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Abstract. This article is concerned with a general class of stochastic spatial models
for the dynamics of opinions. Like in the one-dimensional voter model, individuals
are located on the integers and update their opinion at a constant rate based on
the opinion of their neighbors. However, unlike in the voter model, the set of
opinions is represented by the set of vertices of a finite connected graph that we
call the opinion graph: when an individual interacts with a neighbor, she imitates
this neighbor if and only if the distance between their opinions, defined as the
graph distance induced by the opinion graph, does not exceed a certain confidence
threshold. Our first result shows that, when the confidence threshold is at least
equal to the radius of the opinion graph, the process fluctuates and clusters. We
also establish a general sufficient condition for fixation of the process based on the
structure of the opinion graph, which we then significantly improve for opinion
graphs which are distance-regular. Our general results are used to understand the
dynamics of the system for various examples of opinion graphs: paths and stars,
which are not distance-regular, and cycles, hypercubes and the five Platonic solids,
which are distance-regular.

1. Introduction

Since the work of Arratia (1983) on annihilating random walks, it is known that, for
the one-dimensional voter model starting with infinitely many supporters of each
opinion, there is fluctuation, i.e., the number of opinion changes at each vertex is
almost surely infinite, as opposed to fixation, i.e., the number of opinion changes
at each vertex is almost surely finite. The objective of this paper is to study the
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dichotomy between fluctuation and fixation for a general class of opinion models
with confidence threshold. The main novelty is to equip the set of opinions with
the structure of a connected graph and use the induced graph distance to define
mathematically a level of disagreement among individuals. Based on this modeling
approach, some of the most popular models of opinion dynamics can be recovered
by choosing the structure of the opinion space suitably: the constrained voter
model, independently introduced in Itoh et al. (1998); Vazquez et al. (2003), is
obtained by assuming that the opinion space is a path, while the Axelrod model
for the dissemination of cultures (Axelrod, 1997) and the discrete Deffuant model
(Deffuant et al., 2000) have also some connections with our model when the opinion
space is a Hamming graph and a hypercube, respectively.

Model description – The class of models considered in this article are examples
of interacting particle systems inspired from the voter model (Clifford and Sudbury,
1973; Holley and Liggett, 1975) for the dynamics of opinions. Individuals are located
on the one-dimensional integer lattice and are characterized by their opinion, with
the set of opinions being identified with the vertex set of a finite connected graph.
The lattice represents the underlying spatial structure and is used to determine the
interaction neighborhood of each individual. The finite connected graph, that we
call the opinion graph, represents the structure of the opinion space and is used to
determine the distance between two opinions and the level of disagreement among
individuals. From now on, we call spatial distance the graph distance induced
by the spatial structure and opinion distance the graph distance induced by the
opinion graph. Individuals interact with each of their two nearest neighbors at rate
one. As the result of an interaction, an individual imitates her neighbor if and only
if the distance between their opinions just before the interaction does not exceed
some confidence threshold τ ∈ N. More formally, we let

G := (Z,E) = the spatial structure

Γ := (V,E) = the opinion graph

be respectively the one-dimensional lattice where each integer is connected to the
previous and next integers by an edge and a general finite connected graph. Then,
our opinion model is the continuous-time Markov chain whose state at time t is a
spatial configuration

ηt : Z → V where ηt(x) = opinion at x ∈ Z at time t

and with transition rates at vertex x ∈ Z given for all i, j ∈ V by

ci→j(x, ηt) := lims↓0 (1/s)P (ηt+s(x) = j | ηt = η and η(x) = i)

= card {y ∈ Nx : ηt(y) = j} 1{d(i, j) ≤ τ}.
(1.1)

In addition, the transitions at different vertices of the spatial structure occur inde-
pendently so there can be at most one opinion change at any given time. Here,

Nx = {y ∈ Z : |x− y| = 1} = {x− 1, x+ 1}

denotes the interaction neighborhood of site x while d(i, j) refers to the opinion
distance between opinion i and opinion j, which is the length of the shortest path
connecting both opinions on the opinion graph. Note that the classical voter model
is simply obtained by assuming that the opinion graph consists of two vertices
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connected by an edge and that the confidence threshold equals one. The general
class of opinion models (1.1) has been introduced in Scarlatos (2013).

Main results – The main question about the general opinion model is whether
the system fluctuates and clusters, leading ultimately the population to a global
consensus, or fixates in a fragmented configuration. Recall that the process

• fluctuates when P (ηt(x) changes infinitely often) = 1 for all x ∈ Z,

• fixates when P (ηt(x) changes a finite number of times) = 1 for all x ∈ Z,

• clusters when limt→∞ P (ηt(x) = ηt(y)) = 1 for all x, y ∈ Z.

Note that whether the system fluctuates and clusters or fixates in a fragmented
configuration is sensitive to the initial configuration. Also, throughout the paper,
we assume that the process starts from a product measure with densities which are
constant across space, i.e.,

ρj := P (η0(x) = j) for all (x, j) ∈ Z × V

only depends on opinion j but not on site x. To avoid trivialities, these densities
are assumed to be positive. Sometimes, we will make the stronger assumption that
all the opinions are equally likely at time zero. These two hypotheses correspond
to the following two conditions:

ρj > 0 for all j ∈ V (1.2)

ρj = 1/F for all j ∈ V (1.3)

where F := card V refers to the total number of opinions.
Key quantities to study the behavior of the system are the radius and the di-

ameter of the opinion graph defined respectively as the minimum and maximum
eccentricity of any vertex:

r := mini∈V maxj∈V d(i, j) = the radius of the graph Γ

d := maxi∈V maxj∈V d(i, j) = the diameter of the graph Γ.

Note that there is at least one pair (i−, i+) ∈ V 2 such that d(i−, i+) = d. Later
on, such vertices will be called antipodal. We also introduce the subset

C(Γ, τ) := {i ∈ V : d(i, j) ≤ τ for all j ∈ V } (1.4)

that we shall call the τ-center of the opinion graph.
Using a coupling between the opinion model and a certain system of annihilat-

ing particles, we first prove the following sufficient condition for fluctuation and
clustering of the process.

Theorem 1.1. Under assumption (1.2), we have the following two results.

a. The process fluctuates when

d(i, j) ≤ τ for all (i, j) ∈ V1 × V2 (1.5)

for some V -partition {V1, V2}.

b. The process clusters when the radius r ≤ τ .

Except when the threshold is at least equal to the diameter, in which case the
two conclusions of the theorem are trivial because the process reduces to a voter
model with F opinions, when the threshold is at least equal to the radius, both
the τ -center and its complement are nonempty, and therefore form a partition
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that satisfies (1.5) in the first part of the theorem. In particular, fluctuation also
holds when the radius is not more than the threshold like in the second part of
the theorem. Note however that the existence of a partition (1.5) does not imply
that the radius is bounded from above by the threshold. For a counter-example,
consider the cube in three dimensions. For this graph, there is a partition of the
set of vertices that satisfies (1.5) with τ = 2 while the radius is equal to three. The
other four Platonic solids also constitute counter-examples.

We now turn our attention to sufficient conditions for fixation of the system,
beginning with general opinion graphs. At least for the process starting from the
uniform product measure, these conditions can be expressed using

N(Γ, s) := card {(i, j) ∈ V × V : d(i, j) = s} for s = 1, 2, . . . ,d,

which is the number of pairs of opinions at opinion distance s of each other. In the
statement of the next theorem, the function ⌈ · ⌉ refers to the ceiling function.

Theorem 1.2. Fixation occurs in the following two cases.

a. Condition (1.3) holds and

S(Γ, τ) :=
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k N(Γ, s)) > 0. (1.6)

b. There is a pair (i−, i+) of antipodal vertices and ρ > 0 small such that

ρi
−

, ρi+ > 1/2− ρ, ρi < ρ for all i 6= i−, i+ and d > 2τ.

Part b of the theorem implies that, when d > 2τ , there exist initial distributions
that satisfy (1.2) from which the system fixates. This shows in particular that The-
orems 1.1.a and 1.2.b give sharp conditions for graphs with d = 2r in the following
sense. For such opinion graphs,

• Theorem 1.1.a implies that, when d ≤ 2τ , the system starting from any
initial distribution that satisfies (1.2) always fluctuates whereas

• Theorem 1.2.b implies that, when d > 2τ , there exist initial distributions
that satisfy (1.2) from which the system fixates.

Examples of finite connected graphs such that d = 2r are path graphs with an odd
number of vertices and stars with branches of the same length.

Our last theorem, which is also the most challenging result of this paper, gives a
significant improvement of the previous condition for fixation for distance-regular
opinion graphs. This class of graphs is defined rigorously as follows: let

Γs(i) := {j ∈ V : d(i, j) = s} for s = 0, 1, . . . ,d

be the distance partition of the vertex set V for some i ∈ V . Then, the opinion
graph is distance-regular if the so-called intersection numbers

N(Γ, (i−, s−), (i+, s+)) := card (Γs
−

(i−) ∩ Γs+(i+))

= card {j ∈ V : d(i−, j) = s− and d(i+, j) = s+}

= f(s−, s+, d(i−, i+))

(1.7)

only depend on the distance d(i−, i+) but not on the particular choice of i− and i+.
This implies that, for distance-regular opinion graphs, the number of vertices

N(Γ, (i, s)) := card (Γs(i)) = f(s, s, 0) =: h(s)

does not depend on vertex i. To state our last theorem, we let

W(k) := −1 +
∑

1<n≤k

∑

n≤m≤⌈d/τ⌉ (qn qn+1 · · · qm−1)/(pn pn+1 · · · pm)
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where we assume by convention an empty sum is equal to zero and an empty product
is equal to one, and where the coefficients pn and qn are defined in terms of the
intersection numbers as

pn := max {
∑

s:⌈s/τ⌉=n−1 f(s−, s+, s)/h(s+) : ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = n}

qn := min {
∑

s:⌈s/τ⌉=n+1 f(s−, s+, s)/h(s+) : ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = n}.

Then, we have the following sufficient condition for fixation.

Theorem 1.3. Assume (1.3) and (1.7). Then, the process fixates when

Sreg(Γ, τ) :=
∑

k>0 (W(k)
∑

s:⌈s/τ⌉=k h(s)) > 0. (1.8)

To understand the coefficients pn and qn, note that, letting i− and j be two opinions
at distance s− of each other, we have the following interpretation:

f(s−, s+, s)/h(s+) = probability that an opinion i+ chosen uniformly
at random among the opinions at distance s+ from
opinion j is at distance s from opinion i−.

Outline of the proofs – The starting point of all our proofs is to use the formal
machinery introduced in Lanchier (2012); Lanchier and Scarlatos (2013); Lanchier
and Schweinsberg (2012) that consists in keeping track of the disagreements along
the edges of the spatial structure. This idea has also been used in Lanchier and
Moisson (2016); Lanchier and Scarlatos (2014) to study related models. In the
context of our general opinion model, we put a pile of s particles on edges that
connect individuals who are at opinion distance s of each other, i.e., we set

ξt((x, x+ 1)) := d(ηt(x), ηt(x+ 1)) for all x ∈ Z.

The definition of the confidence threshold implies that piles with at most τ particles,
that we call active, evolve according to symmetric random walks, while larger piles,
that we call frozen, are static. In addition, the jump of an active pile onto another
pile results in part of the particles being annihilated.

The main idea to prove fluctuation is to show that, after identifying opinions
that belong to the same member of the partition (1.5), the process reduces to the
voter model, and use that the one-dimensional voter model fluctuates according
to Arratia (1983). Fluctuation, together with the stronger assumption r ≤ τ ,
implies that the frozen piles, and ultimately all the piles of particles, go extinct,
which is equivalent to clustering of the opinion model.

In contrast, fixation occurs when the frozen piles have a positive probability of
never being reduced, which is more difficult to establish. To briefly explain our
approach to prove fixation, we say that the pile at (x, x+ 1) is of order k when

(k − 1) τ < ξt((x, x + 1)) ≤ kτ.

To begin with, we use a construction due to Bramson and Griffeath (1989) to ob-
tain an implicit condition for fixation in terms of the initial number of piles of
any given order in a large interval. Large deviation estimates for the number of
such piles are then proved and used to turn this implicit condition into the explicit
condition (1.6). To derive this condition, we use that at least k − 1 active piles
must jump onto a pile initially of order k > 1 to turn this pile into an active pile.
Condition (1.6) is obtained assuming the worst case scenario where the number of
particles that annihilate is maximal.

To show the improved condition for fixation (1.8) for distance-regular opinion
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graphs, we use the same approach but count more carefully the number of annihi-
lating events. First, we use duality-like techniques to prove that, when the opinion
graph is distance-regular, the system of piles becomes Markov. This is used to
prove that the jump of an active pile onto a pile of order n > 1 reduces/increases
its order with respective probabilities at most pn and at least qn. This implies that
the number of active piles that must jump onto a pile initially of order k > 1 to turn
it into an active pile is stochastically larger than the first hitting time to state 1
of a certain discrete-time birth and death process. This hitting time is equal in
distribution to

∑

1<n≤k

∑

n≤m≤⌈d/τ⌉ (qn qn+1 · · · qm−1)/(pn pn+1 · · · pm) = 1 +W(k).

The probabilities pn and qn are respectively the death parameter and the birth
parameter of the discrete-time birth and death process while the integer ⌈d/τ⌉ is
the number of states of this process, which is also the maximum order of a pile.

2. Application to specific opinion graphs

In this section, we first apply our general results Theorems 1.1–1.3 to the opinion
graphs which are represented in Figure 2.1 and then conclude with a conjecture for
general opinion graphs inspired from the combination of our theoretical results and
concrete examples.

To begin with, we look at paths and more generally stars with b branches of equal
length. For paths, one can think of the individuals as being characterized by their
position about one issue, ranging from strongly agree to strongly disagree. For stars,
individuals are offered b alternatives: the center represents undecided individuals
while vertices far from the center are more extremist in their position. These graphs
are not distance-regular so we can only apply Theorem 1.2 to study fixation. This
theorem combined with Theorem 1.1 gives the following two corollaries.

Corollary 2.1 (path). When Γ is the path with F vertices,

• the system fluctuates when (1.2) holds and F ≤ 2τ + 1 whereas

• the system fixates when (1.3) holds and

3F 2 − (20τ + 3)F + 10 (3τ + 1) τ > 0.

Corollary 2.2 (star). When Γ is the star with b branches of length r,

• the system fluctuates when (1.2) holds and r ≤ τ whereas

• the system fixates when (1.3) holds, 2r > 3τ and

4 (b− 1) r2 + 2 ((4− 5b) τ + b− 1) r + (6b− 5) τ2 + (1− 2b) τ > 0.

To illustrate Theorem 1.3, we now look at distance-regular graphs, starting with
the five convex regular polyhedra also known as the Platonic solids. These graphs
are natural mathematically though we do not have any specific interpretation from
the point of view of social sciences except, as explained below, for the cube and
more generally hypercubes. For these five graphs, Theorems 1.1 and 1.3 give sharp
results with the exact value of the critical threshold except for the dodecahedron
for which the behavior when τ = 3 remains an open problem.

Corollary 2.3 (Platonic solids). Assume (1.3). Then,
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path with 8 vertices

cube (6 faces, 8 vertices)

star with b = 8 branches cycle with 8 vertices

octahedron (8 faces, 6 vertices) dodecahedron (12 faces, 20 vertices)

tetrahedron (4 faces, 4 vertices)

icosahedron (20 faces, 12 vertices)

Figure 2.1. Opinion graphs considered in Corollaries 2.1–2.5

• the tetrahedral model fluctuates for all τ ≥ 1,

• the cubic model fluctuates when τ ≥ 2 and fixates when τ ≤ 1,

• the octahedral model fluctuates for all τ ≥ 1,

• the dodecahedral model fluctuates when τ ≥ 4 and fixates when τ ≤ 2,

• the icosahedral model fluctuates when τ ≥ 2 and fixates when τ ≤ 1.

Next, we look at the case where the individuals are characterized by some pref-
erences represented by the set of vertices of a cycle. For instance, as explained
in Boudourides and Scarlatos (2005), all strict orderings of three alternatives can
be represented by the cycle with 3! = 6 vertices.

Corollary 2.4 (cycle). When Γ is the cycle with F vertices,

• the system fluctuates when (1.2) holds and F ≤ 2τ + 2 whereas

• the system fixates when (1.3) hold and F ≥ 4τ + 2.

Finally, we look at hypercubes with F = 2d vertices, which are generalizations
of the three-dimensional cube. In this case, the individuals are characterized by
their position – in favor or against – about d different issues, and the opinion
distance between two individuals is equal to the number of issues they disagree on.
Theorem 1.3 gives the following result.

Corollary 2.5 (hypercube). When Γ is the hypercube with 2d vertices,

• the system fluctuates when (1.2) holds and d ≤ τ + 1 whereas

• the system fixates when

(1.3) holds and d/τ > 3 or d/τ > 2 with τ large.

Table 2.1 summarizes our results for the graphs of Figure 2.1. The second and
third columns give the value of the radius and the diameter. The conditions in
the fourth column are the conditions for fluctuation of the system obtained from
the corollaries. For opinion graphs with a variable number of vertices, the last
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opinion graph radius diameter fluctuation fix. (τ = 1) fix. (τ large)

path r = ⌊F/2⌋ d = F − 1 F ≤ 2τ + 1 F ≥ 6 F/τ > (10 +
√
10)/3 ≈ 4.39

star (b = 3) r = r d = 2r r ≤ τ r ≥ 2 r/τ > (11 +
√
17)/8 ≈ 1.89

star (b = 5) r = r d = 2r r ≤ τ r ≥ 2 r/τ > (21 +
√
41)/16 ≈ 1.71

cycle r = ⌊F/2⌋ d = ⌊F/2⌋ F ≤ 2τ + 2 F ≥ 6 F/τ > 4

hypercube r = d d = d d ≤ τ + 1 d ≥ 3 d/τ > 2

opinion graph radius diameter fluctuation fixation when

tetrahedron r = 1 d = 1 τ ≥ 1 τ = 0

cube r = 3 d = 3 τ ≥ 2 τ ≤ 1

octahedron r = 2 d = 2 τ ≥ 1 τ = 0

dodecahedron r = 5 d = 5 τ ≥ 4 τ ≤ 2

icosahedron r = 3 d = 3 τ ≥ 2 τ ≤ 1

Table 2.1. Summary of our results for the opinion graphs in Figure 2.1

two columns give sufficient conditions for fixation in the two extreme cases when
the confidence threshold is one and when the confidence threshold is large. To
explain the last column for paths and stars, note that the opinion model fixates
whenever d/τ is larger than the largest root of the polynomials

3X2 − 20X + 30 for the path

2X2 − 11X + 13 for the star with b = 3 branches

4X2 − 21X + 25 for the star with b = 5 branches

and the diameter of the opinion graph is sufficiently large. These polynomials are
obtained from the conditions in Corollaries 2.1–2.2 by only keeping the terms with
degree two.

Conjectures about whether the process fluctuates or fixates are difficult to ob-
tain from numerical simulations because the process always fixates when the spatial
structure is finite. The distinction between fluctuation and fixation can also be de-
termined by looking at the average domain length in the final configuration but here
again realizations of the finite system are difficult to interpret and may not be symp-
tomatic of the behavior of the infinite system. The approaches which aid towards
the estimation of the critical threshold constitute challenging computational prob-
lems. However, based on our results, we conjecture that, provided condition (1.2)
holds, the process

fluctuates when d ≤ 2τ and fixates when d > 2τ. (2.1)

Note that this conjecture is supported by the discussion right after Theorem 1.2
which shows that, for opinion graphs with d = 2r, the process fluctuates starting
from all possible initial distributions that satisfy (1.2) if and only if d ≤ 2τ . Note
also that (2.1) is consistent with all the results summarized in Table 2.1, though, for
technical reasons, the fixation results are only proved for the process starting from
a uniform product measure. In particular, the conjecture gives indeed the sharp
results obtained for the tetrahedron, cube, octahedron and icosahedron, which are
examples of graphs with d = r.
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3. Coupling with a system of annihilating particles

To study the general opinion model, it is convenient to construct the process from
a graphical representation and to introduce a coupling between the opinion model
and a certain system of annihilating particles that keeps track of the discrepancies
along the edges of the lattice rather than the opinion at each vertex. This system
of particles can also be constructed from the same graphical representation which
consists of the following collection of independent Poisson processes:

• For each x ∈ Z, let (Nt(x, x ± 1) : t ≥ 0) be a rate one Poisson process.

• Let Tn(x, x± 1) := inf {t : Nt(x, x ± 1) = n} be its nth arrival time.

This collection of independent Poisson processes is then turned into a percolation
structure by drawing an arrow x → x ± 1 at time t := Tn(x, x ± 1). We say that
this arrow is active when

d(ηt−(x), ηt−(x ± 1)) ≤ τ.

The configuration at time t is then obtained by setting

ηt(x± 1) = ηt−(x) when the arrow x → x± 1 is active

= ηt−(x± 1) when the arrow x → x± 1 is not active
(3.1)

and leaving the opinion at all the other vertices unchanged. An argument due to
Harris Harris (1972) implies that the opinion model starting from any configuration
can indeed be constructed using this percolation structure and rule (3.1). From
the collection of active arrows, we construct active paths as in percolation theory.
More precisely, we say that there is an active path from (z, s) to (x, t), and
write (z, s) ❀ (x, t), whenever there exist

s0 = s < s1 < · · · < sn+1 = t and x0 = z, x1, . . . , xn = x

such that the following two conditions hold:

• For j = 1, 2, . . . , n, there is an active arrow xj−1 → xj at time sj.

• For j = 0, 1, . . . , n, there is no active arrow pointing at {xj} × (sj , sj+1).

These two conditions imply that

for all (x, t) ∈ Z × R+ there is a unique z ∈ Z such that (z, 0) ❀ (x, t).

Moreover, because of the definition of active arrows, the opinion at vertex x at
time t originates from and is therefore equal to the initial opinion at vertex z so we
call vertex z the ancestor of vertex x at time t.

As previously mentioned, to study the general opinion model, we look at the
process that keeps track of the discrepancies along the edges rather than the ac-
tual opinion at each vertex, that we shall call the system of piles. To define
this process, it is convenient to identify each edge with its midpoint and to define
translations on the edge set as follows:

e := {x, x+ 1} ≡ x+ 1/2 for all x ∈ Z

e+ v := {x, x+ 1}+ v ≡ x+ 1/2 + v for all (x, v) ∈ Z × R.

The system of piles is then defined as

ξt(e) := d(ηt(e− 1/2), ηt(e + 1/2)) for all e ∈ Z + 1/2,
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and it is convenient to think of edge e as being occupied by a pile of ξt(e) particles.
The dynamics of the opinion model induces the following evolution rules on this
system of particles. Assuming that there is an arrow x− 1 → x at time t and that

ξt−(x− 1/2) := d(ηt−(x), ηt−(x− 1)) = s−

ξt−(x+ 1/2) := d(ηt−(x), ηt−(x+ 1)) = s+

we have the following alternative:

• In case s− = 0 (there is no particle on the edge), the two interacting agents
already agree just before the interaction therefore nothing happens.

• In case s− > τ (there are more than τ particles on the edge), the two agents
disagree too much to trust each other so nothing happens.

• In case 0 < s− ≤ τ (there is at least one but no more than τ particles on
the edge), the agent at vertex x mimics her left neighbor, which gives

ξt(x− 1/2) := d(ηt(x), ηt(x − 1))

= d(ηt−(x− 1), ηt−(x− 1)) = 0

ξt(x+ 1/2) := d(ηt(x), ηt(x + 1))

= d(ηt−(x− 1), ηt−(x+ 1)).

In particular, there is no more particles at edge x − 1/2. In addition, the
size s of the pile at edge x+1/2 at time t, where size of a pile refers to the
number of particles in that pile, satisfies the two inequalities

s ≤ |d(ηt−(x− 1), ηt−(x)) + d(ηt−(x), ηt−(x+ 1))|

= |s− + s+|

s ≥ |d(ηt−(x− 1), ηt−(x)) − d(ηt−(x), ηt−(x+ 1))|

= |s− − s+|.

(3.2)

Note that the first inequality implies that the process involves deaths of
particles but no births, which is a key property that will be used later.

Similar evolution rules are obtained by exchanging the direction of the interaction
from which we deduce the following description for the dynamics of piles:

• Piles with more than τ particles cannot move: we call such piles frozen
piles and the particles in such piles frozen particles.

• Piles with at most τ particles jump one unit to the left or to the right
at rate one: we call such piles active piles and the particles in such piles
active particles. Note that arrows in the graphical representation are active
if and only if they cross an active pile.

• When a pile of size s− jumps onto a pile of size s+ this results in a pile
whose size s satisfies the two inequalities in (3.2) so we say that s−+s+−s
particles are annihilated.

4. Proof of Theorem 1.1

Before proving the theorem, we start with some preliminary remarks. To begin
with, we observe that, when the diameter d ≤ τ , the τ -center covers all the opinion
graph, indicating that the model reduces to a multitype voter model with F =
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card V opinions, in which case the theorem is trivial. To prove the theorem in the
nontrivial case τ < d, we introduce the set

B(Γ, τ) := {i ∈ V : d(i, j) > τ for some j ∈ V }, (4.1)

that we call the τ-boundary of the opinion graph. One key ingredient to our proof
is the following lemma, which gives a sufficient condition for (1.5) to hold.

Lemma 4.1. V1 = C(Γ, τ) and V2 = B(Γ, τ) satisfy (1.5) when r ≤ τ < d.

Proof: From (1.4) and (4.1), we get B(Γ, τ) = V \ C(Γ, τ) therefore

C(Γ, τ) ∪ B(Γ, τ) = V and C(Γ, τ) ∩ B(Γ, τ) = ∅.

In addition, the τ -center of the graph is nonempty because

C(Γ, τ) 6= ∅ if and only if there is i ∈ V such that

d(i, j) ≤ τ for all j ∈ V

if and only if there is i ∈ V such that

maxj∈V d(i, j) ≤ τ

if and only if mini∈V maxj∈V d(i, j) ≤ τ

if and only if r ≤ τ

(4.2)

while the τ -boundary is nonempty because

B(Γ, τ) 6= ∅ if and only if there is i ∈ V such that

d(i, j) > τ for some j ∈ V

if and only if there are i, j ∈ V such that d(i, j) > τ

if and only if maxi∈V maxj∈V d(i, j) > τ

if and only if d > τ.

This shows that {V1, V2} is a partition of the set of opinions. Finally, since all the
vertices in the τ -center are within distance τ of all the other vertices, we also have
that condition (1.5) holds. �

The previous lemma will be used in the proof of part b. From now on, we call
vertices in the τ -center the centrist opinions and vertices in the τ -boundary the
extremist opinions.

Proof of Theorem 1.1.a (fluctuation). Under condition (1.5), agents who support
an opinion in the set V1 are within the confidence threshold of agents who support
an opinion in V2, therefore the transition rates (1.1) imply that

ci→j(x, ηt) = lims↓0 (1/s)P (ηt+s(x) = j | ηt and ηt(x) = i)

= card{y ∈ Nx : ηt(y) = j}
(4.3)

for every (i, j) ∈ V1 × V2 and every (i, j) ∈ V2 × V1. Let

ζt(x) := 1{ηt(x) ∈ V2} for all x ∈ Z. (4.4)

Since, according to (4.3), we have

• for all j ∈ V2, the rates ci→j(x, ηt) are constant across all i ∈ V1,

• for all i ∈ V1, the rates cj→i(x, ηt) are constant across all j ∈ V2,
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the process (ζt) is Markov with transition rates

c0→1(x, ζt) := lims↓0 (1/s)P (ζt+s(x) = 1 | ζt and ζt(x) = 0)

=
∑

i∈V1

∑

j∈V2
ci→j(x, ηt)P (ηt(x) = i | ζt(x) = 0)

=
∑

i∈V1

∑

j∈V2
card {y ∈ Nx : ηt(y) = j}P (ηt(x) = i | ζt(x) = 0)

=
∑

j∈V2
card {y ∈ Nx : ηt(y) = j} = card {y ∈ Nx : ζt(y) = 1}

and similarly for the reverse transition

c1→0(x, ζt) = card {y ∈ Nx : ηt(y) ∈ V1} = card{y ∈ Nx : ζt(y) = 0}.

This shows that (ζt) is the voter model. In addition, since V1, V2 6= ∅,

P (ζ0(x) = 0) = P (η0(x) ∈ V1) =
∑

j∈V1
ρj ∈ (0, 1)

whenever condition (1.2) holds. In particular, the result follows from the fact that
the one-dimensional voter model starting with a positive density of each type fluc-
tuates. This last result is a consequence of site recurrence for annihilating random
walks proved in Arratia (1983). �

Proof of Theorem 1.1.b (clustering). Since r ≤ τ < d,

V1 = C(Γ, τ) and V2 = B(Γ, τ)

form a partition of V according to Lemma 4.1. This implies that, not only the
opinion model fluctuates, but also the coupled voter model (4.4) for this specific
partition fluctuates, which is the key to the proof. First, we define the function

u(t) := E(ξt(e)) =
∑

0≤j≤d
j P (ξt(e) = j)

which, in view of translation invariance of the initial configuration and the evolution
rules, does not depend on the choice of e. Note that, since the system of particles
coupled with the process involves deaths of particles but no births, the function u(t)
is nonincreasing in time. Since it is also nonnegative, it has a limit: u(t) → l
as t → ∞. Now, on the event that an edge e is occupied by a pile of at least one
particle at a given time t, we have the following alternative:

(1) In case edge e := x+ 1/2 carries a frozen pile, since the centrist agents are
within the confidence threshold of all the other individuals, we have

ηt(x) ∈ V2 = B(Γ, τ) and ηt(x + 1) ∈ V2 = B(Γ, τ).

Now, using that the voter model (4.4) fluctuates,

T := inf {s > t : ηs(x) ∈ V1 = C(Γ, τ)

or ηs(x+ 1) ∈ V1 = C(Γ, τ)} < ∞

almost surely, while by definition of the τ -center, we have

ξT (e) = d(ηT (x), ηT (x+ 1)) ≤ τ < ξt(e).

In particular, with probability one, at least one of the frozen particles at e
is annihilated eventually.

(2) In case edge e := x+1/2 carries an active pile, since one-dimensional sym-
metric random walks are recurrent, this pile eventually intersects another
pile. Let s− and s+ be respectively the size of these two piles and let s be
the size of the pile of particles resulting from their intersection. Then, we
have the following alternative:
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(a) In case s < s− + s+ and s > τ , at least one particle is annihilated and
there is either formation or increase of a frozen pile so we are back
to case (1): since the voter model coupled with the opinion model
fluctuates, with probability one, at least one of the frozen particles in
this pile is annihilated eventually.

(b) In case s < s− + s+ and s ≤ τ , with probability one, at least one
particle is annihilated.

(c) In case s = s− + s+ and s > τ , there is either formation or increase of
a frozen pile so we are back to case (1): since the voter model coupled
with the opinion model fluctuates, with probability one, at least one
of the frozen particles in this pile is annihilated eventually.

(d) In case s = s− + s+ and s ≤ τ , the resulting pile is again active so it
keeps moving until, after a finite number of collisions, we are back to
either (a) or (b) or (c) and, with probability one, at least one particle
is annihilated eventually.

This shows that, as long as u(t) is positive, it is also decreasing. In particular, there
exists an increasing sequence of deterministic times (tn)n∈N ⊂ R+ such that

u(tn) ≤ (1/2)u(tn−1) ≤ (1/4)u(tn−2) ≤ · · · ≤ (1/2)n u(0) ≤ (1/2)n F

from which it follows that the density of particles decreases to zero:

limt→∞ P (ξt(e) 6= 0) ≤ limt→∞ u(t) = 0 for all e ∈ Z + 1/2.

In conclusion, for all x, y ∈ Z with x < y, we have

limt→∞ P (ηt(x) 6= ηt(y)) ≤ limt→∞ P (ξt(z + 1/2) 6= 0 for some x ≤ z < y)

≤ limt→∞
∑

x≤z<y P (ξt(z + 1/2) 6= 0)

= (y − x) limt→∞ P (ξt(e) 6= 0) = 0,

which proves clustering. �

5. Sufficient condition for fixation

This section and the next two ones are devoted to the proof of Theorem 1.2 which
focuses on the fixation regime. In this section, we give a general sufficient condition
for fixation that can be expressed based on the initial number of active particles and
frozen particles in a large random interval. The main ingredient of the proof is a
construction due to Bramson and Griffeath (1989) based on duality-like techniques
looking at active paths. The next section establishes large deviation estimates for
the initial number of particles in order to simplify the condition for fixation using
instead the expected number of active and frozen particles per edge. This is used
in the subsequent section to prove Theorem 1.2. The next lemma gives a condition
for fixation based on properties of the active paths, which is the analog of Bramson
and Griffeath (1989, Lemma 2).

Lemma 5.1. For all z ∈ Z, let

T (z) := inf {t : (z, 0) ❀ (0, t)}.

Then, the opinion model fixates whenever

limN→∞ P (T (z) < ∞ for some z < −N) = 0. (5.1)
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Proof: This follows the proof of Lanchier and Scarlatos (2013, Lemma 4). �

To derive a more explicit condition for fixation, we let

HN := {T (z) < ∞ for some z < −N}

be the event introduced in (5.1). Following the construction in Bramson and Grif-
feath (1989), we also let τN be the first time an active path starting from the left
of −N hits the origin, and observe that

τN = inf {T (z) : z ∈ (−∞,−N)}.

In particular, the event HN can be written as

HN =
⋂

z<−N {T (z) < ∞} = {τN < ∞}. (5.2)

Given the event HN , we let z− < −N and z+ ≥ 0 be the initial position of the
active path and the rightmost source of an active path that reaches the origin by
time τN . More formally, we define

z− := min {z ∈ Z : (z, 0) ❀ (0, τN )} < −N

z+ := max {z ∈ Z : (z, 0) ❀ (0, σN ) for some σN < τN} ≥ 0,
(5.3)

and let IN = (z−, z+). Now, we observe that, on the event HN ,

• All the frozen piles initially in IN have been destroyed, i.e., turned into
active piles due to the occurrence of annihilating events, by time τN .

• The active particles initially outside the interval IN cannot jump inside
the space-time region delimited by the two active paths implicitly defined
in (5.3) because the existence of such particles would contradict the mini-
mality of z− or the maximality of z+.

This, together with equation (5.2), implies that, given the event HN , all the frozen
piles initially in the random interval IN must have been destroyed by either active
piles initially in this interval or active piles that result from the destruction of
these frozen piles. To quantify this statement, we attach random variables, that
we call contributions, to each edge. The definition depends on whether the edge
initially carries an active pile or a frozen pile. To begin with, we give an arbitrary
deterministic contribution, say −1, to each pile initially active by setting

cont (e) := −1 whenever 0 < ξ0(e) ≤ τ. (5.4)

Now, we observe that, given HN , for each frozen pile initially in IN , a random
number of active piles must have jumped onto this frozen pile to turn it into an
active pile. Therefore, to define the contribution of a frozen pile, we let

Te := inf {t > 0 : ξt(e) ≤ τ} (5.5)

and define the contribution of a frozen pile initially at e as

cont (e) := −1 + number of active piles that hit e until time Te. (5.6)

Note that (5.6) reduces to (5.4) when edge e carries initially an active pile since in
this case the time until the edge becomes active is zero, therefore (5.6) can be used
as the general definition for the contribution of an edge with at least one particle.
Edges with initially no particle have contribution zero. Since the occurrence of HN

implies that all the frozen piles initially in IN must have been destroyed by either
active piles initially in this interval or active piles that result from the destruction
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of these frozen piles, in which case Te < ∞ for all the edges in the interval, and
since particles in an active pile jump all at once rather than individually,

HN ⊂ {
∑

e∈IN
cont (e |Te < ∞) ≤ 0}

⊂ {
∑

e∈(l,r) cont (e |Te < ∞) ≤ 0 for some l < −N and some r ≥ 0}.

(5.7)
Lemma 5.1 and (5.7) are used in section 7 together with the large deviation esti-
mates for the number of active and frozen piles showed in the following section to
prove Theorem 1.2.

6. Large deviation estimates

The objective of this section is to give large deviation estimates for the total contri-
bution of a large interval, which will be used later to find a good upper bound for
the probability in (5.1) and deduce a sufficient condition for fixation of the opinion
model. In order to state our result, we say that an edge is of type i → j when it
connects an individual with initial opinion i on the left to an individual with initial
opinion j on the right, and let

eN (i → j) := card {x ∈ (0, N) : η0(x) = i and η0(x+ 1) = j}

denote the number of edges of type i → j in the interval (0, N). Since large deviation
holds not only for the contribution defined in the previous section but also for any
function of the edge type, we state our result in this more general context.

Lemma 6.1. Let w : V × V → R be any function such that

w(i, i) = 0 for all i ∈ V

and let W : Z + 1/2 → R be the function defined as

We := w(i, j) whenever edge e is of type i → j.

Then, for all ǫ > 0, there exists c0 > 0 such that

P (
∑

e∈(0,N) (We − E(We)) /∈ (−ǫN, ǫN)) ≤ exp(−c0N) for all N large.

Proof: Even though the types of consecutive edges are not independent, since the
initial opinions are independent, for all ǫ′ > 0, there exists c1 > 0 such that

P (eN (i → j)−Nρi ρj /∈ (−ǫ′N, ǫ′N))

= P (eN(i → j)− E(eN (i → j)) /∈ (−ǫ′N, ǫ′N)) ≤ exp(−c1N)
(6.1)

for all N large and all i 6= j. In other respects,
∑

e∈(0,N) (We − E(We)) =
∑

e∈(0,N)We −NE(We)

=
∑

i6=j w(i, j) eN (i → j)−N
∑

i6=j w(i, j)P (e is of type i → j)

=
∑

i6=j w(i, j) (eN (i → j)−Nρi ρj).

(6.2)

Finally, letting

m := maxi6=j |w(i, j)| < ∞ and ǫ′ := 1/mF 2,
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it follows from (6.1)–(6.2) that

P (
∑

e∈(0,N) (We − E(We)) /∈ (−ǫN, ǫN))

= P (
∑

i6=j w(i, j) (eN (i → j)−Nρi ρj) /∈ (−ǫN, ǫN))

≤ P (w(i, j) (eN (i → j)−Nρi ρj) /∈ (−ǫN/F 2, ǫN/F 2) for some i 6= j)

≤ P (eN(i → j)−Nρi ρj /∈ (−ǫN/mF 2, ǫN/mF 2) for some i 6= j)

= P (eN(i → j)−Nρi ρj /∈ (−ǫ′N, ǫ′N) for some i 6= j) ≤ F 2 exp(−c1N)

for all N large. This completes the proof. �

7. Proof of Theorem 1.2 (general opinion graphs)

The key ingredients to prove Theorem 1.2 are Lemma 5.1 and inclusions (5.7). The
large deviation estimates of the previous section are also important to make the
sufficient condition for fixation more explicit and applicable to particular opinion
graphs. First, we find a lower bound We, that we shall call weight, for the con-
tribution of any given edge e. This lower bound is deterministic given the initial
number of particles at the edge and is obtained assuming the worst case scenario
where all the active piles annihilate with frozen piles rather than other active piles.
More precisely, we have the following lemma.

Lemma 7.1. For all k > 0,

cont (e |Te < ∞) ≥ We := k − 2 when (k − 1) τ < ξ0(e) ≤ kτ. (7.1)

Proof: The jump of an active pile of size s− ≤ τ onto a frozen pile of size s+ > τ
decreases the size of this frozen pile by at most s− particles. Since in addition active
piles have at most τ particles, whenever the initial number of frozen particles at
edge e satisfies

(k − 1) τ < ξ0(e) ≤ kτ for some k ≥ 2,

at least k − 1 active piles must have jumped onto e until time Te < ∞. Recall-
ing (5.6) gives the result when edge e carries a frozen while the result is trivial
when the edge carries an active pile since, in this case, both its contribution and
its weight are equal to −1. �

In view of Lemma 7.1, it is convenient to classify piles depending on the num-
ber of complete blocks of τ particles they contain: we say that the pile at e is of
order k > 0 when

(k − 1) τ < ξt(e) ≤ kτ or equivalently ⌈ξt(e)/τ⌉ = k

so that active piles are exactly the piles of order one and the weight of a pile is
simply its order minus two. Now, we note that Lemma 7.1 and (5.7) imply that

HN ⊂ {
∑

e∈(l,r) We ≤ 0 for some l < −N and some r ≥ 0}. (7.2)

Since in addition fixation occurs when limN→∞ P (HN ) = 0 according to Lemma 5.1,
the main objective to prove fixation is to find an upper bound that converges to
zero as N → ∞ for the probability of the event on the right-hand side of (7.2). This
is the key to proving the following general fixation result from which both parts of
Theorem 1.2 can be easily deduced.
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Lemma 7.2. Assume (1.2). Then, the system fixates whenever
∑

i,j∈V ρi ρj
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k 1{d(i, j) = s}) > 0.

Proof: To begin with, we observe that

P (ξ0(e) = s) =
∑

i,j∈V P (η0(x) = i and η0(x+ 1) = j) 1{d(i, j) = s}

=
∑

i,j∈V ρi ρj 1{d(i, j) = s}.

Recalling (7.1), it follows that

E(We) =
∑

k>0 (k − 2)P ((k − 1) τ < ξ0(e) ≤ kτ)

=
∑

k>0 ((k − 2)
∑

(k−1) τ<s≤kτ P (ξ0(e) = s))

=
∑

k>0 ((k − 2)
∑

(k−1) τ<s≤kτ

∑

i,j∈V ρi ρj 1{d(i, j) = s})

=
∑

i,j∈V ρi ρj
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k 1{d(i, j) = s})

which is positive under the assumption of the lemma. In particular, applying the
large deviation estimate in Lemma 6.1 with ǫ := E(We) > 0, we deduce that

P (
∑

e∈(0,N) We ≤ 0) = P (
∑

e∈(0,N) (We − E(We)) ≤ −ǫN)

≤ P (
∑

e∈(0,N) (We − E(We)) /∈ (−ǫN, ǫN)) ≤ exp(−c0N)

for all N large, which, in turn, implies with (7.2) that

P (HN ) ≤ P (
∑

e∈(l,r) We ≤ 0 for some l < −N and r ≥ 0)

≤
∑

l<−N

∑

r≥0 exp(−c0 (r − l)) → 0

as N → ∞. This together with Lemma 5.1 implies fixation. �

Both parts of Theorem 1.2 directly follow from the previous lemma.

Proof of Theorem 1.2.a. Assume that (1.3) holds and that

S(Γ, τ) =
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k N(Γ, s)) > 0.

Then, the expected weight becomes

E(We) =
∑

i,j∈V ρi ρj
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k 1{d(i, j) = s})

= (1/F )2
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k

∑

i,j∈V 1{d(i, j) = s})

= (1/F )2
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k card {(i, j) ∈ V × V : d(i, j) = s})

= (1/F )2
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k N(Γ, s))

= (1/F )2 S(Γ, τ) > 0

which, according to Lemma 7.2, implies fixation. �

Proof of Theorem 1.2.b. Assume that d > 2τ and fix a pair (i−, i+) of antipo-
dal vertices. Then, let X,Y ≥ 0 such that

2X + (F − 2)Y = 1

and assume that

ρi
−

= ρi+ = X and ρi = Y for all i /∈ B := {i−, i+}.
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To simplify the notation, we also introduce

Q(i, j) :=
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k 1{d(i, j) = s})

for all (i, j) ∈ V × V . Then, the expected weight becomes

P (X,Y ) =
∑

i,j∈V ρi ρj Q(i, j)

=
∑

i,j∈B ρi ρj Q(i, j) +
∑

i/∈B 2 ρi ρi
−

Q(i, i−)

+
∑

i/∈B 2 ρi ρi+ Q(i, i+) +
∑

i,j /∈B ρi ρj Q(i, j)

= 2Q(i−, i+)X2 + 2 (
∑

i/∈B Q(i, i−)

+ Q(i, i+))XY +
∑

i,j /∈B Q(i, j)Y 2.

This shows that P is continuous in both X and Y and that

P (1/2, 0) = (1/2)Q(i−, i+)

= (1/2)
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k 1{d(i−, i+) = s})

≥ (1/2) (3− 2)
∑

s>2τ 1{d(i−, i+) = s} = 1/2 > 0.

Therefore, according to Lemma 7.2, there is fixation of the process starting from
any product measure whose densities are in some neighborhood of

ρi
−

= ρi+ = 1/2 and ρi = 0 for all i /∈ {i−, i+}.

This proves the second part of Theorem 1.2. �

8. Proof of Theorem 1.3 (distance-regular graphs)

To explain the intuition behind the proof of Theorem 1.3, recall that, when an
active pile of size s− jumps to the right onto a frozen pile of size s+ at edge e, the
size of the latter pile becomes

ξt(e) = d(ηt(e − 1/2), ηt(e+ 1/2)) = d(ηt−(e− 3/2), ηt−(e+ 1/2))

and the triangle inequality implies that

s+ − s− = ξt−(e)− ξt−(e− 1) ≤ ξt(e) ≤ ξt−(e) + ξt−(e− 1) = s+ + s−. (8.1)

The exact distribution of the new size cannot be deduced in general from the size
of the intersecting piles, indicating that the system of piles is not Markov. The key
to the proof is that, at least when the underlying opinion graph is distance-regular,
the system of piles becomes Markov. The first step is to show that, for all opinion
graphs, the opinions on the left and on the right of a pile of size s are conditioned
to be at distance s of each other but are otherwise independent, which follows from
the fact that both opinions originate from two different ancestors at time zero, and
the fact that the initial distribution is a product measure. If in addition the opinion
graph is distance-regular then the number of possible opinions on the left and on
the right of the pile, which is also the number of pairs of opinions at distance s
of each other, does not depend on the actual opinion on the left of the pile. This
implies that, at least in theory, the new size distribution of a pile right after a
collision can be computed explicitly. This is then used to prove that a jump of an
active pile onto a pile of order n > 1 reduces its order with probability at most

pn = max {
∑

s:⌈s/τ⌉=n−1 f(s−, s+, s)/h(s+) : ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = n}
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while it increases its order with probability at least

qn = min {
∑

s:⌈s/τ⌉=n+1 f(s−, s+, s)/h(s+) : ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = n}.

In particular, the number of active piles that need to be sacrificed to turn a frozen
pile into an active pile is stochastically larger than the hitting time to state 1 of a
certain discrete-time birth and death process. To turn this heuristics into a proof,
we let x = e− 1/2 and

x− 1 →t x := the event that there is an arrow x− 1 → x at time t.

Then, we have the following lemma.

Lemma 8.1. Assume (1.3) and (1.7). For all s ≥ 0, s− ≤ τ and s+ > 0,

P (ξt(e) = s | (ξt−(e − 1), ξt−(e)) = (s−, s+)

and x− 1 →t x) = f(s−, s+, s)/h(s+).

Proof: The first step is similar to the proof of Lanchier and Scarlatos (2013,
Lemma 3). Due to one-dimensional nearest neighbor interactions, active paths
cannot cross each other. In particular, the opinion dynamics preserve the ordering
of the ancestral lineages therefore

a(x− 1, t−) ≤ a(x, t−) ≤ a(x+ 1, t−) (8.2)

where a(z, t−) refers to the ancestor of (z, t−), i.e., the unique source at time zero of
an active path reaching (z, t−). Since in addition s−, s+ > 0, given the conditioning
in the statement of the lemma, the individuals at x and x± 1 disagree at time t−
and so have different ancestors. This together with (8.2) implies that

a(x− 1, t−) < a(x, t−) < a(x+ 1, t−). (8.3)

Now, we fix i−, j ∈ V such that d(i−, j) = s− and let

Bt−(i−, j) := {ηt−(x − 1) = i− and ηt−(x) = j}.

Then, given this event and the conditioning in the statement of the lemma, the
probability that the pile of particles at e becomes of size s is equal to

P (ξt(e) = s |Bt−(i−, j) and ξt−(e) = s+ and x− 1 →t x)

= P (d(i−, ηt−(x+ 1)) = s |B(i−, j) and

d(j, ηt−(x+ 1)) = s+ and x− 1 →t x)

= card {i+ : d(i−, i+) = s and d(i+, j) = s+}

÷ card{i+ : d(i+, j) = s+}

(8.4)

where the last equality follows from (1.3) and (8.3) which, together, imply that
the opinion at x + 1 just before the jump is independent of the other opinions on
its left and chosen uniformly at random from the set of opinions at distance s+ of
opinion j. Assuming in addition that the underlying opinion graph is a distance-
regular graph (1.7), we also have

card {i+ : d(i−, i+) = s and d(i+, j) = s+}

= N(Γ, (i−, s), (j, s+)) = f(s−, s+, s)

card {i+ : d(i+, j) = s+}

= N(Γ, (j, s+)) = h(s+).

(8.5)
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In particular, the conditional probability in (8.4) does not depend on the particular
choice of the pair of opinions i− and j from which it follows that

P (ξt(e) = s | ξt−(e− 1) = s− and ξt−(e) = s+ and x− 1 →t x)

= P (ξt(e) = s |Bt−(i−, j) and ξt−(e) = s+ and x− 1 →t x)
(8.6)

The lemma is then a direct consequence of (8.4)–(8.6). �

As previously mentioned, it follows from Lemma 8.1 that, provided the opinion
model starts from a product measure in which the density of each opinion is con-
stant across space and the opinion graph is distance-regular, the system of piles
itself is a Markov process. Another important consequence is the following lemma,
which gives bounds for the probabilities that the jump of an active pile onto a
frozen pile results in a reduction or an increase of its order.

Lemma 8.2. Let x = e− 1/2. Assume (1.3) and (1.7). Then,

P (⌈ξt(e)/τ⌉ < ⌈ξt−(e)/τ⌉ |

(ξt−(e− 1), ξt−(e)) = (s−, s+) and x− 1 →t x) ≤ pn

P (⌈ξt(e)/τ⌉ > ⌈ξt−(e)/τ⌉ |

(ξt−(e− 1), ξt−(e)) = (s−, s+) and x− 1 →t x) ≥ qn

whenever 0 < ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = n > 1.

Proof: Let p(s−, s+, s) be the conditional probability

P (ξt(e) = s | (ξt−(e− 1), ξt−(e)) = (s−, s+) and x− 1 →t x)

in the statement of Lemma 8.1. Then, the probability that the jump of an active
pile onto the pile of order n at edge e results in a reduction of its order is

≤ max {
∑

s:⌈s/τ⌉=n−1 p(s−, s+, s) : ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = n} (8.7)

while the probability that the jump of an active pile onto the pile of order n at
edge e results in an increase of its order is

≥ min {
∑

s:⌈s/τ⌉=n+1 p(s−, s+, s) : ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = n}. (8.8)

But according to Lemma 8.1, we have

p(s−, s+, s) = f(s−, s+, s)/h(s+)

therefore (8.7)–(8.8) are equal to pn and qn, respectively. �

We refer to Figure 8.2 for a schematic illustration of the previous lemma. In order
to prove the theorem, we now use Lemmas 8.1–8.2 to find a stochastic lower bound
for the contribution of each edge. To express this lower bound, we let Xt be the
discrete-time birth and death Markov chain with transition probabilities

p(n, n− 1) = pn p(n, n) = 1− pn − qn p(n, n+ 1) = qn

for all 1 < n < M := ⌈d/τ⌉ and boundary conditions

p(1, 1) = 1 and p(M,M − 1) = 1− p(M,M) = pM .

This process will allow us to retrace the history of a frozen pile until time Te when
it becomes an active pile. To begin with, we use a first-step analysis to compute
explicitly the expected value of the first hitting time to state 1.
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Lemma 8.3. Let Tn := inf {t : Xt = n}. Then,

E(T1 |X0 = k) = 1 +W(k) for all 0 < k ≤ M = ⌈d/τ⌉.

Proof: Let σn := E(Tn−1 |X0 = n). Then, for all 1 < n < M ,

σn = p(n, n− 1) + (1 + σn) p(n, n) + (1 + σn + σn+1) p(n, n+ 1)

= pn + (1 + σn)(1 − pn − qn) + (1 + σn + σn+1) qn

= pn + (1 + σn)(1 − pn) + qn σn+1

= 1 + (1− pn)σn + qn σn+1

from which it follows, using a simple induction, that

σn = 1/pn + σn+1 qn/pn

= 1/pn + qn/(pn pn+1) + σn+2 (qn qn+1)/(pn pn+1)

=
∑

n≤m<M (qn · · · qm−1)/(pn · · · pm)

+ σM (qn · · · qM−1)/(pn · · · pM−1).

(8.9)

Since p(M,M − 1) = 1− p(M,M) = pM , we also have

σM = E(TM−1 |X0 = M) = E(Geometric (pM )) = 1/pM . (8.10)

Combining (8.9)–(8.10), we deduce that

σn =
∑

n≤m≤M (qn qn+1 · · · qm−1)/(pn pn+1 · · · pm),

which finally gives

E(T1 |X0 = k) =
∑

1<n≤k E(Tn−1 |X0 = n) =
∑

1<n≤k σn

=
∑

1<n≤k

∑

n≤m≤M (qn · · · qm−1)/(pn · · · pm) = 1 +W(k).

This completes the proof. �

The next lemma gives a lower bound for the contribution (5.6) of an edge e that
keeps track of the number of active piles that jump onto e before the pile at e
becomes active. The key is to show how the number of jumps relates to the birth
and death process. Before stating our next result, we recall that Te is the first time
the pile of particles at edge e becomes active.

Lemma 8.4. Assume (1.3) and (1.7). Then, for 1 < k ≤ ⌈d/τ⌉,

E(cont (e |Te < ∞)) ≥ W(k) when ⌈ξ0(e)/τ⌉ = k.

Proof: Since active piles have at most τ particles, the triangle inequality (8.1)
implies that the jump of an active pile onto a frozen pile can only increase or
decrease its size by at most τ particles, and therefore can only increase or decrease
its order by at most one. In particular,

P (|⌈ξt(e)/τ⌉ − ⌈ξt−(e)/τ⌉| > 2 |x− 1 →t x) = 0.

This, together with the bounds in Lemma 8.2 and the fact that the outcomes of
consecutive jumps of active piles onto a frozen pile are independent as explained in
the proof of Lemma 8.1, implies that the order of a frozen pile before it becomes
active dominates stochastically the state of the birth and death process Xt before
it reaches state 1. In particular,

E(cont (e |Te < ∞)) ≥ −1 + E(T1 |X0 = k) when ⌈ξ0(e)/τ⌉ = k.
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reduction of the order increase of the orderfrozen pile (no update)

j i+i− j i+i− j i+i−

ji− i+ i− i+ i− i+

ξt(e) = 0 ⌈ξt(e)/τ⌉ = 1 ⌈ξt(e)/τ⌉ = 2 ⌈ξt(e)/τ⌉ = 3 ⌈ξt(e)/τ⌉ = 4

probability ≤ p2 probability ≥ q2

i− i−

Figure 8.2. Schematic illustration of the coupling between the opinion model and
the system of piles along with their evolution rules. In our example, the thresh-
old τ = 2, which makes piles with three or more particles frozen piles and piles
with one or two particles active piles.

Using Lemma 8.3, we conclude that

E(cont (e |Te < ∞)) ≥ −1 + (1 +W(k)) = W(k)

whenever ⌈ξ0(e)/τ⌉ = k. �

We now have all the tools to prove the theorem. The idea is the same as in the
proof of Lemma 7.2 but relies on the previous lemma in place of Lemma 7.1.

Proof of Theorem 1.3. Assume (1.3) and (1.7) and

Sreg(Γ, τ) =
∑

k>0 (W(k)
∑

s:⌈s/τ⌉=k h(s)) > 0.

Since the opinion graph is distance-regular,

P (ξ0(e) = s) =
∑

i∈V P (ξ0(e) = s | η0(e− 1/2) = i)P (η0(e− 1/2) = i)

=
∑

i∈V F−1 card {j ∈ V : d(i, j) = s} P (η0(e − 1/2) = i)

=
∑

i∈V F−1 h(s)P (η0(e− 1/2) = i) = F−1 h(s).
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Using also Lemma 8.4, we get

E(cont (e |Te < ∞)) ≥
∑

k>0 W(k)P (⌈ξ0(e)/τ⌉ = k)

=
∑

k>0 W(k)P ((k − 1)τ < ξ0(e) ≤ kτ)

=
∑

k>0 W(k)
∑

s:⌈s/τ⌉=k F−1 h(s)

= F−1 Sreg(Γ, τ) > 0.

Now, let We be the collection of random variables

We :=
∑

k>0 W(k)1{ξ0(e) = k} for all e ∈ Z + 1/2.

Using Lemma 6.1 and the fact the number of collisions to turn a frozen pile into
an active pile is independent for different frozen piles, we deduce that there exists
a constant c2 > 0 such that

P (
∑

e∈(0,N) cont (e |Te < ∞) ≤ 0) ≤ P (
∑

e∈(0,N) We ≤ 0)

= P (
∑

e∈(0,N) (We − E(We)) /∈ (−ǫN, ǫN)) ≤ exp(−c2N)

for all N large. This, together with (5.7), implies that

P (HN ) ≤ P (
∑

e∈(l,r) cont (e |Te < ∞) ≤ 0 for some l < −N and r ≥ 0)

≤
∑

l<−N

∑

r≥0 exp(−c2 (r − l)) → 0

as N → ∞. In particular, fixation follows from Lemma 5.1. �

9. Proof of Corollaries 2.1–2.5

This section is devoted to the proof of Corollaries 2.1–2.5 that give sufficient con-
ditions for fluctuation and fixation for the opinion graphs shown in Figure 2.1. To
begin with, we prove the fluctuation part of all the corollaries at once.

Proof of Corollaries 2.1–2.5 (fluctuation). We start with the tetrahedron. In
this case, the diameter equals one therefore, whenever the threshold is positive,
the system reduces to a four-opinion voter model, which is known to fluctuate ac-
cording to Arratia (1983). To deal with paths and stars, we recall that combining
Theorem 1.1.a and Lemma 4.1 gives fluctuation when r ≤ τ . Recalling also the
expression of the radius from Table 2.1 implies fluctuation when

F ≤ 2τ + 1 for the path with F vertices

r ≤ τ for the star with b branches of length r.

For the other graphs, it suffices to find a partition that satisfies (1.5). For the
remaining four regular polyhedra and the hypercubes, we observe that there is a
unique vertex at distance d of any given vertex. In particular, fixing an arbitrary
vertex i− and setting

V1 := {i−, i+} and V2 := V \ V1

where i− and i+ are antipodal defines a partition of the set of opinions such that

d(i, j) ≤ d− 1 for all (i, j) ∈ V1 × V2.

Recalling the expression of the diameter from Table 2.1 and using Theorem 1.1.a
give the fluctuation parts of Corollaries 2.3 and 2.5. Using the exact same approach
implies fluctuation when the opinion graph is a cycle with an even number of vertices
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and F ≤ 2τ+2. For cycles with an odd number of vertices, we again use Lemma 4.1
to deduce fluctuation if

⌊F/2⌋ = r ≤ τ if and only if F ≤ 2τ + 1 if and only if F ≤ 2τ + 2,

where the last equivalence is true because F is odd. �

We now prove the fixation part of the corollaries. Depending on the opinion graphs,
the proofs rely on Theorem 1.2 or Theorem 1.3. The first two classes of graphs,
paths and stars, are not distance-regular therefore, to study the behavior of the
model for these opinion graphs, we rely on the first part of Theorem 1.2.

Proof of Corollary 2.1 (path). Assume that 4τ < d = F − 1 ≤ 5τ . Then,

S(Γ, τ) =
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k N(Γ, s))

=
∑

0<k≤4 ((k − 2)
∑

s:⌈s/τ⌉=k 2 (F − s)) + 3
∑

4τ<s≤d 2 (F − s)

=
∑

0<k≤4 ((k − 2)(2Fτ − (kτ)(kτ + 1) + ((k − 1) τ)((k − 1) τ + 1))

+ 3 (2F (F − 4τ − 1)− F (F − 1) + 4τ (4τ + 1))

= 4Fτ + τ (τ + 1) + 2τ (2τ + 1) + 3τ (3τ + 1)

+ 4τ (4τ + 1) + 6F (F − 4τ − 1)− 3F (F − 1)

= 3F 2 − (20τ + 3)F + 10 (3τ + 1) τ.

Since the largest root F+(τ) of this polynomial satisfies

4τ ≤ F+(τ) − 1 = (1/6)(20 τ + 3 +
√

40 τ2 + 9)− 1 ≤ 5τ for all τ ≥ 1

and since for each τ the function F 7→ S(Γ, τ) is nondecreasing, we deduce that
fixation occurs under the assumptions of the lemma according to Theorem 1.2. �

The case of the star with b branches of equal length r is more difficult mainly
because there are two different expressions for the number of pairs of vertices at a
given distance of each other depending on whether the distance is smaller or larger
than the branches’ length. In the next lemma, we compute the number of pairs of
vertices at a given distance of each other, which we then use to find a condition for
fixation when the opinion graph is a star.

Lemma 9.1. For the star with b branches of length r,

N(Γ, s) = b (2r + (b− 3)(s− 1)) for all s ∈ (0, r]

= b (b− 1)(2r − s+ 1) for all s ∈ (r, 2r].

Proof: Let n1(s) and n2(s) be respectively the number of directed paths of length s
embedded in a given branch of the star and the total number of directed paths of
length s embedded in a given pair of branches of the star. Then, as in the proof of
the corollary for paths,

n1(s) = 2 (r + 1− s) and n2(s) = 2 (2r + 1− s) for all s ≤ r.
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Since there are b branches and (1/2)(b−1) b pairs of branches, and since self-avoiding
paths embedded in the star cannot intersect more than two branches,

N(Γ, s) = b n1(s) + ((1/2)(b− 1) b)(n2(s)− 2n1(s))

= 2b (r + 1− s) + b (b− 1)(s− 1)

= b (2r + 2 (1− s) + (b− 1)(s− 1)) = b (2r + (b− 3)(s− 1))

for all s ≤ r. To deal with the case s > r, we let o be the center of the star and
observe that there is no vertex at distance s of vertices which are close to the center
whereas there are b− 1 vertices at distance s from vertices which are far from the
center. More precisely,

card{j ∈ V : d(i, j) = s} = 0 when d(i, o) < s− r

card{j ∈ V : d(i, j) = s} = b− 1 when d(i, o) ≥ s− r.

The number of directed paths of length s is then given by

N(Γ, s) = (b − 1) card {i ∈ V : d(i, o) ≥ s− r}

= b (b− 1)(r − (s− r − 1)) = b (b− 1)(2r − s+ 1)

for all s > r. This completes the proof of the lemma. �

Proof of Corollary 2.2 (star). Assume that 3τ < d = 2r ≤ 4τ . Then,

S(Γ, τ) =
∑

k>0 ((k − 2)
∑

s:⌈s/τ⌉=k N(Γ, s))

= −
∑

0<s≤τ N(Γ, s) +
∑

2τ<s≤3τ N(Γ, s) + 2
∑

3τ<s≤2r N(Γ, s).

Since τ < r ≤ 2τ , it follows from Lemma 9.1 that

S(Γ, τ) = −
∑

0<s≤τ b (2r + (b − 3)(s− 1))

+
∑

2τ<s≤3τ b (b− 1)(2r − s+ 1) + 2
∑

3τ<s≤2r b (b− 1)(2r − s+ 1)

= − b (2r − b+ 3) τ − (b/2)(b− 3) τ (τ + 1)

+ b (b− 1)(2r + 1) τ + (b/2)(b− 1)(2τ (2τ + 1)− 3τ (3τ + 1))

+ 2b (b− 1)(2r + 1)(2r − 3τ) + b (b− 1)(3τ (3τ + 1)− 2r (2r + 1)).

Expanding and simplifying, we get

(1/b)S(Γ, τ) = 4 (b− 1) r2 + 2 ((4− 5b) τ + b− 1) r + (6b− 5) τ2 + (1 − 2b) τ.

As for paths, the result is a direct consequence of Theorem 1.2. �

The remaining graphs in Figure 2.1 are distance-regular, which makes Theorem 1.3
applicable. Note that the conditions for fixation in the last three corollaries give
minimal values for the confidence threshold that lie between one third and one
half of the diameter. In particular, we apply the theorem in the special case
when ⌈d/τ⌉ = 3. In this case, we have

W(1) = −1 W(2) = W(1) + (1/p2)(1 + q2/p3) W(3) = W + 1/p3
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so the left-hand side of (1.8) becomes

Sreg(Γ, τ) =
∑

0<k≤3 (W(k)
∑

s:⌈s/τ⌉=k h(s))

= − (h(1) + h(2) + · · ·+ h(d))

+ (1/p2)(1 + q2/p3)(h(τ + 1) + h(τ + 2) + · · ·+ h(d))

+ (1/p3)(h(2τ + 1) + h(2τ + 2) + · · ·+ h(d)).

(9.1)

This expression is used repeatedly to prove the remaining corollaries.

Proof of Corollary 2.3 (cube). When Γ is the cube and τ = 1, we have

p2 = f(1, 2, 1)/h(2) = 2/3 and q2 = f(1, 2, 3)/h(2) = 1/3

which, together with (9.1) and the fact that p3 ≤ 1, implies that

Sreg(Γ, 1) ≥ − (h(1) + h(2) + h(3)) + (1/p2)(1 + q2)(h(2) + h(3)) + h(3)

= − (3 + 3 + 1) + (3/2)(1 + 1/3)(3 + 1) + 1 = 2 > 0.

This proves fixation according to Theorem 1.3. �

Proof of Corollary 2.3 (icosahedron). When Γ is the icosahedron and τ = 1,

p2 = f(1, 2, 1)/h(2) = 2/5 and q2 = f(1, 2, 3)/h(2) = 1/5.

Using in addition (9.1) and the fact that p3 ≤ 1, we obtain

Sreg(Γ, 1) ≥ − (h(1) + h(2) + h(3)) + (1/p2)(1 + q2)(h(2) + h(3)) + h(3)

= − (5 + 5 + 1) + (5/2)(1 + 1/5)(5 + 1) + 1 = 8 > 0

which, according to Theorem 1.3, implies fixation. �

Proof of Corollary 2.3 (dodecahedron). Fixation of the opinion model when the
threshold equals one directly follows from Theorem 1.2 since in this case

F−1 S(Γ, 1) = (1/20)(−h(1) + h(3) + 2 h(4) + 3 h(5))

= (1/20)(−3 + 6 + 2× 3 + 3× 1) = 3/5 > 0.

However, when the threshold τ = 2,

F−1 S(Γ, 2) = (1/20)(−h(1)− h(2) + h(5))

= (1/20)(−3− 6 + 1) = −2/5 < 0

so we use Theorem 1.3 instead: when τ = 2, we have

p2 = max {
∑

s=1,2 f(s−, s+, s)/h(s+) : s− = 1, 2 and s+ = 3, 4}

= max {f(1, 3, 2)/h(3), (f(2, 3, 2)+ f(2, 3, 1))/h(3), f(2, 4, 2)/h(4)}

= max {2/6, (2 + 1)/6, 1/3} = 1/2.

In particular, using (9.1) and the fact that p3 ≤ 1 and q2 ≥ 0, we get

Sreg(Γ, 2) ≥ − (h(1) + h(2) + h(3) + h(4) + h(5))

+ (1/p2)(h(3) + h(4) + h(5)) + h(5)

= − (3 + 6 + 6 + 3 + 1) + 2× (6 + 3 + 1) + 1 = 2 > 0,
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which again gives fixation. �

Proof of Corollary 2.4 (cycle). Regardless of the parity of F ,

f(s−, s+, s) = 0 when s− ≤ s+ ≤ d and s > s+ − s−
f(s−, s+, s) = 1 when s− ≤ s+ ≤ d and s = s+ − s−

(9.2)

while the number of vertices at distance s+ of a given vertex is

h(s+) = 2 for all s+ < F/2 and h(s+) = 1 when s+ = F/2 ∈ N. (9.3)

Assume that F = 4τ + 2. Then, d = 2τ + 1 so it follows from (9.2)–(9.3) that

p2 = max {
∑

s:⌈s/τ⌉=1 f(s−, s+, s)/h(s+) : ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = 2}

= max {f(s−, s+, s+ − s−)/h(s+) : ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = 2}

= max {f(s−, s+, s+ − s−)/h(s+) : ⌈s+/τ⌉ = 2} = 1/2.

Using in addition that p3 ≤ 1 and q2 ≥ 0 together with (9.1), we get

Sreg(Γ, τ) ≥ − (h(1) + h(2) + · · ·+ h(2τ + 1))

+ (1/p2)(h(τ + 1) + h(τ + 2) + · · ·+ h(2τ + 1)) + h(2τ + 1)

= − (4τ + 1) + 2× (2τ + 1) + 1 = 2 > 0.

In particular, the corollary follows from Theorem 1.3. �

Proof of corollary 2.5 (hypercube). The first part of the corollary has been ex-
plained heuristically in Adamopoulos and Scarlatos (2012). To turn it into a proof,
we first observe that opinions on the hypercube can be represented by vectors with
coordinates equal to zero or one while the distance between two opinions is the
number of coordinates the two corresponding vectors disagree on. In particular,
the number of opinions at distance s of a given opinion, namely h(s), is equal to
the number of subsets of size s of a set of size d, therefore

h(s) =

(

d

s

)

=

(

d

d− s

)

= h(d− s) for s = 0, 1, . . . , d. (9.4)

It follows that, for d = 3τ + 1,

2−d S(Γ, τ) = − h(1)− · · · − h(τ) + h(2τ + 1) + · · ·+ h(d− 1) + 2 h(d)

= h(d− 1)− h(1) + · · ·+ h(d− τ)− h(τ) + 2 h(d)

= 2 h(d) = 2 > 0.

Since in addition d 7→ S(Γ, τ) is nondecreasing, a direct application of Theorem 1.2
gives the first part of the corollary. The second part is more difficult. Note that,
to prove this part, it suffices to show that, for each σ > 0, fixation occurs when

d = (2 + 3σ) τ and τ is large. (9.5)

The main difficulty is to find a good upper bound for p2. This relies on properties
of the hypergeometric random variable. Let u and v be two opinions at distance s−
of each other. By symmetry, we may assume without loss of generality that both
vectors disagree on their first s− coordinates. Then, changing each of the first s−
coordinates in either one vector or the other vector and changing each of the re-
maining coordinates in either both vectors simultaneously or none of the vectors
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result in the same vector. In particular, choosing a vector w such that

d(u,w) = s+ and d(v, w) = s

is equivalent to choosing a of the first s− coordinates and then choosing b of the
remaining d− s− coordinates with the following constraint:

a+ b = s+ and (s− − a) + b = s.

In particular, letting K := ⌈(1/2)(s− + s+ − τ)⌉, we have

τ
∑

s=1

f(s−, s+, s) =

s
−

∑

a=K

(

s−
a

)(

d− s−
s+ − a

)

= h(s+)P (Z ≥ K)

where Z = Hypergeometric (d, s−, s+). In order to find an upper bound for the
probability p2 and deduce fixation, we first prove the following lemma about the
hypergeometric random variable.

Lemma 9.2. Assume (9.5), that ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = 2. Then,

P (Z ≥ K) =

s
−

∑

a=K

(

s−
a

)(

d− s−
s+ − a

)(

d

s+

)−1

≤ 1/2.

Proof: The proof is made challenging by the fact that there is no explicit expression
for the cumulative distribution function of the hypergeometric random variable and
the idea is to use a combination of symmetry arguments and large deviation esti-
mates. Symmetry is used to prove the result when s− is small while large deviation
estimates are used for larger values. Note that the result is trivial when s+ > s−+τ
since in this case the sum in the statement of the lemma is empty so equal to zero.
To prove the result when the sum is nonempty, we distinguish two cases.

Small active piles – Assume that s− < στ . Then,

s+ ≤ s− + τ < (1 + σ) τ = (1/2)(d− στ) < (1/2)(d− s−)

K ≥ (1/2)(s− + s+ − τ) > s−/2 > s− −K
(9.6)

from which it follows that
(

s−
a

)(

d− s−
s+ − a

)

≤

(

s−
a

)(

d− s−
s+ − s− + a

)

for all K ≤ a ≤ s−. (9.7)

Using (9.7) and again the second part of (9.6), we deduce that

h(s+)P (Z ≥ K) =

s
−

∑

a=K

(

s−
a

)(

d− s−
s+ − a

)

≤

s
−

∑

a=K

(

s−
a

)(

d− s−
s+ − s− + a

)

=

s
−
−K

∑

a=0

(

s−
s− − a

)(

d− s−
s+ − a

)

≤
K−1
∑

a=0

(

s−
a

)(

d− s−
s+ − a

)

.

In particular, we have P (Z ≥ K) ≤ P (Z < K), which gives the result.

Larger active piles – Assume that στ ≤ s− ≤ τ . In this case, the result is
a consequence of the following large deviation estimates for the hypergeometric



Voter models with confidence threshold 91

random variable:

P

(

Z ≥

(

s−
d

+ ǫ

)

s+

)

≤

((

s−
s− + ǫd

)s
−
/d+ǫ(

d− s−
d− s− − ǫd

)1−s
−
/d−ǫ)s+

(9.8)

for all 0 < ǫ < 1− s−/d, that can be found in Hoeffding (1963). Note that

d (s+ + s− − τ)− 2s+ s− = (d− 2s−) s+ + d (s− − τ)

≥ (d− 2s−)(τ + 1) + d (s− − τ) ≥ (d− 2τ) s−

= 3στs− = (3στ/2s+)(2s+ s−) ≥ (3σ/4)(2s+ s−)

for all τ < s+ ≤ 2τ . It follows that

K ≥
s+ + s− − τ

2
≥

(

1 +
3σ

4

)

s+ s−
d

=

(

s−
d

+
3σs−
4d

)

s+ ≥

(

s−
d

+
σ2

3

)

s+

which, together with (9.8) for ǫ = σ2/3, gives

P (Z ≥ K) ≤ P

(

Z ≥

(

s−
d

+ ǫ

)

s+

)

≤

(

s−
s− + ǫd

)s+s
−
/d

≤

(

3s−
3s− + σ2d

)s+s
−
/d

≤

(

3

3 + 2σ2

)(σ/3) s+

≤

(

3

3 + 2σ2

)(σ/3) τ

.

Since this tends to zero as τ → ∞, the proof is complete. �

It directly follows from the lemma that

p2 = max {
∑

s:⌈s/τ⌉=1 f(s−, s+, s)/h(s+) : ⌈s−/τ⌉ = 1 and ⌈s+/τ⌉ = 2} ≤ 1/2.

This, together with (9.1) and p3 ≤ 1 and q2 ≥ 0, implies that

Sreg(Γ, τ) ≥ − h(1)− · · · − h(d) + (1/p2)h(τ + 1) + · · ·+ (1/p2)h(d)

≥ − h(1)− · · · − h(d) + 2 h(τ + 1) + · · ·+ 2 h(d)

= − h(1)− · · · − h(τ) + h(τ + 1) + · · ·+ h(d).

Finally, using again (9.4) and the fact that d > 2τ , we deduce that

Sreg(Γ, τ) ≥ − h(1)− · · · − h(τ) + h(τ + 1) + · · ·+ h(d)

≥ h(d− 1)− h(1) + · · ·+ h(d− τ) − h(τ) + h(d)

= h(d) = 1 > 0.

The corollary follows once more from Theorem 1.3. �
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