
ALEA, Lat. Am. J. Probab. Math. Stat. 15, 897–911 (2018)

DOI: 10.30757/ALEA.v15-34

Spectral asymptotic expansion of Wishart matrices
with exploding moments

Nathan Noiry

Laboratoire Modal’X,
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Abstract. We study random covariance matrices whose entries have exploding
moments meaning that the ratio between their k-th moment and the k-th power of
their standard deviation goes to infinity with the size of the matrix. We compute an
asymptotic expansion of the limiting spectral measure in the critical regime when
this measure is close to the Marčenko-Pastur distribution. Explicit computations
are given in the two classical cases of Bernoulli and truncated heavy tailed entries.

1. Introduction

LetXn be a real random matrix of size n×m with i.i.d. entries which are centered
and with second moment M2. We define the Wishart matrix Wn = 1

nM2
XnX

T
n ,

where XT
n is the transpose of Xn. The spectral measure of Wn is the random

probability law:

µWn =
1

n

∑
λ∈Spec(Wn)

δλ,

where Spec(Wn) is the spectrum of Wn and δλ the Dirac at λ. Since Wn is a positive
symmetric matrix, its eigenvalues are nonnegative reals. The work of Marčenko
and Pastur (1967) implies that µWn

weakly converges to a probability law µα as
n,m→ +∞ and m/n→ α > 0. The law µα is given by:

µα(dx) =

√
(b− x)(x− a)

2πx
dx+ 1α<1 (1− α) δ0(dx),

where a = (1−√α)2 and b = (1 +
√
α)2.

When the ratio between the k-th moment and the k-th power of the standard
deviation of the entries goes to infinity with the size n, the limiting spectrum
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may not be µα. However, when this ratio is of order nk/2−1, the spectral measure
converges to a limiting distribution (see the work of Benaych-Georges and Cabanal-
Duvillard, 2012 and Male, 2017) that can still be close to the Marčenko-Pastur law.

In this paper, we focus on two models. When Xn has Bernoulli entries with
parameter c/n, c > 0, the limiting probability law µα,c depends only on α and c.
When the entries of Xn are in the domain of attraction of a β-stable law, one can
truncate them at the n-th lowest and largest quantiles times a parameter B > 0.
The resulting spectral law µα,β,B depends only on α, β and B. In each case, except
for the existence, the limiting spectral law remains poorly understood.

The main concern of this paper is to obtain an asymptotic expansion of µα,c and
µα,β,B as c→ +∞ and B → 0. We propose first order formulas in term of moments.
In each case, the leading term is the Marčenko-Pastur law with parameter α. More
interestingly, the order one perturbation term involves in each case a signed measure

µ
(1)
α with total mass 0 for which we are able to obtain an explicit expression:

µ(1)
α (dx) =

x2 − 2(α+ 1)x+ (α2 + 1)

2απ
√

(b− x)(x− a)
1(a,b)(x)dx. (1.1)

These results are the content of Theorems 2.1 and 2.4. They suggest that some-

how, µ
(1)
α is a typical perturbative term when a sequence of measure converges to

the Marčenko-Pastur law. In the Bernoulli case, µα,c can be interpreted as some
transform of the spectrum of a large bipartite Erdös-Rényi random graph with
parameters n, m = αn and c/n. Therefore, our method provides a first order
development of the limiting spectrum of sparse bipartite random graphs when c
becomes large. This is the content of Corollary 2.2.

The work of Benaych-Georges and Cabanal-Duvillard (2012, Theorem 3.2) pro-
vides a characterization of the limiting spectra in terms of moments. The combi-
natorics of the formula has the flavor of free probability and can be compared to
the work of Ryan (1998) in the symmetric case. However, it does not lead to direct
computations as we do here. Our proof is based on an alternative formula for the
limiting moments obtained in Proposition 3.1. It involves a certain class of walks
on planar rooted trees more amenable to analysis and can be compared to the work
of Zakharevich (2006) for Wigner matrices.

Enriquez and Ménard (2016) derived similar developments of moments for the
limiting spectra of diluted random graphs. Their proof relies on a combinatorial
analysis of the so-called local limit of the sequence of graphs. Although an analo-
gous analysis could be done in the setting of bipartite random graphs, our method
bypasses this argument and allows to study both bipartite random graphs and
truncated heavy tailed covariance matrices as particular cases of a more general
formula, namely the combinatorial expression obtained for the limiting moments.
We also cover the weighted cases, studied in the setting of bipartite random graphs
by Vengerovsky (2014), where he obtained recursive expressions for the limiting
spectral moments, which cannot lead to our developments. This is the content of
Corollaries 2.3 and 2.5.

Let us finally mention that from a practical perspective, the study of large sparse
covariance matrices, which corresponds to the Bernoulli setting, could be of interest
for the statistics community. Interpreting the entries of Xn as grades given by
individuals to some products, our study treats the case of independent grades.
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Our techniques can be naturally extended to stochastic blocks models (e.g. two
communities and two types of products).
Organization of the paper. In section 2, we state our main results concerning the
first order asymptotic expansion of the limiting spectra of Bernoulli and truncated
heavy-tailed covariance matrices. In section 3 we derive a new formula for the
limiting moments of Wishart matrices with exploding moments and briefly explain
how this leads to a new proof of the convergence of the spectral measure, given by
Benaych-Georges and Cabanal-Duvillard (2012, Theorem 3.2). Section 4 is devoted
to the proof of the results of section 2.

2. Main results

2.1. Spectra of Erdös-Rényi Bipartite Random Graphs. A bipartite Erdös-Rényi
random graph with parameters n, m and p is a percolation with parameter p on
the bipartite complete graph having parts of respective sizes n and m. Up to a
relabeling of the vertices, its adjacency matrix can be written

A = A(n,m, p) =

(
0 XT

n

Xn 0

)
,

where Xn is a n×m matrix with i.i.d. entries having Bernoulli law with parameter
p. The associated empirical spectral measure is the random probability law

νA =
1

n

∑
λ∈Spec(A)

δλ

that put mass 1/n at each eigenvalue of A, counting multiplicities. Notice that

Spec(A) =

{
±
√
λi(XnXT

n )

}
1≤i≤n

where λ1(XnX
T
n ), . . . , λn(XnX

T
n ) are the eigenvalues of XnX

T
n . Let f be the bijec-

tion of R+: f(x) =
√
x. For a measure ν on R+, define Sym(ν)(·) = (ν(·)+ν(−·))/2

the symmetrized version of ν. Then

νA = (Sym ◦ f∗)µXnXTn ,
where f∗µ is the pushforward of a measure µ by f . This one-to-tone correspondence
between probability measures on R+ and symmetric probability measures on R
allows to directly work on the Wishart’s setting and study µXnXTn .

We are interested in the diluted regime m = αn, α > 0 and p = c/n, c > 0. In
that case, the object of interest is the renormalized adjacency matrix 1√

c
A, so we

study the following sequence of Wishart matrices:

Wn =
1

c
XnX

T
n .

In the diluted regime, a lot of entries of Xn are equal to zero, which prevents µWn

to converge to the Marčenko-Pastur law µα defined in the introduction. How-
ever, there still exists a limiting probability law µα,c that only depends on α
and c. This is a consequence of Benaych-Georges and Cabanal-Duvillard (2012,
Theorem 3.2). To see this, it suffices to show that the centered version W ′n =
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c−1 (Xn −E[Xn]) (Xn −E[Xn])
T

has the same limiting spectra. Denoting respec-
tively F and F ′ the cumulative distribution functions of µWn

and µW ′n , a conse-
quence of Lidskii’s inequalities is that:

||F − F ′||∞ ≤
rk(Wn −W ′n)

n
,

where rk is the rank operator. Therefore, µWn has the same limit as µW ′n .
Another enlightening approach due to Bordenave and Lelarge (2010) is directly

concerned with να,c = (Sym ◦ f∗)µα,c. The two authors remark that the spectra of
a graph is continuous with respect to the local convergence introduced in Aldous
and Lyons (2007); Benjamini and Schramm (2001). In our setting, it can be shown
that the limiting local law Lα,c has support on unimodular random trees. More
precisely,

Lα,c =
1

1 + α
δGW(c,αc) +

α

1 + α
δGW(αc,c),

where GW(x, y) stands for a Galton-Watson tree where individuals in even (resp.
odd) generations reproduce with Poisson law with parameter x (resp. y). The mea-
sure να,c remains largely misunderstood. It can be proved, using same arguments
as in the work of Salez (2015), that its set of atoms is dense in R. Besides, a con-
sequence of the work of Bordenave et al. (2017) is that να,c possesses a continuous
part if and only if c > 1. When c → +∞, να,c converges towards (Sym ◦ f∗)µα.
A natural question is then to describe how να,c differs from να as c becomes large.
Our result provides a characterization of the perturbation of order 1/c in terms of
moments of the Wishart counterpart µα,c.

Theorem 2.1. For all k ≥ 1, as c→∞:∫
R

xkdµα,c(x) =

∫
R

xkdµα(x) +
1

c

∫
R

xkdµ(1)
α (x) + o

(
1

c

)
,

where µ
(1)
α is defined in Equation (1.1).

It leads to an asymptotic development of the spectra of large bipartite Erdös-
Rényi random graph at large intensity c:

Corollary 2.2. For all k ≥ 1, as c→∞:∫
R

xkdνα,c(x) =

∫
R

xkdνα(x) +
1

c

∫
R

xkdν(1)α (x) + o

(
1

c

)
,

where ν
(1)
α = (Sym ◦ f∗)µ(1)

α is given by the density:

x5 − 2(α+ 1)x3 + (α2 + 1)x

2απ
√

(b− x2)(x2 − a)
1√a<|x|<

√
b.

Finally, let us mention that our method also applies in the weighted case where
we study Yn(i, j) = Xn(i, j) × ξn(i, j) with ξn(i, j)’s i.i.d. with law that does not
depend on n and having all moments finite. In that case, the perturbation term is
just multiplied by E[ξ4]/E[ξ2], where ξ has the same law as the ξn(i, j)’s.

Corollary 2.3. In the weighted case, for all k ≥ 1, as c→∞:∫
R

xkdνα,c(x) =

∫
R

xkdνα(x) +
1

c
· E[ξ4]

E[ξ2]

∫
R

xkdν(1)α (x) + o

(
1

c

)
.
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Figure 2.1. Numerical simulations for the spectrum of 100
Wishart matrices associated to random matrices of size n×αn with
i.i.d. entries with Bernoulli law of parameter c/n, with c = 20 and

n = 3000. The theoritical densities of µα and µ
(1)
α are drawn in

blue. The top diagrams correspond to α = 2 whereas the bottom
diagrams correspond to α = 4.

2.2. Truncated heavy tailed random matrices. For all n ≥ 1, let Xn be a rectangular
random matrix of size n ×m having i.i.d. entries with heavy tailed law P which
has cumulative distribution function F . As before, we suppose that the ratio m/n
converges to α > 0. We suppose that P is in the domain of attraction of a β-stable
law, β < 2. By Breiman (1992, Theorem 9.34), it implies that there exist two reals
M−,M+ ≥ 0 such that M− +M+ > 0 and

F (−x)

1− F (x)
−→
x→+∞

M−

M+
, (2.1)

We restrict our study to the case M+ > 0: the following arguments easily adapt
when M− > 0 by considering P (−·).

Theorem 1.10 in Belinschi et al. (2009) ensures that the spectral measure of

n−
2
βXnX

T
n

almost surely weakly converges towards a deterministic probability law µα,β which
only depends on α and β. We are here concerned with a truncated version. More
precisely, define the quantiles q−n and q+n by:{

F (q−n ) = 1/n
1− F (q+n ) = 1/n.
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For all B > 0, we consider the sequence of random matrices X
(B)
n of size n × m

where

X(B)
n (i, j) = Xn(i, j)1Bq−n≤Xn(i,j)≤Bq+n +Bq−n 1Xn(i,j)<Bq−n +Bq+n 1Xn(i,j)>Bq+n .

Let P
(B)
n be the law of the entries of X

(B)
n . This forms a sequence of probability

measures that can be viewed as an approximation of P . The sequence of Wishart’s
matrices:

1

nM2(P
(B)
n )

X(B)
n X(B)

n

T
,

where M2(P
(B)
n ) is the second moment of P

(B)
n , satisfies the hypothesis of Benaych-

Georges and Cabanal-Duvillard (2012, Theorem 3.2). Therefore, the associated
sequence of spectral measures converges towards a probability law µα,β,B which, as
we will see, only depends on α, β and B.

The quantities q−n and q+n corresponds to the lowest and largest n-th quantile
of P . Therefore, our choice of law Pn can be interpreted as a truncation of the
largest entries in each rows of Xn. If one had chosen a smaller order of truncation,
one would have retrieved the Marčenko-Pastur regime. On the contrary, if one
had chosen a larger order of truncation, the Ak’s defined in Equation (3.1) would
have been all infinite, meaning that the truncation is not large enough to apply
Theorem 3.2 of Benaych-Georges and Cabanal-Duvillard (2012). In this spirit, the
parameter B > 0 can be seen as a finer adjustment of the truncation.

When B → 0, we are able to obtain a first order expansion in terms of moments.

Interestingly, it involves the signed measure µ
(1)
α that also appears in the Bernoulli

case.

Theorem 2.4. For all k ≥ 1, as B → 0:∫
R

xkdµα,β,B(x) =

∫
R

xkdµα(x) + Bβ · C(β,M+,M−)

∫
R

xkdµ(1)
α (x) + o

(
Bβ
)
,

where C(β,M+,M−) = (2−β)2
4−β · 1

1+(M−/M+)1/β
.

As in the Bernoulli case, our method directly applies to the weighted setting

where we consider rectangular matrices Y
(B)
n (i, j) = X

(B)
n × ξn(i, j) with ξn(i, j)’s

i.i.d. random variables, independent of X
(B)
n , whose law does not depend on n and

has all moments finite. If ξ has the same law as this family, the corollary writes in
the following way.

Corollary 2.5. In the weighted case, for all k ≥ 1, as B → 0:∫
R

xkdµα,β,B(x) =

∫
R

xkdµα(x)+ Bβ ·C(β,M+,M−)
E[ξ4]

E[ξ2]

∫
R

xkdµ(1)
α (x)+o

(
Bβ
)
.

3. Spectral moments of generalized Wishart’s matrices

Our main results are obtained from a general formula that we derive for the
limiting moments of size-dependent Wishart’s matrices. More precisely, we consider
the following setting. Let Xn be an n×m matrix having i.i.d. entries with centered
law Pn which has k-th moment Mk(Pn) < +∞. We make the following assumption:

∀k ≥ 2,
Mk(Pn)

nk/2−1M2(Pn)k/2
−→

n→+∞
Ak ∈ [0,∞). (3.1)
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In the regime m/n → α > 0, Benaych-Georges and Cabanal-Duvillard proved the
convergence of the empirical spectral measures associated to the Wishart sequence:

Wn :=
1

nM2(Pn)
XnX

T
n .

The limiting measure µA only depends on A := (Ak)k≥2. They obtained a formula
for the moments of µA which has the flavor of free probability theory. We propose
here an alternative formula which turns out to be more amenable to analysis for
our purpose.

In order to properly state our result, we need to introduce the notion of word on
a labeled graph. A labeled graph is a graph G = (V,E) together with a labeling of
the vertices, that is a one-to-one application from V to {1, . . . , |V|}. A relabeling
of a labeled graph is a new choice of bijection between V and {1, . . . , |V|}. Note
that there are |V|! choices of labelings for a given graph G = (V,E). A word of
length k ≥ 1 on a labeled graph G is a sequence of labels i1, i2, . . . , ik such that
{ij , ij+1} is a pair of adjacent labels (that is the associated vertices are neighbours
in G) for all 1 ≤ j ≤ k − 1. A word of length k is said to be closed if i1 = ik. Let
i = i1, . . . , ik and i′ = i′1, . . . , i

′
k be two words of length k on two labeled graphs G

and G′ having the same number of vertices. Then, i and i′ are said to be equivalent
if there exists a bijection σ of {1, . . . , |V|} such that σ(ij) = i′j for all 1 ≤ j ≤ k.
In words, i and i′ are equivalents if there exists a relabeling of a G such that the
word associated to i is exactly i′. One can check that this defines an equivalence
relation on words on labeled graphs.

Recall that a planar rooted tree is a connected graph without loop embedded in
the plane, with a distinguished vertex called the root. A vertex at odd (resp. even)
distance from the root will be called an odd (resp. even) vertex. An edge with an
odd (resp. even) origin vertex will be called an odd (resp. even) edge.

Proposition 3.1. For all k ≥ 1, the k-th moment of µA is∫
R

xkdµA(x) =

k∑
a=1

a∑
l=1

αl
∑

b=(b1,...,ba)
b1≥b2≥...≥ba≥2
b1+b2+···+ba=2k

|Wk(a, a+ 1, l,b)|
a∏
i=1

Abi . (3.2)

where Wk(a, a+1, l,b) is a set of representatives of the equivalence classes of closed
words on labeled rooted planar trees having “a” edges, of which l are odd edges,
starting from the root and such that for all 1 ≤ i ≤ a, one edge is browsed bi times.

Remark 3.2. Let w be an element of Wk(a, a+ 1, l,b). Since it is a representative
walk on a tree, starting and ending at the root, the multiplicity of each edge has
to be even. In particular, b must be a a-tuple of even integers summing to 2k, and
the sequence of odd parameters (A2k)k≥1 characterizes the limiting law.

Proof : For all k ≥ 1, denote by Mk(µWn
) the k-th moment of µWn

. Its expected
value E [Mk(µWn

)] is given by:

1

nk+1M2(Pn)k

∑
1≤i1,...,ik≤n
1≤j1,...jk≤m

E[X(i1, j1)X(i2, j1) · · ·X(ik, jk)X(i1, jk)]. (3.3)
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s = 8, l = 4, l = 4, a = 8

{jp, 1 ≤ p ≤ 4} = {2, 3, 4, 5}

{ip, 1 ≤ p ≤ 4} = {1, 2, 4, 6}

i1j1i2j1i2j2i3j2i3j3i4j4i1j4 = 1242432325656414

1

2

4

6

2

3

4

5

Figure 3.2. Example of a word (i, j) with its associated graph and quantities.

Denote (i, j) the generic word i1j1i2 . . . i1jk appearing in (3.3). We define the bi-
partite graph G = (V,E) associated to the word (i, j) by:

V = {(ir, i), (jr, j); 1 ≤ r ≤ k};
and

E =
{
{(ir, i), (jr, j)}, {(ir+1, i), (jr, j)}; 1 ≤ r ≤ k

}
,

where we used the convention k + 1 = 1. The abstract symbols i and j are needed
to obtain a bipartite graph since the ir’s and jr’s can have common values (see
Figure 3.2 for an illustration). We will refer to (i-) and (j-)letters. In words, the
vertices of G are the letters of the word (i, j) and two vertices are linked by an
edge when they are consecutive in (i, j). Denote by s the number of vertices, a the
number of edges, l the number of j-vertices and l the number of i-vertices in the
word. Since G is connected, s ≤ a + 1. Moreover, since Pn has zero mean, each
edge must appear at least twice in the word to give a non-zero contribution in (3.3).
As a consequence we obtain the bound a ≤ k because i1j1 . . . jk possesses 2k edges
counted with multiplicity.

Two words (i, j) and (i′, j′) are said equivalent if one can find a permutation σ
of {1, . . . , n} and another one τ of {1, . . . ,m} such that

∀p ∈ {1, . . . k}, σ(ip) = i′p and τ(jp) = j′p.

One can check that this is an equivalence relation on the words appearing in (3.3).
Note that (i, j) has

C(s, l) = n(n− 1) · · · (n− l + s+ 1)×m(m− 1) · · · (m− l + 1) ∼ αlns

equivalents. Fix a ∈ {1, . . . , k}, 1 ≤ s ≤ a+ 1 and 1 ≤ l ≤ a. Let Ba,k be the set of
a-tuples b = (b1, . . . , ba) of integers such that

(1) b1 ≥ b2 ≥ · · · ≥ ba ≥ 2;
(2) b1 + · · ·+ ba = 2k.

For all k ≥ 1 and b ∈ Ba,k, we introduce Wk(a, s, l,b) a set of representatives of
the equivalence classes of words (i, j) such that the associated graph has a edges,
s vertices of which l are j-vertices and such that for all 1 ≤ i ≤ a there is an edge
which has multiplicity bi in (i, j). We can rewrite (3.3) as:

k∑
a=1

a+1∑
s=1

s∑
l=1

C(s, l)

na+1

∑
b∈Ba,k

∑
(i,j)∈W(a,s,l,b)

∏
1≤i≤a

Mbi(Pn)

nbi/2−1M2(Pn)bi/2
. (3.4)
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Since C(s, l)n−a−1 ∼ αlns−a−1 when n→ +∞ we deduce that when s < a+ 1 the
asymptotic contribution is zero. Hence a possible non-zero contribution arises only
when s = a+ 1. The Proposition is a consequence of (3.1). �

Remark that our method could lead to an alternative proof of Benaych-Georges
and Cabanal-Duvillard result. We only give a sketch of the remaining steps and do
not enter the details here as it is not our main purpose. The variance of Mk(µWn

)
can be written

1

n2(k+1)M2(Pn)2k

∑
(i,j),(i′,j′)

(
E[P (i, j)P (i′, j′)]−E[P (i, j)]E[P (i′, j′)]

)
,

where P (i, j) is the productX(i1, j1)X(i2, j1) · · ·X(i1, jk). A combinatorial analysis
of the contributions associated to words (i, j) and (i′, j′) can lead to Var(Mk(µWn

))
= O(1/n). Then, it can be shown that the limiting k-th moment does not grow
faster than kck for a constant c > 0, which ensures that the limiting law is charac-
terized by its moments.

4. Proof of the main results

The formula for the moments of the limiting law can be rewritten:

k∑
l=1

αl|Wk(k, k+1, l, (2, . . . , 2))|+A4

k−1∑
l=1

αl|Wk(k, k+1, l, (4, 2, . . . , 2))|+ · · · (4.1)

We used that A2 = 1 and that:

• a word of length 2k + 1 on a planar rooted tree having k edges that starts
and ends at the root and browses every edge has to browse every edge
exactly 2 times;
• a word of length 2k + 1 on a planar rooted tree having k − 1 edges that

starts and ends at the root and browses every edge has to browse every
edge 2 times except for one that is browsed 4 times.

The (numerous) remaining terms (represented by the “· · · ”) involve the Ak’s for
k > 4.
The first term of (4.1) is known to be the k-th moment of the Marčenko-Pastur law
with parameter α. We will show that the second term

k−1∑
l=1

αl|Wk(k, k + 1, l, (4, 2, . . . , 2))|

is the k-th moment of µ
(1)
α . Finally, we will see that A4 is equal to 1/c in the

Bernoulli case and to Bβ · C(β,M+,M−) in the truncated heavy-tailed case, by
identifying the asymptotic coefficients Ak’s in both settings.

4.1. Identification of the signed measure µ
(1)
α . Although this is a known result, we

briefly prove that∫
R

xkdµα(x) =

k∑
l=1

αl|Wk(k, k + 1, l, (2, . . . , 2))|

in order to introduce some notations.
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T1

p edges

T2

q edges

p+ q = k

T

k + 1 edges

Figure 4.3. Decomposition of a planar tree.

Recall that Wk(k, k + 1, l, (2, . . . , 2)) is a set of representatives of closed words
starting at the root, of length 2k+ 1 on labeled planar rooted trees having k edges,
l of these being odd edges. Therefore,

k∑
l=1

αl|Wk(k, k + 1, l, (2, . . . , 2))| =
∑
T∈Tk

αl(T),

where Tk is the set of planar rooted trees having k edges. For convenience, we
introduce

ak :=
∑
T∈Tk

αl(T) and bk :=
∑
T∈Tk

αl(T),

where l(T) is the number of even edges of a given tree T ∈ Tk.
It turns out that the ak’s are the moments of µα. To obtain the term of order

1/c we will need to compute the generating series of the ak’s and bk’s.
Let T be a planar tree having k + 1 edges. Let T1 be the tree induced by the

first child of the root and T2 the connected component of the root after removing
the edge between the root and its first child (see Figure 4.3). Denoting p (resp. q)
the number of edges of T1 (resp. T2), we have p + q = k. It is straightforward to
obtain the relations l(T) = 1 + l(T1) + l(T2) and l(T) = l(T1) + l(T2). Therefore

ak+1 = α
∑

p+q=k

apbq

bk+1 =
∑

p+q=k

apbq.

Denoting A(z) =
∑
k≥0 akz

k and B(z) =
∑
k≥0 bkz

k the generating functions of
the ak’s and the bk’s we obtain the functional relations:{

A = 1 + αzAB
B = 1 + zAB.

(4.2)

It implies that zA2 + (αz− z− 1)A+ 1 = 0. If we denote S(z) := −z−1A(z−1) the
Stieltjes transform of the measure with moments ak’s, then S satisfies the equation:

zS2 − (α− z − 1)S + 1 = 0. (4.3)
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The function S of the variable z ∈ C+ is the limit of the Stieltjes transform of
the µWn

when c → +∞. The imaginary part of a Stieltjes transform is positive:
this allows us to choose the right solution for equation (4.3). For a complex z, if
we denote

√
z the square root having a positive imaginary part on the upper half

plane:

S(z) =
α− z − 1 +

√
(z − b)(z − a)

2z
,

where a = (1 − √α)2 and b = (1 +
√
α)2. This is the Stieltjes transform of the

Marčenko-Pastur law µα, as announced.

The second term involves Wk(k− 1, k, l, (4, 2, . . . , 2)) a set of equivalence classes
of closed words of length 2k + 1 on labeled planar rooted tree having k − 1 edges,
starting at the root and such that each edge is browsed exactly two times except
one which is browsed four times. Let us denote

a
(1)
k =

k−1∑
l=1

αl|Wk(k − 1, k, l, (4, 2, . . . , 2))|,

and

b
(1)
k =

k−1∑
l=1

αl|Wk(k − 1, k, l, (4, 2, . . . , 2))|.

The associated generating series will be denoted A(1) and B(1). Notice that by

definition a
(1)
0 = a

(1)
1 = b

(1)
0 = b

(1)
1 = 0. We are going to obtain a recursion linking

the four generating series A,B,A(1) and B(1). The idea is to use a first generation
decomposition of the planar rooted tree on which the words are written, and then
to distinguish whether or not the quadruple edge is an edge of this generation. For
all k ≥ 1, we partition Wk(k − 1, k, l, (4, 2, . . . , 2)) into two parts:

W(0)
k (k − 1, k, l, (4, 2, . . . , 2))

⊔
W(1)
k (k − 1, k, l, (4, 2, . . . , 2)),

whereW(0)
k (k−1, k, l, (4, 2, . . . , 2)) is the set of representative belonging toWk(k−

1, k, l, (4, 2, . . . , 2)) such that the quadruple edge is not a first generation edge,

and W(1)
k (k − 1, k, l, (4, 2, . . . , 2)) is the set of representatives belonging to Wk(k −

1, k, l, (4, 2, . . . , 2)) such that the quadruple edge is a first generation edge. The

associated quantities will be denoted a
(1,0)
k , a

(1,1)
k , A(1,0), ... For example:

a
(1,0)
k =

k−1∑
l=1

αl|W(0)
k (k − 1, k, l, (4, 2, . . . , 2))|.

A representative word (i, j) ∈ Wk(k − 1, k, l, (4, 2, . . . , 2)) can be written:

(i, j) = i1S1ζξS2ξζS3ζξS4ξζS5i1,

where:

(1) i1S1ζS5i1 is the contour of a planar tree having p1 edges;
(2) ξS2ξ is the contour of a planar tree having p2 edges;
(3) ζS3ζ is the contour of a planar tree having p3 edges;
(4) ξS4ξ is the contour of a planar tree having p4 edges;
(5) ξS2ξS4ξ is the contour of a planar tree having p2 + p4 edges.
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i1

ζ

ξ
ξ

S1

S2 S3

S4

S5

Figure 4.4. The writing (i, j) and its quadruple edge {ζ, ξ}.

a
(1,0)
k = a

(1,1)
k =

bq1 bq2 b
(1)
qi +1 bqp bq1 bqi bqj bqp+1

Figure 4.5. First edge decomposition of a word respectively

in W(0)
k (k − 1, k, l, (4, 2, . . . , 2)) on the left and in W(1)

k (k −
1, k, l, (4, 2, . . . , 2)) on the right, where the quadruple edge is in
red.

The above integers satisfy p1+p2+p3+p4 = k−2. See Figure 4.4 for an illustration.
All of these conditions are sufficient to define a class of canonical representatives.
Let T be the planar rooted tree on which a representative word (i, j) is written.
Denote e4 the quadruple edge, T \ e4 the connected component of the root after
removing e4 and Te4 the planar rooted tree formed by the descendants of e4. Then,
the above conditions ensures that (i, j) is such that T \ e4 and Te4 are respectively
browsed in lexicographic order.

Let (i, j) ∈ W(0)
k (k − 1, k, l, (4, 2, . . . , 2)). The underlying tree can have p ∈

{1, . . . , k−2} edges which are all browsed two times by (i, j). One of the tree induced
by the children of the root contains the quadruple edge, leading to p different

choices. On another side, if (i, j) ∈ W(1)
k (k−1, k, l, (4, 2, . . . , 2)) then the underlying

tree can have p ∈ {1, . . . , k − 1} edges out of which one is the quadruple edge.
There are

(
p+1
2

)
choices for the locations of the the visits of the quadruple edge.

See Figure 4.5 for an illustration.
As a consequence, we get the following recursions:

a
(1,0)
k =

k−2∑
p=1

αpp
∑

q1+···+qp=k−p−1

b
(1)
q1+1bq2 · · · bqp ,

and

a
(1,1)
k =

k−2∑
p=1

αp
(
p+ 1

2

) ∑
q1+···+qp+1=k−p−1

bq1bq2 · · · bqp+1 .
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This yields

A(1,0) =
αzB(1)

(1− αzB)2
= αzA2B(1)

and

A(1,1) =
αz2B2

(1− αzB)3
= αz2A3B2,

where we used equation (4.2). The same arguments and computations give B(1,0) =
zA(1)B2 and B(1,1) = z2A2B3, to finally obtain{

A(1) = αzA2B(1) + αz2A3B2

B(1) = zA(1)B2 + z2A2B3.

We deduce, using equation (4.2), that A(1) is given by:

A(1) =
α(zAB)2

1− α(zAB)2
(zA2B +A) =

AB

1− α(zAB)2
α(zAB)2. (4.4)

To obtain a more explicit formula for A(1), one can compute α(zAB)2 using first
thatB = (A+α−1)/α and then that zA2 = (1−(α−1)z)A−1. After simplifications:

α(zAB)2 =
(1− αz − z)A+ z − 1

αz

=
(α2 + 1)z2 − 2z(α− 1) + 1− (1− αz − z)

√
δ

2αz2
, (4.5)

since A = (2z)−1(1 − (α − 1)z −
√
δ). Using

√
δ = −2zA − (α − 1)z + 1, one can

then check that
√
δAB = 1− α(zAB)2. From (4.5), we can finally rewrite (4.4) as

A(1) =
1√
δ

(α2 + 1)z2 − 2z(α+ 1) + 1− (1− αz − z)
√
δ

2αz2
.

Therefore, the function S(1)(z) = − 1
zA

(1)( 1
z ) is given by

S(1)(z) = −z
2 − 2z(α+ 1) + (α2 + 1)

2α
√

(z − b)(z − a)
+
z − α− 1

2α
.

It corresponds to the Stieltjes transform of the measure µ
(1)
α with density:

1

π
lim
ε→0

Im
(
S(1)(x+ iε)

)
=
x2 − 2x(α+ 1) + (α2 + 1)

2απ
√

(b− x)(x− a)
1(a,b).

4.2. Asymptotic coefficients. By Remark 3.2, it is sufficient to take l even.

The Bernoulli case. In this setting the computation is direct. As explained in
Section 2.1, it suffices to consider the centered version of Bernoulli laws, which
corresponds to take:

Pn =
c

n
δ1−c/n +

(
1− c

n

)
δ−c/n.

Therefore, for all k ≥ 1:

M2k(Pn)

nk−1M2(Pn)k
−→

n→+∞
c1−k.
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In particular A4 = 1/c, which, combined with the above identification of µ
(1)
α , pro-

vides the proof of Theorem 2.1.

The truncated heavy-tailed case. Recall that P is in the domain of attraction of
a β-stable law, which implies that its cumulative distribution function F satisfies
Equation (2.1), where we supposed that M+ > 0. In this regime, Breiman (1992,
Theorem 9.34) provides

1− F (ξx)

1− F (x)
−→
x→+∞

ξ−β ,

meaning that 1 − F (·) varies regularly with exponent −β. It implies that for all
k ≥ 2, the truncated moment function

Uk(x) :=

∫ x

0

tkdP (t)

varies regularly with exponent k− β. Theorem 2 of Feller (1971, VIII.9), known as
Karamata’s estimate, yields the following asymptotic as x→ +∞:

Uk(x)∼ β

k − β x
k(1− F (x)).

The behavior of the left truncated moment Uk(x) =
∫ 0

−x t
kdP (t) can be obtained

in the same way. As x→ +∞:

Uk(x) ∼ β

k − β (−x)kF (−x)1M−>0.

Therefore, for all k ≥ 1:

M2k

(
P (B)
n

)
= U2k(Bq+n ) +

(Bq+n )2k

n
+ U2k(Bq−n ) +

(Bq−n )2k

n

∼ (Bq+n )2k

n
B−β

(
1 +

β

2k − β

)
+

(Bq−n )2k

n
B−β

(
1 +

β

2k − β

)
1M−>0

∼ (q+n )2k

n
·B−β · 2k

2k − β

(
1 +

(
M−

M+

)1/β
)

because on the event M− > 0,

1− F (q+n )

1− F
((

M+

M−

)1/β
q−n

) −→
n→+∞

1,

which yields q−n ∼ (M−/M+)1/βq+n . We finally obtain:

A2k = Bβ(k−1) · 2k

2k − β

(
2− β

2

)k(
1 +

(
M−

M+

)1/β
)1−k

.

In particular, A4 = Bβ · C(β,M+,M−) which leads to Theorem 2.4.
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