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Abstract. Consider a sequence (n™(t) : t > 0) of continuous-time, irreducible
Markov chains evolving on a fixed finite set E. Denote by Ry(n,£&) the jump
rates of the Markov chain n{¥, and assume that for any pair of bonds (1, &), (1, ¢&")
arctan{ Ry (n,€)/Rn(1',&’)} converges as N 1 oo. Under a hypothesis slightly
more restrictive (cf. (2.6) below), we present a recursive procedure which provides
a sequence of increasing time-scales H}V,...,Ofv, va < 93'\,“, and of coarsening
partitions of the set E, {8{, ey Ef;j,Ajh 1 < 5 < p, with the following property.
Let ¢; : E— {0,1,...,n;} be the projection defined by ¢;(n) = >_»", z1{n € &1 }.
For each 1 < j < p, we prove that the hidden Markov chain X{V(t) = ¢; (nN(tﬁgv))
converges to a Markov chain on {1,...,n;}.

1. Introduction

This article has two motivations. On the one hand, the metastable behavior of
non-reversible Markovian dynamics has attracted much attention recently, see Met-
zner et al. (2009); Maes and O’Kelly de Galway (2013); Benois et al. (2013); Landim
(2014); Misturini (2016); Cirillo et al. (2015); Bianchi and Gaudilliere (2016); Chle-
boun and Grosskinsky (2015); Fernandez et al. (2015, 2016). On the other hand,
the emergence of large complex networks gives a particular importance to the prob-
lem of data and model reduction, see L.u and Vanden-Eijnden (2014); Cameron and
Vanden-Eijnden (2014); Avena and Gaudilliere (2013). This issue arises in as di-
verse contexts as meteorology, genetic networks or protein folding, and is very
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closely related to the identification of slow variables, a fundamental tool in decreas-
ing the degrees of freedom of a system, see Singer et al. (2009).

Not long ago, Beltran and one of the authors of this article introduced a gen-
eral approach to derive the metastable behavior of continuous-time Markov chains,
particularly convenient in the presence of several valleys with the same depth, see
Beltran and Landim (2010, 2012, 2015). In the context of finite state Markov
chains, see Beltran and Landim (2011), it permits to identify the slow variables
and to reduce the model.

More precisely, denote by E a finite set, by ¥ a sequence of E-valued continuous-
time, irreducible Markov chains, and by €1,...,&,, A a partition of the set E. Let
&€ = Ui<z<n&y and let ¢¢ : E — {0,1,...,n} be the projection defined by

ge(n) = Y zl{neé&,}.

In general, Xy(t) = ¢e(n¥) is not a Markov chain, but only a hidden Markov
chain. We say that ¢¢ is a slow variable if there exists a time-scale 8y for which
the dynamics of Xy (t0y) is asymptotically Markovian.

The set A plays a special role in the partition, separating the sets &q,..., &y,
called valleys. The chain remains a negligible amount of time in the set A in the
time-scale O at which the slow variable evolves.

Slow variables provide an efficient mechanism to contract the state space and
to reduce the model in complex networks, as it allows to represent the original
evolution through a simple Markovian chain X (t) which takes value in a much
smaller set, without losing the essential features of the dynamics. It may also reveal
aspects of the dynamics which may not be apparent at first sight.

When the number of sets in the partition is reduced to 2, n = 2, and the Markov
chain which describes the asymptotic behavior of the slow variable has one absorb-
ing point and one transient point, the chain presents a metastable behavior. In a
certain time-scale, it remains for an exponential time on a subset of the state space
after which it jumps to another set where it remains for ever. By extension, and
may be inappropriately, we say that the chain 7} exhibits a metastable behavior
among the valleys €1, ..., &, in the time-scale §y whenever we prove the existence
of a slow variable.

We present in this article a recursive procedure which permits to determine all
slow variables of the chain. It provides a sequence of time-scales 0}, . .. ,9}3\, and of
partitions {8{, cee S%J ,A;}, 1 < j <p, of the set E with the following properties.

e The time-scales are increasing: limpy_, oo 954\,/95\?1 =0for 1 <j < p. This
relation is represented as 05'\, < 05\,“.

e The partitions are coarser. Each set of the (j 4+ 1)-th partition is obtained
as a union of sets in the j-th partition. Thus n;j;; < n; and for each a in
{1,... .41}, 071 = Uy a8l for some subset A of {1,...,n;}.

e The sets Aj, which separates the valleys, increase: A; C Aj4q. Actually,
Aji1=Aj Ugep & for some subset B of {1,...,n;}.

e The projection ¥ (n) = Di<a<n, TN € &} + N1{ne A} is aslow
variable which evolves in the time-scale 6%;.

We prove three further properties of the partitions {8{, e Ef;j JAGT
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e As mentioned above, the amount of time the chain remains in the set A;
in the time-scale 95‘\, is negligible. We refer to condition (H3) below for a
mathematical formulation of this assertion.

e Starting from any configuration in &7, the chain n}¥ attains the set U, 8%

at a time which is asymptotically exponential in the time-scale 6%, (cf.
Remark 2.4).

e With a probability asymptotically equal to 1, the chain 5}V visits all points
of the set, & before hitting another set &) of the partition. In the terminol-
ogy of Freidlin and Wentzell (1998), the sets of the first partition, denoted
by €1, are cycles while the set of the following partitions are cycles of cycles.

These results have been proved in Beltran and Landim (2011) for finite state
reversible Markovian dynamics. We remove in this article the assumption of re-
versibility and we simplify some proofs.

In contrast with other approaches, see Manzo et al. (2004); Olivieri and Vares
(2005); E and Vanden-Eijnden (2006); Metzner et al. (2009); Cirillo et al. (2015);
Fernandez et al. (2015, 2016), we do not describe the tube of typical trajectories
in a transition between two valleys, nor do we identify the critical configurations
which are visited with high probability in such transitions.

The arguments presented here have been designed for sequences of Markov
chains. The examples we have in mind are zero-temperature limits of non-reversible
dynamics in a finite state space. It is not clear whether the analysis can be adapted
to handle the case of a single fixed dynamics as in Cameron and Vanden-Eijnden
(2014); Lu and Vanden-Eijnden (2014); Avena and Gaudilliere (2013).

The approach presented in this article is based on a multiscale analysis. The
sequence of increasing time-scales is defined in terms of the depth of the different
valleys. In this sense, the method is similar to the one proposed by Scoppola (1993),
and developed by Olivieri and Scoppola (1995, 1996), but it does not require the
valleys to have exponential depth, nor the jump rates to be expressed in terms of
exponentials. Actually, one of its main merit is that it relies on a minimal hypothe-
sis, presented in (2.6) below, which is very easy to check since it is formulated only
in terms of the jump rates.

The article is organized as follows. In Section 2 we state the main results. In
the following three sections we introduce the tools needed to prove these results,
which is carried out in the last three sections.

2. Notation and main results

This section is divided in four subsections. In the first one, we establish the
notation and recall some known results which are used throughout the article. In
the second subsection, we introduce the central hypothesis of the article, and, in the
third one, we state the first main result of the article, Theorem 2.7, which describes
the metastable behavior of the chain in the slowest time-scale. Finally, in the last
subsection, we present in Theorem 2.12 all the time scales at which a metastable
behavior is observed.

2.1. Preliminaries. Consider a finite set . The elements of E are called config-
urations and are denoted by the Greek letters 1, £, (. Consider a sequence of
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continuous-time, E-valued, irreducible Markov chains {n¥ : ¢ > 0}. Denote the
jump rates of 7Y by Ry (n, &), and by un the unique invariant probability measure.

Denote by D(R4, E) the space of right-continuous functions z : Ry — E with
left-limits endowed with the Skorohod topology, and by P, = IP’f]V , n € E, the
probability measure on the path space D(R,, E) induced by the Markov chain n}¥
starting from 7. Expectation with respect to P, is represented by E,,.

Fix a proper subset A of F and denote by ni' the trace of the Markov chain n}¥
on the set A. The trace process is obtained by stopping the clock when the chain
leaves the set A and by switching it on when it returns to the set A. More precisely,
denote by T'(t) the total time spent on A before time ¢:

() = [1{775 € A}ds,

where 1{B} represents the indicator of the set B. Note that the function T is
piecewise differentiable and that its derivative takes only the values 1 and 0. It is
equal to 1 when the process is in A and it is equal to 0 when it is not. Let S(¢) be
the generalized inverse of T

S(t)=sup{s>0:T(s) <t}.

The trace process is defined as 1! = ng(t). It is shown in Beltran and Landim
(2010, Proposition 6.1) that n{ is a continuous-time, A-valued, irreducible Markov
chain whose jump rates can be expressed in terms of the probabilities of hitting
times of the original chain.

Denote by Hy, HZ, A C E, the hitting time and the time of the first return to
A:

Hyq = inf{t>0:n) €A}, H} =if{t>n:n'ecA}, (2.1)

where 7 represents the time of the first jump of the chain n)¥: 7, = inf{t > 0 :
AR

Denote by Anx(n), n € E, the holding rates of the Markov chain 7Y and by
pn(n,€), n, & € E, the jump probabilities, so that Ry (n,£) = Ax(n)pn(n,&). For
two disjoint subsets A, B of E, denote by capy (A, B) the capacity between A and
B:

capy (A, B) = > un(n) An(n)Py[Hs < HJ] . (22)
neA

Consider a partition €1,...,E,, A of the set E, which does not depend on the
parameter N and such that n > 2. Fix two sequences of positive real numbers ay,
On such that an < 0y, where this notation stands for limy_ oo an/0n = 0.

Let & = Ugzes€s, where S = {1,...,n}. Denote by {nf : ¢t > 0} the trace of
{nN :t >0} on &, and by R : € x &€ — R, the jump rates of the trace process n¢:

RS (n,€) = AmPY[He=H{], n, (€&, n#¢.

We refer to Section 6 of Beltran and Landim (2010) for a proof of this identity.
Denote by rf(,(&m, &,) the mean rate at which the trace process jumps from €, to
Ey:

1
5 (€a, &y) = (€D Z un (1) Z R{(n,€) - (2.3)

ney £eEy
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Assume that for every z #y € S,

re(z,y) = lim 01\/7‘]&;,(596,81,) € Ry,
N—oc0
and that >3 re(z,y) > 0. (H1)
zeS y#x
The symbol := in the first line of the previous displayed equation means that

the limit exists, that it is denoted by r¢(z,y), and that it belongs to Ry. This
convention is used throughout the article.
Assume that for every x € S for which &, is not a singleton and for alln # € € £,,

lim inf a 7capN(n, §)
N—o0 /LN(Ex)

Finally, assume that in the time scale 6 the chain remains a negligible amount
of time outside the set &: For every t > 0,

> 0. (H2)

t
. N o
A}l_r}r;O max En{/o 1{ngp, € A} ds} =0. (H3)

Denote by Uy : E — {1,...,n, N} the projection defined by ¥y(n) = z if
n € &y, Un(n) = N, otherwise:

Un(n) = > 21{ne€&} + N1{ne A}.
zeS

Recall from Landim (2015) the definition of the soft topology.

Theorem 2.1. Assume that conditions (H1)-(H3) are in force. Fiz v € S and
a configuration n € E,. Starting from n, the speeded-up, hidden Markov chain
Xn(t) = Uy (nN(GNt)) converges in the soft topology to the continuous—time
Markov chain Xe(t) on {1,...,n} whose jump rates are given by re(x,y) and which
starts from x.

This theorem is a straightforward consequence of known results. We stated it
here in sake of completeness and because all the analysis of the metastable behav-
ior of nN relies on it. Its proof is presented in Section 6. We first show, using
assumptions (H1) and (H2), that the trace process n¢ converges in the Skorohod
topology to the continuous-time Markov chain X¢(¢). We combine this result with
assumption (H3) to conclude the convergence of the process X n(t) to Xe(t) in the
soft topology.

One can not expect the convergence of the process X n(t) to Xe(f) in any of
the Skorohod topologies due to the very short excursions of the speeded-up process
N (t0y) in the set A. To overcome this difficulty, the soft topology has been
introduced.

Remark 2.2. Theorem 2.1 states that in the time scale 0, if we just keep track of
the set €, where n{¥ is and not of the specific location of the chain, we observe an
evolution on the set S close to the one of a continuous-time Markov chain which
jumps from z to y at rate re(x,y).

Remark 2.3. The function Wy represents a slow variable of the chain. Indeed,
we will see below that the sequence 0@1 stands for the order of magnitude of the
jump rates of the chain. Theorem 2.1 states that on the time scale 0y, which is
much longer than ay, the variable ¥y (n) evolves as a Markov chain. In other
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words, under conditions (H1)—(H3), one still observes a Markovian dynamics after
a contraction of the configuration space through the projection ¥y. Theorem 2.1
provides therefore a mechanism of reducing the degrees of freedom of the system,
keeping the essential features of the dynamics, as the ergodic properties.

Remark 2.4. Tt also follows from assumptions (H1)-(H3) that the exit time from a
set &, is asymptotically exponential. More precisely, let éw, x € S, be the union of
all sets €, except &,:
& = Jé&y. (2.4)
yF#w
For every x € S and n € &;, under P, the distribution of Hy /0N converges to an
exponential distribution.

Remark 2.5. Under the assumptions (H1)—(H3), the sets €, are cycles in the sense
of Freidlin and Wentzell (1998). More precisely, for every x € S for which &, is a
not a singleton, and for all n # £ € &,

Nli_r)nOOIP’n[H§<HéJ =1.

This means that starting from n € &,, the chain visits all configurations in &,
before hitting the set &,.

2.2. The main assumption. We present in this subsection the main and unique
hypothesis made on the sequence of Markov chains 7. Fix two configurations
n # £ € E. We assume that the jump rate from 7 to £ is either constant equal to
0 or is always strictly positive:

Ry(n,&) = 0 forall N>1 or Ry(n,§) > 0 forall N >1.

This assumption permits to define the set of ordered bonds of E, denoted by B, as
the set of ordered pairs (n, &) such that Ry(n,&) > 0:

B = {(n¢ecExE:n#¢, Rv(n,&) >0} .

Note that the set B does not depend on N.

Our analysis of the metastable behavior of the sequence of Markov chain 7V
relies on the assumption that the set of ordered bonds can be divided into equivalent
classes in such a way that the all jump rates in the same equivalent class are of
the same order, while the ratio between two jump rates in different classes either
vanish in the limit or tend to +o00. Some terminology is necessary to make this
notion precise.

Ordered sequences: A set of sequences (afy : N > 1) of nonnegative real numbers,
indexed by some finite set r € R, is said to be ordered if for all r # s € R the
sequence arctan{a’y/a% } converges as N 1 .

In the examples below the set R will be the set of configurations E or the set
of bonds B. Let Zy = {0,1,2,...}, and let 2,,,, m > 1, be the set of functions
k:B — Z, such that Z(n,ﬁ)e]B% k(n,&) =m.

Assumption 2.6. We assume that for every m > 1 the set of sequences

[I By @9 :N=1}, ke,
(n,§)eB

is ordered.
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We assume from now on that the sequence of Markov chains ¥ fulfills Assump-
tion 2.6. In particular, the sequences {Rn(n,§) : N > 1}, (n,£) € B, are ordered.

2.3. The shallowest valleys, the fastest slow variable. We identify in this subsection
the shortest time-scale at which a metastable behavior is observed, we introduce
the shallowest valleys, and we prove that these valleys form a partition which fulfills
conditions (H1)—(H3).

We first identify the valleys. Let

L oY mvtg).

AN EBern

We could also have defined ay' as max{Ry (1, &) : (n,€) € B}. Thus, ay' represents
the order of magnitude of the largest jump rate. Denote by & the Markov chain
nY speeded-up by ay, &Y = ngym, and by R?V(n, £) the jump rates of the Markov
chain giN R?\I(nv 5) = aNRN(nv f)

By Assumption 2.6, for every n # £ € E, anRn(n,§) — R(n,€) € [0,1]. In
particular, the Markov chain &V converges, in the Skorohod topology, to a Markov
chain, denoted by Xg(t), whose jump rates are given by R(7n,£). Note that this
Markov chain might not be irreducible. However, by definition of ay, there is at
least one bond (1, ) € B such that R(n,£) > 0.

Let A(n) = > ¢, R(1,€) € Ry, and denote by Ep the subset of points of £ such
that A(n) > 0. For all n € Ey, let p(n,&) = R(n,£)/A(n). It is clear that for all n, ¢
in F, £ € Ey,

Jim an An(m) =A(m) . lim pr(€,¢) = p(&,C) - (2.5)
—00 N—o00

Denote by €1,&s,...,E&y, the recurrent classes of the Markov chain Xg(¢), and

by A the set of transient points, so that {€1,...,Ex, A} forms a partition of E:

E=¢EUA, &=28&U--UE,. (2.6)

Here and below we use the notation A LI B to represent the union of two disjoint
sets A, B: AUB=AUB,and ANB =2.

Note that the sets €,, z € S = {1,...,n}, do not depend on N. If n = 1, the
chain does not possess valleys. This is the case, for instance, if the rates Ry (z,y)
are independent of N. Assume, therefore, and up to the end of this subsection,
that n > 2.

Since the set &, is a recurrent class for the chain Xg(t), and since the process
&N converges to Xg(t), the chain &Y does not leave the set &, if it starts there.
This means that the chain n,{v remains in the set €, in the time-scale oy if it starts
from a point in this set. That is, the set &, is a well for the chain 7}V.

To observe the chain leaving the set £, one has to wait a much longer time. The
correct time-scale for this event is given by un(€.)/capy(€x,E). In particular,
a metastable behavior of the chain 7Y will be observed in the smallest of these
time-scales. For this reason, let fy be defined by

i — anpN(SIaéz) ) (27)

T€S MN(SJC)
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Since the sum is of the order of the maximum, 8 is of the order of the smallest of
the sequences uy (€,)/capy (€, €x), and, as explained above, it is on this time-scale
that a metastable behavior is expected to occur.

Theorem 2.7. The partition E1,...,E4, A and the time scales ay, O fulfill the
conditions (H1)—(H3). Moreover, For every x € S and every n € &, there exists
my(n) € (0,1] such that
. pn (n)

lim ——~ = m, . HO

N ) (n) (HO)
Remark 2.8. The jump rates r¢ (x, y) which appear in condition (H1) are introduced
in Lemma 7.1. It follows from Theorems 2.1 and 2.7 that in the time-scale 65 the
chain 7} evolves among the sets €,, z € S, as a Markov chain which jumps from
x to y at rate re(z,y).

In the next three remarks we present some outcomes of Theorem 2.1 and 2.7
on the evolution of the chain 7} in a time-scale longer than fy. These remarks
anticipate the recursive procedure of the next subsection.

Remark 2.9. The jump rates r¢(x,y) define a Markov chain on S, represented by
Xe(t). Denote by T the set of transient points of this chain and assume that T # @.
It follows from Theorem 2.1 that in the time-scale 0, starting from aset €., x € T,
the chain 7}V leaves the set &, at an asymptotically exponential time, and never
returns to &, after a finite number of visits to this set. In particular, if we observe
the chain 7}¥ in a longer time-scale than 6y, starting from €, the chain remains
only a negligible amount of time at &,.

Remark 2.10. Denote by A the set of absorbing points of X¢(t), and assume that
A # @. In this case, in the time-scale 0y, starting from a set €., x € A, the chain
nY never leaves the set €,. To observe a non-trivial behavior starting from this set
one has to consider longer-time scales.

Remark 2.11. Finally, denote by €4, ..., €, the equivalent classes of X¢(t). Suppose
that there is a class, say €;, of recurrent points which is not a singleton. In this
case, starting from a set €,, x € €y, in the time-scale 6, the chain n}¥ leaves the
set €, at an asymptotically exponential time, and returns to &, infinitely many
times.

Suppose now that there are at least two classes, say €; and Cs, of recurrent
points. This means that in the time-scale 0y, starting from a set €,, x € Gy, the
process never visits a set €, for y € Cy. For this to occur one has to observe the
chain n}¥ in a longer time-scale.

Denote by Ry,..., Ry the recurrent classes of X¢(¢). In the next subsection,
we derive a new time-scale at which one observes jumps from sets of the form
Fo = Ugzer, €4 to sets of the form F = Uzer, Ea-

2.4. The deep valleys and slow variables. We obtained in the previous subsection
two time-scales ay, Oy, and a partition €1,...,E,, A of the state space E which
satisfy conditions (H0)—(H3). We present in this subsection a recursive procedure.
Starting from two time-scales Sy, Bn, and a partition JFi,...,JF,, Ag of the state
space E satisfying the assumptions (H0)—(H3) and such that p > 2, it provides a
longer time-scale ﬁ]‘\"[ and a coarser partition G1, ..., G4, Ag which fulfills conditions
(HO)—(H3) with respect to the sequences By, 3.
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Consider a partition F1,...,3,, Ags of the set E and two sequences 3, By such
that By /fn — 0. Assume that p > 2 and that the partition and the sequences 3y,
B satisty conditions (HO)—(H3). Denote by rg(z,y) the jump rates appearing in
assumption (H1).

The coarser partition. Let P = {1,...,p} and let X5(t) be the P-valued Markov
chain whose jumps rates are given by r¢(z,y).

Denote by G1,Go,...,Gq the recurrent classes of the chain Xg(¢), and by Gq41
the set of transient points. The sets G1,...,Gq41 form a partition of P. We claim
that q < p. Fix ¢ € P such that Zy . rg(x,y) > 0, whose existence is guaranteed
by hypothesis (H1). Suppose that the point z is transient. In this case the number
of recurrent classes must be smaller than p. If, on the other hand, x is recurrent, the
recurrent class which contains x must have at least two elements, and the number
of recurrent classes must be smaller than p.

Let @ ={1,...,q},
Sa = |J %y A= |J Fo, Ag=AsUA., acQ. (2.8)
z€G, z€Gq41

Since, by (2.6), {F1,...,Fp, Ag} forms a partition of E, {G1,..., 34, Ag} also forms
a partition of E:

E =GUAg, § =G U---UG,. (2.9)
The longer time-scale. For a € Q = {1,...,q}, let G, be the union of all sets Gy,
except Gq:
90, = U 91) .
b#a
Assume that q > 1, and let B?\', be given by
1 as9a
SRS capy (Ja, 9a) - (2.10)

ﬂj\_f acQ /'(‘N(Sa)

Theorem 2.12. The partition Gy, ...,S,, Ag and the time scales (B, B%) satisfy
conditions (H0)—(H3).

Remark 2.13. Tt follows from Theorems 2.1 and 2.12 that the chain n}¥ exhibits a
metastable behavior in the time-scale B;{, if ¢ > 1. We refer to Remarks 2.2, 2.3,
2.4 and 2.5.

Remark 2.14. As q < p and as we need p to be greater than or equal to 2 to apply
the iterative procedure, this recursive algorithm ends after a finite number of steps.

If g = 1, By is the longest time-scale at which a metastable behavior is observed.
In this time-scale, the chain 1" jumps among the sets J, as does the chain Xg(t)
until it reaches the set §1 = Uzeq, Fx- Once in this set, it remains there for ever
jumping among the sets F,, € Gy, as the Markov chain X#(t), which restricted
to GG1 is an irreducible Markov chain.

The successive valleys: Observe that the valleys G, were obtained as the recur-
rent classes of the Markov chain X (t): G, = Uzeq, Fz, where G, is a recurrent
class of X4(t). In particular, at any time-scale the valleys are formed by unions of
the valleys obtained in the first step of the recursive argument, which were denoted
by €, in the previous subsection. Moreover, by (H0), each configuration in G, has
measure of the same order.
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Remark 2.15. The recursive procedure (2.8) creates a rooted tree, constructed from
the leaves to the root. All vertices of this tree are subsets of E, each generation
forms a partition of the set F, and the sets €1,..., &4, A, introduced in Subsection
2.3, compose the leaves of the tree. Equation (2.8) describes the parents of a
generation: If J1,...,J,, Ag represent the vertices of the k-th generation, the sets
S1,...,9q,Ag given by (2.8) form the generation k — 1. The iteration ends, with
two sets G; and Ag, when the set @, introduced just before (2.8), is a singleton.
To complete the construction of the tree we define the set E as the root.

Observe that the length of the rooted tree corresponds to the number of time-
scales at which a metastable behavior is observed minus 1, and that each generation
is formed by disjoint subsets of the previous generation. In particular, the genera-
tions form a sequence of partitions of F, strictly finer at each step.

Remark 2.16. Scoppola (1993) and Olivieri and Scoppola (1995, 1996) proposed a
similar construction for discrete-time Markov chains assuming that the jump rates
pn(n,€), n, & € E, of the chain satisfy

1
Jim logpn(n,€) = A(n,§)

for some non-negative function A : B — R,. This condition is replaced here by
Assumption 2.6.

Conclusion: We presented an iterative method which provides a finite sequence of
time-scales and of partitions of the set E satisfying conditions (H0)—-(H3). At each
step, the time scales become longer and the partitions coarser. By Theorem 2.1,
to each pair of time-scale and partition corresponds a metastable behavior of the
chain 7}¥. This recursive algorithm provides all time-scales at which a metastable
behavior of the chain 7} is observed, and all slow variables associated to the dy-
namics.

3. What do we learn from Assumption 2.67

We prove in this section that the jump rates of the trace processes satisfy As-
sumption 2.6, and that some sequences, such as the one formed by the measures of
the configurations, are ordered.

Assertion 3.A. Let F be a proper subset of E and denote by Rk (n,&), n# ¢ € F,
the jump rates of the trace of n)¥ on F. The jump rates R%; (1, £) satisfy Assumption
2.6.

Proof: We prove this assertion by removing one by one the elements of F \ F.
Assume that F = E\ {¢} for some ¢ € E. By Corollary 6.2 in Beltran and Landim
(2010) and by the equation following the proof of this corollary, for n # & € F,

RE(n.€) = Rn(n,€) + Ry (n,Qpn (¢, €). Hence,

F _ ZwGE’ RN(% S)RN(Q U)) + Ry (777 C)RN(Q 6) .
Ry(n,§) = S, BnCw) (3.1)

It is easy to check from this identity that Assumption 2.6 holds for the jump rates
R%. Tt remains to proceed recursively to complete the proof. [l

Lemma 3.1. The sequences {un(n) : N > 1}, n € E, are ordered.
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Proof: Fix n # ¢ € E and let F = {n,¢(}. By Beltran and Landim (2010,
Proposition 6.3), the stationary state of the trace of 7 on F, denoted by u%;,
is given by uX(n) = pun(n)/un(F). As pk is the invariant probability mea-
sure, (i (n) Ry (1n,€) = pi (§) RN (€, ). Therefore, pun (n)/pn (&) = pi(n)/ni (€) =
R5(&,m)/RY(n,€). By Assertion 3.A, the sequences {R% (a,b) : N > 1}, a # b €
{n, &} are ordered. This completes the proof of the lemma. O

The previous lemma permits to divide the configurations of E into equivalent
classes by declaring n equivalent to ', n ~ 0/, if un(n)/pn(n') converges to a real
number belonging to (0, c0).

Assertion 3.B. Let F be a proper subset of E. For every bond (1,¢') € B and
every m > 1 the set of sequences

[I BEM & ORNG )N 21}, ke,
(n,€)€B

is ordered.

Proof: We proceed as in the proof of Assertion 3.A, by removing one by one the
elements of E\ F. Fix ( € E\ F. It follows from (3.1) and from Assumption 2.6
that the claim of the assertion holds for F = FE \ {}.

Fix ¢’ € E\ F, ¢/ # (. By using formula (3.1), to express the rates REMSC'H in
terms of the rates R¥M¢} and the statement of this assertion for F = E\ {¢} we
prove that this assertion also holds for F' = E\ {¢, (’}. Iterating this algorithm we
complete the proof of the assertion. ([l

Denote by ey (n,€) = un(n)Rn(1n,£), (n,€) € B, the (generally asymmetric)
conductances.

Lemma 3.2. The conductances {cn(n,€) : N > 1}, (n,€) € B, are ordered.

Proof: Consider two bonds (n,£), (n',£’) in B. As in the proof of Lemma 3.1, we
may express the ratio of the conductances as
en(m&) _ pnmBx(,6) _ RN®m)R(n:€)

en(',€)  un()By(', &) RN, )Ry, &)

where F' = {n,n). It remains to recall the statement of assertion 3.B to complete
the proof of the lemma. O

Denote by B® the symmetrization of the set B, that is, the set of bonds (7, £)
such that (n,&) or (£, n) belongs to B:

B = {(n§) e ExE:n#¢, (n,€) €B or (&) €B}.
Denote by ¢i(n,£), (1,€) € B®, the symmetric part of the conductance:

A6 = L{en(rE) +en(m)} (32)

Next result is a straightforward consequence of the previous lemma.

Corollary 3.3. The symmetric conductances {cx(n,§) : N > 1}, (n,§) € B®, are
ordered.
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As in Lemma 3.1, the previous corollary permits to divide the set B® into
equivalent classes by declaring (n,€) equivalent to (n',¢"), (n,&) ~ (1/,&), if
e (n,8) /e (1, &) converges to a number in (0, c0).

It is possible to deduce from Assumption 2.6 that many other sequences are
ordered. We do not present these results here as we do not use them below.

4. Cycles, sector condition and capacities

We prove in this section that the generator of a Markov chain on a finite set
can be decomposed as the sum of cycle generators and that it satisfies a sector
condition. This last bound permits to estimate the capacity between two sets by
the capacity between the same sets for the reversible process.

Throughout this section, F is a fixed finite set and L represents the generator
of an F-valued, continuous-time Markov chain. We adopt all notation introduced
in Section 2, removing the index N since the chain is fixed. We start with some
definitions.

In a finite set, the decomposition of a generator into cycle generators is very
simple. The problem for infinite sets is much more delicate. We refer to Gabrielli
and Valente (2012) for a discussion of the question.

Cycle: A cycle is a sequence of distinct configurations (7,71, .-, T—1,Mn = 7o)
whose initial and final configuration coincide: n; # n; € E, i # j € {0,...,n — 1}.
The number n is called the length of the cycle.

Cycle generator: A generator £ of an F-valued Markov chain, whose jump rates
are denoted by R(7,€), is said to be a cycle generator associated to the cycle
c= (N0, M, Mn—-1,Nn = No) if there exists reals r; > 0, 0 < ¢ < n, such that

r; ifn=mn; and £ = n;41 for some 0 <i < n,
0 otherwise .

R(% 5) = {

We denote this cycle generator by L.. Note that

n—1

(Lf)(m) = Z Hn =mni}ri [f(niva) — f(m)] -

=0

Sector condition: A generator L of an E-valued, irreducible Markov chain, whose
unique invariant probability measure is denoted by g, is said to satisfy a sector
condition if there exists a constant Cy < oo such that for all functions f, g : £ — R,

(Lf,9)5 < Col(=Lf), Ful(=L3), )n -

In this formula, (f, g), represents the scalar product in L?(u):

(f,9)u = D ) g(n) n(n) -

nek

We claim that every cycle generator satisfies a sector condition and that every
generator £ of an E-valued Markov chain, stationary with respect to a probability
measure i, can be decomposed as the sum of cycle generators which are stationary
with respect to p.
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Assertion 4.A. Consider a cycle ¢ = (70,71, .-, Mn—1,Mn = Mo) of length n > 2
and let £ be a cycle generator associated to ¢. Denote the jump rates of £ by
R(ni,mit1)- A measure p is stationary for £ if and only if

w(ni) R(ni,miy1) is constant . (4.1)

The proof of the previous assertion is elementary and left to the reader. The
proof of the next one can be found in Komorowski et al. (2012, Lemma 5.5.8).

Assertion 4.B. Let L be a cycle generator associated to a cycle ¢ of length n. Then,
L satisfies a sector condition with constant 2n: For all f, g: E — R,

Lemma 4.1. Let L be a generator of an E-valued, irreducible Markov chain.
Denote by p the unique invariant probability measure. Then, there exists cycles
C1,...,¢p such that

L=> L,

j=1
where L, are cycle generators associated to c; which are stationary with respect to
I

Proof: The proof consists in eliminating successively all 2-cycles (cycles of length
2), then all 3-cycles and so on up to the |F|-cycle if there is one left. Denote by
R(n, &) the jump rates of the generator £ and by Cs the set of all 2-cycles (1,&,7)
such that R(n,&)R(£,n) > 0. Note that the cycle (n,&,7) coincide with the cycle

(&,n,8).

Fix a cycle ¢ = (n,£,n) € Ca. Let ¢(n, &) = min{u(n)R(n, §), u(§)R(E,n)} be the
minimal conductance of the edge (n, &), and let R(n, &) be the jump rates given by
Re(n,&) = e(n,§)/u(n), Re(&§n) = e(n,§)/u(§). Observe that Rc((,¢") < R((, ()
for all (¢, ('), and that R.(¢{,n) = R(&,n) or Rc(n,&) = R(n,§).

Denote by L, the generator associated the the jump rates R.. Since u(n)R(n, &)

=c(m, &) = w(é)Re(&,7n), by (4.1), v is a stationary state for £, (actually, reversible).
Let £1 = L — L, so that
L=L + L.

As R.(¢,¢") < R((, ('), Ly is the generator of a Markov chain. Since both £ and £,
are stationary for u, so is £1. Finally, if we draw an arrow from ¢ to ¢’ if the jump
rate from ¢ to ¢’ is strictly positive, the number of arrows for the generator £; is
equal to the number of arrows for the generator £ minus 1 or 2. This procedure
has therefore strictly decreased the number of arrows of L.

We may repeat the previous algorithm to £; to remove from £ all 2-cycles (1, £, n)
such that R(n,&)R(&,n) > 0. Once this has been accomplished, we may remove all
3-cycles (0o, m1,m2, 13 = 10) such that [J, ., 5 R(1s,mi41) > 0. At each step at least
one arrow is removed from the generator which implies that after a finite number
of steps all 3-cycles are removed.

Once all k-cycles have been removed, 2 < k < |E|, we have obtained a decom-
position of L as

|E|-1
L= > Li+ L,

k=2
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where Ly is the sum of k-cycle generators and is stationary with respect to u, and
Lisa generator, stationary with respect to p, and with no k-cycles, 2 < k < |E]|.
If £ has an arrow, as it is stationary with respect to p and has no k-cycles, £ must
be an |E|-cycle generator, providing the decomposition stated in the lemma. O

Remark 4.2. Observe that a generator L is reversible with respect to p if and only
if it has a decomposition in 2-cycles. Given a measure p on a finite state space, for
example the Gibbs measure associated to a Hamiltonian at a fixed temperature, by
introducing k-cycles satisfying (4.1) it is possible to define non-reversible dynamics
which are stationary with respect to p. The previous lemma asserts that this is the
only way to define such dynamics.

Corollary 4.3. The generator L satisfies a sector condition with constant bounded
by 2|E|: Fordll f, g: E —- R,

(Lf. 905 < 20EI(=Lf), Flu((~L9), gu

Proof: Fix f and g : E — R. By Lemma 4.1,
p 2
<Ef7 g>i = (Z<‘CCJ f7 g>H) 9
j=1
where L, is a cycle generator, stationary with respect to u, associated to the cycle
¢j. By Assertion 4.B and by Schwarz inequality, since all cycles have length at most
|E|, the previous sum is bounded by
P
2/E| Z (=L, ). P D ((~Le9)9hu = 2EN(=L), 1) ((~L9). 9
k=1
as clalmed (]

Denote by R®(n,&) the symmetric part of the jump rates R(n,¢):

R.6) = 3{r0.9 + 2 ren} . (4.2

Denote by n; the E-valued Markov chain whose jump rates are given by R®. The
chain 7} is called the reversible chain.

For two disjoint subsets A, B of E, denote by cap(A, B) (resp. cap®(A4,B))
the capacity between A and B (for the reversible chain). Next result follows from
Corollary 4.3 and Lemmas 2.5 and 2.6 in Gaudilliere and Landim (2014).

Corollary 4.4. Fix two disjoint subsets A, B of E. Then,
cap®(A, B) < cap(4,B) < 2|E|cap®(4,B) .

We conclude the section with an identity and an inequality which will be used
several times in this article. Let A and B be two disjoint subsets of F. By definition
of the capacity

cap(4, B) Zu W[ He < Hf| = Zu(n) A(n) ZPTI [He = Hj,p] -
neA neA £eB

Therefore, if we denote by RAYB(n, ), n # € € AU B, the jump rates of the trace
of the chain 7; on the set AU B, by Beltrdn and Landim (2010, Proposition 6.1),

cap(4,B) = Y p(n) Y R*"“P(n,¢). (4.3)

neA {eB



Metastability of finite state Markov chains 739

Let A be a non-empty subset of F and denote by R*(n, ) the jump rates of the
trace of n; on A. We claim that for all n # £ € A,

p(n) RA(n,€) < cap(n,§) . (4.4)

Denote by A4 (¢) the holding rates of the trace process on A and by p”(,¢’) the
jump probabilities. By definition,

RA(n,€) = X p*(n,€) = X)) Py[He = H] < X (n) Py[He < H,].

Multiplying both sides of this inequality by pa(n) = p(n)/pn(A), by definition of
the capacity we obtain that

pa(n) RA(n,€) < cap,(n.€),

where cap 4(n,€) stands for the capacity with respect to the trace process on A.
To complete the proof of (4.4), it remains to recall formula (A.10) in Beltran and
Landim (2012).

5. Reversible chains and capacities

We present in this section some estimates for the capacity of reversible, finite
state Markov chains obtained in Beltrdan and Landim (2011). These results are
useful since we proved in Corollary 4.4 that the capacity between two disjoint
subsets A, B of E is of the same order as the capacity with respect to the reversible
chain.

Recall from (3.2) that we denote by ¢3(n, ) the symmetric conductance of the
bond (7, ). Fix two disjoint subsets A, B of E. A self-avoiding path v from A to
B is a sequence of configurations (g, 71, . ..,n,) such that ny € A, n, € B, n; # n;,
i # 7, ¢ (Miymix1) > 0, 0 < i < n. Denote by I'q 5 the set of self-avoiding paths
from A to B and let

ev() = jmin cx(mimiv), en(A4B) = max ey(7). (5.1)

For two configurations 1, £, we represent ¢ ({n},{&}) by ¢ (n,§). Note that
e (n,€) < ¢y (n,€), with possibly a strict inequality.

Fix two disjoint subsets A, B of E and a configuration n ¢ AUB. We claim that

ey (A, B) = min{ey(A,n), ci(n,B)} . (5.2)

Indeed, there exist a self-avoiding path ~v; from A to 7, and a self-avoiding path
v2 from n to B such that ¢, (A, n) = e (11), ¢y (n, B) = ¢ (72). Juxtaposing the
paths 1 and 79, we obtain a path v from A to B. Of course, the path v may not
be self-avoiding, may return to A before reaching B, or may reach B before hitting
7. In any case, we may obtain from - a subpath 4 which is self-avoiding and which
connects A to B. Subpath in the sense that all bonds (n;,7;+1) which appear in 4
also appear in «. In particular,

cx(y) = ey(y) = minf{ey(n), ey(r2)} = min{cy(A,n), ey (n,B)} -

To complete the proof of claim (5.2), it remains to observe that ¢% (A, B) > ¢ (7).
Fix two disjoint subsets A, B of E and configurations n; € AUB, 1 < i < n,
such that n; # n;, ¢ # j. Iterating inequality (5.2) we obtain that

C?V(‘A’B) > min{c?\f("q)nl)’ C?v(mﬂ?z), cee C?V(nn—lann)v C?V(nnaB)} . (5'3)
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We conclude this section relating the symmetric capacity between two sets A,
B of E to the symmetric conductances ¢ (A, B). By Corollary 3.3, the sequences
of symmetric conductances {c}(n,€) : N > 1}, (1,€) € B®, are ordered. It follows
from this fact and from the proof of Lemmas 4.1 in Beltran and Landim (2011)
that there exists constants 0 < ¢y < Cy < oo such that
capy (A, B) apy (A, B)
)

- . c
co < liminf < limsup

< . 4
N—oo C?V(A,B) N oo C?;](.A, < G (5 )

6. Proof of Theorem 2.1

In view of Theorem 5.1 in Landim (2015), Theorem 2.1 follows from from con-
dition (H3) and from Propositions 6.1 below. Denote by e : € — {1,...,n} the
projection defined by ve(n) =z if n € &,

de(n) = Y zl{ne&,}.
zeS

Proposition 6.1. Fiz x € S and a configuration n € €,. Starting from n, the
speeded-up, hidden Markov chain Xy (t) = v (n®(Ont)) converges in the Skorohod
topology to the continuous-time Markov chain X¢(t), introduced in Theorem 2.1,
which starts from x.

Lemma 6.2. For everyx € S for which €, is not a singleton and for alln # £ € &,

capN(Ex, éx)

=0.
N—oo capy(n,§)

Proof: Fix x € S. By (4.3), applied to A= ¢&,, B = €., and by assumption (H1),

. CapN(EIaém)
lim §y ————2 22 = re(z,y) € Ry .
N O = e y%éx e(2,y) +

The claim of the lemma follows from this equation, from assumption (H2) and from
the fact that an/0n — 0. O

Proof of Proposition 6.1: In view of Theorem 2.1 in Beltran and Landim (2012),
the claim of the proposition follows from condition (H1), and from Lemma 6.2. O

7. Proof of Theorem 2.7

The proof of Theorem 2.7 is divided in several steps.

1. The measure of the metastable sets. We start proving that condition (HO)
is in force. Recall from Section 2 that we denote by Xp(¢) the E-valued chain which
jumps from 7 to £ at rate R(n,£). Denote by €q,...,Cy the equivalent classes of
the chain X ().

Assertion 7.A. For all 1 < j < m, and for all n # £ € €;, there exists m(n,§) €
(0,00) such that

pa(m)
NS pn(€) m.6).
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Proof: Fix 1 < j < mand nn # { € C;. By assumption, there exists a path
(n=mnoy...,nn = &) such that R(n;,ni+1) > 0 for 0 < i < n. On the other hand,
since puy is an invariant probability measure,

AN(§) pn(§) = Z v (Co) An (o) P (€0, C1) -+ - PN (Cn—1,€)
407(1,~-7Cn716E
> pn(no) An(mo) (o, m) - PN (Mn=1,§) -

Therefore,

pn (§) N An(n)

() — An(§)
Since R(n;,mi+1) > 0 for 0 < i < n, by (2.5), pn(1i, Mi+1) converges to p(n;, niy1) >
0. For the same reason, ayAy(n) converges to A(n) € (0,00). Finally, as £ and 7
belong to the same equivalent class, there exists a path from £ to n with similar
properties to the one from 7 to &, so that ayAn(§) converges to A(€) € (0,00). In
conclusion,

pN(n,m) - PN (n-1,6) -

lim inf )
N=oo N (1)
Replacing n by € we obtain that liminf gy (n)/un(€) > 0. Since by Lemma 3.1 the
sequences {un(¢) : N > 1}, ¢ € E, are ordered, pun(n)/pun(€) must converge to
some value in (0, c0). O

> 0.

By the previous assertion for every € S and n € €,

R 4 ()

where we adopted the convention established in condition (H1) of Section 2.

2. The time-scale. In this subsection, we introduce a time-scale vy, we prove
that it is much longer than a and that it is of the same order of 6. In particular
the requirement oy /60 — 0 is in force.

Denote by {nf : ¢ > 0} the trace of ¥ on the set &, and by R§ : € x &€ — R
the jump rates of n¢. Let

e ID DI IUOR (7.2)

zeESNEE, §€éz

where ém has been introduced in (2.4). The sequence yy represents the time needed

to reach the set &, starting from €, for some z € S. This time scale might be longer
for other sets €, y # x, but it is of the order vy at least for one x € §. We could
as well have defined vy as max,es max,ee, max, s R& (1, €).

Assertion 7.B. The time scale vy is much longer than the time-scale ay:

Proof: We have to show that aNRJSV(n, &) converges to 0 as N 1 oo, for all n € &,,
Eeéyz#yeS Fixax#yeS nel, e & Since &, is a recurrent
class, R(n,¢) =0 for all ¢ € &,. On the other hand, by Beltran and Landim (2010,
Proposition 6.1) and by the strong Markov property,

R{(0,€) = An(n)Py[He = HE] = Ry(m,&) + Y Rn(n,¢) Pc[He = He] .
(ge
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Since R(n,¢) =0 for all ¢ € &, it follows from the previous identity and from the
definition of R(n,¢) that ax R (n,€) — 0, as claimed. O

By Assertion 3.A, forallz € S, ne &,, £ € éw, with the convention adopted in
condition (H1) of Section 2,

re(n.€) = lim xRy (n.€) € [0,1]. (73)
Assertion 7.C. For all x € S,
€ Ry . Moreover, { = Zéx > 0.
zeS

Proof: By (4.3), applied to A=¢€,, B = €., by (7.1) and by (7.3),

lim YN M — Z mx(n) Z 7“8(7775) € R+’

N—o0 IJ/N(Ez) net. ek

which completes the proof of the first claim of the assertion.
By (7.2) and by definition of r¢(n, £),

DD D e =

zeESNEE, 565:1

so that
= ng = Z Z mw(n) Z 7“8(7776) > Ifﬂrlelggrelgimm(n) > 0,
xeS zeSNEE, geéw
which is the second claim of the assertion. O

It follows from Assertion 7.C that the time-scale vy is of the same order of 6y
in the sense that vy /0y converges as N 1 oo:

lim X = ¢ € (0,00). (7.4)

3. The average jump rate, condition (H1). Denote by rn (&5, E,) the mean
rate at which the trace process jumps from &, to &,:

(€ 8)) = s 3 i) Y B (7.5)

7768 €€y

Next lemma follows from (7.1), (7.3) and (7.4).

Lemma 7.1. For everyx #y € S,

N\»—l

re(x,y) = hm Onrn(Es, Ey)

Z Z re(n,§) € Ry
ce,

cee,

4. Inside the metastable sets, condition (H2). Next assertion shows that
condition (H2) is in force.

Assertion 7.D. For every x € S for which &, is not a singleton and for all n # £ €
&z, there exist constants 0 < ¢y < Cy < 0o such that

. capy(n,§) . capy(n,§)
< ENAD S —r .
Co lim inf oy 1 (62) lim sup an in(es) S Co
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Proof: Fix © € S for which €, is not a singleton, and n # & € ;. On the one
hand, by definition of the capacity

capy (n,§) _ pn(n)
pn(€z) T un(E€x)
By (2.5) and (7.1), the right hand side converges to A(n)ms(n) < oo, which proves
one of the inequalities.
On the other hand, as &, is an equivalent class which is not a singleton, A(¢) > 0
for all ¢ € &,, or, in other words, £, C Ey. Since 1 ~ &, there exists a path
(n=n0,...,nn = &) such that R(n;,n;+1) > 0 for 0 < i < n. Since,

P, [He < H,J,r] > pn(m,m) - PN (n-1,§) ,

in view of the formula (2.2) for the capacity, we have that

capy (n,§)  pn(n)

/’I’N(SI) B NN(£x>

The right hand side converges to mg(n)A(n)p(n, m) - - p(Mn—1,&) > 0, which com-
pletes the proof of the assertion. O

N aN/\N(n).

an AN pN(m,m) - PN (n—1,§) -

5. Condition (H3) holds. To complete the proof of Theorem 2.7 it remains to
show that the chain 1V spends a negligible amount of time on the set A in the time
scale Oy .

Lemma 7.2. For everyt > 0,

t
. N —
A}gr})o%leaé( En{/o Hng, € A}ds} =0.

Proof: Since ay/0n — 0, a change of variables in the time integral and the Markov
property show that for every n € E, for every T > 0 and for every N large enough,

¢ T
E [/ 1{nhy. € A}ds} < E max Eg[/ 1{nN A} ds] .
A sON - T ¢eE 0 saN

Note that the process on the right hand side is speeded up by ay instead of .

We estimate the expression on the right hand side of the previous formula. We
may, of course, restrict the maximum to A. Let 7} be the first time the chain n}¥
hits € and let T5 be the time it takes for the process to return to A after T7:

T, = He, Ty = inf{s>0:nJTvl+S€A}.
Fix n € A and note that

E, [% /OT 1{nk,, € A}ds}

< Py[Th > toan] + Py[Te < Tan] +

" (7.6)
T

for all t5 > 0 because the time average is bounded by 1 and because on the set
{Th < toan}N{Te > Tan} the time average is bounded by to/T. By Assertion 7.E
below, the first term on the right hand side vanishes as IV 1 oo and then ¢y T co.
On the other hand, by the strong Markov property, the second term is bounded
by maxece Pe[Ha < Tay]. By definition of the set &, for every n € € and every
e A, anRy(n,&) — 0 as N 1 co. This shows that for every T' > 0 the second
term on the right hand side of (7.6) vanishes as N 1 oo, which completes the proof
of the lemma. (I
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Assertion 7.E. For every n € A,
lim limsup P, [Hg > tozN] =0.

t—=00 N_so0

Proof: Recall that we denote by Xg(t) the continuous-time Markov chain on F
which jumps from 7 to £ at rate R(n,£) = limy ayRy(n,£). Note that the set &
consists of recurrent points for the chain Xg(¢), while points in A are transient.
Since the jump rates converge, the chain n)f\(iN converges in the Skorohod topology
to Xg(t). Therefore, for all t > 0, n € A,

limsupIP’n[Hg > taN] < P,,[Hg > t] ,

N —oc0
where P, stands for the law of the chain Xg(t) starting from n. Since the set of
recurrent points for Xg(t) is equal to € = A€, the previous probability vanishes as
t 1 oo. O

We conclude this section with an observation concerning the capacities of the
metastable sets €.

Assertion 7.F. The sequences {capy (4, E2)/un(€2) : N > 1}, = € S, are ordered.
Proof: Fix x € S. By (4.3) applied to A= ¢&,, B = &,
capy(€a,&x) = > pn(n) > RE(n,€) .

UISIo ceé,
The claim of the assertion follows from this identity, from Assertion 3.A and from
(7.1). (]

8. Proof of Theorem 2.12

Theorem 2.12 is proved in several steps.
1. The measure of configurations in §,. We assumed in (HO) that all configu-
rations in a set F, have measure of the same order. We prove below in Assertion 8.A
that a similar property holds for the sets G,.

Let

(@) = 3 @ F), p(FaTy) =
YYFT
Denote by Fy the subset of points in P such that Ay (x) =3_ , r(2,y) > 0. For
all z € Py let py(x,y) = ro(z,y)/Ag(z). It follows from assumption (H1) that for
all x, zin P, y € Py,

Jim B A (Fe) = Ag(), im PN(? F.) = pr(y,2) . (8.1)

Recall that X5(t) is the P-valued Markov chain which jumps from z to y at rate
rg(z,y). Denote by Cy, a € P, ={1,...,q1}, the equivalent classes of the Markov
chain X5(t), and let C, = Uzec, F. All configurations in a set C, have probability
of the same order.

3 (F, Fy)

() if A\5(F.)>0.

Assertion 8.A. For all equivalent classes C,, a € Pp, and for all n # £ € C,, there
exists m(n, &) € (0,00) such that

pa(m)
NS pn(€) m8)
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Proof: The argument is very close to the one of Assertion 7.A Denote by Xy (t)
the chain 17 (t) in which each set F, has been collapsed to a point. We refer to the
Section 3 of Gaudilliere and Landim (2014) for a precise definition of the collapsed
chain and for the proof of the results used below.

The chain Xy (t) takes value in the set P, its jump rate from x to y, denoted
by 7n(z,y), is equal to 73 (F,, F,) introduced in (2.3), and its unique invariant
probability measure, denoted by fin(x), is given by fin(z) = pun(Fz)/un (F).

Fix an equivalent class C, and n # & € C,. If n and £ belong to the same set F,
the claim follows from Assumption (HO). Suppose that n € F,, £ € F, for some
x # y € C,. By assumption, there exists a path (z = zo,...,z, = y) such that
’I"g“(l‘i,l‘H_l) >0for0<i<n.

Denote by Ay (z), = € P, the holding rates of the collapsed chain Xy (t), and by
pn(z,y), x # y € P, the jump probabilities. Since fiy is the invariant probability
measure for the collapsed chain,

AN () an(y) = Z fin(20) An (20) P (20, 21) - PN (2n-1,Y)
20321 5--y2n—1EP
> N (z0) An (o) DN (20, 1) -+ DN (Tn-1,Y) -
Therefore,
inty) ()
En(z) — An(y)
Since rg(x;,x;41) > 0 for 0 < i < n, by (_8.'1)7 pn (i, xi41) converges to
py(zi,wi41) > 0. For the same reason, SnAy(z) = ByAY(F.) converges to
Ag(z) € (0,00). As y and z share the same properties, inverting their role we

obtain that Sy An(y) converges to Ag(y) € (0,00). In conclusion,

Py (@, 1) PN (Tn-1,9) -

lim inf l_L ()

> 0.
N—oo fin(y)

Replacing = by y we obtain that liminf iy (y)/fan(x) > 0. By Gaudilliere and
Landim (2014), in(2) = un(F2), 2 € P. To complete the proof it remains to recall
the statement of Lemma 3.1 and Assumption (HO). O

By the previous assertion for every a € QQ and n € G,

m(n) = Jim :;V((gi)) € (0,1] . (8.2)

Thus, assumption (HO) holds for the partition {G1,...,5,, Ag}.

2. The time scale. We prove in this subsection that the time-scale 5;{[ introduced
in (2.10) is much longer than 8y.

Assertion 8.B. We have that
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for each a € Q. Fix a € @ and recall from (2.8) the definition of the set G,. Since
G, is a recurrent class for the chain Xg(t), rgq(z,y) =0for all z € G,, y € P\ G,.
By definition of the capacity,

M: WM ) B, [,

HN(9a) Ga < Héra}

MN NPy [Hyg, < Hg ]
N€Ga

¢

By Beltran and Landim (2010, Proposition 6.1), this sum is equal to

sl Z R (n,€) 'uN Z 3 (x,y) .
5 N )

9 EG?\Sa yEP\G,

Since rg(z,y) =0 for all z € G,, y € P\ G,, by assumption (H1) the previous sum
multiplied by Sy converges to 0 as N 1 co. (]

3. Condition (H1) is fulfilled by the partition {G;,...,S3,,Ag}. We first
obtain an alternative formula for the time-scale BJJ{,. The arguments and the ideas
are very similar to the ones presented in the previous section. Let

=2 > > Rino.

a€Qn€Sa ¢e§,

By Assertion 3.A, for all a € @, n € G, £ € ga, with the convention adopted in
condition (H1) of Section 2,

rg(n,€) = lim yx R} (1) € [0,1]. (8.3)
Assertion 8.C. For all a € Q,

Agla) = lim ~y 2N (FarJa)

€ R, . Moreover , Ag = Ag(a) > 0.
i 1w (5 + 5 = > Agla)

acqQ

Proof: Fix a € Q. By (4.3), applied to A = G,, B = Su, by (8.2) and by (8.3),

lim YN CapN(Saaga) _

Nooo 1in (Sa) > omim) Y re(n,€) € Ry,

N€S5a ce§,

which completes the proof of the first claim of the assertion.
By definition of vy and by definition of rg(n, £),

Yo D s =1,

a€Q NES, gega
so that

= > Agla) = DN mim) Y rg(n.€) = min min mg(n) > 0,

ac@ a€Qnefa ¢e8a

which is the second claim of the assertion. O
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It follows from the previous assertion that the time-scale yy is of the same order
of ,BX,:

Nlinoo@ = Xg €(0,00) . (8.4)

Denote by 7’]9\,(9a, Gp) the mean rate at which the trace process jumps from G,
to 91,2

r5(Sas Gp) = Z pn(m) > R (,€) - (8.5)

7769 £€Gy
Lemma 8.1. For every a #b € Q,
. 1 X
ro(at) = lim Br%(9 %) = = 3 miln) 3 rs(n.6) € R

9 nes, £€g,

Z Z rg(a,b) = 1.

a€qQ b:b#a

Proof: The first claim of this lemma follows from (8.2), (8.3) and (8.4). On the
other hand, by the explicit formula for rg(a,b) and by the formula for Ag(a) ob-

tained in the previous assertion,
Y D rsng) =

Z Z ’I"Q(CL7 b)

a€EQ b:b#a aEQ N€Ga b:b£a £€Gy aEQ

Moreover,

This expression is equal to 1 by definition of ;\9 ([

4. Condition (H2) is fulfilled by the partition {S;,...,5,,Ag}. The proof
of condition (H2) is based on the next assertion.

Assertion 8.D. For every a € @ for which G, is not a singleton and for all n # £ €

Sa,

capy (1, §)
/J/N(ga)

Proof: Throughout this proof ¢y represents a positive real number independent
of N and which may change from line to line. Fix a € @ for which G, is not a
singleton, and n # £ € G,. By definition, §, = Uzeq,Fz. If n and € belongs to the
same F, the result follows from assumption (H2) and from Assertion 8.A.

Fix n € ¥, and £ € JF, for some z # y, T, UF, C G,. Recall that we denote
by cap3 (A, B) the capacity between two disjoint subsets A, B of E with respect
to the reversible chain introduced in (4.2).

Since G, is a recurrent class for the chain X5(t), there exists a sequence (z =
X0, L1, .-, Ty = Yy) such that rg(z;, x;41) > 0 for 0 < i < n. In view of assumptions
(HO) and (H1), there exist & € Fy,, niv1 € Fu,,, such that Sx R (&, miv1) > co-
Therefore, by Corollary 4.4 and (4.4),

1}\1}1}1{2}‘61\] > 0.

i+1

BN cap (i, mit1) capy (&ismiv1) > copun(&i) (8.6)

5 Pn
= 2B

so that, by (5.4), Bn i (& mi+1) = co pn (&)
Since the configuration 1 and &y belongs to the same set F,., by assumption (H2),
Bycapy (m, &o)/un(Fy) > co. A similar assertion holds for the pair of configurations
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1, &, 1 <1 < n, and for the pair n,,, £&. Hence, if we set ng = 1, &, = &, by Corollary
4.4 and (5.4), we have that

Byen(ni&) = copn(Fa,) -
By (8.2), we may replace un(Fz;) by un(Ge) in the previous inequality, and
pun (&) by pn(Sa) in (8.6). By (5.3),

eN(n,&) > Ogliignmin{C?v(m,fi)m?v(éi,mu),C?v(nn,fn)}-

Since By < B, it follows from the previous estimates that Syci; (1, &) > coun(Ga).
To complete the proof, it remains to recall that, by Corollary 4.4 and (5. 1 ,

capy(n,€) > capiy (1, &) > cock (1, §).

5. Condition (H3) is fulfilled by the partition {Gi,...,5,,Ag}. Lemma 8.2
shows that it is enough to prove condition (H3) for the trace process n” (t).

Lemma 8.2. Assume that

t
F _
i maxE, [/o Ly € Auyds| =0,

where Ay = Ugeg,,, T has been introduced in (2.8). Then,

t
lim maxE [/0 l{ni\éx EAg}ds] =0.

N—oo nekE

Proof: Fixn € E. Since Ag = A, UAg,
t
]En[/ 1{5,51 € Az U A*}ds}
0

t t
F
< En{/o l{nsﬁj\r’ € Ag}ds} + Iglea;( ]Eg[/o 1{7756;G € A}ds
The second term vanishes as N 1 oo by assumption. The first one is bounded by
B%/8 n
B NZN / e
By
where [r] stands for the integer part of . By the Markov property, this expression
is bounded above by

sy € Ag}ds| |

t
2 maxEe| | 1nipy € As}ds]
maxBe| [ 10nsy € Ag}ds
which vanishes as N 1 oo by assumption (H3). (]

To prove that condition (H3) is fulfilled by the partition {Gi,...,Gq,Ag} it
remains to show that the assumption of the previous lemma is in force. The proof
of this claim relies on the next assertion. Denote by ]P’g the probability measure on
D(R,,7) induced by the trace chain ] starting from 7.

Assertion 8.E. For every n € A,,
lim hmsup]P’ [Hg ZtBN] =0

=00 N0
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Proof: Fix n € ¥, C A,. Since the partition J1,...,J,, Ag satisfy the conditions
(H1)—-(H3), by Proposition 6.1, starting from 7 the process Xy (t) = 1/13(7],%N)
converges in the Skorohod topology to the Markov chain X#(t) on P = {1,...,p}
which starts from x and which jumps from y to z at rate r(y, z). Therefore,

limsup P} [Hg >t Bn| < P.[Hr >1t],
N—0o0

where P, represents the distribution of the chain X4(¢) starting from = and R =

Ui<a<qGa. Since R corresponds to the set of recurrent points of the chain Xg(t),

the previous expression vanishes as t 1T oo. O

Lemma 8.3. For allt > 0,

t
. F —
J\;%o%lea;{En[/o 1{77551+V €A }ds| = 0.

Proof: Since S/ ﬁ;{, — 0, a change of variables in the time integral, similar to the
one performed in the proof of Lemma 8.2, and the Markov property show that for
every n € F, every T' > 0 and every N large enough,

t T
E [/ 1{n? . € A*}ds} < 2 max Eg[/ 1{nZ;. € A*}ds} .
K 0 sBy - T ¢eT 0 sBN

Note that the process on the right hand side is speeded up by Sy instead of 5;{,

We estimate the expression on the right hand side of the previous formula. We
may, of course, restrict the maximum to A,. Let T} be the first time the trace
process 1y hits G and let Ty be the time it takes for the process to return to A,
after T7:

Ty = Hg, Tp = inf{s>0:n7,,€A}.

Fix n € A, and note that

En[% /0T1{n§,3N € A*}ds]

lo

< PT[T1 > toBn] + P [T2 <TBn] + T

for all ty > 0. By Assertion 8.E, the first term on the right hand side vanishes as
N 1 oo and then ¢y T co. On the other hand, by the strong Markov property, the
second term is bounded by maxgcg H”g [Ha, < TPn]. Since, by Proposition 6.1, the
process 1/19(17%N) converges in the Skorohod topology to the Markov chain X#(t),

limsupmagxIPg[HA* <TPn] € max max P,[Hg ,, <T7],

N—oo &€ T 1<a<qz€Ga a+t
where, as in the proof of the previous assertion, P, represents the distribution of
the chain Xg(t) starting from z. Since the sets G, are recurrent classes for the
chain X5 (¢), r#(x,y) =0 for all * € Ui<a<qGa; ¥y € Gq41. Therefore, the previous
probability is equal to 0 for all T > 0, which completes the proof of the lemma. O
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