi) ≥ c0µN (Fxi
) .

By (8.2), we may replace µN (Fxi
) by µN (Ga) in the previous inequality, and

µN (ξi) by µN (Ga) in (8.6). By (5.3),

csN (η, ξ) ≥ min
0≤i<n

min
{
csN (ηi, ξi), c

s
N (ξi, ηi+1), csN (ηn, ξn)

}
.

Since β−N � βN , it follows from the previous estimates that βNcsN (η, ξ) ≥ c0µN (Ga).
To complete the proof, it remains to recall that, by Corollary 4.4 and (5.4),
capN (η, ξ) ≥ capsN (η, ξ) ≥ c0csN (η, ξ). �

5. Condition (H3) is fulfilled by the partition {G1, . . . ,Gq,∆G}. Lemma 8.2
shows that it is enough to prove condition (H3) for the trace process ηF(t).

Lemma 8.2. Assume that

lim
N→∞

max
η∈F

Eη
[ ∫ t

0

1{ηF
sβ+

N

∈ ∆∗} ds
]

= 0 ,

where ∆∗ = ∪x∈Gq+1Fx has been introduced in (2.8). Then,

lim
N→∞

max
η∈E

Eη
[ ∫ t

0

1{ηN
sβ+

N

∈ ∆G} ds
]

= 0 .

Proof : Fix η ∈ E. Since ∆G = ∆∗ ∪∆F,

Eη
[ ∫ t

0

1{ηsβ+
N
∈ ∆F ∪∆∗} ds

]
≤ Eη

[ ∫ t

0

1{ηsβ+
N
∈ ∆F} ds

]
+ max

ξ∈F
Eξ
[ ∫ t

0

1{ηF
sβ+

N

∈ ∆∗} ds
]
.

The second term vanishes as N ↑ ∞ by assumption. The first one is bounded by

βN

β+
N

[β+
N/βN ]∑
n=0

Eη
[ ∫ (n+1)t

nt

1{ηsβN
∈ ∆F} ds

]
,

where [r] stands for the integer part of r. By the Markov property, this expression
is bounded above by

2 max
ξ∈E

Eξ
[ ∫ t

0

1{ηsβN
∈ ∆F} ds

]
,

which vanishes as N ↑ ∞ by assumption (H3). �

To prove that condition (H3) is fulfilled by the partition {G1, . . . ,Gq,∆G} it
remains to show that the assumption of the previous lemma is in force. The proof
of this claim relies on the next assertion. Denote by PF

η the probability measure on

D(R+,F) induced by the trace chain ηFt starting from η.

Assertion 8.E. For every η ∈ ∆∗,

lim
t→∞

lim sup
N→∞

PF
η

[
HG ≥ tβN

]
= 0 .
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Proof : Fix η ∈ Fx ⊂ ∆∗. Since the partition F1, . . . ,Fp, ∆F satisfy the conditions
(H1)–(H3), by Proposition 6.1, starting from η the process XN (t) = ψF(ηFtβN

)

converges in the Skorohod topology to the Markov chain XF(t) on P = {1, . . . , p}
which starts from x and which jumps from y to z at rate rF(y, z). Therefore,

lim sup
N→∞

PF
η

[
HG ≥ t βN

]
≤ Px

[
HR ≥ t

]
,

where Px represents the distribution of the chain XF(t) starting from x and R =
∪1≤a≤qGa. Since R corresponds to the set of recurrent points of the chain XF(t),
the previous expression vanishes as t ↑ ∞. �

Lemma 8.3. For all t > 0,

lim
N→∞

max
η∈F

Eη
[ ∫ t

0

1{ηF
sβ+

N

∈ ∆∗} ds
]

= 0 .

Proof : Since βN/β
+
N → 0, a change of variables in the time integral, similar to the

one performed in the proof of Lemma 8.2, and the Markov property show that for
every η ∈ F, every T > 0 and every N large enough,

Eη
[ ∫ t

0

1{ηF
sβ+

N

∈ ∆∗} ds
]
≤ 2t

T
max
ξ∈F

Eξ
[ ∫ T

0

1{ηFsβN
∈ ∆∗} ds

]
.

Note that the process on the right hand side is speeded up by βN instead of β+
N .

We estimate the expression on the right hand side of the previous formula. We
may, of course, restrict the maximum to ∆∗. Let T1 be the first time the trace
process ηFt hits G and let T2 be the time it takes for the process to return to ∆∗
after T1:

T1 = HG , T2 = inf
{
s > 0 : ηFT1+s ∈ ∆∗

}
.

Fix η ∈ ∆∗ and note that

Eη
[ 1

T

∫ T

0

1{ηFsβN
∈ ∆∗} ds

]
≤ PF

η

[
T1 > t0βN

]
+ PF

η

[
T2 ≤ TβN

]
+

t0
T

for all t0 > 0. By Assertion 8.E, the first term on the right hand side vanishes as
N ↑ ∞ and then t0 ↑ ∞. On the other hand, by the strong Markov property, the
second term is bounded by maxξ∈G PF

ξ [H∆∗ ≤ TβN ]. Since, by Proposition 6.1, the

process ψF(ηFtβN
) converges in the Skorohod topology to the Markov chain XF(t),

lim sup
N→∞

max
ξ∈G

PF
ξ [H∆∗ ≤ TβN ] ≤ max

1≤a≤q
max
x∈Ga

Px[HGq+1 ≤ T ] ,

where, as in the proof of the previous assertion, Px represents the distribution of
the chain XF(t) starting from x. Since the sets Ga are recurrent classes for the
chain XF(t), rF(x, y) = 0 for all x ∈ ∪1≤a≤qGa, y ∈ Gq+1. Therefore, the previous
probability is equal to 0 for all T > 0, which completes the proof of the lemma. �
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