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Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
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Abstract. We construct an aggregation process of chordal SLEκ excursions in the
unit disk, starting from the boundary, growing towards all inner points simulta-
neously, invariant under all conformal self-maps of the disk. We prove that this
conformal growth process of excursions, abbreviated as CGEκ, exists iff κ ∈ [0, 4),
and that it does not create additional fractalness: the Hausdorff dimension of the
closure of all the SLEκ arcs attached is 1 + κ/8 almost surely. We determine the
dimension of points that are approached by CGEκ at an atypical rate.

1. Introduction

Planar aggregation processes based on harmonic measure, usually called Lapla-
cian growth models, have been extensively studied in the physics and mathematics
literature, key examples being Diffusion Limited Aggregation and a family of models
using iterated conformal maps, the Hastings-Levitov models; see Witten and Sander
(1983); Halsey (2000); Hastings and Levitov (1998); Carleson and Makarov (2001);
Rohde and Zinsmeister (2005); Norris and Turner (2012); Johansson Viklund et al.
(2015). The most interesting versions, which produce fractal growth according to
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simulations, are notoriously hard to study: the discrete ones do not have mean-
ingful scaling limits, the continuum models do not have enough symmetries that
would make their analysis easier.

This motivated Itai Benjamini to suggest a model where both the building blocks
and the aggregation measure are fully conformally invariant. Firstly, there is a
sigma-finite infinite measure on pairs of points on the boundary of the complex
unit disk U, unique up to a global constant factor, which is invariant under all
conformal self-maps of the disk, the Möbius transformations: it has density

HU(z, w) = c|z − w|−2,
called the boundary Poisson kernel. Secondly, once we have a pair of points
z, w ∈ ∂U, we can take a chordal SLEκ arc γ in U between z and w, with κ ∈ [0, 8).
(For background on the Schramm-Loewner Evolution, see Schramm, 2000; Werner,
2004; Lawler, 2005.) Then, we can take a point z ∈ U and a conformal uniformiza-
tion map from the component of U \ γ that contains z back to U, normalized at
z, and try and iterate this procedure. However, since our measure on ∂U × ∂U is
not finite, we cannot take iid random pairs (zi, wi) one after the other. Instead, we
need to take a Poisson point process on ∂U × ∂U × [0,∞) with intensity measure
HU(z, w) dz dw dt, take all the arrivals

{
(zi, wi) : i ∈ Ir(t)

}
with time index in [0, t)

and arc-length larger than a small positive cutoff r > 0, and do the above iterative
procedure for these finitely many pairs of points. (See Figure 1.1 for an illustra-
tion.) Then, we let r → 0, and hope that the process, using the increasing set Ir(t)
of arrivals, will converge to a process (Dz

t , t ≥ 0), the connected component of z
at time t. Moreover, using conformal invariance, we can try to define the process
targeted at all points z ∈ U simultaneously: as long as Dz

t = Dw
t , the processes

targeted towards z and w coincide, and after the disconnection time they continue
independently. Our first result says that this envisioned procedure actually works,
but only for κ ∈ [0, 4):

Theorem 1.1. For κ ∈ [0, 4), there exists a growth process

(Dt, t ≥ 0) = (Dz
t , t ≥ 0, z ∈ U)

of SLEκ excursions, targeted at all points, with the property that (Dt, t ≥ 0) and
(ϕ(Dt), t ≥ 0) have the same law (with no time-change) for all Möbius transforma-
tions ϕ of U. We will abbreviate this Conformal Growth of Excursions by CGEκ.

Maybe disappointingly, CGEκ does not produce considerable extra fractalness,
beyond what is already inherent in the SLEκ arcs, which have dimension 1 + κ/8
Beffara (2008):

Theorem 1.2. Fix κ ∈ [0, 4). Suppose that (D0
t , t ≥ 0) is CGEκ targeted at the

origin. Define Γ to be the closure of the union ∪t≥0∂D0
t . Then, dim(Γ) = 1 + κ/8

almost surely.

Consider now the conformal radius of Dz
t seen from z, denoted by CR(z;Dz

t ).
We can derive the asymptotic decay of the conformal radius. For λ ∈ R, define the
Laplace exponent

Λκ(λ) = logE
[
CR(z;Dz

1)−λ
]
. (1.1)

As we will see, Λκ(λ) is finite when λ < 1−κ/8, and we have almost surely that

lim
t→∞

− log CR(z;Dz
t )

t
= Λ′κ(0) ∈ (0,∞) . (1.2)



A Conformally Invariant Growth Process 853

·
75

150

300

500

Figure 1.1. Four stages (75, 150, 300, 500 arcs) of CGEκ=0, grow-
ing towards∞ (that is, the process targeted originally at 0, marked
with a black dot, but inverted through the unit circle for better
visibility), with some positive cutoff for the sizes of the SLE0 arcs,
which are just semicircles.

From (1.2), we know that typically the conformal radius CR(z;Dz
t ) decays like

exp(−tΛ′κ(0)). We are also interested in those points z where CR(z;Dz
t ) decays in

an abnormal way. Define, for α ≥ 0, the random set

Θ(α) =

{
z ∈ U : lim

t→∞

− log CR(z;Dz
t )

t
= α

}
. (1.3)

Clearly, when α 6= Λ′κ(0), the points in the set Θ(α) have an abnormal decaying rate
of CR(z;Dz

t ). The Hausdorff dimension of Θ(α) can be estimated through Fenchel-
Legendre transform of Λκ. The Fenchel-Legendre transform of Λκ is defined by, for
α ∈ R,

Λ∗κ(α) = sup
λ∈R

(λα− Λκ(λ)) .

Theorem 1.3. Define

αmin = sup{α > 0 : 2α− Λ∗κ(α) ≤ 0}. (1.4)

We have almost surely,{
dim(Θ(α)) ≤ 2− Λ∗κ(α)/α, α ≥ αmin;

Θ(α) = ∅, α < αmin.
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Figure 1.2. With κ = 2, numerical approximations of Λκ(λ),
blowing up at λ = 1 − κ/8, and its Fenchel-Legendre transform
Λ∗κ(λ), with an asymptotic slope 1− κ/8.

The CGEκ process (Dt, t ≥ 0) targeted at all points naturally yields a fragmen-
tation process of the unit disk, raising interesting questions. First of all, for any
z, w ∈ U, we can define T (z, w) to be the first time t such that z, w are not in
the same connected component of Dt. We call T (z, w) the disconnection time, for
which we have the following estimate:

Theorem 1.4. Fix κ ∈ [0, 4) and let Λκ(λ) be the Laplace exponent defined in (1.1).
Let z, w ∈ U be distinct and T (z, w) be the disconnection time of CGEκ targeted at
all points. Then there exists a constant C ∈ (0,∞) (only depending on κ) such that

|E[T (z, w)]−GU(z, w)/Λ′κ(0)| ≤ C,
where GU is Green’s function of the unit disc.

Finally, let us discuss the most obvious question: in what discrete models can
one find a structure that has our CGEκ as a scaling limit? The full conformal
invariance of the process targeted at all points suggests that probably one should
look for structures that can be defined not only as growth processes, but also
as static objects, similar to the Conformal Loop Ensembles CLEκ (Sheffield and
Werner, 2012); note however that CLEκ exists for a different subset of κ values:
for κ ∈ (8/3, 4] if the loops are simple, and for κ ∈ (8/3, 8) in general. A good
candidate for a suitable discrete model is Wilson’s algorithm (Wilson, 1996),
which generates a Uniform Spanning Tree (UST) from iteratively adding Loop-
Erased Random Walk trajectories, which converge to SLE2 arcs (Schramm, 2000;
Lawler et al., 2004). Furthermore, Temperley’s bijection gives a coupling between
the domino height function on Z2 and the UST (see Kenyon, 2000), and the winding
field of the branches in the UST converges to Gaussian Free Field (GFF) (Miller
and Sheffield, 2017; Berestycki et al., 2016). This implies that CGE2 may emerge
naturally in the GFF. For general κ ∈ (2, 4), a similar construction was conjectured
for interacting dimers Giuliani et al. (2017). This gives another candidate related
to CGEκ in the limit.

Overview of the paper. In Section 2, we define the boundary Poisson kernel and
the SLEκ and SLEκ(ρ) processes, and prove an overshoot estimate for subordina-
tors.

In Section 3, we prove Theorem 1.1: we construct the growth process for κ < 4,
prove that it is conformally invariant, and show that it does not exist for κ ≥ 4. The
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proofs are based on known estimates on the probability that chordal SLEκ comes
close to a point on the boundary or inside the domain, and on conformal martingales
related to these questions, describing the Laplace transform of the capacity of an
SLEκ arc. We also prove Theorem 1.3 on the dimension of points with abnormal
decay, using Large Deviations theory.

In Section 4, we give estimates on the disconnection time, proving Theorem 1.4
in particular. Here a key ingredient is the innocent-looking but rather tricky
Lemma 4.1, saying that the process leaves the boundary ∂U in finite time with
positive probability. We also prove Theorem 1.2 on the dimension being 1 + κ/8,
where the full conformal invariance of the process targeted at all points is of im-
mense help.

We end the paper with three open problems in Section 5.

2. Preliminaries

Notation.
B(z, r) = {w ∈ C : |z − w| < r}, U = B(0, 1), and H = {w ∈ C : =w > 0}.

2.1. Green function and Poisson kernel. Let η(z, ·; t) denote the law of 2D Brownian
motion (Bs, 0 ≤ s ≤ t) starting from z. We can write

η(z, ·; t) =

∫
C
η(z, w; t)dw,

where dw denotes the area measure and η(z, w; t) is a measure on continuous curves
from z to w. Define η(z, w) =

∫∞
0
η(z, w; t)dt. This is an infinite σ-finite measure.

If D is a domain and z, w ∈ D, define ηD(z, w) to be η(z, w) restricted to curves
stayed in D. If z 6= w and D is a domain such that a Brownian motion in D
eventually exits D, then the total mass |ηD(z, w)| is finite and we define the Green
function

GD(z, w) = π|ηD(z, w)|.
In particular, whenD = U and z, w ∈ U, we haveGU(z, w) = log |(1− z̄w)/(z − w)|.
Just like planar Brownian motion, the Green function is also conformally invariant:
if ϕ : D −→ ϕ(D) is a conformal map and z, w ∈ D, then

Gϕ(D)(ϕ(z), ϕ(w)) = GD(z, w). (2.1)

Suppose that D is a connected domain with piecewise analytic boundary. Let
B be a Brownian motion starting from z ∈ D and stopped at the first exit time
τD := inf{t : Bt 6∈ D}. Denote by ηD(z, ∂D) the law of (Bt, 0 ≤ t ≤ τD). We can
write

ηD(z, ∂D) =

∫
∂D

ηD(z, w)dw,

where dw is the length measure on ∂D and ηD(z, w) is a measure on continuous
curves from z to w. The measure ηD(z, w) can be viewed as a measure on Brownian
paths starting from z and restricted to to exit D at w. Define Poisson kernel
HD(z, w) to be the total mass of ηD(z, w).

Suppose that z, w are distinct boundary points. Define the measure on Brownian
paths from z to w in D to be

ηD(z, w) = lim
ε→0

1

ε
ηD(z + εnz, w),
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where nz is the inward normal at z. The measure ηD(z, w) is called Brownian
excursion measure. Define the boundary Poisson kernel HD(z, w) to be the total
mass of ηD(z, w). From the conformal invariance of Brownian motion, we can
derive the conformal covariance of the boundary Poisson kernel (see Lawler, 2005,
Proposition 5.5): Suppose that ϕ : D −→ ϕ(D) is a conformal map and z, w ∈ ∂D
and ϕ(z), ϕ(w) ∈ ∂ϕ(D) are analytic boundary points, then

|ϕ′(z)ϕ′(w)|Hϕ(D)(ϕ(z), ϕ(w)) = HD(z, w). (2.2)

Moreover, if D = U and z, w ∈ ∂U, we have HU(z, w) = 1/(π|z−w|2). In particular,
if θ = arg(z/w) ∈ [0, 2π), we have

HU(z, w) =
1

4π sin2(θ/2)
. (2.3)

2.2. Chordal and radial SLE. In this section, we review briefly the chordal and
radial SLEκ(ρ) processes and refer the reader to Werner (2004) and Lawler (2005)
for a detailed introduction. The chordal Loewner chain with a continuous driving
function W : [0,∞)→ R is the solution for the following ODE: for z ∈ H,

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z.

This solution is well-defined up to the swallowing time

T (z) := sup

{
t : inf

s∈[0,t]
|gs(z)−Ws| > 0

}
.

For t ≥ 0, define Kt := {z ∈ H : T (z) ≤ t}, then gt(·) is the unique conformal map
from H \Kt onto H with the expansion gt(z) = z + 2t/z + o(1/z) as z →∞.

Chordal SLEκ is the chordal Loewner chain with driving function W =
√
κB

where B is a one-dimensional Brownian motion. For κ ∈ [0, 4], the SLEκ process is
almost surely a continuous simple curve in H from 0 to ∞. Suppose γ is an SLEκ
curve in H from 0 to ∞, then it is conformal invariant: for any c > 0, the curve cγ
has the same law as γ (up to time change). Therefore, we could define chordal SLE
in any simply connected domain. Suppose that D is a simply connected domain
and x, y ∈ ∂D are distinct boundary points. Define SLEκ in D from x to y to be
the image of SLEκ in H from 0 to ∞ under any conformal map from H onto D
sending the pair (0,∞) to (x, y). Chordal SLEκ is reversible for κ ∈ (0, 8): suppose
that γ is an SLEκ in D from x to y, then the time-reversal of γ has the same law
as an SLEκ in D from y to x. Thus, we also call SLEκ in D from x to y as SLEκ
in D with two end points (x, y).

The radial Loewner chain with a continuous driving function W : [0,∞) → ∂U
is the solution for the following ODE: for z ∈ U,

∂tgt(z) = gt(z)
Wt + gt(z)

Wt − gt(z)
, g0(z) = z.

This solution is well-defined up to the swallowing time

T (z) := sup

{
t : inf

s∈[0,t]
|gs(z)−Ws| > 0

}
.

For t ≥ 0, define Kt := {z ∈ U : T (z) ≤ t}, then gt(·) is the unique conformal map
from U \Kt onto U with the normalization: gt(0) = 0, g′t(0) > 0.
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Radial SLEκ is the radial Loewner chain with driving function W = exp(i
√
κB)

where B is a one-dimensional Brownian motion. For κ ∈ [0, 8), radial SLEκ is
almost surely a continuous curve in U from 1 to the origin. Radial SLEκ(ρ) with
W0 = x ∈ ∂U and force point V0 = y ∈ ∂U is the radial Loewner chain with driving
function W solving the following SDEs:

dWt = i
√
κBt −

(
κ

2
Wt +

ρ

2
Wt

Wt + Vt
Wt − Vt

)
dt, W0 = x;

dVt = Vt
Wt + Vt
Wt − Vt

dt, V0 = y.

The system has a unique solution up to the collision time T := inf{t : Wt = Vt}.
We focus on the weight ρ = κ − 6 for the following reason: chordal SLEκ in U

from x to y has the same law as radial SLEκ(κ−6) with starting point W0 = x and
force point V0 = y; see Schramm and Wilson (2005). Fix κ ∈ [0, 8) and ρ = κ− 6.
Define θt = arg(Wt) − arg(Vt) ∈ (0, 2π), then by Itô’s formula, the process θt
satisfies the SDE:

dθt =
√
κdBt +

κ− 4

2
cot(θt/2)dt. (2.4)

The collision time T is also the first time that θt hits 0 or 2π. Moreover, when
κ ∈ [0, 8), we have E[T ] <∞.

Suppose that D is a proper simply connected domain. The conformal radius
of D seen from z ∈ D is |ϕ′(z)|−1 where ϕ is any conformal map from D onto U
sending z to the origin. We denote this conformal radius by CR(z;D). Define the
inradius

inrad(z;D) := inf
w∈C\D

|z − w|.

By Koebe’s one quarter theorem and the Schwarz lemma (Lawler, 2005, Theorem
3.17, Lemma 2.1), we have that

inrad(z;D) ≤ CR(z;D) ≤ 4inrad(z;D). (2.5)

For any compact subset K ⊂ U, let D be the connected component of U \K that
contains z. Define the capacity of K seen from z to be cap(z;K) = − log CR(z;D).
When z is the origin, we simply denote CR(0;D) and cap(0;K) by CR(D) and
cap(K) respectively. One can check that the radial Loewner chain is parameterized
by capacity seen from the origin.

2.3. Overshoot estimate for subordinators. Suppose that (X(t), t ≥ 0) is a right-
continuous increasing process starting from 0 and taking values in [0,∞). We call
X a subordinator if it has independent homogeneous increments on [0,∞). The
Laplace transform of a subordinator has a nice expression: for t > 0 and λ ≥ 0,
we have E[exp(λX(t))] = exp(−tΦ(λ)), where Φ : [0,∞) → [0,∞). There exist a
unique constant d ≥ 0 and a unique measure Π on (0,∞), which is called the Lévy
measure of X, with

∫
(1 ∧ x)Π(dx) <∞ such that, for λ ≥ 0,

Φ(λ) = dλ+

∫
(1− e−λx)Π(dx).

Moreover, one has almost surely, for t > 0,

X(t) = dt+
∑
s≤t

∆s,
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where (∆s, s ≥ 0) is a Poisson point process with intensity Π. (More precisely,
we have a Poisson point process {(∆j , sj) : j ∈ J} with intensity Π⊗ Lebesgue on
(0,∞)× [0,∞), the second coordinate being time, where J is a countable set, and
we let ∆s := ∆j when s = sj , while ∆s := 0 otherwise.) Define the tail of the Lévy
measure:

Π(x) = Π((x,∞)).

We introduce the inverse of X, and the processes of first-passage and last-passage
of X: for x > 0,

Lx = inf{t : X(t) > x}, Dx = X(Lx), Gx = X(Lx−).

A subordinator is a transient Markov process, its potential measure U(dx) is
called the renewal measure. It is defined as, for any nonnegative measurable func-
tion f , ∫ ∞

0

f(x)U(dx) = E
[∫ ∞

0

f(X(t))dt

]
.

Proposition 2.1. Bertoin (1999, Lemma 1.10). For every real numbers a, b, x
such that 0 ≤ a < x ≤ a+ b, we have that

P[Gx ∈ da,Dx −Gx ∈ db] = U(da)Π(db).

Proposition 2.2. Suppose that X is a subordinator with Lévy measure Π satisfying∫
(eλ0x − 1)Π(dx) <∞, for some λ0 > 0.

Then there exists a positive finite constant C (depending on Π and λ0) such that

P[Dx − x ≥ y] ≤ Ce−λ0y, for all x ≥ 0, y ≥ 0.

Proof : When y ∈ [0, 1], we could take C ≥ eλ0 . Thus we can suppose y ≥ 1. We
divide the event {Dx − x ≥ y} according to the values of Gx. For every k ∈ Z+,
define

Ek = [Gx ≤ x− k,Dx ≥ x+ y].

By Proposition 2.1, we have that

P[Ek] ≤ Π(k + y) ≤
∫
u≥k+y

eλ0ue−λ0(k+y)Π(du) ≤ e−λ0(k+y)

∫
u≥1

eλ0uΠ(du).

Thus

P[Dx − x ≥ y] ≤
∑
k≥0

P[Ek] ≤ e−λ0y

∫
u≥1 e

λ0uΠ(du)

1− e−λ0
.

So we can take

C = eλ0 ∨
∫
u≥1 e

λ0uΠ(du)

1− e−λ0
.

�

Remark 2.3. In the literature, people usually consider right-continuous subordina-
tors. Whereas, the conclusions in this section also hold for left-continuous subor-
dinators. Note that if X is a left-continuous subordinator, then X can be written
as, for t > 0,

X(t) = dt+
∑
s<t

∆s,
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where (∆s, s ≥ 0) is a Poisson point process. Therefore, the proofs in this sec-
tion can be modified for left-continuous subordinators without difficulty. In the
later part of our paper, we will apply conclusions in this section for left-continuous
subordinators.

3. Construction of the growth process CGEκ

3.1. The Poisson point process of SLE excursions. Let HU(x, y) be the boundary
Poisson kernel for the unit disc U with distinct boundary points x, y ∈ U as intro-

duced in Section 2.1. Denote by µ#
U,κ(x, y) the law of chordal SLEκ in U with two

end points x, y. For κ ∈ [0, 8), define the SLEκ excursion measure to be

µU,κ =

∫ ∫
dxdyHU(x, y)µ#

U,κ(x, y), (3.1)

where dx, dy are length measures on ∂U. Note that µU,κ is an infinite σ-finite
measure. From the conformal invariance of SLE and the conformal covariance
of boundary Poisson kernel (2.2), we can derive the conformal invariance of SLE
excursion measure. For any Möbius transformation ϕ of U, we define the measure
ϕ ◦ µ via ϕ ◦ µ[A] := µ[γ : ϕ(γ) ∈ A]. Then we have the following conformal
invariance.

Proposition 3.1. The SLE excursion measure µU,κ is conformal invariant: for
any Möbius transformation ϕ of U, we have ϕ ◦ µU,κ = µU,κ.

We will construct a growth process from a Poisson point process of SLE ex-
cursions. The construction is not surprising if one is familiar with Sheffield and
Werner (2012) and Werner and Wu (2013). To be self-contained, we briefly ex-
plain the construction. Let (γt, t ≥ 0) be a Poisson point process with intensity
µU,κ. More precisely, let ((γj , tj), j ∈ J) be a Poisson point process with intensity
µU,κ⊗ [0,∞), and then arrange the excursions γj according to tj : denote the excur-
sion γj by γt if t = tj and γt is empty set if there is no tj that equals t. There are
only countably many excursions in (γt, t ≥ 0) that are not empty set. For κ ∈ [0, 8),
with probability one there is no γt passing through the origin. For each t such that
γt is not the empty set, the curve γt separates U into two connected components,
and we denote by U0

t the one that contains the origin. Let ft be the conformal map
from U0

t onto U normalized at the origin: ft(0) = 0, f ′t(0) > 0. For t > 0, define
the accumulated capacity to be

Xt =
∑
s<t

cap(γs).

Proposition 3.2. For t > 0, the accumulated capacity Xt is almost surely finite if
and only if κ ∈ [0, 4).

We will complete the proof of Proposition 3.2 in Section 3.3. Assuming Propo-
sition 3.2, we can now construct the growth process for κ ∈ [0, 4). For any fixed
T > 0 and r > 0, let t1(r) < t2(r) < · · · < tj(r) be the times t before T at which
the distance between the two end points of γt is at least r. Define

Ψr
T = ftj(r) ◦ · · · ◦ ft1(r).

The map Ψr
T is a conformal map from some subset of U onto U. By Proposition 3.2,

we know that XT < ∞ almost surely when κ ∈ [0, 4). Then the conformal map
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Ψr
T converges almost surely in the Carathéodory topology seen from the origin, as

r → 0; see Sheffield and Werner (2012, Section 4.3, Stability of Loewner chains).
Define (

D0
t := Ψ−1t (U), t ≥ 0

)
.

This is a decreasing sequence of simply connected domains containing the origin,
and we call it the growth process CGEκ of SLE excursions targeted at the origin. By
the conformal invariance of the SLE excursion measure, we can derive the conformal
invariance of CGEκ.

Lemma 3.3. For κ ∈ [0, 4), the law of the growth process (D0
t , t ≥ 0) is conformally

invariant under any Möbius transformation ϕ of U that preserves the origin.

Proof : Let (γ̂t, t ≥ 0) be a Poisson point process with intensity µU,κ, and define f̂t
and Ψ̂t for each t as described above, and denote by (D̂0

t , t ≥ 0) the corresponding
growth process targeted at the origin.

By Proposition 3.1, we know that the process (γt := ϕ(γ̂t), t ≥ 0) is also a
Poisson point process with intensity µU,κ. Define ft and Ψt for each t, and denote
by (D0

t , t ≥ 0) be the corresponding growth process targeted at the origin. It is
clear that

ft = ϕ ◦ f̂t ◦ ϕ−1, Ψt = ◦s<tfs = ϕ ◦ Ψ̂t ◦ ϕ−1.
Since (γt, t ≥ 0) has the same law as (γ̂t, t ≥ 0), the process (D0

t = ϕ(D̂0
t ), t ≥ 0)

has the same law as (D̂0
t , t ≥ 0) as desired. �

We can construct CGEκ targeted at any z ∈ U in the same way as above, except
that we choose to normalize at z instead of normalizing at the origin. Another way
to describe CGEκ targeted at z would be (ϕ(D0

t ), t ≥ 0) where ϕ is any Möbius
transformation of U that sends the origin to z. By Lemma 3.3, the choice of ϕ does
not affect the law of (ϕ(D0

t ), t ≥ 0), thus CGEκ targeted at z is well-defined.
Now we will describe the relation between two growth processes targeted at

distinct points z, w ∈ U. Let (Dz
t , t ≥ 0) (resp. (Dw

t , t ≥ 0)) be CGEκ processes
targeted at z (resp. targeted at w), and define T (z, w) (resp. T (w, z)) to be the
first time t that w 6∈ Dz

t (resp. z 6∈ Dw
t ). We call T (z, w) the disconnection time.

The interesting property of these growth processes is that the two processes have
the same law up to the disconnection time.

Proposition 3.4. For κ ∈ [0, 4), and for any z, w ∈ U, the law of (Dz
t , t < T (z, w))

is the same as the law of (Dw
t , t < T (w, z)).

Proof : Recall a classical result about Poisson point processes (see Bertoin, 1996,
Section 0.5): Let (at, t ≥ 0) be a Poisson point process with some intensity ν
(defined in some metric space A). Let Ft− = σ(as, s < t). If (Φt, t ≥ 0) is a process
(with values on functions of A to A) such that for any t > 0, Φt is Ft−-measurable,
and that Φt preserves ν, then (Φt(at), t ≥ 0) is still a Poisson point process with
intensity ν.

Let (γ̂t, t ≥ 0) be a Poisson point process with intensity µU,κ and define Ft− =

σ(γ̂s, s < t), let f̂zt and Ψ̂z
t be the conformal maps as described above normalized at

z. Let (D̂z
t , t ≥ 0) be the corresponding growth process targeted at z and T̂ (z, w)

be the first time t that w 6∈ D̂z
t . For each t < T̂ (z, w), the domain D̂z

t contains w,

and let Gt be the conformal map from D̂z
t onto U normalized at w: Gt(w) = w and

G′t(w) > 0.
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For each t < T̂ (z, w), define ϕt = Gt ◦ (Ψ̂z
t )
−1. For t = T̂ (z, w), define ϕt =

lims↑t ϕs. For t > T̂ (z, w), define ϕt to be identity map. Note that Ψ̂z
t = ◦s<tf̂zs

and thus Ψ̂z
t is Ft−-measurable. Therefore, for all t > 0, ϕt is Ft−-measurable.

By Proposition 3.1 and the classical result of Poisson point process recalled at the
beginning of the proof, we know that (γt := ϕt(γ̂t), t ≥ 0) is also a Poisson point
process with intensity µU,κ. For (γt, t ≥ 0), let (Dw

t , t ≥ 0) be the corresponding
growth process targeted at w and let T (w, z) be the first time t that z 6∈ Dw

t . By
the construction, we have that

Dw
t = D̂z

t , for all t < T (w, z).

Hence, in this coupling, we have T (w, z) ≤ T̂ (z, w). By symmetry, we have that

T (w, z) = T̂ (z, w) almost surely. In particular, this coupling implies that the two
disconnection times have the same law, and the two growth processes (Dz

t , t ≥ 0)
and (Dw

t , t ≥ 0) have the same law up to the disconnection time. �

Proposition 3.4 tells that, for any z, w ∈ U, it is possible to couple the two growth
processes targeted at z and w respectively to be identical up to the first time at
which the points z, w are disconnected. Hence, it is possible to couple the growth
processes (Dz

t , t ≥ 0) for all z in a fixed countable dense subset of U simultaneously
in such a way that for any two points z and w, the above statement holds.

For such a coupling, we get a Markov process on domains (Dt, t ≥ 0): At t = 0,
the domain is U, and at time t > 0, it is the union of all the disjoint open subsets
corresponding to the growth process targeted at all points z at time t. We call
this Markov process the conformal growth process of SLE excursions targeted at
all points, or CGEκ. By construction, it is naturally conformal invariant. This
completes the proof of Theorem 1.1.

In Subsections 3.2 and 3.3, we will calculate the Laplace transform of the accu-
mulated capacity and complete the proof of Proposition 3.2.

3.2. The Laplace transform of the capacity of chordal SLE. In this section, we
will calculate the Laplace transform of the capacity of chordal SLEκ in U. To
this end, we need to recall some basic facts about hypergeometric functions. The
hypergeometric function is defined for |z| < 1 by the power series

φ(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn, (3.2)

where (q)n is the Pochhammer symbol defined by (q)n = q(q + 1) · · · (q + n − 1)
for n ≥ 1 and (q)n = 1 for n = 0. The function in (3.2) is only well-defined
for c 6∈ {0,−1,−2,−3...}. The hypergeometric function is a solution of Euler’s
hypergeometric differential equation

− abφ+ (c− (a+ b+ 1)z)φ′ + z(1− z)φ′′ = 0. (3.3)

Note that, when c 6∈ Z, the following function is also a solution to (3.3):

z1−cφ(1 + a− c, 1 + b− c; 2− c; z).

Proposition 3.5. Fix κ ∈ [0, 8) and λ ∈ (0, 1 − κ/8). Suppose that γ = γθ is a
chordal SLEκ in U from x ∈ ∂U to y ∈ ∂U, where θ = arg(x)−arg(y). Define three
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constants

a = 1− 4

κ
+

√(
1− 4

κ

)2

+
8λ

κ
, b = 1− 4

κ
−

√(
1− 4

κ

)2

+
8λ

κ
, c =

3

2
− 4

κ
.

Assume that c 6∈ Z. Define two functions f and g: for u ∈ [0, 1],

f(u) = φ(a, b; c;u), g(u) = u1−cφ(1 + a− c, 1 + b− c; 2− c;u).

Denote u = sin2(θ/4). Then, we have

E[exp(λcap(γθ))] = f(u) +
(1− f(1))

g(1)
g(u). (3.4)

Proof : First, let us check the values of the functions f and g at the end points
u = 0 or u = 1. Since κ ∈ [0, 8), λ ∈ (0, 1− κ/8) and c 6∈ Z, we have that

a ∈ (0, 1), b ∈ (1− 8/κ, 0), c ∈ (−∞, 1) \ Z.
Combining with Erdélyi et al. (1953, Page 104, Equation (46)), we have that (de-
noting by Γ the Gamma function)

f(0) = 1, f(1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

=

cos

(
π

√(
1− 4

κ

)2
+ 8λ

κ

)
cos
(
π
(
1− 4

κ

)) ∈ [−1, 1);

g(0) = 0, g(1) =
Γ(2− c)Γ(1− c)
Γ(1− a)Γ(1− b)

∈ (0,∞).

Second, assuming the same notation as in Subsection 2.2, we know that γ has the
same law as radial SLEκ(κ− 6) with (W0, V0) = (x, y). Let θt = arg(Wt)− arg(Vt),
we will argue that eλtf(sin2(θt/4)) and eλtg(sin2(θt/4)) are martingales up to the
collision time T . Suppose that F is an analytic function defined on (0, 1). By the
SDE (2.4) and Itô’s formula, we know that eλtF (sin2(θt/4)) is a local martingale if
and only if

λF (u) +
3κ− 8

16
(1− 2u)F ′(u) +

κ

8
u(1− u)F ′′(u) = 0.

Since f and g are solutions to this ODE, we know that eλtf(sin2(θt/4)) and
eλtg(sin2(θt/4)) are local martingales. Since f and g are finite at end points u = 0
and u = 1, and the collision time T has finite expectation, we may conclude that
the processes eλtf(sin2(θt/4)) and eλtg(sin2(θt/4)) are martingales up to T .

Finally, we derive (3.4). Since eλtf(sin2(θt/4)) and eλtg(sin2(θt/4)) are martin-
gales up to T which has finite expectation, Optional Stopping Theorem gives

E
[
exp(λT )1{θT=0}

]
+f(1)E

[
exp(λT )1{θT=2π}

]
= f(u);

g(1)E
[
exp(λT )1{θT=2π}

]
= g(u).

These give (3.4) by noting that cap(γ) = T . �

The martingale eλtf(sin2(θt/4)) in the proof of Proposition 3.5 was studied in
Schramm et al. (2009).

Remark 3.6. For κ ∈ [0, 8), suppose that γ is a chordal SLEκ in U with distinct
end points x, y ∈ ∂U. For λ ∈ R, define

F (κ, λ) = E[exp(λcap(γ))].
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On the one hand, by Proposition 3.5, we see that when c = 3/2 − 4/κ 6∈ Z and
λ < 1 − κ/8, the quantity F (κ, λ) is finite. On the other hand, we know that
F (κ, λ) is continuous in (κ, λ) (for the continuity in κ; see for instance Kemppainen
and Smirnov, 2017, Theorem 1.10). Therefore, the quantity F (κ, λ) is finite for all
κ ∈ [0, 8) and λ < 1− κ/8.

Since the boundary Poisson kernel HU(x, y) blows up when θ = arg(x)− arg(y)
is small, in order to understand the excursion measure µU,κ, it will be important
for us how the capacity cap(γθ) behaves as θ → 0.

Proposition 3.7. Fix κ ∈ [0, 8) such that c(κ) = 3
2 −

4
κ 6∈ Z, and λ ∈ (0, 1− κ/8).

As θ → 0, or equivalently, u→ 0, the Laplace transform of the capacity satisfies

E
[

exp(λcap(γθ))− 1
]
�
{
u1−c � θ2(1−c) if 8/3 < κ < 8 ,
u � θ2 if 0 < κ < 8/3, c 6∈ Z− ,

(3.5)

with the constant factors implicit in � depending on κ and λ. Quite similarly, the
expectation itself satisfies

E
[
cap(γθ)

]
�

 u1−c � θ2(1−c) if 8/3 < κ < 8 ,
u log(1/u) � θ2 log(1/θ) if κ = 8/3 ,
u � θ2 if 0 ≤ κ < 8/3 ,

(3.6)

with the constant factors implicit in � depending on κ.

Proof : For the functions given in Proposition 3.5 for the case c 6∈ Z, it is easy to
check that f(u)− 1 = f(u)− f(0) decays like u as u→ 0 and g(u) decays like u1−c

as u→ 0. This gives (3.5), with a phase transition at c = 0, that is, at κ = 8/3.
To get the expectation (3.6), one possibility would be to take the derivative of the

Laplace transform F (κ, λ) at λ = 0. However, our formula (3.4) is not particularly
simple, hence this task is not obvious. Another approach could be to argue that,
for small θ, it is very likely that cap(γθ) is also small, hence exp(λcap(γθ))− 1 and
λcap(γθ) are likely to be close to each other, and hence it is not surprising if the
u→ 0 asymptotics of their expectations are the same. However, a large portion of
the expectations might come from when cap(γθ) is large, hence this argument would
also need some extra work. Finally, we have (3.4) and (3.5) only when c(κ) 6∈ Z,
which is an immediate drawback to start with. Therefore, we give the following
separate and direct argument.

For κ ∈ (0, 8) and θ < r < 1/4, it follows immediately from the results of Alberts
and Kozdron (2008) that

P[diam(γθ) > r] � (θ/r)8/κ−1. (3.7)

When the diameter is in [r, 2r), the capacity is at most Cr2. Moreover, if a curve
γθ going from exp(−iθ/2) to exp(iθ/2) has diameter in [r, 2r), and it also separates
the center 0 from the point 1−r/2, then its capacity is at least cr2. For SLEκ from
exp(−iθ/2) to exp(iθ/2), conditioned to have diameter in [r, 2r), this separating
event has a uniformly positive probability, hence (3.7) implies that

E
[
cap(γθ)1{diam(γθ)∈[2kθ,2k+1θ)}

]
� (2kθ)2(2−k)8/κ−1 = θ2(2k)3−8/κ. (3.8)

Summing this up over dyadic scales from around θ to around 1/4, we get that

E
[
cap(γθ)1{cap(γθ)<1}

]
�


θ8/κ−1 if κ > 8/3,

θ2 log(1/θ) if κ = 8/3,

θ2 if κ < 8/3.
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Note that the last line holds even for κ = 0.
Now, cap(γθ) is larger than t ≥ 1 only if γθ comes closer than exp(−t) to 0.

The probability of this has an exponential tail by the one-point estimate in the
dimension upper bound (Rohde and Schramm, 2005, Lemma 6.3, Theorem 8.1), so
this part of the probability space does not raise the expectation E[cap(γθ)] by more
than a factor, and the proof of (3.6) is complete. �

3.3. The Laplace transform of the accumulated capacity. For κ ∈ [0, 8), recall that
µU,κ is the SLE excursion measure defined in (3.1). Let (γt, t ≥ 0) be a PPP
with intensity µU,κ and define the accumulated capacity in the same way as before:
Xt =

∑
s<t cap(γs). By Campbell’s formula, we have that, for λ ∈ R,

E[exp(λXt)] = exp

(
t

∫
(eλcap(γ) − 1)µU,κ[dγ]

)
. (3.9)

In particular, the left hand side of (3.9) is finite if and only if the right hand side
is finite. We will study the Laplace exponent

Λκ(λ) :=

∫
(eλcap(γ) − 1)µU,κ[dγ] =

∫ ∫
dxdyHU(x, y)µ#

U,κ(x, y)
[
eλcap(γ) − 1

]
.

(3.10)

Proposition 3.8.

(1) When κ ∈ [0, 4), the Laplace exponent Λκ(λ) is finite for λ ∈ (0, 1 − κ/8)
and infinite for λ ≥ 1− κ/8. If κ ≥ 4, then Λκ(λ) is infinite for all λ > 0.

(2) When κ ∈ [0, 4), we have that E[Xt] < ∞ for all t. When κ ≥ 4, we have
that E[Xt] =∞ for all t > 0.

Proof : First, we show that Λκ(λ) is finite when κ ∈ [0, 4), λ ∈ (0, 1 − κ/8), and
c := 3/2 − 4/κ 6∈ Z. Note that, in (3.10), the boundary Poisson kernel and the

expectation µ#
U,κ(x, y)

[
eλcap(γ) − 1

]
only depend on the angle difference of x, y.

Assuming the same notation as in Proposition 3.5, we see that

Λκ(λ) = 4π

∫ π

0

dθ

4π sin2(θ/2)
µ#
U,κ(1, eiθ)

[
eλcap(γ) − 1

]
(by (2.3))

=

∫ π

0

dθ

sin2(θ/2)

(
f(sin2(θ/4))− 1 +

1− f(1)

g(1)
g(sin2(θ/4))

)
(by (3.4))

=
1

2

∫ 1/2

0

du u−3/2(1− u)−3/2
(
f(u)− 1 +

1− f(1)

g(1)
g(u)

)
.

(set u = sin2(θ/4))

Using the decay rate (3.5) of Proposition 3.7, the exponent Λκ(λ) is finite for
λ ∈ (0, 1 − κ/8) when c < 1/2 which is to say κ < 4, and infinite for every λ > 0
when κ ≥ 4.

That is, Λκ(λ) is finite for κ ∈ [0, 4) \ {8/3, 8/5, 8/7, ....} and λ ∈ (0, 1 − κ/8).
It is infinite when λ ≥ 1− κ/8, since already the integrand, the right hand side of
(3.4), explodes.

To extend this for κ ∈ {8/3, 8/5, 8/7, ....}, the continuity of κ 7→ F θ(κ, λ) men-
tioned in Remark 3.6 implies that the singularity in the integrand can be bounded
from above by something integrable when λ < 1−κ/8, and from below by something
non-integrable when λ ≥ 1− κ/8.
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For part (2) regarding E[Xt], we can do the analogous calculation, just using the
decay rate (3.6) instead of (3.5). �

Proof of Proposition 3.2: When κ ∈ [0, 4), we proved in Proposition 3.8 that E[Xt]
is finite, and thus the accumulated capacity Xt is finite almost surely.

Next, we will argue that Xt diverges almost surely when t > 0, κ ≥ 4. For k ≥ 1,
define Mk to be the number of excursions γs with s < t such that 2−k ≤ cap(γs) <
2−k+1. Since (γs, s ≥ 0) is a PPP with intensity µU,κ, we know that Mk is a Poisson
random variable with parameter

qk := tµU,κ[γ : 2−k ≤ cap(γ) < 2−k+1].

By part (2) of Proposition 3.8 , we have E[Xt] =∞ for κ ≥ 4, thus
∑
k≥1 2−kqk ≥

E[Xt]/2 = ∞. Since (Mk, k ≥ 1) are independent Poisson random variables, we
have

E

exp

−∑
k≥1

2−kMk

 = Πk≥1E
[
exp

(
−2−kMk

)]
= Πk≥1 exp

(
−qk

(
1− e−2

−k
))

= 0.

Therefore, when κ ≥ 4, we almost surely have Xt ≥
∑
k≥1 2−kMk =∞. �

3.4. Extremes of the conformal radii and Proof of Theorem 1.3. Fix κ ∈ [0, 4),
by Proposition 3.8, we know that the Laplace exponent Λκ(λ) is finite for λ ∈
(−∞, 1− κ/8). In particular, this implies that it is differentiable on (−∞, 1− κ/8)
(see Dembo and Zeitouni, 2010, Lemma 2.2.5). Moreover, by Strong Law of Large
Numbers for subordinators (Bertoin (1996, Page 92)), we have almost surely that

lim
t→∞

Xt

t
= Λ′κ(0) ∈ (0,∞),

which implies (1.2). To prove Theorem 1.3, we first summarize some basic proper-
ties of Λκ(λ) and Λ∗κ(x) (see Dembo and Zeitouni, 2010, Lemmas 2.2.5, 2.2.20, and
our Figure 1.2 in the Introduction):

(1) The Laplace exponent Λκ(λ) is convex and smooth on (−∞, 1− κ/8).
(2) The Fenchel-Legendre transform Λ∗κ(x) is non-negative, convex, and smooth

on (0,∞).
(3) We have Λ∗κ(x) = 0 when x = Λ′κ(0), the function Λ∗κ is increasing on

(Λ′κ(0),∞) and is decreasing on (0,Λ′κ(0)).
(4) Since Λκ(λ)→ −∞ as λ→ −∞, we know that

Λ∗κ(0) = +∞, Λ∗κ(x) ↑ +∞ as x ↓ 0.

(5) As x→ +∞, we have

lim
x→∞

Λ∗κ(x)

x
= 1− κ/8.

Recall that αmin is defined through (1.4). From the above properties, we know
that 2x−Λ∗κ(x) = 0 has a unique solution which is equal to αmin ∈ (0,Λ′κ(0)). We
can complete the proof of Theorem 1.3 using the theory of large deviations:
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Proof of Theorem 1.3: It suffices to give upper bound for Θ(α)∩B(0, 1−δ) for any
δ > 0. Fix α ≥ 0 and assume β > α. For n ≥ 1, let Un be the collection of open
balls with centers in e−nβZ2∩B(0, 1−δ/2) and radius e−nβ . For each ball U ∈ Un,
denote by z(U) the center of U . Define, for u− < u+,

Un(u−, u+) =

U ∈ Un : u− ≤
− log CR

(
z(U);D

z(U)
n

)
n

≤ u+
 .

By Cramér’s theorem (see Dembo and Zeitouni, 2010, Theorem 2.2.3), for u− < u+,
for any U ∈ Un, we have

P[U ∈ Un(u−, u+)] = P
[
u−n ≤ − log CR

(
z(U);Dz(U)

n

)
≤ u+n

]
≤ exp

(
−n
(

inf
u−≤u≤u+

Λ∗κ(u) + o(1)

))
, (3.11)

where the o(1) term tends to zero as n→∞ uniformly in U . Define

Cm(u−, u+) = ∪n≥mUn(u−, u+).

We claim that Cm(α−, α+) is a cover for Θ(α)∩B(0, 1−δ) for any α− < α < α+ < β
and any m ≥ 1. Pick α̃− ∈ (α−, α), α̃+ ∈ (α, α+). For any z ∈ Θ(α) ∩B(0, 1− δ),
since lim(− log CR(z;Dz

n))/n = α, we have that, for n large enough,

exp(−nα̃−) ≥ CR(z;Dz
n) ≥ exp(−nα̃+).

Let w be the point in e−nβZ2 that is the closest to z and denote by U the ball in
Un with center w. Since α̃+ < β and by (2.5), we know that w is contained in Dz

n.
Moreover, for n large enough, by (2.5) and that β > α+ > α̃+ > α̃− > α−, we have

CR(w;Dw
n ) ≥ inrad(w;Dn) ≥ inrad(z;Dn)− e−nβ

≥ 1

4
CR(z;Dn)− e−nβ ≥ 1

4
e−nα̃

+

− e−nβ ≥ e−nα
+

.

CR(w;Dw
n ) ≤ 4inrad(w;Dn) ≤ 4(inrad(z;Dn) + e−nβ)

≤ 4(CR(z;Dn) + e−nβ) ≤ 4(e−nα̃
−

+ e−nβ) ≤ e−nα
−
.

Therefore z ∈ U ∈ Un(α−, α+). This implies that Cm(α−, α+) is a cover for Θ(α)∩
B(0, 1−δ). We use these covers to bound s-Hausdorff measure of Θ(α)∩B(0, 1−δ).
For m ≥ 1, and α− < α < α+ < β, we have

E[Hs(Θ(α) ∩B(0, 1− δ))]

≤ E

 ∑
U∈Cm(α−,α+)

|diam(U)|s


≤
∑
n≥m

exp(2nβ)× exp(−snβ)× exp

(
−n
(

inf
α−≤u≤α+

Λ∗κ(u) + o(1)

))
(By (3.11))

=
∑
n≥m

exp

(
n

(
2β − sβ − inf

α−≤u≤α+
Λ∗κ(u) + o(1)

))
If s > 2− infα−≤u≤α+ Λ∗κ(u)/β, then (taking m→∞) we have

E[Hs(Θ(α) ∩B(0, 1− δ))] = 0.
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This implies that

2− inf
α−≤u≤α+

Λ∗κ(u)/β ≥ dim(Θ(α)), almost surely.

This holds for any β > α+ > α > α−, thus by the continuity of Λ∗κ, we have

2− Λ∗κ(α)/α ≥ dim(Θ(α)), almost surely.

Finally, when α < αmin, we see that H0(Θ(α) ∩ B(0, 1− δ)) = 0 almost surely.
This implies that Θ(α) = ∅ almost surely. �

4. Proof of Theorems 1.2 and 1.4

The following lemma is the key result of this section:

Lemma 4.1. Fix κ ∈ [0, 4). Let (D0
t , t ≥ 0) be CGEκ targeted at the origin. Then

there exist constants r0 ∈ (0, 1), p0 ∈ (0, 1) and t0 > 0 such that

P
[
D0
t0 ⊂ B(0, r0)

]
≥ p0.

Proof : Since the closure of D0
t is a compact subset of the unit disc, it is sufficient

to show that there exist constants p0 ∈ (0, 1) and t0 > 0 such that

P[∂U ∩ ∂D0
t0 = ∅] ≥ p0. (4.1)

First, we argue that there exist u, r, δ > 0 such that for any arc I ⊂ ∂U with
length less than δ, we have

P[I ∩ ∂D0
u = ∅] ≥ r. (4.2)

Let J be the collection of positive-length arcs of ∂U with both endpoints in {eiθ :
θ ∈ Q}. Fix any u > 0; since ∂D0

u ∩ ∂U is a compact proper subset of ∂U, we know
that ∂U \ ∂D0

u is a union of open arcs, thus∑
I∈J

P[I ∩ ∂D0
u = ∅] > 0.

Thus there exists I0 ∈ J such that δ := |I0| > 0 and

r := P[I0 ∩ ∂D0
u = ∅] > 0.

Since D0
u is rotation invariant, we obtain (4.2).

For ε > 0, define E(ε) to be the collection of excursions γ in U with the following
property: if x, y ∈ ∂U are the two endpoints of γ, we require that the arc-length
from x to y be less than ε and that γ disconnect the origin from the arc from y to
x. Denote by E(γ) the event that γ has this property. A standard SLE calculation
(see, for instance, Schramm, 2001) shows that there is a universal constant C <∞
such that

q(ε) := µ[E(ε)] =

∫ ∫
|x−y|≤ε

dxdyHU(x, y)µ#
U,κ(x, y)[E(γ)]

≤ C
∫ ∫

|x−y|≤ε
dxdy|x− y|−2|x− y|8/κ−1 ≤ Cε8/κ−2.

In particular, q(ε) → 0 as ε → 0. Hence, with u, r, δ fixed above, we can choose
ε0 ∈ (0, δ/2) such that

e−uq(ε0) ≥ 1− r/2. (4.3)
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I

IT

D0
T

(a) Suppose that
I ∩ ∂D0

T = ∅, and let IT
be the connected compo-
nent of ∂D0

T \ ∂U that dis-
connects I from the origin.

I

IT

ΨT (IT )

ΨT

γT

D0
T+

(b) Since |I| ≥ δ, the harmonic measure of IT in D0
T seen

from the origin is at least δ/2π, thus the arc ΨT (IT ) has
length at least δ. Note that the distance between the two
end points of γT is less than ε0 ≤ δ/2. If the two end points
of γT fall in ΨT (IT ), then D0

T+ will be disjoint of ∂U.

Figure 4.3

Now let (γt, t ≥ 0) be a PPP with intensity µU,κ and let (D0
t , t ≥ 0) be the

corresponding growth process targeted at the origin. Let ft,Ψt be the conformal
maps defined in Section 3.1. Let T = inf{t : γt ∈ E(ε0)}. We know that T has
exponential law with parameter q(ε0). Fix some arc I with length δ. Conditioned
on the set (γs, s < T ) and on the event E1 = {I∩∂D0

T = ∅}, let IT be the connected
component of ∂D0

T \∂U that disconnects I from the origin; see Figure 4.3(a). Recall
that ΨT is the conformal map from D0

T onto U normalized at the origin. Consider
the event E2 that the two endpoints of γT fall in ΨT (IT ). Since |ΨT (IT )| ≥ δ and
γT ∈ E(ε0), we know that the probability of E2 is at least δ/(4π). Conditioned
on (γs, s ≤ T ) and on the event E1 ∩ E2, denoting fT ◦ΨT by ΨT+, we have that
Ψ−1T+(U) ∩ ∂U = ∅; see Figure 4.3(b). Therefore, for t > T ,

P
[
∂U ∩ ∂D0

t = ∅
∣∣σ(γs, s < T ), E1

]
≥ δ/(4π).

Thus

P[∂U ∩ ∂D0
t = ∅] ≥ P[t > T, I ∩ ∂D0

T = ∅]× δ/(4π).

In order to show (4.1), we need to estimate P[t > T, I ∩ ∂D0
T = ∅]. We have

P[t > T, I ∩ ∂D0
T = ∅] ≥ P[t > T > u, I ∩ ∂D0

u = ∅]
≥ P[t > T > u]− (1− r) (By (4.2))

= e−uq(ε0) − e−tq(ε0) − (1− r)

≥ r/2− e−tq(ε0). (By (4.3))

We choose t0 > u large so that e−t0q(ε0) ≤ r/4. Then we have

P[∂U ∩ ∂D0
t0 = ∅] ≥ rδ/(16π),

as desired. �

Lemma 4.2. Assume the same notation as in Lemma 4.1. Then there exist con-
stants c, C ∈ (0,∞) such that, for all t > 0,

P
[
D0
t 6⊂ B(0, r0)

]
≤ Ce−ct.
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Proof : It is sufficient to prove that, for all n ≥ 1, we have

P
[
D0
nt0 6⊂ B(0, r0)

]
≤ (1− p0)n. (4.4)

We will prove (4.4) by induction on n. Assume that (4.4) holds for n. Then, for
n+ 1, we have

P
[
D0

(n+1)t0
6⊂ B(0, r0)

]
≤ (1− p0)n × P

[
D0

(n+1)t0
6⊂ B(0, r0)

∣∣D0
nt0 6⊂ B(0, r0)

]
.

Let Ψ be the conformal map from D0
nt0 onto U normalized at the origin. Since

|Ψ(z)| ≥ |z|, we have
Ψ(B(0, r0)) ⊃ B(0, r0). (4.5)

Thus

P
[
D0

(n+1)t0
6⊂ B(0, r0)

]
≤ (1− p0)n × P

[
D0

(n+1)t0
6⊂ B(0, r0)

∣∣D0
nt0 6⊂ B(0, r0)

]
= (1− p0)n × P

[
Ψ
(
D0

(n+1)t0

)
6⊂ Ψ(B(0, r0))

]
≤ (1− p0)n × P

[
D0
t0 6⊂ B(0, r0)

]
(by Ψ

(
D0

(n+1)t0

)
d
= D0

t0 and (4.5))

≤ (1− p0)n+1,

as desired. �

Lemma 4.3. Assume the same notation as in Lemma 4.1. Then there exist con-
stants c, C ∈ (0,∞) such that, for r > 0 and for all t > 0,

P
[
D0
t 6⊂ B(0, r)

]
≤ Ce−ct/ log(1/r) × log(1/r).

In particular, this implies that

P[T (0, r) > t] ≤ Ce−ct/ log(1/r) × log(1/r).

Proof : This will be somewhat similar to the previous lemma. First, it is enough to
prove that, for any n ∈ Z+,

P
[
D0
t ⊂ B(0, rn0 )

]
≥ P

[
D0
t/n ⊂ B(0, r0)

]n
, (4.6)

because then

P
[
D0
t 6⊂ B(0, rn0 )

]
≤ nP

[
D0
t/n 6⊂ B(0, r0)

]
,

and choosing n = dlog r/ log r0e and using Lemma 4.2, we get the upper bound

P
[
D0
t 6⊂ B(0, r)

]
≤ nCe−c(t/n),

which implies the conclusion.
We prove (4.6) by induction on n. More precisely, we claim that, for any k ∈ Z+

and u > 0,

P
[
D0

(k+1)u ⊂ B(0, rk+1
0 )

∣∣D0
ku ⊂ B(0, rk0 )

]
≥ P

[
D0
u ⊂ B(0, r0)

]
, (4.7)

and then (4.6) follows by taking u = t/n and a telescoping product for k =
0, 1, . . . , n− 1.

Let Ψ be the conformal map from D0
ku onto U normalized at the origin. We

know that Ψ(D0
(k+1)u) has the same law as D0

u. To prove (4.7), it is then sufficient

to show that, conditioned on {D0
ku ⊂ B(0, rk0 )},

Ψ(B(0, rk+1
0 )) ⊃ B(0, r0). (4.8)
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On the event {D0
ku ⊂ B(0, rk0 )}, let φ1 be the conformal map from D0

ku onto B(0, rk0 )
normalized at the origin; then |φ1(z)| ≥ |z|. Let φ2(z) = z/rk0 ; then Ψ = φ2 ◦ φ1.
Thus

|Ψ(z)| ≥ |z|/rk0 ,
which implies (4.8) and hence completes the proof. �

Corollary 4.4. Assume the same notation as in Lemma 4.1. Then almost surely
the growth process (D0

t , t ≥ 0) is transient, i.e., the diameter of D0
t goes to zero as

t→∞ almost surely.

Proof : For n ≥ 1, set rn = e−
√
n. By Lemma 4.3, we have that

P[D0
n 6⊂ B(0, rn)] ≤ C

√
ne−c

√
n.

Thus ∑
n

P[D0
n 6⊂ B(0, rn)] <∞.

By the Borel-Cantelli lemma, almost surely there is N such that

D0
n ⊂ B(0, rn), ∀n ≥ N.

This implies the conclusion. �

Proof of Theorem 1.2, Upper bound: For n ≥ 1, define

Γn = {z ∈ Γ : T (0, z) ≤ n}.

By Corollary 4.4, we see that Γ = ∪nΓn, thus it is sufficient to show that, for n ≥ 1,
almost surely,

dim(Γn) ≤ 1 + κ/8. (4.9)

For m ≥ 1, let Um be the collection of open balls with centers in e−mZ2 ∩ U and
radius e−m. Denote by z(U) the center of U ∈ Um. For any U ∈ Um, suppose that
U ∩ Γn 6= ∅ and denote z(U) by z; we will argue that this implies

inrad (z;Dz
n) ≤ e−m. (4.10)

There are two cases: T (0, z) ≤ n or T (0, z) > n. If T (0, z) ≤ n, then U ∩ Γn 6= ∅
implies inrad(z;Dz

T (0,z)) ≤ e
−m which implies (4.10) since T (0, z) ≤ n. If T (0, z) >

n, then we know that Dz
n = D0

n. Take w ∈ U ∩ Γn. Since T (0, w) ≤ n, we know
that w 6∈ D0

n, combining with |z−w| < e−m, we obtain (4.10). Therefore, we have,
for any λ ∈ (0, 1− κ/8)

P [U ∩ Γn 6= ∅] ≤ P
[
inrad (z;Dz

n) ≤ e−m
]

(z = z(U))

≤ P
[
CR(z;Dz

n) ≤ 4e−m
]

(By (2.5))

= P
[
CR(z;Dz

n)−λ ≥ (4e−m)−λ
]

≤ (4e−m)λE
[
CR(z;Dz

n)−λ
]

= 4λe−mλ exp(nΛκ(λ)).

We use {U ∈ Um : U ∩ Γn 6= ∅} to cover Γn and to bound s-Hausdorff measure of
Γn: there is a constant C (only depending on κ, λ, n) such that

E[Hs(Γn)] ≤
∑
U∈Um

diam(U)sP [U ∩ Γn 6= ∅] ≤ Ce2m−ms−mλ.
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If s > 2 − λ, taking m → ∞, we have E[Hs(Γn)] = 0, this gives 2 − λ ≥ dim(Γn)
almost surely. This holds for any λ ∈ (0, 1− κ/8), thus 1 + κ/8 ≥ dim(Γn) almost
surely. �

Proof of Theorem 1.2, Lower bound: Since Γ contains the conformal image of entire
SLEκ arcs, we just need to show that such a conformal map cannot have such a
bad distortion that would ruin the dimension 1 + κ/8 proved in Beffara (2008) for
SLEκ in the upper half plane.

Suppose that (γt, t ≥ 0) is a PPP of SLE excursions and (D0
t , t ≥ 0) is the

corresponding growth process targeted at the origin. Let t > 0 be a time when
γt is non-empty, and φ be the conformal map from U onto D0

t normalized at the
origin. For any r < 1, we have some Mr < ∞ such that 1/Mr < |φ′(z)| < Mr

for all |z| ≤ r. This implies that the diameter of every subset U of the closed ball

B(0, r) is changed by at most some finite factor M̃r, which implies that

dim(φ(γt ∩B(0, r)) = dim(γt ∩B(0, r)). (4.11)

Since we are dealing with κ < 4 only, the countable union of γt∩B(0, 1− 1/n) is all
of γt except for its two endpoints. Thus, (4.11) implies that dim(Γ) ≥ dimφ(γt) =
1 + κ/8. �

Proof of Theorem 1.4: By the conformal invariance of CGEκ, it is equivalent to
show that, for all x > 0, ∣∣∣∣E[T (0, e−x)]− x

Λ′κ(0)

∣∣∣∣ ≤ C.
Let (D0

t , t ≥ 0) be the growth process targeted at the origin. Define X(t) =
− log CR(D0

t ), which is the same as the accumulated capacity studied in Section 3.3.
Define τx = inf{t : X(t) > x}, and Yx = X(τx). It is clear that, for λ < 1 − κ/8,
the process Mt = exp (λXt − tΛκ(λ)) is a martingale.

First, we argue that (Mt∧τx)t≥0 is a uniformly integrable martingale. Pick β > 1
such that λβ < 1 − κ/8. It is sufficient to show that (Mt∧τx)t≥0 is uniformly
bounded in Lβ . We have

E
[
Mβ
t∧τx

]
= E[exp(λβXt∧τx − (t ∧ τx)βΛκ(λ))] ≤ exp(λβx)E[exp(λβ(Yx − x))].

By Propositions 2.2 and 3.8, we know that E[exp(λβ(Yx − x))] is finite, thus

sup
t

E
[
Mβ
t∧τx

]
<∞,

as desired.
Second, we show that |E[τx]−x/Λ′κ(0)| ≤ C for some C <∞ only depending on

κ. Since (Mt∧τx)t≥0 is a uniformly integrable martingale, we can apply Optional
Stopping Theorem and obtain

1 = E [exp (λYx − Λκ(λ)τx)] . (4.12)

Differentiating (4.12) with respect to λ and setting λ = 0, we have

E[τx] = x/Λ′κ(0) + E[(Yx − x)/Λ′κ(0)].

By Propositions 2.2 and 3.8 again, we see that E[(Yx − x)/Λ′κ(0)] is uniformly
bounded as desired.

Third, we argue that T (0, e−x)−τx has exponentially decaying tail. Let Ψ be the
conformal map from D0

τx onto U normalized at the origin. Note that (Ψ(D0
τx+t), t ≥
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0) has the same law as (D0
t , t ≥ 0) and is independent of (D0

s , s ≤ τx). Let T̃ be an
independent disconnection time, then, given D0

τx

P[T (0, e−x) ≥ τx + t] = P
[
T̃
(
0,Ψ(e−x)

)
≥ t
]
.

By the Growth Theorem (Lawler, 2005, Theorem 3.23), we have that, for any
z ∈ D0

τx ,

|z|Ψ′(0) ≤ |Ψ(z)|
(1− |Ψ(z)|)2

.

In particular, on the event {T (0, e−x) > τx}, we know that e−x is still contained in
D0
τx , and since Ψ′(0) = exp(Yx) ≥ ex, we have

1 ≤ |Ψ(e−x)|
(1− |Ψ(e−x)|)2

,

thus
|Ψ(e−x)| ≥ (3−

√
5)/2.

Combining with Lemma 4.3, we have that, for some constants c, C

P[T (0, e−x) ≥ τx + t] = P
[
T̃
(
0,Ψ(e−x)

)
≥ t
]
≤ Ce−ct,

as desired.
Finally, we can complete the proof by noting that T (0, e−x) ≥ τx−log 4 by (2.5)

and that τx − τx−log 4 has exponentially decaying tail. �

5. Open questions

Even though we know that the Hausdorff dimension of the closure of ∪t≥0∂D0
t

is 1 +κ/8, the dimension of a single ∂D0
t could be smaller; intuitively, this happens

if the growing arcs form bottlenecks, producing shortcuts in ∂D0
t . However, we do

not expect this to happen.

Question 5.1 (Dimension of the boundary). Is the Hausdorff dimension of the clo-
sure of ∂D0

t almost surely equal to 1 + κ/8?

One can view ∂D0
t as a Markov process on loops surrounding the origin. What

is its stationary measure?

Question 5.2 (Stationary loop). Is ∂D0
t a continuous simple curve? Consider the

rescaled loop around the origin:

L0
t := exp(tΛ′κ(0)) ∂D0

t .

Show that it has a limiting distribution as t→∞, and identify this law.

Finally, possibly the most interesting question:

Question 5.3 (Discrete models). Identify the growth process CGEκ for some values
of κ as the scaling limit of some discrete models.
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