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Abstract. In this paper, we propose a new estimation method for randomly right
censored varying coefficient models and establish the asymptotic normality of the
resulting estimator. Compared to the existing estimation method, the proposed
estimation method is computationally simple and practically feasible since it re-
quires no transformation of data. Simulation studies are conducted to assess the
finite sample performance of the proposed estimation method against that of the
existing estimation method. The simulation results demonstrate that the proposed
estimation method performs much better than the existing estimation method.

1. Introduction

In recent years, there has been an upsurge of interest and effort in nonpara-
metric regression analysis because of its flexibility and adaptability in modeling
a regression relationship. However, a nonparametric regression model may fail to
incorporate some prior information and the resulting estimator of the regression
function tends to incur greater variance. The worse is the so-called “curse of di-
mensionality”, which makes the commonly used nonparametric smoothing methods
practically impotent when the number of the covariates is large. To overcome the
“curse of dimensionality”, many alternatives of the nonparametric models have
been proposed in the literature. Some typical examples include additive models
Hastie and Tibshirani (1990), low-dimensional interaction models (Friedman, 1991;
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Gu and Wahba, 1993), single-index models (Härdle and Stoker, 1989), partially lin-
ear models (Engle et al., 1986), varying coefficient models (Cleveland et al., 1992;
Hastie and Tibshirani, 1993), and their hybrids (Carroll et al., 1997; Wong et al.,
2008; Zhang et al., 2002). One of the most important alternatives is varying coef-
ficient models, which extend the classical linear models by allowing the regression
coefficients to depend on certain covariates. This type of models has been very
useful statistical tool to explore the dynamic pattern in many scientific areas, such
as economics, finance, politics, epidemiology, medical science, ecology and so on.
In general, a varying coefficient model assumes that the relationship between the
response variable Y and the covariates X1, · · · , Xp and U follows

Yi = XT
i a(Ui) + εi, i = 1, · · · , n, (1.1)

where Yi, Xi = (Xi1, · · · , Xip)
T and Ui are, respectively, the observations of the

response variable Y and the covariates X1, · · · , Xp and U , a(·) = (a1(·), · · · , ap(·))T
is a vector of unknown coefficient functions, and εi (i = 1, · · · , n) are the random
error terms with E(εi|Ui,Xi) = 0 and Var(εi|Ui,Xi) = σ2(Ui,Xi) (i = 1, · · · , n).
This model is much more flexible than the classical linear model, since each coeffi-
cient function is modeled nonparametrically. Moreover, by considering this model,
one can incorporate nonlinear interaction effects into the model. The structure of
the model is simple, since the conditional mean function is still linear function of
the covariates X1, · · · , Xp. If all coefficient functions are constant functions, the
model reduces to the classical linear model.

The varying coefficient model was originally introduced by Cleveland et al. (1992)
and was further developed by Hastie and Tibshirani (1993). Due to its easy interpre-
tation and its flexibility to explore the dynamic pattern of a regression relationship,
model (1.1) has attracted a great deal of attention over the past two decades. When
its response variable Y is fully observed, model (1.1) has been widely studied in
estimation (Cai and Xu, 2009; Cai et al., 2000; Fan and Zhang, 1999; Hastie and
Tibshirani, 1993; Huang et al., 2004; Lu et al., 2008; Qu and Li, 2006; Wang et al.,
2009; Xue and Zhu, 2007), hypothesis testing (Cai et al., 2000; Fan and Zhang,
2000; Fan et al., 2001; Xu and Zhu, 2008; Zhang and Peng, 2010), and variable
selection (Daye et al., 2012; Fan et al., 2014; Liu et al., 2014; Wang and Xia, 2009;
Wang et al., 2008; Xue and Qu, 2012; Zhao and Xue, 2011).

However, in many applications of regression analysis, especially in biomedical
studies, the response variable Y cannot be completely observed due to possible
censoring, for instance, withdrawal of patients from a study or death from a cause
unrelated to the specific disease of being studied. Among the censoring mechanisms,
random right censoring is of the widest application backgrounds. Let C be the cen-
soring variable. For randomly right censored data, we observe {(Ui,Xi, Zi, δi)}ni=1,
a random sample of (U,X, Z, δ), where

Z = min(Y,C) and δ = I(Y ≤ C), (1.2)

with I(·) being the indicator function. Throughout this paper, we assume that the
censoring variable C is independent of the response variable Y . Furthermore, for
ease of the technical proofs, we assume that C and Y are both the nonnegative
random variables from now on.

Compared to the study on randomly right censored nonparametric regression
models (Cai, 2003; Fan and Gijbels, 1994; Kim and Truong, 1998; Lopez and Patilea,
2009; Pardo-Fernández et al., 2007), less attention has been paid to randomly right
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censored varying coefficient models. Recently, Luo et al. (2006) proposed a synthetic
data method for randomly right censored varying coefficient models, in which the
transformation technique proposed by Fan and Gijbels (1994) was first used to
transform the censored data and then the local polynomial smoothing method was
employed to fit the varying coefficient model with the transformed data. However,
this estimation method needs to choose two parameters, one is the tuning parameter
in the data transformation, which is used to reduce the variability of the transformed
data, and the other is the bandwidth in the local polynomial smoothing, thus it is
computationally demanding for applied researchers. More importantly, when the
censoring distribution depends on the covariate vector (U,X), the method needs to
estimate the conditional censoring distribution function via the local Kaplan-Meier
method in which another bandwidth is needed to be chosen, hence it is practically
feasible only when the dimension of (U,X) is small because of the well-known “curse
of dimensionality”.

The purpose of this paper is to propose a computationally simple and practi-
cally feasible estimation method for randomly right censored varying coefficient
models. The proposed estimation method constructs a weighted local least squares
function based on the idea of weighted least squares, which may be regarded as a
generalization of the weighted least squares method originally introduced by Zhou
(1992) for randomly right censored linear regression models and further extended
by Stute (1999), Cai (2003) and Lopez (2009) for randomly right censored nonlin-
ear regression models, randomly right censored nonparametric regression models
and randomly right censored single-index models, respectively. Specifically, the
weighted local least squares function is constructed by first expressing the kernel
weighted local least squares function for the uncensored data {(Ui,Xi, Yi)}ni=1 as
an integral with respect to the empirical distribution function of {(Ui,Xi, Yi)}ni=1

and then replacing the empirical distribution function for the uncensored data by
its counterpart for the censored data {(Ui,Xi, Zi, δi)}ni=1 (that is, Kaplan-Meier
estimator). In such a way, no transformation is needed so that it avoids the selec-
tion of the tuning parameter and the estimation of the unconditional or conditional
censoring distribution function. Therefore, the proposed estimation method not
only has the advantage of computational simplicity and practical feasibility, but
also is expected to produce more accurate coefficient estimates, which is vital to
the application of the varying coefficient model because the coefficient estimates are
generally taken as the main evidence to explore the dynamic pattern of the under-
lying regression relationship. We conduct simulation studies to examine the finite
sample performance of the proposed estimation method and to make an empirical
comparison with the existing estimation method in terms of the mean squared error
of coefficient estimates. The simulation results show that the proposed estimation
method indeed has much better finite sample performance than the existing one.
In addition to Luo et al. (2006), another related paper by Yang et al. (2014) stud-
ied the problem of estimating the coefficient functions in randomly right censored
varying coefficient models where different coefficient functions have different one-
dimensional smoothing variable, which is more flexible than the model considered
in this paper, in which the authors proposed an estimation method based on the
synthetic data obtained by the unbiased transformation given by Koul et al. (1981)
and the smooth back-fitting technique and studied the asymptotic normality of
the resulting estimators of the coefficient functions. Although both the proposed



756 T. Li

estimation method and the estimation method of Yang et al. (2014) employed the
same assumption on the censoring mechanism (see Remark 2.3 below), the starting
point of constructing estimator of the coefficient functions is completely different.

The remainder of this paper is organized as follows. In Section 2, we describe
in detail the proposed estimation method for the randomly right censored varying
coefficient model, establish the asymptotic normality of the resulting estimator of
the coefficient function vector a(u), and discuss the issue of bandwidth selection. In
the same section, a comparison with the synthetic data method of Luo et al. (2006)
is made and an extension to randomly right censored varying coefficient models
with multivariate smoothing variable is included. Section 3 presents numerical
comparison. Conclusion remark is given in Section 4. Technical proofs are given in
Section 5.

2. Weighted local linear smoothing method

2.1. Weighted local linear estimator. To better illustrate the idea of the proposed
estimation method, we first consider the case where the response variable Y is fully
observed. In this case, the local linear smoothing method (Fan and Gijbels, 1996)
is commonly used to estimate the coefficient function vector a(·), although other
smoothing methods such as the Nadaraya-Watson kernel method and the spline
methods are applicable. The main reason for preferring the local linear smoothing
method is because it possesses many attractive properties such as high statisti-
cal efficiency in an asymptotic minimax sense, design adaptation, and automatic
boundary corrections (for details, see Fan and Gijbels, 1996).

Assume that all the coefficient functions a1(·), · · · , ap(·) have continuous second
order derivatives. Then for any given u0 in the domain of the covariate U , it follows
from the Taylor’s expansion that

aj(u) ≈ aj(u0) + a′j(u0)(u− u0), j = 1, · · · , p,

in a neighborhood of u0. The local linear smoothing method finds a(u0) and
a′(u0) = (a′1(u0), · · · , a′p(u0))T to minimize the following kernel weighted local least
squares function

1

n

n∑
i=1

[
Yi −XT

i a(u0)− (Ui − u0)XT
i a′(u0)

]2
Kh(Ui − u0), (2.1)

where Kh(·) = K(·/h)/h with K(·) being a kernel function and h being the band-
width.

Let Y = (Y1, · · · , Yn)T, M = (XT
1 a(U1), · · · ,XT

na(Un))T, Ψ(u0) =
(a(u0)T, ha′(u0)T)T, W(u0) = diag(Kh(U1 − u0), · · · ,Kh(Un − u0)), and

X(u0) =

 XT
1 h−1(U1 − u0)XT

1
...

...
XT
n h−1(Un − u0)XT

n

 .

With the above notations, the solution of the weighted least squares problem (2.1),
that is, the estimator of Ψ(u0), can be expressed as

Ψ̃(u0) = [X(u0)TW(u0)X(u0)]−1X(u0)TW(u0)Y. (2.2)
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Consequently, the estimator of the coefficient function vector a(u) at u0 is

ã(u0) = (Ip,0p×p)[X(u0)TW(u0)X(u0)]−1X(u0)TW(u0)Y, (2.3)

where 0p×p is the p×p zero matrix.

Taking u0 in (2.3) to be U1, · · · , Un, respectively, we can obtain M̃, the fitted
vector of M, as

M̃ =

 XT
1 ã(U1)

...
XT
n ã(Un)

 = S̃Y, (2.4)

where

S̃ =


(XT

1 ,01×p)
[
X(U1)TW(U1)X(U1)

]−1
X(U1)TW(U1)

...

(XT
n ,01×p)

[
X(Un)TW(Un)X(Un)

]−1
X(Un)TW(Un)

 .

It is clear that the kernel weighted local least squares function (2.1) can be
expressed as the following form∫ [

y − xTa(u0)− (u− u0)xTa′(u0)
]2
Kh(u− u0) dFn(u,x, y), (2.5)

where Fn(u,x, y) is the empirical distribution function of {(Ui,Xi, Yi)}ni=1, a con-
sistent estimator of the joint distribution function F (u,x, y) = P (U≤u,X≤x, Y≤y)
of (U,X, Y ).

However, in the situation of random right censoring, the local linear estimator
of the coefficient function vector a(·) cannot be obtained through minimizing (2.5)
since Fn(u,x, y) relies on the uncensored observations {(Ui,Xi, Yi)}ni=1. In this case,
a natural way to proceed is to replace Fn(u,x, y) with other consistent estimator
of F (u,x, y). To this purpose, let

Win =
δ(i)

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)
, (2.6)

where Z(1) ≤ · · · ≤ Z(n) are the order statistics of Z1, · · · , Zn and δ(i) is the δ
associated with Z(i). Following Stute and Wang (1993), the Kaplan-Meier estimator

F̂n(y) of the distribution function F (y) = P (Y≤y) of the response variable Y can

be expressed as F̂n(y) =
∑n
i=1WinI(Z(i)≤y). In the presence of the covariates,

Stute (1993) extended the Kaplan-Meier estimator to include the covariates and
proposed an estimator for the joint distribution function F (u,x, y), namely,

F̂n(u,x, y) =

n∑
i=1

WinI(U(i)≤u,X(i)≤x, Z(i)≤y),

where U(i) and X(i) are the U and X associated with Z(i), respectively. It follows

from Corollary 1.5 in Stute (1993) that F̂n(u,x, y) is a consistent estimator of

F (u,x, y). Like that in Cai (2003), we replace Fn(u,x, y) in (2.5) with F̂n(u,x, y)
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to obtain the following weighted local least squares function∫ [
y − xTa(u0)− (u− u0)xTa′(u0)

]2
Kh(u− u0) dF̂n(u,x, y)

=

n∑
i=1

W ∗in

[
Zi −XT

i a(u0)− (Ui − u0)XT
i a′(u0)

]2
Kh(Ui − u0), (2.7)

where W ∗in is the Win-value associated with the natural order of Zi. By minimizing
(2.7) with respect to a(u0) and a′(u0), we obtain the weighted local linear estimators
of Ψ(u0) and a(u0) as

Ψ̂(u0) = [X(u0)TW∗W(u0)X(u0)]−1X(u0)TW∗W(u0)Z (2.8)

and

â(u0) = (Ip,0p×p)[X(u0)TW∗W(u0)X(u0)]−1X(u0)TW∗W(u0)Z, (2.9)

where W∗ = diag(W ∗1n, · · · ,W ∗nn) and Z = (Z1, · · · , Zn)T.

Taking u0 in (2.9) to be U1, · · · , Un, respectively, we can obtain M̂, the fitted
vector of M, as

M̂ =

 XT
1 â(U1)

...
XT
n â(Un)

 = ŜZ, (2.10)

where

Ŝ =


(XT

1 ,01×p)
[
X(U1)TW∗W(U1)X(U1)

]−1
X(U1)TW∗W(U1)

...

(XT
n ,01×p)

[
X(Un)TW∗W(Un)X(Un)

]−1
X(Un)TW∗W(Un)

 .

Remark 2.1. There are two weights in the last expression of (2.7). The first
weight W ∗in is used to compensate for the censoring while the second weight K(·)
is used to control the amount of smoothing. When there is no censoring, W ∗in = 1

n
and Zi = Yi, then (2.7) reduces to (2.1), which is the ordinary kernel weighted local
least squares function.

2.2. Asymptotic normality of the weighted local linear estimator. To facilitate the
presentation, we first introduce some notations. Denote by G(·) the distribu-
tion function of the censoring variable C. Define τF = inf{y|F (y) = 1} and
τG = inf{t|G(t) = 1}. Let µj =

∫
ujK(u) du, νj =

∫
ujK2(u) du, bk(u,x) =

E(Y k{1 − G(Y )}−1|U = u,X = x), σ∗2(u,x) = Var(ZG|U = u,X = x), Γ(u) =
E(XXT|U = u), and Γ1(u) = E(X⊗4|U = u), where X⊗4 = (XXT)(XXT) and
ZG = δZ{1 − G(Z−)}−1 with G(t−) being the left limit of G(t) at t. Fur-
ther, let Γ∗(u) = E(σ∗2(U,X)XXT|U = u), Γ∗k(u) = E(bk(U,X)XXT|U = u),
Γ∗1k(u) = E(bk(U,X)X⊗4|U = u), and εG = ZG − E(ZG|U,X).

The following technical conditions are imposed to establish the asymptotic nor-
mality of the weighted local linear estimator, although some of them might not be
the weakest possible.

C1. The covariate U has a bounded support Ω and its density function f(u) is
continuous and is bounded away from 0 on its support Ω.

C2. The p×p matrix Γ(u) is nonsingular for each u∈Ω. The matrices Γ(u),
Γ(u)−1, Γ1(u), Γ∗(u), Γ∗k(u), and Γ∗1k(u) are all continuous.
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C3. (i) P (Y≤C|U,X, Y ) = P (Y≤C|Y ),
(ii) τF≤τG.

C4. All of the coefficient functions a1(·), · · · , ap(·) have continuous second order
derivatives.

C5. The kernel function K(·) is a symmetric density function and has a compact
support, say [−1, 1].

C6. When n→∞, we have h→0, nh→∞.
C7. There exists some γ > 0, such that E(|εG|2+γ |U = u,X = x) < ∞ for

all x ∈ Rp and u in a neighborhood of u0 and E(|X|2+γ |U = u) is
continuous.

Remark 2.2. The conditions listed above are quite common in the literature. For
example, the condition C3(i) is also imposed by Stute (1993, 1996, 1999) for the
randomly right censored parametric regression models, Cai (2003) and Lopez and
Patilea (2009) for the randomly right censored nonparametric regression models,
and Lopez (2009) for the randomly right censored single-index models. As pointed
out by Stute (1996), the condition C3(i), together with the independence of Y and
C, guarantee that the joint distribution function F (u,x, y) of (U,X, Y ) can be the-
oretically derived from that of (U,X, Z, δ) and hence can be consistently estimated
from the censored observations {(Ui,Xi, Zi, δi)}ni=1. A major case for which the
condition C3(i) holds is the case where the censoring variable C is independent
of the covariate vector (U,X). However, the condition C3(i) is flexible enough to
allow for a dependence structure between C and (U,X). A detailed discussion on
situations in which the condition C3(i) holds without assuming the independence
of C and (U,X) can be found in Stute (1999). When τG < τF , in general, there
is no way to consistently estimate the joint distribution function F (u,x, y) since
relevant information about Y on (τG, τF ) is always cut off due to random right
censoring. The condition C3(ii) allows one to avoid this case. It is easy to show
that the asymptotic optimal bandwidth hopt = O(n−1/5) (see Remark 2.4 below)
satisfies the condition C6. The condition C7 is imposed to establish the asymptotic

normality of Ψ̂(u0) and â(u0) and it is widely used in the literature of the censored
regression analysis (see, for example, Cai, 2003; Fan and Gijbels, 1994; Luo et al.,
2006). Furthermore, as pointed out by Hall et al. (1999) and Cai and Ould-Säıd
(2003), the requirement that the kernel function K(·) has compact support in the
condition C5 can be removed at the expense of lengthier arguments used in the
proof of Theorem 2.1. In particular, the Gaussian kernel is allowed.

Remark 2.3. In the literature of randomly right censored regression models, any
estimation method relies on some conditions on the censoring mechanism. Along
the line of research initiated by Stute (1993), this paper assumes that the response
variable Y is independent of the censoring variable C and P (Y≤C|U,X, Y ) =
P (Y≤C|Y ). As emphasized in Remark 2.2, this assumption assures that the joint
distribution function F (u,x, y) of (U,X, Y ) can be theoretically derived from that
of (U,X, Z, δ) and thus can be consistently estimated from the censored observa-
tions {(Ui,Xi, Zi, δi)}ni=1. Although the proposed estimation method is free of the
dimension of the covariate vector (U,X) because no any type of kernel estimator of
F (u,x, y) is used, it has the drawback that it assumes that the censoring variable
C depends on (U,X) in a very particular way. This type of dependence might
hold true when the censoring is purely ‘administrative’ (censoring at the end of
the study), but when the censoring is caused by other factors such as death due
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to another disease or change of treatment, then less restrictive assumptions on the
censoring mechanism are required. Following Akritas (1994) and Van Keilegom and
Akritas (1999), we may replace the above assumption on the censoring mechanism
with a more flexible assumption that the response variable Y is conditionally inde-
pendent of the censoring variable C given (U,X), and propose an estimator for the
joint distribution function F (u,x, y) of (U,X, Y ) by averaging the local Kaplan-
Meier estimates of the conditional distribution function F (y|u,x) of Y given U = u
and X = x over a range of values of (u,x). However, this is not recommended
in practice since the local Kaplan-Meier estimator of F (y|u,x) will suffer from the
“curse of dimensionality” problem when the dimension of (U,X) is high.

The following theorem gives the asymptotic normality of Ψ̂(u0) and â(u0).

Theorem 2.1. Suppose that the conditions C1–C7 hold. Then, for any u0∈Ω, we
have

√
nh

[
Ψ̂(u0)−Ψ(u0)− 2−1h2µ2

(
a′′(u0)

0

)
+ oP (h2)

]
D−→ N(0,Σ(u0)),

where

Σ(u0) = f−1(u0)(Γ−1(u0)Γ∗(u0)Γ−1(u0))⊗
(
ν0 0
0 ν2/µ

2
2

)
with ⊗ being the Kronecker product. In particular, we have

√
nh
[
â(u0)− a(u0)− 2−1h2µ2a

′′(u0) + oP (h2)
] D−→ N(0,Σ1(u0)),

where
Σ1(u0) = ν0f

−1(u0)Γ−1(u0)Γ∗(u0)Γ−1(u0).

Remark 2.4. We can see from Theorem 2.1 that the asymptotic bias for the
censored case is the same as that for the uncensored situation, while the asymptotic
variance for the censored case is larger than its counterpart for the uncensored
situation. In other words, the asymptotic bias does not depend on the censoring
scheme but the asymptotic variance does rely on the censoring structure. This is
not surprising because the asymptotic bias comes from the linear approximation.
Furthermore, it is easy to see that the asymptotic mean square error (AMSE) is
given by

AMSE =
h4

4
µ2
2‖a′′(u)‖2 +

ν0
nhf(u)

tr(Γ−1(u)Γ∗(u)Γ−1(u)).

By minimizing the AMSE with respect to h, we obtain the asymptotic optimal
bandwidth as

hopt =

{
ν0tr(Γ−1(u)Γ∗(u)Γ−1(u))

f(u)µ2
2‖a′′(u)‖2

}1/5

n−
1
5 .

Hence, as expected, the optimal convergence rate of AMSE is of the order of n−4/5.
Finally, in the absence of random right censoring, the asymptotic variance Σ1(u0)
reduces to ν0f

−1(u0)Γ−1(u0)E(σ2(U,X)XXT|U = u)Γ−1(u0), which is the asymp-
totic variance without censoring (see Cai et al., 2000).

Remark 2.5. Although this paper focuses on the case where the smoothing vari-
able U in model (1.1) is one-dimensional, the proposed estimation method and its
asymptotic theory continue to hold for the situation of multidimensional smooth-
ing variable but more and complicated notations involve, see Ruppert and Wand
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(1994). Nevertheless, such an extension is not recommended in practice because of
the well-known “curse of dimensionality” problem.

2.3. Selection of bandwidth. In this section, we address how to select the bandwidth
in the proposed estimation method, which is an important issue related to the
practical implementation of the proposed estimation method. Like that in Cai
(2003), we employ the corrected version of Akaike information criterion (AICC)
proposed by Hurvich et al. (1998) to choose the optimal value of the bandwidth h.
Specifically, the AICC score for the uncensored case is defined as

AICC(h) = log

{
1

n

n∑
i=1

[Yi −XT
i ã(Ui)]

2

}
+

n+ tr(S̃)

n− 2− tr(S̃)
. (2.11)

However, in the presence of random right censoring, as suggested by Cai (2003),
the AICC score is of the following form

AICC(h) = log

{
n∑
i=1

Win[Zi −XT
i â(Ui)]

2

}
+

n+ tr(Ŝ)

n− 2− tr(Ŝ)
. (2.12)

2.4. Comparison with the synthetic data method of Luo et al. (2006). As men-
tioned in the introduction, Luo et al. (2006) proposed a synthetic data method
for randomly right censored varying coefficient models based on the unbiased data
transformation technique proposed by Fan and Gijbels (1994) and the local poly-
nomial smoothing method and studied the asymptotic normality of the resulting
estimators of the coefficient functions. Unfortunately, the authors did not investi-
gate the finite sample performance of their estimation method through simulation
studies. In what follows, we will briefly introduce the synthetic data method of Luo
et al. (2006) and compare it with the proposed estimation method. The synthetic
data method of Luo et al. (2006) consists of the following two steps.

Transformation of data. Let G(t|u,x) be the conditional distribution function
of the censoring variable C given U = u and X = x. When G(t|u,x) is unknown,

assume that Ĝ(t|u,x) is an estimator of G(t|u,x), for example, the Kaplan-Meier
estimator when the censoring variable C is independent of the covariate vector
(U,X) or the local Kaplan-Meier estimator when C depends on (U,X). Luo et al.
(2006) constructed the following synthetic data or pseudo-responses

ZiĜ = (1 + φ)LiĜ − φKiĜ, i = 1, · · · , n, (2.13)

where LiĜ =
∫ Zi
0
{1− Ĝ(t− |u,x)}−1dt, KiĜ = Ziδi{1− Ĝ(Zi− |Ui,Xi)}−1, φ is a

tuning parameter which controls the weights put on the censored and uncensored

observations, Ĝ(t − |u,x) is the left limit of Ĝ(t|u,x) at t. Under the assumption
that the response variable Y is conditionally independent of the censoring variable C
given (U,X), it is easy to show that E(ZiG|Ui,Xi) = E(Yi|Ui,Xi), hence the above
data transformation is unbiased when G(t|u,x) is known. This type of transforma-
tion was originally introduced by Fan and Gijbels (1994) in randomly right censored
nonparametric regression models. Note that φ = −1 and φ = 0 corresponds to the
Koul et al. (1981) transformation KiĜ (abbreviated as the KSV transformation)
and the Leurgans (1987) transformation LiĜ, respectively. As pointed out by Fan
and Gijbels (1994), an appropriate choice of φ can reduce the variability of the
transformed data. In practice, the choice of φ > 0 focuses more on the censored
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observations than on the uncensored observations, which is more intuitive than
Leurgans’s equal choice with φ = 0. Fan and Gijbels (1994) recommended the
following choice of φ:

φ̂ = min
{i:δi=1}

∫ Zi
0
{1− Ĝ(t− |u,x)}−1dt− Zi

Zi{1− Ĝ(Zi − |Ui,Xi)}−1 −
∫ Zi
0
{1− Ĝ(t− |u,x)}−1dt

. (2.14)

We will use φ̂ in our simulation studies, although any φ between 0 and φ̂ should
work.

Application of local polynomial smoothing method. Based on the trans-
formed data {Ui,Xi, ZiĜ}

n
i=1, Luo et al. (2006) employed the commonly used local

polynomial smoothing method to estimate the coefficient functions. Without loss
of generality and for the convenience of comparison, here we only focus on the case
of local linear smoothing. In this case, the loss function to be minimized for the
estimation of the coefficient function vector a(·) is similar to (2.1) and is of the
following form

1

n

n∑
i=1

[
ZiĜ −XT

i a(u0)− (Ui − u0)XT
i a′(u0)

]2
Kh(Ui − u0). (2.15)

Similarly to (2.3), the estimator of a(u) at u0 can be expressed as

âĜ(u0) = (Ip,0p×p)[X(u0)TW(u0)X(u0)]−1X(u0)TW(u0)ZĜ, (2.16)

where ZĜ = (Z1Ĝ, · · · , ZnĜ)T. Note that in our simulation studies, to make a
fair comparison, we employed the AICC method to choose the bandwidth in the
synthetic data method of Luo et al. (2006), although other bandwidth selection
methods such as the CV method and the GCV method are applicable. In this case,
by replacing Yi and ã(Ui) in (2.11) by ZiĜ and âĜ(Ui), respectively, we can obtain
the AICC score as

AICC(h) = log

{
1

n

n∑
i=1

[ZiĜ −XT
i âĜ(Ui)]

2

}
+

n+ tr(S̃)

n− 2− tr(S̃)
. (2.17)

Remark 2.6. The proposed estimation method differs from the synthetic data
method of Luo et al. (2006) in the following aspects. First, the condition on the
censoring mechanism is different. In the synthetic data method of Luo et al. (2006),
the condition on the censoring mechanism is that the response variable Y is con-
ditionally independent of the censoring variable C given (U,X), while in the pro-
posed estimation method the condition on the censoring mechanism is that Y is
unconditionally independent of C and P (Y≤C|U,X, Y ) = P (Y≤C|Y ). When the
censoring variable C is independent of the covariate vector (U,X), which is the
case, for example, when the censoring occurs at the end of the study, the condi-
tion on the censoring mechanism in the synthetic data method of Luo et al. (2006)
reduces to that in the proposed estimation method since C is also independent of
(U,X, Y ) in this case. Second, the proposed estimation method is computationally
simple and easy to implement compared to the synthetic data method of Luo et al.
(2006). Unlike the synthetic data method of Luo et al. (2006), no data transfor-
mation is needed to account for the censoring in the proposed estimation method,
thus the proposed estimation method not only enjoys the advantage of computa-
tional simplicity and practical feasibility, but also is expected to give better finite
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sample performance than the synthetic data method of Luo et al. (2006), which is
confirmed by the simulation studies conducted in Section 3.

2.5. Extension to randomly right censored varying coefficient models with different
smoothing variables. In this paper, we consider such a kind of varying coefficient
models where all coefficient functions share the same smoothing variable. However,
the assumption of all coefficient functions sharing the same smoothing variable is
strict and has limited applications. In this section, we extend the estimation method
proposed in Section 2 to randomly right censored varying coefficient models with
different smoothing variables. The sample form of this kind of varying coefficient
models is

Yi =

p∑
j=1

aj(Uij)Xij + εi, i = 1, · · · , n, (2.18)

where Uij is the observation of j-th smoothing variable Uj , the other symbols
are the same as those in (1.1). When the response variable Y is fully observed,
model (2.18) has been studied in estimation (Zhang et al., 2002; Zhang and Li,
2007) and hypothesis testing (Ip et al., 2007). When the response variable Y
is subject to randomly right censoring, Yang et al. (2014) proposed an estimation
method for (2.18) based on synthetic data obtained by the unbiased transformation
given by Koul et al. (1981) and the smooth back-fitting technique and studied the
asymptotic normality of the resulting estimators of the coefficient functions. Our
estimation method for model (2.18) is briefly described as follows. In the absence of
randomly right censoring, via approximating aj(uj) by aj(u0j) + a′j(u0j)(uj − u0j)
in a neighborhood of a given u0j in the domain of the j-th smoothing variable Uj ,
we obtain the following kernel weighted local least squares function

1

n

n∑
i=1

{
Yi −

p∑
j=1

[aj(u0j) + a′j(u0j)(Uij − u0j)]Xij

}2

Kh(Ui − u0)

=

∫ {
y −

p∑
j=1

[aj(u0j) + a′j(u0j)(uj − u0j)]xj
}2

Kh(u− u0) dFn(u,x, y),(2.19)

where Kh(Ui − u0) =
∏p
j=1Khj (Uij − u0j), Khj (·) = K(·/hj)/hj with K(·) be-

ing an univariate kernel function, h = (h1, · · · , hp)T is the bandwidth vector,
Ui = (Ui1, · · · , Uip)T, u0 = (u01, · · · , u0p)T, u = (u1, · · · , up)T, x = (x1, · · · , xp)T,
Fn(u,x, y) is the empirical distribution function of {(Ui,Xi, Yi)}ni=1.

In the presence of randomly right censoring, by replacing Fn(u,x, y) in (2.19)

with F̂n(u,x, y) defined by

F̂n(u,x, y) =

n∑
i=1

WinI(U(i)≤u,X(i)≤x, Z(i)≤y),
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where Win is defined by (2.6), U(i) and X(i) are the U and X associated with Z(i),
respectively, we get the following weighted local least squares function∫ {

y −
p∑
j=1

[aj(u0j) + a′j(u0j)(uj − u0j)]xj
}2

Kh(u− u0) dF̂n(u,x, y)

=

n∑
i=1

W ∗in

{
Zi −

p∑
j=1

[aj(u0j) + a′j(u0j)(Uij − u0j)]Xij

}2

Kh(Ui − u0),(2.20)

where W ∗in is the Win-value associated with the natural order of Zi.
Let {ãj(u0)}pj=1 be the first p entries of the minimizer of (2.20), W(u0) =

diag(Kh(U1 − u0), · · · ,Kh(Un − u0)) and

X(u0) =

 X11 · · · X1p h−11 (U11 − u01)X11 · · · h−1p (U1p − u0p)X1p

...
...

...
...

...
...

Xn1 · · · Xnp h−11 (Un1 − u01)Xn1 · · · h−1p (Unp − u0p)Xnp

 .

Then it follows from the least squares theory that

ãj(u0) = eT
j,2p[X(u0)TW∗W(u0)X(u0)]−1X(u0)TW∗W(u0)Z, j = 1, · · · , p,

(2.21)
where ej,2p is a 2p×1 unit vector with 1 at its j-th position and W∗ and Z are the
same as those in Section 2.1.

Like Cai and Fan (2000) and Linton and Härdle (1996), we employ the average
method to obtain the estimator of aj(uj) at u0j as

âj(u0j) =
1

n

n∑
i=1

ãj(Ui1, · · · , Ui,j−1, u0j , Ui,j+1, · · · , Ui,n), j = 1, · · · , p. (2.22)

Remark 2.7. Although the proposed estimation method can be extended to the
situation where different coefficient functions depend on different smoothing vari-
ables, the theoretical justification of the asymptotic normality of the resulting esti-
mators of the coefficient functions is not obvious because of the complexity of the
resulting estimator. This is beyond the scope of the current paper, and is warranted
as a future topic of research. Furthermore, since âj(u0j) is no longer the linear com-
binations of Z1, · · · , Zn, the AICC bandwidth selector proposed in Section 2.3 can
not be used to choose the bandwidth vector h. One possible solution to this issue
is to employ the rule-of-thumb (ROT) method, that is, hj = Sujn

−0.2, where Suj is
the sample standard deviation of the observations U1j , · · · , Unj of Uj , j = 1, · · · , p.

3. Simulation studies

As emphasized in the introduction, the accurate estimate of the coefficient func-
tions plays an important role in using varying coefficient models to explore the
dynamic pattern of a regression relationship. In this section, we conduct simu-
lation studies to assess the finite sample performance of the proposed estimation
method. The experiments mainly focus on the accuracy of the coefficient estimates.

3.1. Design of the experiment. The experimental data were generated from the
following model

Y = a1(U)X1 + a2(U)X2 + a3(U)X3 + ε,
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where X1≡1, U∼U(0, 1), (X2, X3)T was distributed as a bivariate normal distri-
bution with mean vector (0, 0)T and covariance matrix

(
1 0.5
0.5 1

)
, and the error

term ε was generated from a normal distribution N(0, 0.25) and was independent
of (U,X2, X3). The coefficient functions a1(u), a2(u) and a3(u) are, respectively,
chosen from the following two groups of functions:
Group 1. a1(u) = 0.2exp(−0.6+3.0u), a2(u) = 1+(1−2u)3, a3(u) = log2(1+3u);
Group 2. a1(u) = 8u(1−u), a2(u) = 1+cos(2πu), a3(u) = 3.5[exp(−(4u−1)2)+
exp(−(4u− 3)2)]− 1.5.
The coefficient functions in Group 1 are monotone, while they are not monotone in
Group 2.

The censoring variable C was distributed as the uniform distribution U(0, c1),
where the parameter c1 was used to control the censoring rate. In our simulation, we
considered three different censoring rates, namely, 15%, 30% and 45% of censoring.

We used the weighted local linear smoothing (WLLS) method and the synthetic
data (SD) method proposed by Luo et al. (2006) to estimate the coefficient functions
and cross compared the results in terms of the accuracy of the coefficient estimates.
In both methods, the kernel function was taken to be the Gaussian kernel function
K(u) = 1√

2π
exp(−u2/2) and the bandwidth was selected by the AICC procedure

described in Section 2.3.
The accuracy of coefficient estimates is evaluated by using mean square error

(MSE), defined by

MSEj = n0
−1

n0∑
k=1

[âj(uk)− aj(uk)]2, j = 1, 2, 3,

where {uk, k = 1, 2, · · · , n0} is a set of grid points uniformly placed on (0, 1) and
âj(·) is an estimate of aj(·) obtained by using any one of the WLLS and SD methods.
In our simulation, we took n0 = 51.

The sample size n was set to 200 and 400. For each combination of the two
sample sizes, the two groups of coefficient functions, and the three censoring rates,
the simulation was repeated 500 times.

3.2. Simulation results with analysis. The mean and standard deviation of the
MSEs over 500 simulations are summarized in Table 3.1, in which the numbers
in parentheses are the standard deviations. Furthermore, we depict in Figures 3.1–
3.4 the mean curves of the two groups of coefficient functions estimated by the
WLLS and SD methods, respectively.

We can see from Table 3.1 that the means and standard deviations for the WLLS
method are consistently much smaller than the corresponding means and standard
deviations for the SD method for the two groups of coefficient functions, the two
sample sizes, and the three censoring rates under investigation, which shows that the
WLLS method produces more accurate estimates of the coefficient functions than
the SD method. More details can be seen from Figures 3.1–3.4. For each group of
coefficient functions, the WLLS method retrieves the true coefficient curves very
well, but the SD method produces less accurate estimates of the coefficient functions
especially when the censoring rate is large. We also find from Table 3.1 that the
means and standard deviations for the two estimation methods both decrease as the
sample size n increases. However, by further comparing the estimated coefficient
functions under n = 200 with those under n = 400, it seems that the degree of
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Coefficient Censoring WLLS SD
group rate(%) c1 n a1(·) a2(·) a3(·) a1(·) a2(·) a3(·)

Group 1 15 8.23 200 0.0111 0.0169 0.0139 0.0361 0.0654 0.0871
(0.0076) (0.0108) (0.0109) (0.0475) (0.0965) (0.1304)

400 0.0052 0.0081 0.0071 0.0179 0.0291 0.0416
(0.0031) (0.0049) (0.0046) (0.0205) (0.0282) (0.0282)

30 3.86 200 0.0203 0.0241 0.0271 0.0776 0.1259 0.1363
(0.0157) (0.0175) (0.0290) (0.1285) (0.1571) (0.2016)

400 0.0112 0.0119 0.0137 0.0390 0.0703 0.0736
(0.0087) (0.0075) (0.0104) (0.0378) (0.0896) (0.1135)

45 1.84 200 0.0801 0.0449 0.0667 0.1306 0.1086 0.2247
(0.0731) (0.0436) (0.0760) (0.0753) (0.0830) (0.1471)

400 0.0456 0.0209 0.0318 0.1275 0.0791 0.2187
(0.0303) (0.0184) (0.0238) (0.0566) (0.0437) (0.0957)

Group 2 15 11.73 200 0.0157 0.0247 0.0323 0.0403 0.0817 0.1145
(0.0100) (0.0187) (0.0182) (0.0366) (0.0847) (0.1750)

400 0.0100 0.0151 0.0172 0.0214 0.0493 0.0574
(0.0047) (0.0079) (0.0088) (0.0155) (0.1304) (0.0595)

30 5.75 200 0.0325 0.0504 0.0585 0.1114 0.2126 0.2813
(0.0225) (0.0451) (0.0727) (0.1357) (0.3123) (0.3230)

400 0.0160 0.0225 0.0245 0.0569 0.1130 0.1494
(0.0063) (0.0134) (0.0117) (0.0471) (0.1003) (0.1560)

45 3.40 200 0.0944 0.1119 0.1238 0.1150 0.2386 0.3065
(0.0604) (0.1462) (0.1131) (0.1394) (0.4359) (0.4571)

400 0.0402 0.0362 0.0430 0.0749 0.1225 0.1928
(0.0169) (0.0204) (0.0222) (0.0938) (0.1129) (0.1058)

Table 3.1. Mean and standard deviation (in parentheses) of the
mean square errors over 500 simulations

improvement for both estimation methods decreases as the censoring rate increases,
we owe this observation to the referee. This is reasonable because the larger the
censoring rate is, the more information in the data will be lost, which makes it
more difficult to further improve the finite sample performance of both estimation
methods especially as the sample size n increases from a large value 200 to a larger
value 400.

4. Conclusion remark

In this paper, we proposed a new estimation method for randomly right cen-
sored varying coefficient models and established the asymptotic normality of the
resulting estimator. Different from the existing estimation method, the proposed
estimation method is computationally simple and practically feasible since it re-
quires no transformation of data. This superiority becomes more evident when
the censoring distribution function depends on the covariate vector (U,X) and the
dimension of (U,X) is large. Simulation studies were conducted to assess the finite
sample performance of the proposed estimation method by comparing the results
with those obtained by the existing estimation method. The simulation results
demonstrate that the proposed estimation method indeed has better finite sample
performance than the existing estimation method.

5. Proofs

To facilitate the presentation, we introduce some notations, which will be used
in the proofs of some Lemmas and Theorem 2.1. Let WG = δ

1−G(Z−) , WiG =
δi

1−G(Zi−) , WiĜ = δi
1−Ĝ(Zi−)

, ZiG = δiZi
1−G(Zi−) , ZiĜ = δiZi

1−Ĝ(Zi−)
, and εiG = ZiG −
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Figure 3.1. The mean curves of the coefficient functions (solid
line) in Group 1 estimated by the WLLS method (dashed line)
and the SD method (dotted line) with n = 200.

E(ZiG|Ui,Xi), where Ĝ(·) is the Kaplan-Meier estimator of G(·). Furthermore, let

Sn,l(u0) =
1

n

n∑
i=1

XiX
T
i h
−l(Ui − u0)lKh(Ui − u0),

Sn,lG(u0) =
1

n

n∑
i=1

WiGXiX
T
i h
−l(Ui − u0)lKh(Ui − u0),

Sn,lĜ(u0) =
1

n

n∑
i=1

WiĜXiX
T
i h
−l(Ui − u0)lKh(Ui − u0),
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Figure 3.2. The mean curves of the coefficient functions (solid
line) in Group 1 estimated by the WLLS method (dashed line)
and the SD method (dotted line) with n = 400.

Tn,lG(u0) =
1

n

n∑
i=1

ZiGXih
−l(Ui − u0)lKh(Ui − u0),

Tn,lĜ(u0) =
1

n

n∑
i=1

ZiĜXih
−l(Ui − u0)lKh(Ui − u0),

and

T∗n,lG(u0) =
1

n

n∑
i=1

εiGXih
−l(Ui − u0)lKh(Ui − u0).
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Figure 3.3. The mean curves of the coefficient functions (solid
line) in Group 2 estimated by the WLLS method (dashed line)
and the SD method (dotted line) with n = 200.

Lemma 5.1. Under the conditions C1–C6, we have

SnG(u0) =

(
Sn,0G(u0) Sn,1G(u0)
Sn,1G(u0) Sn,2G(u0)

)
= f(u0)Γ(u0)⊗

(
1 0
0 µ2

)
[1 + oP (1)] (5.1)

and

SnĜ(u0) =

(
Sn,0Ĝ(u0) Sn,1Ĝ(u0)

Sn,1Ĝ(u0) Sn,2Ĝ(u0)

)
= f(u0)Γ(u0)⊗

(
1 0
0 µ2

)
[1+oP (1)]. (5.2)
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Figure 3.4. The mean curves of the coefficient functions (solid
line) in Group 2 estimated by the WLLS method (dashed line)
and the SD method (dotted line) with n = 400.

Proof : It follows from E(WG|U,X) = 1 and E(W 2
G|U,X) = b0(U,X) that

E(Sn,lG(u0)) = E[WGXXTh−l(U − u0)lKh(U − u0)]

= E[E(WG|U,X)XXTh−l(U − u0)lKh(U − u0)]

= E[XXTh−l(U − u0)lKh(U − u0)]

= E[E(XXT|U)h−l(U − u0)lKh(U − u0)]

= E[Γ(U)h−l(U − u0)lKh(U − u0)]

=

∫ u0+h

u0−h
Γ(u)h−l−1(u− u0)lK((u− u0)/h)f(u) du

=

∫ 1

−1
Γ(u0 + ht)f(u0 + ht)tlK(t) dt

= f(u0)Γ(u0)µl[1 + o(1)]



WLLS method for right censored varying coefficient models 771

and

Var(Sn,lG(u0)) = n−1Var[WGXXTh−l(U − u0)lKh(U − u0)]

≤ n−1E[W 2
GX⊗4h−2l(U − u0)2lK2

h(U − u0)]

= n−1E[E(W 2
G|U,X)X⊗4h−2l(U − u0)2lK2

h(U − u0)]

= n−1E[b0(U,X)X⊗4h−2l(U − u0)2lK2
h(U − u0)]

= n−1E[E(b0(U,X)X⊗4|U)h−2l(U − u0)2lK2
h(U − u0)]

= n−1E[Γ∗10(U)h−2l(U − u0)2lK2
h(U − u0)]

= n−1
∫ u0+h

u0−h
Γ∗10(u)h−2l−2(u− u0)2lK2((u− u0)/h)f(u)du

= (nh)−1
∫ 1

−1
Γ∗10(u0 + ht)f(u0 + ht)t2lK2(t) dt

= (nh)−1f(u0)Γ∗10(u0)ν2l[1 + o(1)] = O((nh)−1).

Thus

Sn,lG(u0) = E(Sn,lG(u0)) +OP

(√
Var(Sn,lG(u0))

)
= f(u0)Γ(u0)µl[1 + oP (1)].

This completes the proof of (5.1). �

Next, we prove (5.2). Note that

WiĜ −WiG = WiG
Ĝ(Zi−)−G(Zi−)

1−G(Zi−)

1−G(Zi−)

1− Ĝ(Zi−)

and the fact, which follows immediately from Theorem 2.2 in Zhou (1991), that

sup
0≤t≤Z(n)

∣∣∣∣∣ Ĝ(t−)−G(t−)

1−G(t−)

∣∣∣∣∣ = OP (n−1/2) (5.3)

and

sup
0≤t≤Z(n)

∣∣∣∣∣1−G(t−)

1− Ĝ(t−)

∣∣∣∣∣ = OP (1), (5.4)

where Z(n) = max{Z1, · · · , Zn}. This, together with the conclusion that
Sn,lG(u0) = OP (1) by (5.1), imply that

Sn,lĜ(u0)− Sn,lG(u0) =
1

n

n∑
i=1

(WiĜ −WiG)XiX
T
i h
−l(Ui − u0)lKh(Ui − u0)

≤ Sn,lG(u0) sup
0≤t≤Z(n)

∣∣∣∣∣ Ĝ(t−)−G(t−)

1−G(t−)

∣∣∣∣∣ sup
0≤t≤Z(n)

∣∣∣∣∣1−G(t−)

1− Ĝ(t−)

∣∣∣∣∣
= OP (n−1/2) = oP (1).

Hence

Sn,lĜ(u0) = (Sn,lĜ(u0)− Sn,lG(u0)) + Sn,lG(u0) = Sn,lG(u0)[1 + oP (1)].

This along with (5.1) yield

SnĜ(u0) = SnG(u0)[1 + oP (1)] = f(u0)Γ(u0)⊗
(

1 0
0 µ2

)
[1 + oP (1)].
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As a consequence of Lemma 5.1, we can show that

Sn(u0) =

(
Sn,0(u0) Sn,1(u0)
Sn,1(u0) Sn,2(u0)

)
= f(u0)Γ(u0)⊗

(
1 0
0 µ2

)
[1 + oP (1)]. (5.5)

Lemma 5.2. Under the conditions C1–C6, we have

TnG(u0) =

(
Tn,0G(u0)
Tn,1G(u0)

)
= f(u0)Γ(u0)a(u0)⊗

(
1
0

)
[1 + oP (1)] (5.6)

and

TnĜ(u0) =

(
Tn,0Ĝ(u0)

Tn,1Ĝ(u0)

)
= TnG(u0) + f(u0)Γ(u0)a(u0)⊗

(
1
0

)
OP (n−1/2).

(5.7)

Proof : It is easy to show that E(ZG|U,X) = E(Y |U,X) = XTa(U) and
E(Z2

G|U,X) = E(Y 2{1−G(Y )}−1|U,X) = b2(U,X). This implies that

E(Tn,lG(u0)) = E[ZGXh−l(U − u0)lKh(U − u0)]

= E[E(ZG|U,X)Xh−l(U − u0)lKh(U − u0)]

= E[XXTa(U)h−l(U − u0)lKh(U − u0)]

= E[E(XXT|U)a(U)h−l(U − u0)lKh(U − u0)]

= E[Γ(U)a(U)h−l(U − u0)lKh(U − u0)]

=

∫ u0+h

u0−h
Γ(u)a(u)h−l−1(u− u0)lK((u− u0)/h)f(u) du

=

∫ 1

−1
Γ(u0 + ht)a(u0 + ht)f(u0 + ht)tlK(t) dt

= f(u0)Γ(u0)a(u0)µl[1 + o(1)]

and

Var(Tn,lG(u0)) = n−1Var[ZGXh−l(U − u0)lKh(U − u0)]

≤ n−1E[Z2
GXXTh−2l(U − u0)2lK2

h(U − u0)]

= n−1E[E(Z2
G|U,X)XXTh−2l(U − u0)2lK2

h(U − u0)]

= n−1E[b2(U,X)XXTh−2l(U − u0)2lK2
h(U − u0)]

= n−1E[E(b2(U,X)XXT|U)h−2l(U − u0)2lK2
h(U − u0)]

= n−1E[Γ∗2(U)h−2l(U − u0)2lK2
h(U − u0)]

= n−1
∫ u0+h

u0−h
Γ∗2(u)h−2l−2(u− u0)2lK2((u− u0)/h)f(u) du

= (nh)−1
∫ 1

−1
Γ∗2(u0 + ht)f(u0 + ht)t2lK2(t) dt

= (nh)−1f(u0)Γ∗2(u0)ν2l[1 + o(1)] = O((nh)−1).

Combining the last two results yields Tn,lG(u0) = f(u0)Γ(u0)a(u0)µl[1 + oP (1)].
This proves (5.6).



WLLS method for right censored varying coefficient models 773

We next prove (5.7). Observe that

ZiĜ − ZiG = ZiG
Ĝ(Zi−)−G(Zi−)

1−G(Zi−)

1−G(Zi−)

1− Ĝ(Zi−)
.

This, together with (5.3), (5.4) and (5.6), imply that

Tn,lĜ(u0)−Tn,lG(u0) =
1

n

n∑
i=1

(ZiĜ − ZiG)Xih
−l(Ui − u0)lKh(Ui − u0)

≤ Tn,lG(u0) sup
0≤t≤Z(n)

∣∣∣∣∣ Ĝ(t−)−G(t−)

1−G(t−)

∣∣∣∣∣ sup
0≤t≤Z(n)

∣∣∣∣∣1−G(t−)

1− Ĝ(t−)

∣∣∣∣∣
= f(u0)Γ(u0)a(u0)µlOP (n−1/2).

This completes the proof of (5.7). �

Proof of Theorem 2.1: Since the coefficient functions a1(u), · · · , ap(u) are all
smooth in the neighborhood of |Ui−u0| < h, it follows from the Taylor’s expansion
that

XT
i a(Ui) = XT

i a(u0) +

(
Ui − u0

h

)
XT
i ha′(u0)

+
h2

2

(
Ui − u0

h

)2

XT
i a′′(u0) + oP (h2).

Then

Tn,0G(u0)−T∗n,0G(u0) = Sn,0(u0)a(u0) + hSn,1(u0)a′(u0)

+
h2

2
Sn,2(u0)a′′(u0) + oP (h2)

and

Tn,1G(u0)−T∗n,1G(u0) = Sn,1(u0)a(u0) + hSn,2(u0)a′(u0)

+
h2

2
Sn,3(u0)a′′(u0) + oP (h2).

Combining the last two results with (5.5) gives

TnG(u0)−T∗nG(u0)

=

(
Tn,0G(u0)−T∗n,0G(u0)

Tn,1G(u0)−T∗n,1G(u0)

)
=

(
Sn,0(u0) Sn,1(u0)
Sn,1(u0) Sn,2(u0)

)(
a(u0)
ha′(u0)

)
+
h2

2

(
Sn,2(u0)
Sn,3(u0)

)
a′′(u0) + oP (h2)

= f(u0)Γ(u0)⊗
(

1 0
0 µ2

)
Ψ(u0) +

h2

2
f(u0)Γ(u0)⊗

(
µ2

0

)
a′′(u0) + oP (h2).(5.8)
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Since W ∗in = 1
n

δi
1−Ĝ(Zi−)

= 1
nWiĜ (for details, see Satten and Datta, 2001), it is

easy to show that the minimizer of (2.7), that is Ψ̂(u0), can be re-writen as

Ψ̂(u0) =

(
Sn,0Ĝ(u0) Sn,1Ĝ(u0)

Sn,1Ĝ(u0) Sn,2Ĝ(u0)

)−1(
Tn,0Ĝ(u0)

Tn,1Ĝ(u0)

)
= S−1

nĜ
(u0)TnĜ(u0)

= S−1
nĜ

(u0)[(TnĜ(u0)−TnG(u0)) + (TnG(u0)−T∗nG(u0)) + T∗nG(u0)]

= S−1
nĜ

(u0)T∗nG(u0) + S−1
nĜ

(u0)(TnG(u0)−T∗nG(u0)) +

S−1
nĜ

(u0)(TnĜ(u0)−TnG(u0))

= I1 + I2 + I3. (5.9)

By (5.2) and (5.8), we obtain

I2 = Ψ(u0) + 2−1h2µ2

(
a′′(u0)

0

)
+ oP (h2). (5.10)

It follows from (5.2) and (5.7) that

I3 = a(u0)⊗(1, 0)T[1 + oP (1)]OP (n−1/2) = OP (n−1/2). (5.11)

By (5.9), (5.10), and (5.11), we have

√
nh

[
Ψ̂(u0)−Ψ(u0)− 2−1h2µ2

(
a′′(u0)

0

)
+ oP (h2)

]
=
√
nhI1 + oP

(√
h
)
.

(5.12)
Noting that

S−1
nĜ

(u0) = f(u0)−1Γ(u0)−1⊗
(

1 0
0 µ−12

)
[1 + oP (1)]

and oP

(√
h
)

= oP (1) by the condition C5, it suffices to prove Theorem 2.1 by

showing that

√
nhT∗nG(u0) = n−

1
2h

1
2

n∑
i=1

(
XiKh(Ui − u0)εiG

Xi

(
Ui−u0

h

)
Kh(Ui − u0)εiG

)
D−→ N(0,Σ2(u0)),

(5.13)
where

Σ2(u0) = f(u0)Γ∗(u0)⊗
(
ν0 0
0 ν2

)
.

Let c = (cT1 , c
T
2 )T be an arbitrary unit vector with c1 and c2 both being the p×1

vectors, and

ζi = n−
1
2h

1
2 cT

(
XiKh(Ui − u0)εiG

Xi

(
Ui−u0

h

)
Kh(Ui − u0)εiG

)
= n−

1
2h

1
2 εiGXT

i (c1 + c2(Ui − u0)/h)Kh(Ui − u0).

By the Cramér-Wold device, it suffices to prove

qn =
√
nhcTT∗nG(u0) =

n∑
i=1

ζi
D−→ N

(
0, cTΣ2(u0)c

)
. (5.14)
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Since qn is the sum of independent and nonidentically distributed random variables
and has E(qn) = 0 and

Var(qn) = hcTE

[
ε2G

(
XXT XXT

(
U−u0

h

)
XXT

(
U−u0

h

)
XXT

(
U−u0

h

)2)K2
h(U − u0)

]
c

= hcTE

[
E(ε2G|U,X)

(
XXT XXT

(
U−u0

h

)
XXT

(
U−u0

h

)
XXT

(
U−u0

h

)2)K2
h(U − u0)

]
c

= hcTE

[
σ∗2(U,X)

(
XXT XXT

(
U−u0

h

)
XXT

(
U−u0

h

)
XXT

(
U−u0

h

)2)K2
h(U − u0)

]
c

= hcTE

[
E(σ∗2(U,X)XXT|U)

(
1

(
U−u0

h

)(
U−u0

h

) (
U−u0

h

)2)K2
h(U − u0)

]
c

= f(u0)cTΓ∗(u0)⊗
(
ν0 0
0 ν2

)
c[1 + o(1)]

= cTΣ2(u0)c[1 + o(1)],

it suffices to prove (5.14) by showing that the Lyapounov condition holds, that is
for some γ > 0,

n∑
i=1

E(|ζi|2+γ) =

n∑
i=1

E(|n− 1
2h

1
2 εiGXT

i (c1 + c2(Ui−u0)/h)Kh(Ui−u0)|2+γ) = o(1).

(5.15)
It follows from the condition C7 that

E(|n− 1
2h

1
2 εiGXT

i (c1 + c2(Ui − u0)/h)Kh(Ui − u0)|2+γ)

= n−
2+γ
2 h

2+γ
2 E(|εiGXT

i (c1 + c2(Ui − u0)/h)Kh(Ui − u0)|2+γ)

= n−
2+γ
2 h

2+γ
2 E(E(|εiG|2+γ |Ui,Xi)|XT

i (c1 + c2(Ui − u0)/h)Kh(Ui − u0)|2+γ)

= n−
2+γ
2 h

2+γ
2 O(E(|XT

i (c1 + c2(Ui − u0)/h)Kh(Ui − u0)|2+γ)). (5.16)
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By the Cr inequality, we can show that

E(|XT
i (c1 + c2(Ui − u0)/h)Kh(Ui − u0)|2+γ)

≤21+γE(|XT
i c1Kh(Ui − u0)|2+γ) + 21+γE(|XT

i c2h
−1(Ui − u0)Kh(Ui − u0)|2+γ)

=21+γE(E(|XT
i c1|2+γ |Ui)K2+γ

h (Ui − u0))+

21+γE(E(|XT
i c2|2+γ |Ui)h−2−γ |Ui − u0|2+γK2+γ

h (Ui − u0))

=21+γ
∫ u0+h

u0−h
E(|XT

i c1|2+γ |Ui = u)h−2−γK2+γ((u− u0)/h)f(u) du+

21+γ
∫ u0+h

u0−h
E(|XT

i c2|2+γ |Ui = u)h−2−γ |(u− u0)/h|2+γK2+γ((u− u0)/h)f(u) du

=21+γh−1−γf(u0)E(|XT
i c1|2+γ |Ui = u0)

∫ 1

−1
K2+γ(t) dt[1 + o(1)]+

21+γh−1−γf(u0)E(|XT
i c2|2+γ |Ui = u0)

∫ 1

−1
|t|2+γK2+γ(t) dt[1 + o(1)]

=O(h−1−γ).

(5.17)

Combining (5.16) with (5.17) yields

n∑
i=1

E(|ζi|2+γ) = O(n−
γ
2 h−

γ
2 ) = O((nh)−

γ
2 ) = o(1).

This proves (5.15). Thus, the proof of Theorem 2.1 is completed.
�
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