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Abstract. Let F (N,m) denote a random forest on a set of N vertices, chosen
uniformly from all forests with m edges. Let F (N, p) denote the forest obtained
by conditioning the Erdős-Rényi graph G(N, p) to be acyclic. We describe scaling
limits for the largest components of F (N, p) and F (N,m), in the critical window
p = N−1 + O(N−4/3) or m = N/2 + O(N2/3). Aldous (1997) described a scaling
limit for the largest components of G(N, p) within the critical window in terms of
the excursion lengths of a reflected Brownian motion with time-dependent drift.
Our scaling limit for critical random forests is of a similar nature, but now based
on a reflected diffusion whose drift depends on space as well as on time.

1. Introduction

Let G(N, p) be the Erdős-Rényi random graph with vertex set [N ], in which each

of the
(
N
2

)
possible edges appears independently with probability p. In a seminal

paper, Aldous (1997) gave a scaling limit for the joint distribution of the sizes of the
largest components of G(N, p) within the critical window p(N) = 1

N + O(N−4/3).

In this regime, the largest components are of order N2/3 (as was shown first by
Bollobás, 1984 up to a logarithmic correction, and then by  Luczak, 1990); after
rescaling by N2/3, their sizes converge to the lengths of the excursions of a reflected
Brownian motion with time-dependent drift. The central result of Aldous (1997)
may be written as follows:
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Proposition 1.1. Let λ ∈ R, and consider the sequence of random graphs G(N, p)

with p = p(N) = N−1 + λN−4/3. Let C
G(N,p)
1 , C

G(N,p)
2 , . . . be the sequence of

component sizes of G(N, p) written in non-increasing order, augmented by zeros.
Let Bλ(t), t ≥ 0 be a (time-inhomogeneous) reflected Brownian motion, with drift

λ − t at time t, and Bλ(0) = 0. Let CBλ be the lengths of the excursions of Bλ,
written in non-increasing order. Then

N−2/3
(
C
G(N,p)
1 , C

G(N,p)
2 , . . .

)
d→ CB

λ

as N →∞ (1.1)

with respect to the `2 topology.

A similar result may be written for the random graph G(N,m) (that is, a graph
chosen uniformly from all those with vertex set [N ] and with m edges), in the
regime m = N/2 +O(N2/3).

Aldous’s result has been extended in multiple ways. The same Brownian scaling
limit has been shown to arise in more general settings including configuration mod-
els and inhomogeneous random graphs, provided the tail of the degree distribution
is sufficiently light (Turova, 2013; Riordan, 2012; Joseph, 2014; Bhamidi et al., 2010,
2014b; Dhara et al., 2017). In some such cases, finer scaling limits describing the
metric structure of the large components, as well as their size, have been obtained,
in terms of objects related to the Brownian continuum random tree (Addario-Berry
et al., 2010, 2012; Bhamidi et al., 2014a, 2017). When the third moment of the
vertex degrees is infinite, different scaling limits arise (Joseph, 2014; Bhamidi et al.,
2012; Dhara et al., 2016) which can be described in terms of excursion lengths of
the “thinned Lévy processes” introduced in Aldous and Limic (1998). Finally, dy-
namic models have been studied in which the developing component structure of a
random graph process (or more generally a multiplicative coalescent) is described
(as a process) by excursions of a Brownian motion or thinned Lévy process whose
drift changes with time (Armendariz, 2001; Broutin and Marckert, 2016; Limic,
2016; Martin and Ráth, 2017).

In this paper we develop in a new direction, to consider the sizes of trees in
random forests. Write F (N,m) for a graph chosen uniformly at random from
all forests on [N ] with m edges (equivalently, those forests consisting of N − m
trees). Write also F (N, p) for the graph G(N, p) conditioned to be acyclic. Our
main results give a scaling limit for the joint distribution of the sizes of the largest
trees in F (N,m) or in F (N, p) in the critical regime (this critical regime coincides
with that for G(N,m) and G(N, p) above). The limit is given by the collection
of excursion lengths of a diffusion, as at (1.1) but now the limiting diffusion is
inhomogeneous in space as well as in time.

Just as for Aldous’s proof of Proposition 1.1, these convergence results are proved
by analysing the graph exploration process, which encodes enough of the graph
structure to recover the sequence of component sizes. We discuss the exploration
process, and its scaling limit, in Section 1.3; before that, we introduce the notation
needed to state our main results.

1.1. Definition of the diffusion.  Luczak and Pittel (1992) studied the model
F (N,m), and identified subcritical, critical and supercritical regimes. Within the
critical window, specifically for m = N/2 + (λ + o(1))N2/3, their Theorem 4.1 es-
tablishes convergence in distribution for N−2/3Ck, where Ck is the size of the kth
largest tree in F (N,m).
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 Luczak and Pittel’s analysis relies on enumeration results of Britikov (1988),
which we also use extensively. Britikov gives asymptotics for f(N,m), the number
of forests on [N ] with exactly m edges, via Bell polynomials. The relevant regime
of Britikov’s result is summarised by Lemma 2.1(ii) of  Luczak and Pittel (1992):

Lemma 1.2. For any constant c > 0, as N →∞,

f(N,m) = (1 + o(1))

√
2πNN−1/6

2N−m(N −m)!
g

(
2m−N
N2/3

)
, (1.2)

uniformly for m ∈
[
N/2− cN2/3, N/2 + cN2/3

]
, where

g(x) =
1

π

∫ ∞
0

exp(− 4
3 t

3/2) cos(xt+ 4
3 t

3/2)dt, (1.3)

is the density of a stable distribution with parameter 3/2.

As we shall see in Lemma 2.10, it follows that the asymptotic probability that
G(N, p) is acyclic in this regime is Θ(N−1/6).

Definition 1.3. For b > 0 and λ ∈ R, let

α(b, λ) :=

∫∞
0
a−1/2g(λ− a) exp

(
(λ−a)3

6

)
exp(− b2

2a )da∫∞
0
a−3/2g(λ− a) exp

(
(λ−a)3

6

)
exp(− b2

2a )da
. (1.4)

Lemma 1.4. The function g defined in (1.3) is positive, bounded, and uniformly
continuous, and satisfies g(x)→ 0 as x→ ±∞. The integrals in the numerator and
denominator of (1.4) both converge for all b and λ. The function α is continuous
and increasing in its first argument, and satisfies α(b, λ) → 0 as b ↓ 0, uniformly
on λ in compact intervals.

We will prove Lemma 1.4 in Section 5, after the main probabilistic arguments.
We now define a reflected diffusion, Zλ, whose drift at time s and height b is

λ− s− α(b, λ− s). The excursion lengths of Zλ will describe the scaling limits of
the largest trees in our critical random forests. Comparing with the definition of
Bλ in Proposition 1.1, we see that the function α provides the correction to the
drift which is required to account for the acyclicity condition.

Proposition 1.5. Consider a standard Brownian motion W (·) with natural filtra-
tion FW . For each λ ∈ R, there exists a unique pair of non-negative FW -adapted
processes Zλ,Kλ satisfying:{

Zλ(0) = 0,

dZλ(t) =
[
λ− t− α

(
Zλ(t), λ− t

)]
dt+ dW (t) +Kλ(t),

(1.5)

where Kλ is the local-time process of Zλ at zero. That is, Kλ(·) is continuous and
increasing, with Kλ(0) = 0, and

∫∞
0
Zλ(t)dKλ(t) = 0.

Since the drift term in (1.5) is dominated by λ − t, Zλ almost surely has a
well-defined largest excursion, and second-largest excursion, and so on.

Definition 1.6. Let Cλ := (Cλ1 , C
λ
2 , . . . ) be the sequence of lengths of the excur-

sions of Zλ, written in non-increasing order.
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1.2. Main results. We can now state the main results of the paper.

Theorem 1.7. Fix λ ∈ R and suppose that m(N) is a sequence of integers such
that m = N/2 + (λ + o(1))N2/3 as N → ∞. Consider the sequence of random

forests F (N,m). Let C
F (N,m)
1 ≥ C

F (N,m)
2 ≥ . . . be the sequence of tree sizes in

F (N,m), in non-increasing order, augmented with zeros. Then

N−2/3
(
C
F (N,m)
1 , C

F (N,m)
2 , . . .

)
d→ Cλ (1.6)

as N →∞, with respect to the `2 topology.

Theorem 1.8. Fix λ ∈ R and suppose that p(N) is a sequence such that p =
N−1 + (λ + o(1))N−4/3 as N → ∞. Consider the sequence of random forests

F (N, p). Let C
F (N,p)
1 ≥ C

F (N,p)
2 ≥ . . . be the sequence of tree sizes in F (N, p), in

non-increasing order, augmented with zeros. Then

N−2/3
(
C
F (N,p)
1 , C

F (N,p)
2 , . . .

)
d→ Cλ (1.7)

as N →∞, with respect to the `2 topology.

We will work mostly in the context of the model F (N, p). In Section 6 we will
deduce separately that Theorem 1.8 for F (N, p) implies Theorem 1.7 for F (N,m).

1.3. Exploration processes. As was the case for Aldous’s Proposition 1.1, our proof
of Theorem 1.8 is based on an analysis of the exploration process of the graph.
To be specific, we will work with a breadth-first ordering (although the argument
would work equally well with various other orderings).

Let G be any graph with vertex set [N ]. We define the breadth-first ordering
v1, v2, . . . , vN in the following way. For a vertex v, let Γ(v) be the set of neighbours
of v in G. For each n = 0, 1, . . . , N , denote

Zn := Γ(v1) ∪ . . . ∪ Γ(vn)\{v1, . . . , vn}.
Now recursively, for each n = 0, 1, . . . , N − 1:

• if |Zn| = 0, then let vn+1 be the smallest element of [N ] \ {v1, . . . , vn}, and
let vn+2, . . . , vn+1+|Γ(vn+1)| be the elements of Γ(vn+1), in increasing order;

• if |Zn| = r > 0, then let {vn+r+1, . . . , vn+r+a} be the elements of Zn+1 \Zn
in increasing order, where a = |Zn+1 \ Zn|.

Note that Z0 = ∅, v1 = 1, and Z1 = Γ(1).
We can interpret the construction as follows. We imagine exploring the graph

one vertex at a time, revealing neighbours as we proceed. Zn is the stack after step
n, consisting of the vertices that we have seen but not yet processed. At the next
step n, if there are any vertices on the stack, we process the one which was added
earliest (namely vn+1), removing it from the stack and adding to the stack all its
neighbours that have not previously been seen. If instead the stack is empty, we
select a new vertex (the smallest-labelled vertex that has not previously been seen)
and process that vertex in the same way.

We define the reflected exploration process (Zn)n≥0 by Zn = |Zn|. If we define
0 = n0, n1, . . . , nC = N to be the times n such that Zn = 0, written in increasing
order, then the components of G are {vni+1, vni+2, . . . , vni+1} for i = 0, . . . , C − 1.
In this way we can interpret the component sizes of G as the lengths of excursions
from 0 of the reflected exploration process.
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The strategy of proof of Theorem 1.8 is now to show that the exploration pro-
cesses ZN,p of the forests F (N, p), in the regime of Theorem 1.8, converge as
N → ∞, when suitably rescaled, to the diffusion Zλ, in such a way that the
rescaled lengths of the longest excursions of ZN,p converge to the lengths of the
longest excursions of Zλ. Our main convergence result is the following:

Theorem 1.9. With λ, (p(N)) as in Theorem 1.8, let (ZN,pn )n≥0 be the reflected
exploration process of F (N, p). For s ≥ 0, set

Z̃N,ps := N−1/3ZN,pbN2/3sc. (1.8)

Then we have Z̃N,p
d→ Zλ, uniformly on compact time-intervals.

Let us try to give some intuition for this result and for the role played by the
function α, by comparing the behaviour of the exploration processes for G(N, p)
and for F (N, p), for p = N−1 + λN−4/3.

We first recall the heuristic for the scaling in the G(N, p) case. The exploration
process Zn, n ≥ 0 is a Markov chain. Condition on Zn, the size of the stack after
n steps, being equal to r > 0 and consider the distribution of Zn+1 − Zn + 1,
which is 1 more than the next increment of the process. This quantity is the
number of neighbours that the vertex vn has in [N ] \ {v1, . . . , vn+r}, and it has
Bin (N − n− r, p) distribution, with mean (N − n− r)p.

If we write n = tN2/3 and r = bN1/3, the mean of that increment is then

(N − tN2/3 − bN1/3)(N−1/3 + λN−4/3)− 1

which (for t and b of constant order) is approximately (λ − t)N−1/3. Meanwhile
the variance is 1 + O(N−1/3). If we rescale time by a factor N2/3 and space by a
factor N1/3, we converge to a process with drift λ− t and variance 1 per unit time,
namely the diffusion Bλ of Proposition 1.1.

Now consider instead the exploration process for F (N, p), which is G(N, p) con-
ditioned to be acyclic. We will see in Section 2.2 that the exploration process is
still a Markov chain, but the acyclicity condition changes the distribution of the
increments. Suppose again Zn = r, so that the current stack is {vn+1, . . . , vn+r}.
These stack vertices are already known to be in the same component of the graph.
For the graph to remain acyclic, we now require that the subgraph induced by the
vertices {vn+1, . . . , vN} is a forest, and furthermore no two of the stack vertices
are in the same tree of this forest. As a result of this conditioning, the quantity
Zn+1 − Zn + 1 no longer has Bin (N − n− r, p) distribution as in the G(N, p) case
just discussed, but is stochastically dominated by Bin (N − n− r, p); furthermore,
the downward bias produced is stronger when the stack size r is higher.

What we establish is that, in the same regime as above, this bias produces a
change in the expected increment which is again of order N−1/3 and depends on
the size of the stack. After rescaling as above, the drift obtained is now instead
λ− t− α(b, λ− t), leading to the diffusion Zλ defined at (1.5).

The particular convergence properties that we need in order to obtain Theorem
1.9 are collected in the following result:

Proposition 1.10. Fix λ ∈ R, and let p = p(N) satisfy the conditions of The-
orem 1.8. For each N ∈ N, the reflected exploration process ZN,p of F (N, p) is
a Markov chain. Further, fix any T,K < ∞ and δ > 0. Then, uniformly on
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n ∈ [0, TN2/3] and r ∈ [1,KN1/3],

N1/3E
[
ZN,pn+1 − ZN,pn |ZN,pn = r

]
−
[
λ− n

N2/3 + α
(

r
N1/3 , λ− n

N2/3

)]
→ 0, (1.9)

E
[[
ZN,pn+1 − ZN,pn

]2 ∣∣∣ZN,pn = r

]
→ 1, (1.10)

N2/3P
(∣∣ZN,pn+1 − ZN,pn

∣∣ > δN1/3
∣∣∣ZN,pn = r

)
→ 0, (1.11)

as N →∞. In addition,

lim inf
N→∞

inf
n∈[0,TN2/3]

E
[[
ZN,pn+1

]2 ∣∣∣ZN,pn = 0

]
> 0. (1.12)

Here (1.9) and (1.10) give the required convergence of the mean and variance of
the increments respectively. Then (1.11) will imply that the limit process does not
have jumps, and finally (1.12) ensures that the limit process reflects appropriately
at zero.

In Section 5.4, we show that Proposition 1.10 is sufficient to imply Theorem 1.9.
The main ingredient will be Theorem 5.7, a special case of the very general results
of Stroock and Varadhan (1971) on the convergence of Markov processes to reflected
diffusions.

We mention one further technical point which causes extra complication in the
proof of Theorem 1.8, compared to that of Aldous’s Proposition 1.1. We will
need to go slightly beyond Theorem 1.9 in showing that the excursions of the
discrete exploration process (whose lengths are the tree sizes of the forest) converge
appropriately, after rescaling, to the excursions of Zλ. To do so, we need to exclude
the possibility that zeros of Zλ arise only as the limits of small positive local minima
of the discrete processes; for this we will use the fact that, conditional on its vertex
set, a tree appearing in F (N, p) is a uniform random tree, whose exploration process
we can approximate by a Brownian excursion. (In the case of Proposition 1.1, the
limiting diffusion Bλ is homogeneous in space; hence Aldous was able to work
instead with the unreflected process, and correspondingly with a slightly different
version of the exploration process, whose height at step m is equal to the stack
size minus the number of complete components already explored. Then one only
needs to show that excursions above the running minimum of the discrete processes
converge to excursions above the running minimum of the diffusion, which follows
easily from the uniform convergence of the paths.)

1.4. Discussion. Before embarking on the proof of our main results, we discuss var-
ious aspects of the ensembles F (N, p) and G(N, p), the limiting diffusion processes
Zλ and Bλ, and other related models.

1.4.1. Excursions of Bλ and of Zλ. Just as for the process Bλ, the excursions of Zλ

occur in size-biased order. This property is inherited from the discrete exploration
processes – since the graph is exchangeable, the exploration visits the components
in size-biased order.

We also have that, conditional on their length, the excursions of Zλ are Brownian
excursions. That is, if we condition on the set of excursion intervals of the process,
the paths of the process on these intervals are independent Brownian excursions.
This follows from the fact that the trees of F (N, p) are uniformly distributed,
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given their vertex sets, and the fact that the exploration process of a uniform tree
converges in distribution to a Brownian excursion (Le Gall, 2005). For the process
Bλ, in contrast, the excursions are Brownian excursions weighted by the exponential
of their area (see Aldous, 1997); relative to Brownian excursion, the higher drift
at the beginning and lower drift at the end of the interval favours excursions with
higher area in Bλ, but in Zλ this bias turns out to be precisely cancelled by the
negative contribution to the drift from the α term. These properties of size-biased
ordering and Brownian excursions are not at all obvious from the definition of Zλ.
It is interesting to ask whether there are other diffusions which have both these
properties.

1.4.2. Monotonicity properties. It’s straightforward that the edge set of G(N, p)
is stochastically dominated by that of G(N, p′) when p < p′; similarly we have
stochastic domination of G(N,m) by G(N,m′) for m < m′.

However, there seems no obvious argument leading to analogous properties to
hold for the families F (N, p) and F (N,m); as far as we know, the question of
whether these monotonicity properties hold is open.

From the combinatorial calculations that we use to estimate the probability that
G(N, p) is acyclic, we obtain that in the critical window, the number of edges in
the forest F (N, p) typically behaves like N2p/2 + O(N1/2). (In fact, much more
strongly, one could immediately obtain that the local central limit theorem for the
number of edges is the same in F (N, p) as in G(N, p)). If we also had a monotonicity
result, it would then be easy to deduce Theorem 1.7 for F (N,m) from Theorem 1.8
for F (N, p), using a simple sandwiching argument. Without it, we need to work a
little harder. In Lemma 6.2 in Section 6, we prove an ‘almost monotonicity result’:
for parameters in an appropriate range, we can couple a sequence of random forests
with different numbers of edges in such a way that, with high probability, the edge
sets are indeed monotonic.

1.4.3. λ→∞, the supercritical phase, and random planar graphs. In the subcritical
regime, the behaviours of G(N,m) and F (N,m) are very similar. Consider for
example m ∼ cN where 0 < c < 1/2. Then with probability bounded away from
1 as N → ∞, the graph G(N,m) is itself acyclic. In both models, the size of the
largest component is on the order of logN . More broadly, the results of  Luczak
and Pittel (1992) indicate that the scaling limit for the largest components is the
same for the two models whenever N/2−m� N2/3.

However the supercritical behaviour of G(N,m) and F (N,m) is very different.
First consider the regime where m ∼ cN where c > 1/2. For both models, we see a
single “giant component” of linear size, and the second-largest component has sub-
linear size. In G(N,m), the second-largest component has size O(logN); we have
the well-known “duality” property whereby, once the giant component is removed,
the rest of the graph looks like a subcritical random graph. For F (N,m), on the
other hand,  Luczak and Pittel (1992) show that the size of the second-largest tree
(and, in fact, of the kth-largest for any k ≥ 2) is on the order of N2/3. The number
of vertices outside the giant tree is sufficiently large that the remainder of the graph
looks critical rather than sub-critical.

 Luczak and Pittel (1992) also show (in Theorem 5.1) a distributional scaling
limit for the O(N2/3) fluctuations of the size of the giant tree around its mean. A
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supercritical random forest without its giant tree can then be treated as a critical
forest with random criticality parameter λ.

As a consequence, for the models F (N,m) and F (N, p), the scaling limits de-
scribed in terms of the excursions of the diffusion remain relevant in describing the
kth largest components for k ≥ 2 in the supercritical regime as well as in the critical
window. Although we do not state such a result here, one can show that the scaling
limit for these components is (up to a uniform multiplicative correction) a mixture
of the distributions obtained in our main theorem.

The different behaviour between the random graph model and the random forest
model is already visible “at the top of the scaling window”. Suppose m = N/2 + s
where N2/3 � s � N . For the random graph case (Bollobás, 1984), one has

|CG(N,m)
1 | ∼ (4+o(1))s and |CG(N,m)

2 | = o(N2/3). In the random forest, the largest

component grows approximately half as quickly, with |CF (N,m)
1 | ∼ (2 + o(1))s, and

for k ≥ 2, |CF (N,m)
k | remains on the order of N2/3.

We can also see the difference between the two models reflected in the behaviour
of the diffusion processes Bλ and Zλ, as λ → ∞. When λ becomes large, Bλ

typically has a single large excursion, which begins at time o(1) and ends at time
2λ ± o(1). At the end of the excursion, the drift of the process is −λ + o(1), and
all subsequent excursions are very small. On the other hand, one can show from
Theorem 1.9 that the large excursion of Zλ again begins at time o(1), but it is
roughly half as long as for Bλ, ending at time λ ± O(1). At this time, the drift
of the process is O(1), and the next largest excursions remain of constant order as
λ→∞.

Another related model is that of the random planar graph P (N,m), uniformly
chosen from all planar graphs on [N ] with m edges, which in a sense interpolates
between F (N,m) and G(N,m). Kang and  Luczak (2012) analysed the behaviour
of P (N,m) in various regimes, including the critical window m = N/2 +O(N2/3).
In this window, the largest components of P (N,m) are again on the scale of N2/3,
and towards the top of the window, the scaling is similar to that of F (N,m) rather

than G(N,m); if m = N/2 + s with N2/3 � s� N , then |CP (N,m)
1 | ∼ (2 + o(1))s,

and for k ≥ 2, |CP (N,m)
k | = Θ(N2/3). It’s interesting to speculate about whether

one could also obtain a scaling limit for the joint distribution of the sizes of the
largest components of P (N,m) in terms of the excursion lengths of a diffusion.
However, it’s not clear whether one can formulate an exploration process of the
graph P (N,m) which has the Markov property; without this, it would perhaps be
less plausible to obtain suitable convergence to a diffusion.

1.5. Plan of the paper. Section 2 is devoted to proving Proposition 1.10. We show
the Markov property for the exploration process, and establish the estimates on
the expectation and variance of its jumps, and the necessary properties concerning
continuity and reflection at 0 of the limiting process.

In order to maintain the flow of the argument as much as possible, some of the
more involved combinatorial calculations required for Section 2 are postponed to
Section 4.

In Section 3 we prove that Theorem 1.9 (giving convergence of the exploration
process on compact time-intervals) implies Theorem 1.8 (our main scaling limit
result for F (N, p)).
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Section 5 covers various technical aspects, first justifying the regularity properties
in Lemma 1.4 and the existence of the diffusion Zλ, and then applying Stroock and
Varadhan’s general theory for the convergence of Markov processes to diffusions in
order to show that Theorem 1.9 follows from Proposition 1.10.

At this point we have completed the proof of Theorem 1.8. Finally Section 6
is devoted to the coupling arguments needed to deduce the result for F (N,m) in
Theorem 1.7 from that for F (N, p) in Theorem 1.8.

2. Convergence of the reflected exploration process

This section is devoted to the proof of Proposition 1.10. After collecting a few
basic results concerning couplings and expected component sizes for the models
G(N, p) and F (N, p), we turn to the Markov property for the exploration pro-
cess of F (N, p), and give its transition probabilities. Then we embark on various
combinatorial calculations concerning the probability of acyclicity in various crit-
ical random graphs. Some of the more involved calculations will be completed in
Section 4.

2.1. Proper couplings and estimates. First, we state two standard results, which we
will use regularly. The first couples G(N, p) as p varies. The second relates G(N, p)
and F (N, p), and follows from Strassen’s theorem (Strassen, 1965) and the Harris
inequality (Harris, 1960), since acyclity is a decreasing event.

Lemma 2.1. For all N ∈ N, p ≤ q ∈ [0, 1], there exists a coupling of G(N, p) and
G(N, q) such that E(G(N, p)) ⊆ E(G(N, q)) almost surely.

Lemma 2.2. For all N ∈ N, p ∈ [0, 1), there exists a coupling of G(N, p) and
F (N, p) such that E(F (N, p)) ⊆ E(G(N, p)) almost surely.

The following result, adapted from Janson and Spencer (2007), controls the
expected size of the component of a uniformly-chosen vertex from G(N, p) in the
critical window.

Lemma 2.3. (Janson and Spencer, 2007, Corollary 5.2). Fix λ ∈ R, and let
(p(N)) satisfy N1/3(Np(N)−1)→ λ. Let |CG(N,p)(v)| be the size of the component

containing a uniformly-chosen vertex v in G (N, p). Then there exists Θλ ∈ (0,∞)
such that

N−1/3E
[
|CG(N,p)(v)|

]
→ Θλ (2.1)

as N → ∞. Thus by Lemma 2.2, if we now let |CF (N,p)(v)| be the size of the
component containing a uniformly-chosen vertex in F (N, p), we have

lim sup
N→∞

N−1/3E
[
|CF (N,p)(v)|

]
≤ Θλ. (2.2)

Lemma 2.4. Θλ is increasing as a function of λ, and Θλ → 0 as λ→ −∞.

Proof : The increasing property follows from Lemma 2.1. Then, take λ < 0 and

p = 1+λN−1/3

N . It is well-known (see van der Hofstad, 2017 for details) that the ex-
ploration process of G(N, p) is stochastically dominated by the exploration process
of T Np, the Galton–Watson tree with Poisson(Np) offspring distribution. From
this, we obtain

E
[
|CG(N,p)(v)|

]
≤ E

[
|T Np|

]
=

1

1−Np
=
N1/3

|λ|
,
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and the result follows on taking λ→ −∞. �

Let S2(G) be the sum of the squares of the component sizes in a graph G. Then
the expectation in (2.1) is simply E

[
S2(G(N, p))

]
/N (since C(v) is a size-biased

choice from the components of G), and the following corollary is an immediate
consequence of Lemma 2.3.

Corollary 2.5. Suppose that p(N) = 1/N + O(N−4/3) as N → ∞. Then the
quantities N−4/3S2(F (N, p)) and N−4/3S2(G(N, p)) are bounded in expectation.

2.2. Stack forests.

Definition 2.6. For a graph G, we say a set A ⊆ V (G) is separated in G if no pair
of vertices in A lie in the same component of G.

Recall from Section 1.3 that we are considering a breadth-first exploration pro-
cess of F (N, p). For the remainder of this short section, we suppress notation on N
and p in the exploration process, since the result to follow holds for all p ∈ (0, 1).
Then Zn is the stack of vertices which have been seen but not explored yet. Note
that all the vertices in Zn are in the same component of F (N, p), since components
are explored one-by-one. In particular, in the graph restricted to [N ]\{v1, . . . , vn},
no pair of vertices in Zn lie in the same component, as otherwise there would be
a cycle in F (N, p). We refer to the Zn trees on [N ]\{v1, . . . , vn} containing each
v ∈ Zn as the stack forest, as in Figure 2.1. We can see that the vertices in Zn are
separated in the restricted graph on [N ]\{v1, . . . , vn}.

Figure 2.1. Illustration of the definition of stack forest

Now, suppose we condition on {v1, . . . , vn} ∪ Zn, and the structure of F (N, p)
on these n + Zn vertices. Then, the graph restricted to [N ]\{v1, . . . , vn} has the
same distribution as

F ([N ]\{v1, . . . , vn}, p),
with the extra condition that no pair of vertices from Zn lie in the same component.
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We expand this explanation considerably in the proof of the following lemma,
which formalises the claim that (Zn)n≥0 is Markov, and characterises its transition
probabilities via separation of the current stack in the remainder of the graph.

Lemma 2.7. Let (Zn)n≥0 be the exploration process of F (N, p). Then Z is a
Markov chain, and for n ≥ 0 and r ≥ 1,

P
(
Zn+1 = r + `− 1

∣∣Zn = r
)

∝
(
N − n− r

`

)
p`(1− p)N−n−r−`P ([r + `− 1] separated in F (N − n− 1, p))

(2.3)

as ` varies over {0, 1, . . . , N − n− r}.
The distribution of Zn+1 given Zn = 0 is the same as the distribution of Zn+1

given Zn = 1.

Proof : In the F (N, p) model, each forest H appears with probability proportional

to
(

p
1−p

)|E(H)|
, where |E(H)| is the number of edges of H.

Consider the first n steps of the exploration process. As well as conditioning on
Zn = r, consider conditioning further on the history (Z1, . . . , Zn−1), on the identity
of the processed vertices v1, . . . , vn and on the vertices vn+1, . . . , vn+r currently
on the stack. Let us write Vn = {v1, . . . , vn} for the processed vertices, Zn =
{vn+1, . . . , vn+r} for the stack, and Un = [N ]\(Vn ∪ Zn) for the remaining vertices.
Assume for the moment that r ≥ 1, i.e. that Zn is non-empty.

The conditioning determines the edges of the graph H restricted to the vertex
set Vn ∪Zn. Furthermore, under this condition there are no edges between Vn and
Un, with probability 1. So to specify H fully it is now enough to give the restriction
H̄ = H|Zn∪Un of H to the vertex set Zn ∪ Un.

The set of H̄ which are consistent with the conditioning is the set of H̄ for which
H is a forest; for this, we require precisely that H̄ is a forest in which the vertices
of the stack Zn are separated. Subject to this constraint, each H̄ appears with

probability proportional to
(

p
1−p

)|E(H̄)|
where |E(H̄)| is the number of edges of H̄.

After a suitable relabelling of the vertices, this gives the model F (N −n, p) subject
to the condition that the vertices of [r] are separated.

The event in (2.3) occurs if the next increment Zn+1 − Zn of the exploration
process has size `− 1. This occurs if vertex vn+1 (the next vertex to be processed,
which is currently on the stack) has ` neighbours in Un. The conditional probability
of an increment of size `− 1 is then equal to

αN,n,r,` := P
(
degH̄(1) = `

∣∣ [r] separated in H̄
)

where H̄ ∼ F (N − n− r, p).
Note that this αN,n,r,` depends on the history we conditioned on only through the
value of r; hence in particular, given Zn = r, the next increment is independent of
the history (Z1, . . . , Zn−1) = (r1, . . . , rn−1) of the exploration process, as required
for the Markov property to hold, and the conditional probability on the left of (2.3)
is also equal to αN,n,r,`.

There are
(
N−n−r

`

)
ways to choose ` neighbours outside [r] for vertex 1. Without

loss of generality, consider the case where these ` neighbours are r+1, r+2, . . . , r+`.
Then the property that [r] is separated is equivalent to the property that the set
2, 3, . . . , r + ` is separated in the graph with vertex 1 removed.
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Reasoning in this way, and omitting factors which are constant in `, we obtain

αN,n,r,` ∝ P (F (N − n− r, p) has [r] separated and deg(1) = `)

∝ P (G(N − n− r, p) is a forest with [r] separated and deg(1) = `)

=

(
N − n− r

`

)
p`(1− p)N−n−r−`

× P (G(N − n− r − 1, p) is a forest with [r + `− 1] separated)

∝
(
N − n− r

`

)
p`(1− p)N−n−r−`

× P (F (N − n− r − 1, p) has [r + `− 1] separated) .

This is equal to the right-hand side of (2.3) as desired.
Observe that in the argument above, if r = |Zn| = 1 then the property that the

vertices of Zn are separated in H̄ becomes vacuously true; all forests H̄ are consis-
tent with the history of the exploration process, and the conditional distribution of
H̄ above becomes simply that of F (N − n, p). In the case r = 0, where the stack
is empty, we start exploring again from a new vertex (specifically, the vertex in Un
with smallest label). Again all forests H̄ are consistent with the history, and so in
fact the law of the rest of the process in the case Zn = 0 is the same as that in the
case Zn = 1, as desired. �

We want to quantify exactly how large a probabilistic penalty is incurred by
adding an extra vertex to the stack, and so will consider limits of the quantity

P ([r + `] separated in F (N − n− 1, p))

P ([r + `− 1] separated in F (N − n− 1, p))
.

Given a graph in which [r+ `−1] are separated, the conditional probability that
r + ` is also separated depends on the size of the stack forest rooted by [r + `− 1].
So we will calculate the expected size of a stack forest in Section 2.4. We need
precise asymptotics for the probability that G(N, p) is acyclic, which we derive in
Section 2.3. We then use this to calculate the probability that the stack forest has
a particular size.

2.3. Enumerating weighted stack forests. In this section, we consider the probability
that G(N, p) is acyclic.

Definition 2.8. Let f(N,m) be the number of forests with vertex set [N ] and
exactly m edges. With a mild abuse of notation, we also define

f(N, p) := P (G(N, p) acyclic) = (1− p)(
N
2 )

N−1∑
m=0

f(N,m)

(
p

1− p

)m
, p ∈ [0, 1].

(2.4)

Lemma 2.9. For any N ≥ 0 and any p ∈ (0, 1),

f(N, p) ≥ f(N + 1, p) ≥ f(N, p)

[
1− 1

2
Np2E

[
|CG(N,p)(v)|

]]
, (2.5)

where CG(N,p)(v) is the component containing a uniformly-chosen vertex v
in G(N, p).
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Proof : Graphs with zero, one or two vertices are certainly acyclic, so f(0, p) =
f(1, p) = f(2, p) = 1, the statement is true for N = 0, 1. We assume from now on
that N ≥ 2. We can define a forest on [N + 1] via the restriction to [N ] (which is
clearly also a forest) and the neighbourhood of vertex N + 1, where the latter must
obey some conditions to avoid cycles. We take P to be a probability distribution
which couples G(N, p) and G(N + 1, p) such that E(G(N, p)) ⊆ E(G(N + 1, p)),
P-a.s. Recall that in a graph G, for v ∈ V (G), Γ(v) is the set of vertices connected
to v by an edge in E(G). Then

f(N + 1, p) = f(N, p)P
(
Γ(N + 1) separated in G(N, p)

∣∣G(N, p) acyclic
)
,

and so the first inequality in (2.5) certainly holds. Now, for any set A ⊂ [N ], the
event that A is separated in G is decreasing, while the event that G is acyclic is
also decreasing. So, again by the Harris inequality,

f(N + 1, p) ≥ f(N, p)P (Γ(N + 1) separated in G(N, p)) ,

and so

1− f(N + 1, p)

f(N, p)
≤ P (Γ(N + 1) not separated in G(N, p)) . (2.6)

Observe that the event that Γ(N + 1) is not separated in G(N, p) is the union
over i, j ∈ [N ] of the events

{i, j both in Γ(N + 1) and both in the same component of G(N, p)}.
Thus, by exchangeability of the vertices in [N ],

P (Γ(N + 1) not separated in G(N, p))

≤
(
N

2

)
p2 P (1 and 2 in same component of G(N, p)) .

Then, if |CG(N,p)(1)| is the size of the component of G(N, p) which contains
vertex 1,

P (1 and 2 in same component of G(N, p)) =
E
[
|CG(N,p)(1)|

]
− 1

N − 1
.

We conclude that

P (Γ(N + 1) not separated in G(N, p)) ≤
(
N

2

)
p2 ·

E
[
|CG(N,p)(1)|

]
− 1

N − 1

≤ 1

2
Np2E

[
|CG(N,p)(1)|

]
,

from which the result follows, using (2.6) and the fact that the vertices in G(N, p)
are exchangeable. �

Now, using the asymptotics for f(N,m) in (1.2), we may obtain asymptotics
for f(N, p). Here, and in subsequent sections, some straightforward but lengthy
calculations are required, and in some places, various expansions have to be taken
to fifth order. To avoid breaking the flow of the main argument, we postpone this
proof until Section 4.1.

Lemma 2.10. Fix λ− < λ+ ∈ R. Given p ∈ (0, 1), define Λ = Λ(N, p) =
N1/3(Np− 1). Then

f(N, p) = P (G(N, p) acyclic) = (1 + o(1))g(Λ)e3/4
√

2πN−1/6, (2.7)



926 J. B. Martin and D. Yeo

uniformly for Λ ∈ [λ−, λ+] as N →∞.

Motivated by the definition of stack forests, for each 0 ≤ r ≤ N , let AN,r ⊆ FN
denote the set of forests where the vertices 1, . . . , r are separated. Furthermore,
given a forest F ∈ AN,r, let kr(F ) be the sum of the sizes of the components
containing vertices 1, . . . , r. We also define

AN,r,k := {F ∈ AN,r, kr(F ) = k}, (2.8)

the set of forests where 1, . . . , r are separated, and their stack forest has size k.

Definition 2.11. Given p ∈ (0, 1) and N,N ′, r, k ∈ N satisfying N ′ ≤ N , and
r ≤ k ≤ N , we will use the following rescalings:

Λ = Λ(N, p) := N1/3(Np− 1), a = a(N, k) :=
k

N2/3
,

b = b(N, r) :=
r

N1/3
, s = s(N,N ′) :=

N −N ′

N2/3
. (2.9)

Here, b represent the rescaled size of the stack and a represents the rescaled size
of the stack forest. When analysing the exploration process of G(N, p), we require
estimates for the graph structure on the N ′ ≤ N vertices which have not yet been
explored. Then s represents the rescaled number of vertices already explored in the
exploration process.

Note. Observe that for p(N) satisfying the conditions of Theorem 1.8, we have
Λ(N, p(N))→ λ.

Definition 2.12. For much of this and the following sections, it will be necessary
to make estimates uniformly across several variables. For constants T < ∞, and
λ− < λ+, and 0 < ε < K <∞, we let

ΨN (λ−, λ+, ε,K, T ) :=
{

(N ′, p, r, k) ∈ N× (0, 1)× N× N : s(N,N ′) ∈ [0, T ],

Λ(N, p) ∈ [λ−, λ+], b(N, r) ∈ [ε,K], k ∈ [r,KN2/3]
}
.

In addition, we define the projection this set onto its first three entries

ΨN
0 (λ−, λ+, ε,K, T )

:=
{

(N ′, p, r) : s(N,N ′) ∈ [0, T ], Λ(N, p) ∈ [λ−, λ+], b(N, r) ∈ [ε,K]
}
,

and a variant with a broader range of r

Ψ̄N
0 (λ−, λ+,K, T )

:=
{

(N ′, p′r) : s(N,N ′) ∈ [0, T ], Λ(N, p) ∈ [λ−, λ+], r ∈ [1,KN1/3]
}
.

The following lemma gives uniform asymptotics for the probability that G(N ′, p)
lies in AN ′,r,k. The proof is postponed until Section 4.2.

Lemma 2.13. Fix constants λ−, λ+, ε,K, T as in Definition 2.12. Then,

P (G(N ′, p) ∈ AN ′,r,k) = (1 + o(1))e3/4g(Λ− s− a)N−5/6ba−3/2 (2.10)

× exp
(
−b(Λ− s)− b2

2a −
(Λ−s−a)3−(Λ−s)3

6

)
,

uniformly on (N ′, p, r, k) ∈ ΨN (λ−, λ+, ε,K, T ), as N →∞.
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2.4. Expected size of the stack forest. We now condition on [r] being separated in
F (N ′, p), and obtain an estimate for the expected size of the corresponding stack
forest. Recall from (2.9) the definitions b = b(N, r) and s = s(N,N ′), the rescaled
stack size, and graph vertex count deficit, respectively.

Lemma 2.14. Fix constants λ−, λ+,K, T as in Definition 2.12. Then,

N−2/3E
[
kr(F (N ′, p))

∣∣F (N ′, p) ∈ AN ′,r
]
− α (b,Λ− s)→ 0, (2.11)

uniformly on (N ′, p, r) ∈ Ψ̄N
0 (λ−, λ+,K, T ), as N →∞.

Proof : We can rewrite the expectation in (2.11) in terms of the unconditioned
random graphs G(N ′, p) as follows.

E
[
kr(F (N ′, p))

∣∣F (N ′, p) ∈ AN ′,r
]

=

∑N ′

k=r kP (F (N ′, p) ∈ AN ′,r,k)∑N ′

k=r P (F (N ′, p) ∈ AN ′,r,k)

=

∑N ′

k=r kP (G(N ′, p) ∈ AN ′,r,k)∑N ′

k=r P (G(N ′, p) ∈ AN ′,r,k)
. (2.12)

We shall see that both of the sums in (2.12) are dominated by contributions from
k = Θ(N2/3).

In order to use Lemma 2.13, we assume ε ∈ (0,K) is given. We will first show
that (2.11) holds uniformly on ΨN (λ−, λ+, ε,K, T ). Then, at the end, we will take
ε→ 0. We also select M > K, which we will take to ∞ shortly.

We write h(a, b) := a−3/2g(Λ−s−a) exp
(

(Λ−s−a)3−(Λ−s)3
6

)
exp(−b2/2a). Since

g is bounded, h(a, b) → 0 as a → 0 (indeed uniformly on b ∈ [ε,K], Λ ∈ R,

s ∈ R≥0), so
∫M

0
h(a, b)da <∞ for all M <∞. On compact intervals in (a, b,Λ, s),

h is uniformly continuous and bounded away from zero. We may now use Lemma
2.13 to approximate every summand in (2.12), uniformly over the required range.
(Recall from (2.9) that a is a linear function of k.) So

dMN2/3e∑
k=r

P (G(N ′, p) ∈ AN ′,r,k) = (1 + o(1))bN−5/6 exp
(
−b(Λ− s)− (Λ−s)3

6 + 3
4

)
×N2/3

∫ M

0

a−3/2g(Λ− s− a) exp
(

(Λ−s−a)3

6

)
exp

(
− b2

2a

)
da,

dMN2/3e∑
k=r

kP (G(N ′, p) ∈ AN ′,r,k) = (1 + o(1))bN−5/6 exp
(
−b(Λ− s)− (Λ−s)3

6 + 3
4

)
×N4/3

∫ M

0

a−1/2g(Λ− s− a) exp
(

(Λ−s−a)3

6

)
exp

(
− b2

2a

)
da, (2.13)

uniformly on (N ′, p, r) ∈ ΨN
0 (λ−, λ+, ε,K, T ), as N →∞.

Observe, by comparison with the definition of α in (1.4), that

lim
M→∞

N−2/3

∑dMN2/3e
k=r kP (G(N ′, p) ∈ AN ′,r,k)∑dMN2/3e
k=r P (G(N ′, p) ∈ AN ′,r,k)

= (1 + o(1))α(b,Λ− s),

uniformly on (N ′, p, r) ∈ ΨN
0 (λ−, λ+, ε,K, T ).

Therefore, to apply (2.12) to verify (2.11), we must check that the contribution
to the expectation from the event that the size of the stack forest is larger than
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MN2/3 vanishes as M → ∞. From (2.13), the contribution to the numerator of
(2.12) from summands for which k ∈ [r, dMN2/3e] has order N−5/6×N4/3 = N1/2.
So to verify (2.11) uniformly on ΨN

0 (λ−, λ+, ε,K, T ), it will suffice to check that
the following statement holds:

lim
M→∞

lim sup
N→∞

sup
(N ′,p,r)∈ΨN0 (λ−,λ+,ε,K,T )

N−1/2
N ′∑

k=bMN2/3c

kP (G(N ′, p) ∈ AN ′,r,k) = 0.

(2.14)

The stack forest is not too large. To show (2.14), we will show that the sequence
(kP (G(N ′, p) ∈ AN ′,r,k))k≥r is eventually bounded by a geometric series. From the
definition of F (N, p) in (2.4), we have that

P (G(N, p) ∈ AN,r,k) = (1−p)(
N
2 )−(N−k2 )

(
N − r
k − r

)(
p

1− p

)k−r
rkk−r−1F (N−k, p).

(2.15)
An explanation of where each term in this expression comes from is given in the

proof of Lemma 2.13 in Section 4.2. We will use this to control the ratio of the
probabilities P (G(N ′, p) ∈ AN ′,r,k) in the following lemma.

Lemma 2.15. Given the same constants as in Lemma 2.14, there exist constants
M <∞ and γ > 0 such that for all large enough N ,

(k + 1)P (G(N ′, p) ∈ AN ′,r,k+1)

kP (G(N ′, p) ∈ AN ′,r,k)
≤ 1− γN−2/3 (2.16)

whenever (N ′, p, r) ∈ Ψ̄N
0 (λ−, λ+,K, T ) and k ∈ [MN2/3, N ′ − 1].

This lemma is proved in Section 4.3. But then, we can bound (2.14) via a
geometric series as

N−1/2
N ′∑

k=MN2/3

kP (G(N ′, p) ∈ AN ′,r,k)

≤ N−1/2
dMN2/3eP

(
G(N ′, p) ∈ AN ′,r,dMN2/3e

)
1− (1− γN−2/3)

.

By Lemma 2.13, this RHS is

(1 + o(1))N−1/2 1

γ
N2/3 ·MN2/3e3/4g(Λ− s−M)N−5/6bM−3/2

× exp
(
−b(Λ− s)− b2

2M + (Λ−s−M)3−(Λ−s)3
6

)
= (1 + o(1))M−1/2e−b

2/2M exp
(

(Λ−s−M)3−(Λ−s)3
6

)
× g(Λ− s−M)

× e3/4

γ b exp
(
−b(Λ− s)− (Λ−s)3

6

)
.
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Recall that g is uniformly bounded above and exp
(

(Λ−s−M)3−(Λ−s)3
6

)
≤ 1. Then

observe that M−1/2eb
2/2M → 0 as M →∞. Therefore

lim
M→∞

lim sup
N→∞

sup
(N ′,p,r)∈ΨN0 (λ−,λ+,ε,K,T )

N−1/2
N ′∑

k=bMN2/3c

kP (G(N ′, p) ∈ AN ′,r,k) = 0.

So we have finished the proof of (2.14), and thus we have shown that (2.11) holds
uniformly on ΨN

0 (λ−, λ+, ε,K, T ).

Small stacks. To finish this proof of Lemma 2.14, it remains to extend the conver-
gence to uniformity on r ∈ [1, dKn1/3e], rather than on [bεN1/3c, dKN1/3e].

Recall from Lemma 1.4 that α(b,Λ)→ 0 as b ↓ 0 uniformly on compact intervals
in Λ. In particular

lim
ε→0

lim sup
N→∞

sup
Λ∈[λ−,λ+]

s∈[0,T ], r∈[1,εN1/3]

α
(

r
N1/3 ,Λ− s

)
= 0. (2.17)

Before Definition 2.12, we defined kr(F ) for a forest F , but we can extend the
definition to a general graph G with vertex set [N ]. If |C(i)| is the size of the
component containing vertex i ∈ [N ], then set kr(G) := |C(1)| + . . . + |C(r)|,
so some components may be counted at least twice. In particular, kr(G) is an
increasing function of graphs. However, for any r, the set AN,r is a decreasing
family of graphs. Therefore

E
[
kr(G(N ′, p))

∣∣G(N ′, p) ∈ AN ′,r
]
≤ E [kr(G(N ′, p))] ≤ rE

[
|CG(N ′,p)(1)|

]
,

(2.18)
where |CG(N ′,p)(1)| is the size of the component containing vertex 1 in G(N ′, p).
From Lemma 2.3, for the range of N ′, p under consideration,

lim sup
N→∞

sup
N ′∈[N−TN2/3,N ]

Λ(N,p)∈[λ−,λ+]

N−1/3E
[
|CG(N ′,p)(1)|

]
≤ Θλ+

<∞. (2.19)

We now take r ≤ εN1/3 in (2.18), and apply (2.19) to obtain

lim
ε→0

lim sup
N→∞

sup
N ′∈[N−TN2/3,N ]

Λ(N,p)∈[λ−,λ+]

r∈[1,εN1/3]

N−2/3E
[
kr(G(N ′, p))

∣∣G(N ′, p) ∈ AN ′,r
]
≤ lim
ε→0

εΘλ+

= 0.

So, with (2.17), this gives

lim
ε→0

lim sup
N→∞

sup
N ′∈[N−TN2/3,N ]

Λ(N,p)∈[λ−,λ+]

r∈[1,εN1/3]

∣∣∣∣∣N−2/3E
[
kr(G(N ′, p))

∣∣G(N ′, p) ∈ AN ′,r
]

− α
(

r
N1/3 ,Λ− s

) ∣∣∣∣∣ = 0. (2.20)

We already know that (2.11) holds uniformly on ΨN (λ−, λ+, ε,K, T ). So, com-
bining with (2.20) and taking ε small shows that (2.11) does hold uniformly on
(N ′, p, r) ∈ Ψ̄N

0 (λ−, λ+,K, T ), as required for the full statement of Lemma 2.14. �
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2.5. Proof of Proposition 1.10: convergence of the drift. Recall that AN,r ⊆ FN is
the set of forests on [N ] where vertices 1, . . . , r are separated. Let F be a uniform
choice from AN,r. Then

P
(
F ∈ AN,r+1

∣∣F ∈ AN,r,k) =
N − k
N − r

,

as the labels of the k − r other vertices in the stack forest containing vertices [r]
are uniformly chosen from {r + 1, . . . , N}. Furthermore, AN,r+1 ⊆ AN,r, and so

P (F (N, p) ∈ AN,r+1)

P (F (N, p) ∈ AN,r)
= P

(
F (N, p) ∈ AN,r+1

∣∣F (N, p) ∈ AN,r
)

=

N∑
k=r

P
(
F (N, p) ∈ AN,r+1

∣∣F (N, p) ∈ AN,r,k
)

× P
(
F (N, p) ∈ AN,r,k

∣∣F (N, p) ∈ AN,r
)

=
N − E

[
kr(F (N, p))

∣∣F (N, p) ∈ AN,r
]

N − r
.

It follows that uniformly on (N ′, p, r) ∈ Ψ̄N
0 (λ−, λ+,K, T ), as in Lemma 2.14, as

N →∞,

N1/3

[
1− P (F (N ′, p) ∈ AN ′,r+1)

P (F (N ′, p) ∈ AN ′,r)

]
− α

(
r

N1/3 ,Λ− s
)
→ 0.

The sequence p(N) satisfies the conditions in the statement of Theorem 1.8, that
is Λ(N, p(N))→ λ ∈ R in the notation of Definition 2.11. So in fact we may replace
Λ with λ, obtaining, again uniformly on (N ′, p, r) ∈ Ψ̄N

0 (λ−, λ+,K, T ),

N1/3

[
1− P (F (N ′, p) ∈ AN ′,r+1)

P (F (N ′, p) ∈ AN ′,r)

]
− α

(
r

N1/3 , λ− s
)
→ 0. (2.21)

Now we can return to the increments of ZN,p, the exploration process of F (N, p).
Recall Lemma 2.7, which asserts that

P
(
ZN,pn+1 − ZN,pn = `− 1

∣∣ZN,pn = r
)
∝ P

(
BN−n−r,p = `

)
×P (F (N − n− 1, p) ∈ AN−n−1,r+`−1) , ` ≥ 0,

where BN−n−r,p ∼ Bin (N − n− r, p). So we define

qN,n,r` := P
(
BN−n−r,p = `

)
× P (F (N − n− 1, p) ∈ AN−n−1,r+`−1)

P (F (N − n− 1, p) ∈ AN−n−1,r−1)
. (2.22)

Therefore we also have P
(
ZN,pn+1 − ZN,pn = `− 1

∣∣ZN,pn = r
)
∝ qN,n,r` . Heuristically,

from (2.21), this quotient, which we will think of as a weight, should be approxi-
mately (

1− α
(

r
N1/3 ,Λ− n

N2/3

)
N−1/3

)`
,

and so we will be able to approximate
∑
qN,n,r` by the probability generating func-

tion of BN−n−r,p. Indeed, this approximation only breaks down when r + `− 1 ≥
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KN1/3, that is, outside the range of (2.21). Therefore, for any δ > 0, for large
enough N , we have, for all n ∈ [0, TN2/3], r ∈ [1, K2 N

1/3], and ` ≤ N1/4.

P (F (N − n− 1, p) ∈ AN−n−1,r+`−1)

P (F (N − n− 1, p) ∈ AN−n−1,r−1)
≤
`−1∏
i=0

(
1−

(
α
(
r+i−1
N1/3 , λ− n−1

N2/3

)
− δ
)
N−1/3

)
.

The function α is uniformly continuous. Since the range of i in this product is
asymptotically negligible relative to N1/3, for large enough N , for large enough N
we may replace r + i− 1 by r, and Λ = Λ(N, p) by λ. That is,

P (F (N − n− 1, p) ∈ AN−n−1,r+`−1)

P (F (N − n− 1, p) ∈ AN−n−1,r−1)
≤
(

1−
(
α
(

r
N1/3 , λ− n

N2/3

)
− δ
)
N−1/3

)`
.

An identical argument gives

P (F (N − n− 1, p) ∈ AN−n−1,r+`−1)

P (F (N − n− 1, p) ∈ AN−n−1,r−1)
≥
(

1−
(
α
(

r
N1/3 , λ− n

N2/3

)
+ δ
)
N−1/3

)`
,

under the same conditions. From now on, we write αNn,r = α
(

r
N1/3 , λ− n

N2/3

)
for

brevity.

Keeping δ > 0 fixed, we now address the sums
∑∞
`=0 q

N,n,r
` and

∑∞
`=0(`−1)qN,n,r` .

(Note first that both qN,n,r0 and qN,n,r1 → 1/e, so these sums are uniformly bounded

below.) For large enough N , we have, again for all n ∈ [0, TN2/3], r ∈ [1, K2 N
1/3],

N−n−r∑
`=0

qN,n,r`

≤
dN1/4e∑
`=0

P
(
BN−n−r,p = `

) (
1− (αNn,r − δ)N−1/3

)`
+ P

(
BN−n−r,p ≥ N1/4

)
≤
[
(1− p) + p

(
1− (αNn,r − δ)N−1/3

)]N−n−r
+ P

(
BN−n−r,p ≥ N1/4

)
Now, note that[

(1− p) + p
(

1− (αNn,r − δ)N−1/3
)]N−n−r

=
[
1− (αNn,r − δ)N−4/3 +O(N−5/3)

]N−n−r
,

from which we find that

N1/3

[
1−

[
(1− p) + p

(
1− (αNn,r − δ)N−1/3

)]N−n−r]
+
(
αNn,r − δ

)
→ 0, (2.23)

uniformly as N →∞. The probability P
(
BN−n−r,p ≥ N1/4

)
decays exponentially

with some positive power of N , so we have shown that for large enough N ,

N−n−r∑
`=0

qN,n,r` ≤ 1−
(
αNn,r − 2δ

)
N−1/3. (2.24)

Under the same conditions,

N−n−r∑
`=0

qN,n,r` ≥ 1−
(
αNn,r + 2δ

)
N−1/3.
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Now we consider the sum
∑
`qN,n,r` .

N−n−r∑
`=0

`qN,n,r` ≤
N−n−r∑
`=0

`P
(
BN−n−r,p = `

) (
1− (αNn,r − δ)N−1/3

)`
+NP

(
BN−n−r,p ≥ N1/4

)
≤ (N − n− r)p

(
1− (αNn,r − δ)N−1/3

)
×
[
(1− p) + p

(
1− (αNn,r − δ)N−1/3

)]N−n−r−1

(2.25)

+NP
(
BN−n−r,p ≥ N1/4

)
.

We can treat the term
[
(1− p) + p

(
1− (αNn,r − δ)N−1/3

)]N−n−r−1
as in (2.23).

We also have

(N−n−r)p
(

1− (αNn,r−δ)N−1/3
)

= 1+
(
λ− n

N2/3 − (αNn,r−δ)
)
N−1/3+O(N−2/3).

So, in a similar fashion to (2.24), we establish

N−n−r∑
`=0

`qN,n,r` ≤ 1 +
(
λ− 2αNn,r + 3δ − n

N2/3

)
N−1/3, (2.26)

and

N−n−r∑
`=0

`qN,n,r` ≥ 1 +
(
λ− 2αNn,r − 3δ − n

N2/3

)
N−1/3.

Therefore (where each successive statement holds whenever (N − n, p, r) ∈
Ψ̄N

0 (λ−, λ+, K2 , T ) for large enough N)

E
[
ZN,pn+1 − ZN,pn

∣∣ZN,pn = r
]

=

∑N−n−r
`=0 `qN,n,r` −

∑N−n−r
`=0 qN,n,r`∑N−n−r

`=0 qN,n,r`

≤
(
λ− 2αNn,r + 3δ − n

N2/3

)
N−1/3 +

(
αNn,r + 2δ

)
N−1/3

1 +
(
λ− αNn,r − 2δ − n

N2/3

)
N−1/3

≤
(
λ− αNn,r − n

N2/3 + 6δ
)
N−1/3.

Similarly

E
[
ZN,pn+1 − ZN,pn

∣∣ZN,pn = r
]
≥
(
λ− αNn,r − n

N2/3 − 6δ
)
N−1/3,

and so since δ > 0 was arbitrary, after replacing K
2 with K, we have completed the

proof of (1.9) in Proposition 1.10.

2.6. Proof of Proposition 1.10: variance, jumps and reflection.
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Variance of increments. We can show (1.10) using the estimates from Section 2.5.

Recall the definition of qN,n,r` from (2.22). As in (2.25), we have

N−n−r∑
`=0

`(`− 1)qN,n,r` ≤ (N − n− r)(N − n− r − 1)p2
(

1− (αNn,r − δ)N−1/3
)2

×
[
(1− p) + p

(
1− (αNn,r − δ)N−1/3

)]N−n−r−2

+NP
(
BN−n−r,p ≥ N1/4

)
.

Again, we use (2.23) and similarly to (2.26), we have

1 +
(
2λ− 3αNn,r − 4δ − 2n

N2/3

)
N−1/3

≤
N−n−r∑
`=0

`(`− 1)qN,n,r` ≤ 1 +
(
2λ− 3αNn,r + 4δ − 2n

N2/3

)
N−1/3.

In particular, we obtain

N−n−r∑
`=0

(`− 1)2qN,n,r` =

N−n−r∑
`=0

`(`− 1)qN,n,r` −
N−n−r∑
`=0

`qN,n,r` +

N−n−r∑
`=0

qN,n,r` → 1,

uniformly, which is exactly (1.10).

Jumps in the limit. For any n ∈ [N ],

P
(
|ZN,pn+1 − ZN,pn | > δN1/3

)
≤ P

(
∃v ∈ [N ],degF (N,p)(v) > δN1/3

)
Prop 2.2

≤ P
(
∃v ∈ [N ],degG(N,p)(v) > δN1/3

)
≤ NP

(
degG(N,p)(1) > δN1/3

)
.

But degG(N,p)(1) ∼ Bin (N − 1, p), and so for any δ > 0, this final term vanishes

exponentially fast. So (1.11) follows.

Speed at the boundary. Finally, we check that the discrete processes (ZN,p) do not
get stuck at zero. By Lemma 2.7, we have

P
(
ZN,pn+1 = 1

∣∣ZN,pn = 0
)

P
(
ZN,pn+1 = 0

∣∣ZN,pn = 0
) =

P
(
BN−n−1,p = 1

)
P (BN−n−1,p = 0)

=
(N − n− 1)p

1− p
.

Therefore

lim inf
N→∞

inf
n∈[0,TN2/3]

P
(
ZN,pn+1 = 1

∣∣ZN,pn = 0
)

P
(
ZN,pn+1 = 0

∣∣ZN,pn = 0
) ≥ 1,

and so

lim inf
N→∞

inf
n∈[0,TN2/3]

E
[[
ZN,pn+1

]2 ∣∣ZN,pn = 0

]
≥ 1

2
,

as required for (1.12).
This completes the proof of Proposition 1.10 (subject to the proofs of Lem-

mas 2.10, 2.13, and 2.15 in Section 4).
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3. Excursions and component sizes

In this section, we will prove that Theorem 1.8 follows from Theorem 1.9.
As in Aldous (1997), we must check that excursions of the limiting reflected

SDE are matched by excursions of the discrete exploration processes. In particular,
it must happen with vanishing probability that a zero of the limiting process Zλ

appears only as the limit of small positive local minima of the discrete processes
ZN,p. In addition, we must show that there are with high probability no large
discrete components which appear late enough in the exploration that they are
not represented in the limit. Several stages of the argument will be based on
a comparison of F (N, p) and the original model G(N, p), for which some of the
results are easier, or known.

3.1. Large components are explored early. Theorem 1.9 establishes convergence of
the exploration processes on compact time intervals. To use this to study the sizes of
the largest components in F (N, p), we need to ensure that these largest components
appear early in the exploration process. We establish this in the following series of
lemmas.

Lemma 3.1. Fix λ+ ∈ R. Then

lim
γ→∞

lim sup
N→∞

sup
Λ(N,p)≤λ+

P
(
C1(F (N, p)) ≥ γN2/3

)
= 0. (3.1)

Proof : We have

E
[
|CF (N,p)(v)|

]
= E

 1

N

∑
i≥1

Ci(F (N, p))

 (3.2)

≥ 1

N
E
[
|C1(F (N, p))|2

]
≥ (γN2/3)2

N
P
(
C1(F (N, p)) ≥ γN2/3

)
.

Result (3.1) then follows by using Lemma 2.3 and the coupling of Lemma 2.2 to
control the first expectation in (3.2). �

The following lemma shows that critical components will with high probability
include a vertex with label O(N1/3).

Lemma 3.2. Fix ε > 0, and λ+ ∈ R. Then

lim
Γ→∞

lim sup
N→∞

sup
Λ≤λ+

P
(
∃ cpt C in F (N, p) : |C| ≥ εN2/3 (3.3)

and C ∩
{

1, . . . , bΓN1/3c
}

= ∅
)

= 0.

Proof : Applying Markov’s inequality to (2.2), and summing over all vertices,

lim sup
N→∞

sup
Λ(N,p)≤λ+

N−2/3E
[∣∣∣{v ∈ [N ] :

∣∣CF (N,p)(v)
∣∣ ≥ εN2/3

}∣∣∣] ≤ Θλ+

ε
.

Therefore,

lim sup
N→∞

sup
Λ(N,p)≤λ+

E
[
#cpts C in F (N, p) s.t. |C| ≥ εN2/3

]
≤ Θλ+

ε2
.
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Then, since the labelling is independent of the component sizes in F (N, p),

lim sup
N→∞

sup
Λ(N,p)≤λ+

E
[
#cpts C in F (N, p) s.t. |C| ≥ εN2/3

and C ∩
{

1, . . . , bΓN1/3c
}

= ∅
]

≤ Θλ+

ε2
× lim
N→∞

(N−bΓN1/3c
bεN2/3c

)(
N

bεN2/3c
)

≤ Θλ+

ε2
exp(−Γε),

where the final limit can be evaluated using Stirling’s approximation. (3.3) follows.
�

We now use the previous result to show that the largest components will typically
appear near the start of the exploration process. This will be important later, since
if large critical components appear arbitrarily late in the exploration process, then
they cannot be treated via convergence on compact intervals.

Lemma 3.3. Fix ε > 0 and λ+ ∈ R as before. Then

lim
T→∞

lim sup
N→∞

sup
Λ(N,p)≤λ+

P
(
∃ cpt C in F (N, p) : |C| ≥ εN2/3 (3.4)

and C ∩
{
v1, . . . , vbTN2/3c

}
= ∅

)
= 0,

where (v1, v2, . . . , vN ) is the exploration process of F (N, p).

Proof : Fix Γ > 0, and let CF (N,p)(k) be the component of vertex k in F (N, p). We
define the events

AΓ,T (F (N, p)) := {|CF (N,p)(1)|+ . . .+ |CF (N,p)(bΓN1/3c)| > TN2/3},

Bε,Γ(F (N, p)) :=
{
∃ cpt C in F (N, p) : |C| ≥ εN2/3, C ∩

{
1, . . . , bΓN1/3c

}
= ∅

}
,

as in Lemma 3.2. Then, by Markov’s inequality,

P
(
AΓ,T (F (N, p))

)
≤

ΓN1/3E
[
|CF (N,p)(1)|

]
TN2/3

,

So by Lemma 2.3

lim sup
N→∞

sup
Λ(N,p)≤λ+

P
(
AΓ,T (F (N, p))

)
≤ Θλ+

Γ

T
. (3.5)

Whenever F (N, p) contains a component of size at least εN2/3 which is not ex-
hausted during the first TN2/3 steps of the exploration process, at least one of
AΓ,T (F (N, p)) and Bε,Γ(F (N, p)) must hold. So take Γ =

√
T , then let T → ∞.

By (3.5) and Lemma 3.2, the result follows. �
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3.2. Components and excursions up to time T - notation and goal. Throughout
this section, we fix λ ∈ R and work with a sequence p(N) for which Λ(N, p) :=
N1/3[Np− 1]→ λ as before. We will mostly suppress notational dependence on p
and λ.

First, we establish the notation we will use to describe the sequence of rescaled
component sizes in F (N, p). Fix T > 0, then:

• Let CN := (CN1 , C
N
2 , . . .) be the sequence of sizes of components of F (N, p),

in non-increasing order.

• Analogously, let CN,T := (CN,T1 , CN,T2 , . . .) be the sequence of sizes of the
components of F (N, p) which intersect with {v1, . . . , vbTN2/3c}, an initial
segment of the breadth-first ordering introduced in Section 1.3. That is,
least one vertex has been seen by step bTN2/3c of the exploration process.

Again, we assume the sequence is ordered such that CN,T1 ≥ CN,T2 ≥ . . .
We first show that for any T < ∞ the excursion lengths in the exploration

processes on the interval [0, T ] appear correctly in the limit.
In everything that follows, we work on the probability space (Ω,F ,P) whose

existence is guaranteed by the Skorohod representation theorem, where Z̃N,p
P−a.s.→

Zλ with respect to the topology of uniform convergence on compact intervals.
In a mild abuse of notation, let CT1 ≥ CT2 ≥ . . . be the lengths of excursions

of Zλ above zero which have non-empty intersection with [0, T ], in non-increasing
order. Set CT := (CT1 , C

T
2 , . . .). We will prove the following convergence result for

the components seen within the first TN2/3 steps of the exploration process.

Proposition 3.4. Fix T > 0 and k ≥ 1. Then as N →∞,

N−2/3(CN,T1 , CN,T2 , . . . , CN,Tk )
d→ (CT1 , C

T
2 , . . . , C

T
k ). (3.6)

The concern is that the reflected exploration process might regularly approach
zero without actually hitting zero, and thus starting a new component. To show
that this effect does not appear in the limit, we use the fact that the components of
F (N, p) have the structure of uniform random trees. Then we can approximate the
exploration process within a component by a Brownian excursion, and show that
the probability of zeros in the limit which do not correspond to the start or end of
a component is small.

Definition 3.5. Given two sequences a = (a1, . . . , ak), b = (b1, . . . , bk), let a↓, b↓

denote the sequences rearranged into non-increasing order. Then, we say a � b or
a weakly majorises b if for every ` ≤ k,∑̀

i=1

a↓i ≥
∑̀
i=1

b↓i .

It is easy to check that this gives a pre-order on (R ∪ {∞})k, and a partial order
on non-increasing sequences finer than the standard ordering.

We will prove Proposition 3.4 by stochastically sandwiching CT between any
weak limit of CN,T , and any weak limit of a related sequence of lengths CN,T,δ
associated with Z̃N , which will be defined shortly. This stochastic ordering will be
with respect to weak majorisation. The two directions of this sandwiching argument
occupy the next two sections. Finally, we show that for small enough δ, these outer
distributions are close in the sense of the Lévy–Prohorov metric.
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3.3. Limits of component sizes stochastically majorise excursion lengths. We show
that limit points of CN,T majorise CT , P-almost surely.

For any reference time s ∈ [0, T ], we define

`(s) := sup{t ≤ s : Z(t) = 0}, `N (s) := sup{t ≤ s : Z̃N (t) = 0},

r(s) := inf{t ∈ [s,∞) : Z(t) = 0}, rN (s) := β(T ) ∧ inf{t ∈ [s, r(T )] : Z̃N (t) = 0},
so that r(s) − `(s) is the width of the excursion of Z around time s. It will be
convenient to avoid values of s where `N and rN are non-constant, so we define

Q̄ :=
⋃
N∈N

N−2/3Z.

We also define the event

ΨT :=
{
Z̃N → Z uniformly on [0, r(T )], Z continuous on [0, r(T )]

}
.

Since r(T ) < ∞ almost surely, and Z̃N → Z uniformly on compact intervals, we
have P

(
ΨT
)

= 1. It follows easily that on ΨT ,

lim sup
N→∞

`N (s) ≤ `(s), lim inf
N→∞

rN (s) ≥ r(s), ∀s ∈ [0, T ]. (3.7)

Now, on ΨT , given Z, choose s1, . . . , sk ∈ [0, T ]\Q̄ such that each si lies in the
ith longest excursion of Z, which has non-empty intersection with [0, T ]. That is,
r(si)− `(si) = CTi . Now consider any limit point

(¯̀(s1), . . . , ¯̀(sk), r̄(s1), . . . , r̄(sk), C̄T1 , . . . , C̄
T
k ), (3.8)

of (`N (s1), . . . , `N (sk), rN (s1), . . . , rN (sk), CN,T1 , . . . , CN,Tk ), as N → ∞, where we
allow C̄T1 and at most one of the r̄(si) to be∞. By compactness, we can be sure that
there are such limit points. To avoid introducing extra notation, we will assume
that (3.8) is a true limit, rather than a subsequential limit.

By (3.7), for any m ≤ k,

m⋃
i=1

[¯̀(si), r̄(si)] ⊇
m⋃
i=1

[`(si), r(si)],

where the sets in the union on the right-hand side have disjoint interiors. By con-
struction of `N (si), r

N (sj), any pair of intervals [`N (si), r
N (si)] and [`N (sj), r

N (sj)]
are either equal or disjoint. Therefore the intervals in the union on the left-hand
side are either equal or have disjoint interiors. So for any limit point (3.8), let
Γm ⊆ [m] be some set of indices such that

[¯̀(si), r̄(si)] 6= [¯̀(sj), r̄(sj)], ∀i 6= j ∈ Γm

and ⋃
i∈Γm

[¯̀(si), r̄(si)] ⊇
m⋃
i=1

[`(si), r(si)].

Furthermore, we may demand Γ1 ⊆ Γ2 ⊆ . . . ⊆ Γk. Thus∑
i∈Γm

(r̄(si)− ¯̀(si)) ≥
m∑
i=1

(r(si)− `(si)).
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That is,(
r̄(s1)− ¯̀(s1), . . . , r̄

(
s|Γk|

)
− ¯̀
(
s|Γk|

)
, 0, . . . , 0

)
� (r(s1)− `(s1), . . . , r(sk)− `(sk)) . (3.9)

For any N , and any s ∈ [0, T ]\Q̄, the interval [`N (s), rN (s)] is associated via the
reflected exploration process with exactly one component of F (N, p). The size of
this component is at least (rN (s)− `N (s))N2/3.

Note. The two cases where the size of the component is not exactly equal to
(rN (s)− `N (s))N2/3 are: 1) when rN (s) = r(T ); 2) when Z̃N (s) = 0. In the latter

case, since we have excluded the possibility s ∈ N−2/3Z, it must hold that Z̃N is
locally constant and equal to zero around s, so the component has size 1.

For large enough N , the intervals {[¯̀N (si), r̄
N (si)] : i ∈ Γk} are disjoint, and so

N−2/3(CN,T1 , . . . , CN,Tk ) �
(
rN (s1)− `N (s1), . . . , rN

(
s|Γk|

)
− `N

(
s|Γk|

)
, 0, . . . , 0

)
.

Since majorisation is preserved under limits (as the relation is a finite union of
closed sets in Rk × Rk), we obtain

(C̄T1 , . . . , C̄
T
k ) �

(
r̄(s1)− ¯̀(s1), . . . , r̄

(
s|Γk|

)
− ¯̀
(
s|Γk|

)
, 0, . . . , 0

)
.

So, combining with (3.9), we obtain

(C̄T1 , . . . , C̄
T
k ) � (CT1 , . . . , C

T
k ), (3.10)

which holds for every limit point (C̄T1 , . . . , C̄
T
k ) of N−2/3(CN,T1 , . . . , CN,Tk ) on the

event ΨT and so, in particular, P-almost surely.

3.4. Stochastic sandwiching via excursions above δ. We now give a stochastic lower
bound for CT (again in the sense of weak majorisation).

Fix some δ > 0. For any realisation of the path Z̃N , the setDN,δ,T := {s ∈ [0, T ] :

Z̃N (s) > δ} is a finite union of left-closed, right-open intervals. Let N−2/3(CN,δ,T1 ≥
. . . ≥ CN,δ,Tk ) be the sequence of the k largest lengths of those intervals which are

contained within the support of some excursion of Z̃N (above zero) which has non-
empty intersection with [0, T ]. As before, augment with zeros if necessary. (Note

that the N−2/3 ensures that CN,δ,T1 has the same scaling as CN,T .) Certainly, for

any δ, (CN,T1 , . . . , CN,Tk ) � (CN,δ,T1 , . . . , CN,δ,Tk ) for each trajectory of Z̃N . We will

show that CT majorises limit points of N−2/3(CN,δ,T1 , . . . , CN,δ,Tk ), again P-almost
surely.

Again, we work on the event ΨT . Then, consider DT := {s ∈ [0, T ] : Z(s) > 0},
the collection of open intervals where the limit process Z is positive. On ΨT , for
large enough N , we have Z̃N (s) ≤ δ/2 whenever Z(s) = 0, and so DN,δ,T ⊆ DT .
Therefore the sequence of all interval lengths in DN,δ,T in non-increasing order is
majorised by the corresponding ordered sequence of interval lengths in DT . So in
particular

(CT1 , . . . , C
T
k ) � N−2/3(CN,δ,T1 , . . . , CN,δ,Tk ),

for large enough N , and hence on ΨT any limit point (C̄δ,T1 , . . . , C̄δ,Tk ) of

N−2/3(CN,δ,T1 , . . . , CN,δ,Tk ) satisfies

(CT1 , . . . , C
T
k ) � (C̄δ,T1 , . . . , C̄δ,Tk ).
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By (3.1), the collection N−2/3(CN,T1 , . . . , CN,Tk , CN,δ,T1 , . . . , CN,δ,Tk )N≥1 is tight

in Rk×Rk. Let (C̄T1 , . . . , C̄
T
k , C̄

δ,T
1 , . . . , C̄δ,Tk ) be any joint weak limit of the sequence

N−2/3(CN,T1 , . . . , CN,Tk , CN,δ,T1 , . . . , CN,δ,Tk ). Since P
(
ΨT
)

= 1, by combining with
(3.10) we have shown that

(C̄T1 , . . . , C̄
T
k ) �st (CT1 , . . . , C

T
k ) �st (C̄δ,T1 , . . . , C̄δ,Tk ). (3.11)

3.5. Comparing CN,T and CN,δ,T via uniform trees. We will now show for small

δ, any weak limits (C̄T1 , . . . , C̄
T
k ) and (C̄δ,T1 , . . . , C̄δ,Tk ) are themselves close in dis-

tribution in the sense of the Lévy–Prohorov metric on Rk. To do this, we have to
bound above the probability that the exploration process drops below height δN1/3

in the middle of an excursion above zero of width Θ(N2/3). The components of
F (N, p) are, conditional on their sizes, uniform trees. Aldous (1991) explains how
to view the uniform tree as an example of a Galton–Watson tree, here with Poisson
offspring distribution, conditioned on its total progreny. From this, large excursions
of Z̃N are well-approximated by Brownian excursions. We then can then bound
the probability that Z̃N hits δ without hitting zero using standard estimates.

Let TK be a uniform choice from the KK−2 unordered trees with vertex labels
given by [K]. Then, let 1 = STK0 , STK1 , . . . , STKK = 0, be the corresponding breadth-

first exploration process. The appropriate rescaling to consider is then S̃TK (s) :=
1√
K
STKbKsc, for s ∈ [0, 1]. From the description of TK as a conditioned Galton–

Watson process, we follow Le Gall (see Lemma 1.16 of Le Gall, 2005) in using
Kaigh’s scaling limit result for conditioned random walks (Kaigh, 1976) to obtain(

S̃TK (s), s ∈ [0, 1]
)

d→ (Bex(s), s ∈ [0, 1]) , (3.12)

where Bex is a standard normalised Brownian excursion on [0, 1], and convergence
is in the uniform topology.

We say the event χN,T (δ, ε, γ) holds if ∃M,K ∈ Z≥0 with K
N2/3 ≥ γ, and M

N2/3 ≤
T , such that {vM , . . . , vM+K−1} is a component of F (N, p), and

∃n ∈ [εK, (1− ε)K] s.t. Z̃N
(
M+n
N2/3

)
≤ δ. (3.13)

That is, F (N, p) has a component of size at least γN2/3 which is seen, at least
partially, in the exploration process before time TN2/3, and for which the ex-
ploration process takes a small value in the macroscopic interior of the interval
defining the component. Now, given any M,K, and conditional on the vertices
{vM , . . . , vM+K−1}, and the statement that they form a component, the structure
of this component is a uniform tree. That is,

(ZNM , . . . , Z
N
M+K−1)

d
= (STK1 , . . . , STKK ).

Therefore the following processes on s ∈ [0, 1] can be identified in distribution:(
Z̃N

(
M+sK
N2/3

))
=
(
N−1/3ZNbM+sKc

)
d
=
(
N−1/3STKbsKc

)
=
(
K1/2

N1/3 S̃
TK (s)

)
.

Therefore, for every M,K, conditional on any choice of vertices {vM , . . . , vM+K−1},
the probability that (3.13) holds is equal to the probability that

inf
s∈[ε,1−ε]

S̃TK (s) ≤ N1/3

K1/2 δ. (3.14)
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By assumption N1/3

K1/2 δ ≤ γ−1/2δ, and by (3.12), and the Portmanteau lemma,

lim sup
K→∞

P
(

inf
s∈[ε,1−ε]

S̃TK (s) ≤ γ−1/2δ

)
≤ lim sup

K→∞
P
(

inf
s∈[ε,1−ε]

S̃TK (s) < 2γ−1/2δ

)
≤ P

(
min

s∈[ε,1−ε]
Bex(s) < 2γ−1/2δ

)
.

Therefore, we obtain

lim sup
N→∞

P
(
χN,T (δ, ε, γ)

)
≤ E

[
# cpts size ≥ γN2/3 seen before TN2/3 in ZN

]
× P

(
min

s∈[ε,1−ε]
B(s) < 2γ−1/2δ

)
lim sup
N→∞

P
(
χN,T (δ, ε, γ)

)
≤
(
T
γ + 1

)
P
(

min
s∈[ε,1−ε]

B(s) < 2γ−1/2δ

)
. (3.15)

Given ε, γ, we can choose δ > 0 so that the RHS of (3.15) is arbitrarily small. Now,
fix some γ > 2ε, and consider the event χN,T (δ, ε

2γ , ε). Then, when χN,T (δ, ε
2γ , ε),

does not hold, for every component with size K ≥ εN2/3, there is a unique excursion
of ZN above δN1/3 of length at least K(1 − ε

γ ). We call such an excursion above

δN1/3 a principal excursion. If we also have CN1 ≤ γN2/3, then the length of any
principal excursion is at least K − εN2/3. Thus, any other excursion above δN1/3

within the component of size K, has length at most εN2/3.

So, consider any i ≤ k such that CN,T1 ≥ . . . CN,Ti ≥ εN2/3. Then, if both

χN,T (δ, ε
2γ , ε)

c and {CN1 ≤ γN2/3} occur, at most i − 1 elements of (CN,δ,T1 , . . . ,

CN,δ,Tk ) can be larger than CN,Ti . These are the principal excursions obtained

from each of CN,T1 , . . . , CN,Ti−1 . No other excursions above δN2/3 obtained from

CN,T1 , . . . , CN,Ti−1 are relevant, since they have lengths at most εN2/3. However,
these principal excursions from

CN,T1 , . . . , CN,Ti all have length at least CN,Ti (1− ε
γ ). Thus we obtain

CN,Ti ≥ CN,δ,Ti ≥ CN,Ti (1− ε
γ ) ≥ CN,Ti − εN2/3. (3.16)

And so

lim sup
N→∞

P
(

max
i∈[k]

∣∣∣CN,Ti − CN,δ,Ti

∣∣∣ > εN2/3

)
≤ lim sup

N→∞
P
(
CN1 > γN2/3

)
+ lim sup

N→∞
P
(
χN,T (δ, ε

2γ , ε)
)
.

For fixed ε > 0, letting γ →∞ we can make the first term on the RHS small, and
then by letting δ ↓ 0 we can make the second term small. In particular, we can
demand

lim sup
N→∞

P
(

max
i∈[k]

∣∣∣CN,Ti − CN,δ,Ti

∣∣∣ > εN2/3

)
≤ ε. (3.17)

Now, recall (C̄T1 , . . . , C̄
T
k , C̄

δ,T
1 , . . . , C̄δ,Tk ) is some joint weak limit of

N−2/3(CN,T1 , . . . , CN,Tk , CN,δ,T1 , . . . , CN,δ,Tk ). Let π be the usual Lévy–Prohorov

metric for probability measures on Rk, with respect to the `∞ norm on Rk. From
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(3.11) and (3.17), we have for each ε > 0,

π(L(C̄T1 , . . . , C̄
T
k ),L(C̄δ,T1 , . . . , Cδ,Tk )) ≤ ε,

(C̄δ,T1 , . . . , C̄δ,Tk ) � (CT1 , . . . , C
T
k ) � (C̄T1 , . . . , C̄

T
k ).

From this, it is easy to see that π(L(CT1 , . . . , C
T
k ),L(C̄T1 , . . . , C̄

T
k )) ≤ kε. Since

ε > 0 is arbitrary, we find (C̄T1 , . . . , C̄
T
k ))

d
= (CT1 , . . . , C

T
k ), and thus the required

convergence in distibution (3.6) follows, completing the proof of Proposition 3.4.

3.6. Proof of Theorem 1.8.

Convergence in the product topology. In both the discrete exploration processes and
the limiting SDEs, we would expect the k largest components/excursions to appear
early. From (3.4),

lim sup
T→∞

lim sup
N→∞

P
(

max
i∈[k]

∣∣∣CN,Ti − CNi
∣∣∣ ≤ εN2/3

)
= 1.

Recall again that λ is fixed. By comparing the drifts, we can couple Zλ and Bλ,
as defined in Proposition 1.1 and Proposition 1.5, such that Zλ(t) ≤ Bλ(t) for all
t ≥ 0. The largest excursion of Bλ above zero is almost surely finite, and so the
same holds for Zλ. Thus, now turning to (Cλ1 , C

λ
2 , . . .), the sequence of excursions

lengths of Zλ in decreasing order,

lim sup
T→∞

P
(
(CT1 , . . . , C

T
k ) = (Cλ1 , . . . , C

λ
k )
)

= 1.

So we can lift (3.6) and conclude that

N−2/3(CN1 , . . . , C
N
k )

d→ (Cλ1 , . . . , C
λ
k ), (3.18)

as N →∞.

Convergence in `2. To lift (3.18) to convergence in `2, it is enough to show that for
every ε > 0

lim
k→∞

lim sup
N→∞

P

(∑
i>k

(CNi )2 ≥ εN4/3

)
= 0. (3.19)

The corresponding result for G(N, p), namely that for every ε > 0,

lim
k→∞

lim sup
N→∞

P

(∑
i>k

Ci(G(N, p))2 ≥ εN4/3

)
= 0, (3.20)

is implied by Proposition 1.1; the argument establishing this property for G(N, p) is
given in the proof of Proposition 15 of Aldous (1997). We can again use the coupling
of F (N, p) and G(N, p) to derive (3.19) from (3.20). We require the following
lemma.

Lemma 3.6. Consider a family of finite non-increasing sequences

x1 := (x1,1, . . . , x1,`1) , x2 := (x2,1, . . . , x2,`2) , . . . , xM := (xM,1, . . . , xM,`M )
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with sums x1 ≥ x2 ≥ . . . ≥ xM . Now let y1 ≥ y2 ≥ . . . ≥ y∑ `i be the permutation
of all the terms xi,j in descending order. Then, for any k ≥ 1 and η > 0,∑

i>k/η

y2
i ≤ η

k∑
i=1

x2
i +

∑
i>k

x2
i . (3.21)

Proof of Lemma 3.6: Noting that each sequence xi is non-increasing, set mi :=
max {m : xi,m ≥ ηxi} (with max∅ := 0). So mi ≤ 1

η for all i. It follows that for

any k ≥ 1,
k∑
i=1

mi∑
j=1

x2
i,j ≤

k/η∑
i=1

y2
i .

Thus ∑
i>k/η

y2
i ≤

k∑
i=1

∑
j≥mi

x2
i,j +

∑
i>k

x2
i .

But
∑
j≥mi x

2
i,j ≤

∑
j≥mi xi,j(ηxi) ≤ ηx

2
i , and so (3.21) follows. �

Proof of (3.19): Under the coupling of Lemma 2.2, each component of G(N, p)
is the disjoint union of components of F (N, p). So we apply Lemma 3.6 with
x1 ≥ x2 ≥ . . . as the component sizes of G(N, p), and y1 ≥ y2 ≥ . . . as the
components of F (N, p), obtaining, for every η > 0,

P

N−4/3
∑
i≥k/η

(CNi )2 ≥ ε

 ≤ P

N−4/3
∑
i≥1

Ci(G(N, p))2 ≥ ε
2η


+ P

N−4/3
∑
i≥k

Ci(G(N, p))2 ≥ ε
2

 .

So, using (3.20) to eliminate the second term on the RHS, we have

lim sup
k→∞

lim sup
N→∞

P

N−4/3
∑
i≥k/η

(CNi )2 ≥ ε


≤ lim sup

N→∞
P

N−4/3
∑
i≥1

Ci(G(N, p))2 ≥ ε
2η


≤ 2η

ε
Θλ,

applying Lemma 2.3 and Markov’s inequality in the final step. Taking η → 0
completes the proof of (3.19), and of Theorem 1.8. �

4. Detailed combinatorial calculations

4.1. Proof of Lemma 2.10. For convenience, we recall the statement of Lemma 2.10:

Lemma. Fix λ− < λ+ ∈ R. Given p ∈ (0, 1), let Λ = Λ(N, p) = N1/3(Np − 1).
Then

P (G(N, p) acyclic) = (1 + o(1))g(Λ)e3/4
√

2πN−1/6, (4.1)

uniformly for Λ ∈ [λ−, λ+] as N →∞.
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Proof : For this range of p, we will see that the sum in (2.4) is dominated by con-

tributions on the scale m = N
2 + ΛN2/3

2 + Θ(N1/2). Shortly we will be required
to approximate these relevant contributions in detail, but first we show that con-
tributions from outside this regime vanish as N → ∞. We consider those m for
which ∣∣∣∣m− N

2
− ΛN2/3

2

∣∣∣∣ ≥ N3/5.

Let B ∼ Bin
((
N
2

)
, p
)

. Since f(N,m) ≤
((N2 )
m

)
,

(1− p)(
N
2 )

[ dN/2+ΛN2/3/2−N3/5e∑
m=0

f(N,m)
(

p
1−p

)m
+

N−1∑
bN/2+ΛN2/3/2+N3/5c

f(N,m)
(

p
1−p

)m ]

≤ P
(∣∣B − (N2 )p∣∣ ≥ N3/5

)
≤ Var(B)

N6/5
≤ N2p

2N6/5
≤ 1 + λ+N−1/3

2N1/5
� N−1/6.

(4.2)

Here we used Chebyshev’s inequality, which is sufficient for our purposes, but note
that the probability of this moderate deviation event for B decays exponentially in
some positive power of N .

Given Λ ∈ R and m ≤ N ∈ N, define x = x(N,m,Λ) =
√

2
N1/2

[
m− N

2 −
ΛN2/3

2

]
.

Then, we consider the set of m satisfying∣∣∣∣m− N

2
− ΛN2/3

2

∣∣∣∣ ≤ N3/5, that is, |x| ≤
√

2N1/10. (4.3)

Thus

N −m = N
2 −

Λ
2N

2/3 − x√
2
N1/2, and so

2(N −m)

N
= 1− ΛN−1/3 −

√
2xN−1/2.

From this, we obtain

log

(
2(N −m)

N

)
= −ΛN−1/3 −

√
2xN−1/2 − Λ2

2 N
−2/3 −

√
2ΛxN−5/6

− Λ3

3 N
−1 − x2N−1 +O(N−16/15),

uniformly on the set of m defined at (4.3). In calculating the scale of this final error

term, we use that |x| ≤
√

2N1/10. Then

(N −m) log

(
2(N −m)

N

)
= −

[
Λ
2N

2/3 + x√
2
N1/2 + Λ2

4 N
1/3 + Λx√

2
N1/6 + Λ3

3 + x2

2

]
+
[

Λ2

2 N
1/3 + Λx√

2
N1/6 + Λ3

4

]
+
[

Λx√
2
N1/6 + x2

]
+O

(
N−1/15

)
= −Λ

2N
2/3 − x√

2
N1/2 + Λ2

4 N
1/3 + Λx√

2
N1/6

− Λ3

12 + x2

2 +O
(
N−1/15

)
.
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We now return to (1.2) and use Stirling’s approximation and the expression we
have just shown, as well as continuity of g. Uniformly on the set of m in (4.3), (for
which, recall, N −m = (1 + o(1))N/2),

f(N,m) = (1 + o(1))

√
2πNN−1/6

2N−m(N −m)!
g

(
2m−N
N2/3

)
,

= (1 + o(1))
g(Λ)
√

2πNN−1/6

2N−m
· 1√

2π
√
N −m

(
e

N −m

)N−m
= (1 + o(1)) g(Λ)

√
2Nm−2/3 exp(N −m) exp

(
−(N −m) log

(
2(N−m)

N

))
= (1 + o(1)) g(Λ)

√
2Nm−2/3 exp

(
N
2 −

Λ
2N

2/3 − x√
2
N1/2

)
× exp

(
Λ
2N

2/3 + x√
2
N1/2 − Λ2

4 N
1/3 − Λx√

2
N1/6 + Λ3

12 −
x2

2

)
= (1 + o(1)) g(Λ)

√
2Nm−2/3 exp

(
N
2 −

Λ2

4 N
1/3 − Λx√

2
N1/6 + Λ3

12 −
x2

2

)
.

(4.4)

Now, we have(
N

2

)
log(1− p) =

(
N

2

)[
− 1+ΛN−1/3

N − 1
2N
−2 +O(N−7/3)

]
= −N2 −

Λ
2N

2/3 + 1
4 +O

(
N−1/3

)
, (4.5)

and also

log

(
Np

1− p

)
= log(1 + ΛN−1/3)− log(1− p)

= ΛN−1/3 − Λ2

2 N
−2/3 + Λ3

3 N
−1 +N−1 +O

(
N−4/3

)
.

At this point, recall the definition

m = N
2 + Λ

2N
2/3 + x√

2
N1/2.

So, uniformly on the set of m for which |x| ≤
√

2N1/10, as before,

m log

(
Np

1− p

)
=
[

Λ
2N

2/3 − Λ2

4 N
1/3 + Λ3

6 + 1
2

]
+
[

Λ2

2 N
1/3 − Λ3

4

]
+ Λx√

2
N1/6 +O

(
N−1/6

)
, (4.6)

where each bracket corresponds to a term in the definition of m.
Therefore, combining (4.5) and (4.6), uniformly in the same sense,

(1− p)(
N
2 )
(

p
1−p

)m
= (1 + o(1))N−m exp

(
−N2 + Λ2

4 N
1/3 + Λx√

2
N1/6 − Λ3

12 + 3
4

)
.

(4.7)
Combining (4.4) and (4.7), we obtain

(1− p)(
N
2 )
(

p
1−p

)m
f(N,m) = (1 + o(1))g(Λ)

√
2N−2/3 exp

(
−x

2

2 + 3
4

)
. (4.8)

We now fix N and Λ, and sum this quantity over the range of m given by (4.3).

Recall that x is linear in m, with scaling factor N1/2
√

2
, and so as N → ∞, the sum

of (4.8) over this range of m converges after rescaling to a integral. That is,
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(1− p)(
N
2 )

dN/2+ΛN2/3/2+N3/5e∑
m=bN/2+ΛN2/3/2−N3/5c

f(N,m)
(

p
1−p

)m

= (1 + o(1))e3/4g(Λ)
√

2N−2/3

dN/2+ΛN2/3/2+N3/5e∑
m=bN/2+ΛN2/3/2−N3/5c

e−x
2/2

= (1 + o(1))e3/4g(Λ)
√

2
N−1/6

√
2

∫ ∞
−∞

e−x
2/2dx,

= (1 + o(1))e3/4g(Λ)
√

2πN−1/6.

Combining with (4.2), which showed that contributions to the sum (2.4) outside
this range of m are o(N−1/6), we obtain the required result. �

4.2. Proof of Lemma 2.13. We recall the statement of Lemma 2.13:

Lemma. Fix constants λ−, λ+, ε,K, T as in Definition 2.12. Then,

P (G(N ′, p) ∈ AN ′,r,k) = (1 + o(1))g(Λ− s− a)e3/4N−5/6ba−3/2 (4.9)

× exp
(
−b(Λ− s)− b2

2a + (Λ−s−a)3−(Λ−s)3
6

)
,

uniformly on (N ′, p, r, k) ∈ ΨN (λ−, λ+, ε,K, T ), as N →∞.

Proof : We will add the required uniformity in N ′ at the end of this proof. First,
we show

P (G(N, p) ∈ AN,r,k) = (1 + o(1))g(λ− a)e3/4N−5/6ba−3/2 (4.10)

× exp
(
−bΛ− b2

2a + (Λ−a)3−Λ3

6

)
,

uniformly on (p, r, k) such that (N, p, r, k) ∈ ΨN (λ−, λ+, ε,K, 0), as N →∞.
Subject to the constraint that vertices 1, . . . , r are in different tree components,

with sum equal to k, there are
(
N−r
k−r

)
ways to choose which remaining vertices are

part of this stack forest. Given this choice, we can view the trees as rooted at
the vertices [r]. In particular, Cayley’s formula states that there are rkk−r−1 such
labelled rooted forests. Hence

P (G(N, p) ∈ AN,r,k)

= (1− p)(
N
2 )(N−r

k−r
) (

p
1−p

)k−r
rkk−r−1

N−k−1∑
m=0

f(N − k,m)
(

p
1−p

)m
. (4.11)

By Lemma 2.10, uniformly on (p, k) and for any r such that (N, p, r, k) ∈
ΨN (λ−, λ+, ε,K, 0) (in fact r is arbitrary),

(1−p)(
N−k

2 )
N−k−1∑
m=0

f(N−k,m)
(

p
1−p

)m
= (1+o(1))g (Λ(N − k, p)) e3/4

√
2πN−1/6.
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Recall that this final sum is, up to a power of (1−p), the probability that G(N−k, p)
is acyclic. We also have

Λ(N − k, p) = (N − aN2/3)1/3
[
(N − aN2/3)p− 1

]
= (1 + o(1))N1/3

[
(Np− 1)− aN−1/3

]
= (1 + o(1)) [Λ(N, p)− a+ o(1)] .

So, again uniformly on (p, r, k) such that (N, p, r, k) ∈ ΨN (λ−, λ+, ε,K, 0),

(1− p)(
N−k

2 )
N−k−1∑
m=0

f(N − k,m)
(

p
1−p

)m
= (1 + o(1))g (Λ− a) e3/4

√
2πN−1/6.

(4.12)
We now carefully address the other terms in (4.11), starting with the term

(1− p)(
N
2 )−(N−k2 )

(
p

1−p

)k−r
. Recall that Np = 1 + ΛN−1/3. Firstly

log

[(
1 + ΛN−1/3

)k−r]
=
[
aN2/3 − bN1/3

] [
ΛN−1/3 − Λ2

2 N
−2/3 +O

(
N−1

)]
= ΛaN1/3 − Λb− Λ2a

2 +O
(
N−1/3

)
.

Also (
N
2

)
−
(
N−k

2

)
− k + r = N2

2 −
(N−k)2

2 + k
2 − k + r

= Nk − k2

2 +O
(
N2/3

)
= aN5/3 − a2

2 N
4/3 +O

(
N2/3

)
,

from which

log

[
(1− p)

(
N
2

)
−
(
N−k

2

)
−k+r

]
= log

[(
1−N−1 − ΛN−4/3

)(N
2

)
−
(
N−k

2

)
−k+r

]
=
[
aN5/3 − a2

2 N
4/3 +O

(
N2/3

)] [
−N−1 − ΛN−4/3 +O

(
N−2

)]
= −aN2/3 − ΛaN1/3 + a2

2 N
1/3 + Λa2

2 +O
(
N−1/3

)
.

From this,

(1− p)(
N
2 )−(N−k2 )

(
p

1−p

)k−r
= (1 + o(1))N−(k−r) exp

(
−aN2/3 + a2

2 N
1/3 − Λb+ Λa

2 (a− Λ)
)
. (4.13)
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Turning now to the binomial coefficent
(
N−r
k−r

)
in (4.11), we treat each factorial

separately. First observe that

log

[(
1− bN−2/3

)N−bN1/3]
=
[
N − bN1/3

] [
−bN−2/3 +O

(
N−4/3

)]
= −bN1/3 +O(N−1/3)

log

[(
1− aN−1/3

)N−aN2/3]
= −aN2/3 + a2

2 N
1/3 + a3

6 +O
(
N−1/3

)
log

[(
1− b

aN
−1/3

)aN2/3−bN1/3]
= −bN1/3 + b2

2a +O
(
N−1/3

)
.

Then Stirling’s approximation gives(
N − bN1/3

)
! = (1 + o(1))

√
2πN

eN−bN1/3

(
N − bN1/3

)N−bN1/3

= (1 + o(1))

√
2πN

eN−bN1/3
NN−bN1/3

exp
(
−bN1/3

)
(
N − aN2/3

)
! = (1 + o(1))

√
2πN

eN−aN2/3
NN−aN2/3

exp
(
−aN2/3 + a2

2 N
1/3 + a3

6

)
(
aN2/3 − bN1/3

)
! =

(1 + o(1))

√
2π
√
aN2/3

eaN2/3−bN1/3
aaN

2/3−bN1/3

N
2
3 [aN2/3−bN1/3] exp

(
−bN1/3 + b2

2a

)
.

So we obtain(
N − r
k − r

)
= (1 + o(1)) 1√

2π
a−(aN2/3−bN1/3+1/2)N

1
3 (aN2/3−bN1/3−1) (4.14)

× exp
(
aN2/3 − a2

2 N
1/3 − b2

2a −
a3

6

)
.

The final ingredient of (4.11) is the term

rkk−r−1 = baaN
2/3−bN1/3−1N

2
3 [aN2/3−bN1/3]− 1

3 . (4.15)

To recover (4.11), we study the product of (4.12), (4.13), (4.14) and (4.15). Note
that

exp
(
−Λ2a

2 + Λa2

2 −
a3

6

)
= exp

(
(Λ−a)3−Λ3

6

)
. So we can treat the terms in (4.11)

uniformly on (p, r, k) such that (N, p, r, k) ∈ ΨN (λ−, λ+, ε,K, 0), as N → ∞ and
obtain (4.10) as required.

We now finish the proof of (4.9), where in addition we require a uniform estimate
over N ′ ∈ [N − TN2/3, N ]. We consider (N ′, p, r, k) ∈ ΨN (λ−, λ+, ε,K, T ) as
N →∞. Observe that

Λ′ := Λ(N ′, p) = (1 + o(1)) (Λ(N, p)− s) , N ′ = (1 + o(1))N, (4.16)

b′ := b(N ′, r) = (1 + o(1))b(N, r), a′ = a(N ′, k) = (1 + o(1))a(N, k). (4.17)

Now fix δ ∈ (0, ε). Then, for large enough N ,

(N ′, p, r, k) ∈ ΨN (λ−, λ+, ε,K, T )

⇒ (N ′, p, r, k) ∈ ΨN ′(λ− − T − δ, λ+ + δ, ε− δ,K + δ, 0). (4.18)



948 J. B. Martin and D. Yeo

Certainly N − TN2/3 →∞ as N →∞, so by (4.10) and (4.18),

P (G(N ′, p) ∈ AN,r,k) = (1 + o(1))g(Λ′ − a′)e3/4N ′−5/6b′a′−3/2

× exp
(
−b′Λ′ − b′2

2a′ + (Λ′−a′)3−Λ′3

6

)
,

uniformly on (N ′, p, r, k) ∈ ΨN (λ−, λ+, ε,K, T ) as N → ∞. Finally, using (4.16),
(4.17), and the fact that g is uniformly continuous, we may conclude

P (G(N ′, p) ∈ AN ′,r,k) = (1 + o(1))g(Λ− s− a)e3/4N−5/6ba−3/2

× exp
(
−b(Λ− s)− b2

2a + (Λ−a−s)3−(Λ−s)3
6

)
,

as required, uniformly on (N ′, p, r, k) ∈ ΨN (λ−, λ+, ε,K, T ). �

4.3. Proof of Lemma 2.15. We repeat the statement of Lemma 2.15:

Lemma. Given the same constants as in Lemma 2.14, there exist constants M <∞
and γ > 0 such that

(k + 1)P (G(N ′, p) ∈ AN ′,r,k+1)

kP (G(N ′, p) ∈ AN ′,r,k)
≤ 1− γN−2/3, (4.19)

for large enough N , whenever (N ′, p, r) ∈ Ψ̄N
0 (λ−, λ+,K, T ) and k ∈ [MN2/3, N ′−

1].

Proof : Again, we will use (4.11), which for convenience we recall here.

P (G(N, p) ∈ AN,r,k)

= (1− p)(
N
2 )(N−r

k−r
) (

p
1−p

)k−r
rkk−r−1

N−k−1∑
m=0

f(N − k,m)
(

p
1−p

)m
= (1− p)(

N
2 )−(N−k2 )(N−r

k−r
) (

p
1−p

)k−r
rkk−r−1F (N − k, p).

We apply this to (4.19) (with N replaced by N ′). Note that
(
N ′−r
k+1−r

)
/
(
N ′−r
k−r

)
=

N ′−k
k+1−r , and

(
N ′−k

2

)
−
(
N ′−k−1

2

)
= N ′ − k − 1. We obtain

(k + 1)P (G(N ′, p) ∈ AN ′,r,k+1)

kP (G(N ′, p) ∈ AN ′,r,k)

=
(k + 1)(1− p)−(N

′−k−1
2 )( N ′−r

k+1−r
) (

p
1−p

)
r(k + 1)k−rF (N ′ − k − 1, p)

k(1− p)−(N
′−k
2 )(N ′−r

k−r
)
rkk−r−1F (N ′ − k, p)

=
k + 1

k + 1− r
(1− p)N

′−k−2N
′ − k
N

(
1 + ΛN−1/3

)
×
(
k + 1

k

)k−r
· F (N ′ − k − 1, p)

F (N ′ − k, p)
. (4.20)

We proceed in two parts. First we control the ratio of the F (N ′− k, p) terms using
(2.5). Then, we control the ratio of the remaining terms with an elementary but
long Taylor expansion.

First, note that from the second inequality in (2.5), that for k ≤ N ′ − 1,

1− F (N ′ − k, p)
F (N ′ − k − 1, p)

≤ 1

2
(N ′ − k − 1)p2E

[
|CN

′−k−1,p(v)|
]
.
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where |CN,p(v)| is the size of the component containing a uniformly-chosen vertex
v in G(N, p). Now, via (4.16),

lim sup
N→∞

Λ
(
N − bMN2/3c, p

)
≤ λ+ −M.

When k ≥MN2/3, we have

N−1/3E
[
|CN

′−k−1,p(v)|
]
≤ N−1/3E

[
|CN−bMN2/3c,p(v)|

]
,

and so from (2.2),

lim sup
N→∞

sup
N ′∈[N−TN2/3,N ]

k≥MN2/3

N−1/3E
[
|CN

′−k−1,p(v)|
]
≤ Θλ+−M .

We obtain

lim sup
N→∞

sup
N ′∈[N−TN2/3,N ]

λ(N,p)∈[λ−,λ+]
0≤k≤N ′−1

N2/3

[
1− F (N ′ − k, p)

F (N ′ − k − 1, p)

]
≤ 1

2
Θλ+−M ,

from which it follows that

lim sup
N→∞

sup
N ′∈[N−TN2/3,N ]

λ(N,p)∈[λ−,λ+]
0≤k≤N ′−1

N2/3

[
F (N ′ − k − 1, p)

F (N ′ − k, p)
− 1

]
≤ 1

2
Θλ+−M . (4.21)

We now treat the remaining terms in the ratio (4.20), that is

k + 1

k + 1− r
· (1− p)N

′−k−2 · N
′ − k
N

·
(

1 + λN−1/3
)
·
(
k + 1

k

)k−r
.

We split the calculation into several steps. Recall the rescalings a = k
N2/3 and

b = r
N1/3 . Since we assume k ≥MN2/3, we have 1

a = O(1).

log

(
k + 1

k + 1− r

)
= − log

(
1− r

k+1

)
= r

k+1 + 1
2

(
r

k+1

)2

+O(N−1)

= b
aN
−1/3 + b2

2a2N
−2/3 +O

(
N−1

)
,

log
(

1 + ΛN−1/3
)

= ΛN−1/3 − Λ2

2 N
−2/3 +O(N−1),

log

[(
k + 1

k

)k−r]
=
[
aN2/3 − bN1/3

] [
1
aN
−2/3 − 1

2a2N
−4/3 +O

(
N−2

)]
= 1− b

aN
−1/3 − 1

2aN
−2/3 +O

(
N−1

)
.

The final two terms in the product require extra care, because there is no finite
upper bound on a. However, since a ≤ N1/3, we can still handle the error in the
following term:

log
[
(1− p)N

′−k−2
]

=
[
N − (s+ a)N2/3 − 2

] [
−N−1 − ΛN−4/3 +O

(
N−2

)]
= −1 + (s− Λ + a)N−1/3 + Λ(a+ s)N−2/3 +O(N−1).
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Finally, we have

log

(
N ′ − k
N

)
= log

(
1− sN−1/3 − aN−1/3

)
≤ −(a+ s)N−1/3 − 1

2 (a+ s)2N−2/3.

So there exists a constant C = C(λ−, λ+, ε,K, T ) <∞ such that

log

 (k + 1)(1− p)−(N
′−k−1

2 )( N ′−r
k+1−r

) (
p

1−p

)
r(k + 1)k−r

k(1− p)−(N
′−k
2 )(N ′−r

k−r
)
rkk−r−1


≤ N−2/3

[
−1

2
(Λ− (a+ s))2 +

b2

2a2
− 1

2a

]
+
C

N
, (4.22)

uniformly on (N ′, p, r) ∈ ΨN
0 (λ−, λ+, ε,K, T ) and k ≥ MN2/3, as N → ∞. Recall

that b ∈ [ε,K], and that k ≥ MN2/3 is equivalent to a ≥ M . So for large enough

M , the term b2

2a2 is dominated by the term − 1
2a in (4.22). Then it holds that for

large enough N ,

(k + 1)(1− p)−(N
′−k−1

2 )( N ′−r
k+1−r

) (
p

1−p

)
r(k + 1)k−r

k(1− p)−(N
′−k
2 )(N ′−r

k−r
)
rkk−r−1

≤ 1− 1

3K
N−2/3.

Using Lemma 2.4, we now also demand that M be large enough that Θλ+−M ≤ 1
6K .

So combining with (4.21), we can now approximate the LHS of (4.19) as required.
Now take γ ∈ (0, 1

6K ), and we find that for large enough N

(k + 1)P (G(N, p) ∈ AN ′,r,k+1)

kP (G(N, p) ∈ AN ′,r,k)
≤ 1− γN−2/3.

�

5. Regularity of g and α

In this section, we prove various regularity properties of the function g defined
in (1.3), and from this the technical properties we require about α. In particular,
the content of Lemma 1.4 is a subset of what follows.

5.1. Properties of g. Recall the definition of g from (1.3):

g(x) :=
1

π

∫ ∞
0

exp(− 4
3 t

3/2) cos(xt+ 4
3 t

3/2)dt.

Britikov (1988) observes that g is, after stretching by a factor (2/3)2/3, the density of
the canonical stable distribution with self-similarity exponent α = 3/2 and skewness
β = −1. The following lemma, which restates the regularity properties of g required
for Lemma 1.4, follows from standard properties of such distributions, as stated,
for example, by Zolotarev (1986).

Lemma 5.1. The function g defined in (1.3) is smooth and positive and has finite
integral. Furthermore, it is bounded, uniformly continuous, and satisfies g(x) → 0
as x→ ±∞.
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5.1.1. The function α is well-defined. For k ∈ N, we define

Jk(b, λ) :=

∫ ∞
0

a−k/2g(λ− a) exp
(

(λ−a)3

6

)
exp

(
− b2

2a

)
da, b > 0, λ ∈ R. (5.1)

Lemma 5.2. For each k ∈ N, this function Jk is well-defined and continuous, and
has partial derivative with respect to b given by

∂

∂b
Jk(b, λ) = −bJk+2(b, λ). (5.2)

Furthermore, the function α(b, λ) := J1(b,λ)
J3(b,λ) defined in (1.4) is also well-defined,

continuous and differentiable with respect to b.

Proof : To show that Jk(b, λ) <∞, we consider the integral in (5.1) separately over
the ranges a ∈ (0, 1] and a ∈ [1,∞). We have∫ ∞

1

a−k/2g(λ− a) exp
(

(λ−a)3

6

)
exp

(
− b2

2a

)
da < eλ

3/6

∫ ∞
1

g(λ− a)da

<∞, (5.3)

and∫ 1

0

a−k/2g(λ− a) exp
(

(λ−a)3

6

)
exp

(
− b2

2a

)
da < eλ

3/6gmax

∫ 1

0

a−k/2 exp
(
− b2

2a

)
da

<∞. (5.4)

Thus we have Jk(b, λ) <∞.
Since the bounds (5.3) and (5.4) hold locally uniformly in (b, λ), continuity of

Jk follows from the dominated convergence theorem.
We can check that we may differentiate (5.1) inside the integral to obtain that

(5.2) holds for all k ≥ 1. Well-definedness and continuity of α(b, λ) := J1(b,λ)
J3(b,λ) follow

immediately, since J3(b, λ) > 0 for all b > 0, λ ∈ R, and furthermore α(b, λ) is
differentiable in its first argument as required, with

∂

∂b
α(b, λ) =

bJ1(b, λ)J5(b, λ)

J3(b, λ)2
− b, (5.5)

through two applications of (5.2). �

5.2. Monotonicity of α. Heuristically, we can view (1.4) as the expectation of a with

respect to the measure with density a−3/2g(λ− a), weighted by a factor exp(− b2

2a ).
Increasing b reweights in favour of larger values of a, so α(b, λ) is increasing in b.
We make this formal with the following straightforward lemma.

Lemma 5.3. Let f, h be functions R+ → R+ such that h is strictly increasing, and
the integrals ∫ ∞

0

af(a)h(a)da,

∫ ∞
0

f(a)da,

exist and are finite. Then∫∞
0
af(a)h(a)da∫∞

0
f(a)h(a)da

>

∫∞
0
af(a)da∫∞

0
f(a)da

.

Corollary 5.4. α(b, λ) is increasing as a function of b.
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Proof : Fix λ ∈ R and b′ > b, then set

f(a) := a−3/2g(λ− a) exp
(

(λ−a)3

6

)
exp

(
− b2

2a

)
, and h(a) := exp

(
− b
′2−b2
2a

)
,

in Lemma 5.3. �

5.3. Lipschitz property of α. The following proposition establishes the behaviour
of α(b, λ) as b ↓ 0 in the sense required to complete the proof of Lemma 2.14.
It also establishes a Lipschitz condition for α, required in Proposition 1.5 for the
well-posedness of the reflected SDE (1.5).

Proposition 5.5. Given −∞ < λ− < λ+ <∞, we have

lim
b↓0

sup
λ∈[λ−,λ+]

α(b, λ) = 0. (5.6)

Furthermore, given ρ <∞, there exists a constant C <∞ such that α satisfies the
Lipschitz condition

|α(b, λ)− α(b′, λ)| ≤ C|b− b′|, b, b′ ∈ (0, ρ], λ ∈ [λ−, λ+]. (5.7)

Proof : To show (5.7), it suffices to prove the following:

sup
b∈(0,ρ],λ∈[λ−,λ+]

∣∣∣∣ ∂∂bα(b, λ)

∣∣∣∣ <∞. (5.8)

The steps we take to prove (5.7) will also allow us to read off (5.6). Recall the
expression (5.5) from the proof of Lemma 5.2:

∂

∂b
α(b, λ) =

bJ1(b, λ)J5(b, λ)

J3(b, λ)2
− b. (5.5)

From Lemma 5.2, we know that ∂
∂bα(b, λ) is continuous, and so to verify (5.8),

it remains to consider the limit as b ↓ 0. We examine the behaviour of each of
J1(b, λ), J3(b, λ), J5(b, λ) in this limit.

First, we consider J1. We define

γ1(λ) := eλ
3/6

∫ ∞
0

a−1/2g(λ− a)da,

which is seen to be finite by a similar decomposition to (5.3) and (5.4). Then

γ1(λ)− J1(b, λ) ≤ gmax

∫ ∞
0

a−1/2
[
eλ

3/6 − exp
(

(λ−a)3

6

)
exp

(
− b2

2a

)]
da

≤ eλ
3/6gmax

∫ ∞
0

a−1/2
[
1− exp

(
− b2

2a

)]
da,

and so by monotone convergence we have as b ↓ 0,

sup
λ∈(−∞,λ+]

|J1(b, λ)− γ1(λ)| → 0. (5.9)

Substituting u = b2

2a into (5.1) gives

J3(b, λ) =

√
2

b

∫ ∞
0

u−1/2g
(
λ− b2

2u

)
exp

(
(λ− b22u )3

6

)
exp(−u)du.

So we define

γ3(λ) :=
√

2g(λ)eλ
3/6

∫ ∞
0

u−1/2 exp(−u)du,
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and then by dominated convergence and uniform continuity of g,

lim
b↓0

sup
λ∈(−∞,λ+]

|bJ3(b, λ)− γ3(λ)| = 0. (5.10)

A very similar argument can be deployed to obtain

lim
b↓0

sup
λ∈(−∞,λ+]

∣∣b3J5(b, λ)− γ5(λ)
∣∣ = 0,

where

γ5(λ) := 2
√

2g(λ)eλ
3/6

∫ ∞
0

u1/2 exp(−u)du.

So we can return to (5.5), which we rewrite as

∂

∂b
α(b, λ) =

J1(b, λ) · b3J5(b, λ)

(bJ3(b, λ))2
− b.

We now take the limit b ↓ 0, for λ ∈ [λ−, λ+]. This denominator is uniformly
bounded away from zero for λ ∈ [λ−, λ+]. So we obtain

lim
b↓0

sup
λ∈[λ−,λ+]

∣∣∣∣ ∂∂bα(b, λ)− γ1(λ)γ5(λ)

γ3(λ)2

∣∣∣∣ = 0. (5.11)

Now, γ3, γ5 are clearly continuous, and γ1 is also continuous by the same argu-
ment as given for continuity of Jk in the proof of Lemma 5.2. Furthermore, γ3 is
positive, and so we have

max
λ∈[λ−,λ+]

γ1(λ) <∞, min
λ∈[λ−,λ+]

γ3(λ) > 0.

Taken with (5.10), the latter shows that

lim
b↓0

inf
λ∈[λ−,λ+]

J3(b, λ) =∞.

Therefore, since α(b, λ) = J1(b,λ)
J3(b,λ) , using (5.9) as well, we obtain precisely the first

required statement (5.6).
For similar reasons, we have

max
λ∈[λ−,λ+]

γ1(λ)γ5(λ)

γ3(λ)2
<∞. (5.12)

Since ∂
∂bα(b, λ) is continuous on (0, ρ]×[λ−, λ+], from (5.11) and (5.12), it’s clear

that

sup
b∈(0,ρ],λ∈[λ−,λ+]

∣∣∣∣ ∂∂bα(b, λ)

∣∣∣∣ <∞,
from which (5.7) follows. This completes the proof of Proposition 5.5. �

5.4. Existence of Zλ. First we prove Proposition 1.5, which asserts that Zλ is
well-defined. The short proof considers a limit of localised reflected SDEs, whose
existence is given by the following theorem, which assumes a global Lipschitz and
boundedness condition on the coefficients of the reflected SDE.

Theorem 5.6. (Revuz and Yor, 1991, §IX 2.14). Let σ(s, x) and b(s, x) be func-
tions R+ ×R+ → R, and W a Brownian motion. For z0 ≥ 0, we call a solution to
the SDE with reflection ez0(σ, b) a pair (Z,K) of processes such that
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(1) the process Z is continuous, positive, FW -adapted, and

Z(t) = z0 +

∫ t

0

σ(s, Z(s))dW (s) +

∫ t

0

b(s, Z(s))ds+K(t), (5.13)

(2) the process K is continuous, non-decreasing, vanishing at zero, FW -
adapted, and ∫ ∞

0

Z(s)dK(s) = 0. (5.14)

If σ and b are bounded and satisfy the global Lipschitz condition

|σ(s, x)− σ(s, y)|+ |b(s, x)− b(s, y)| ≤ C|x− y|, (5.15)

for every s, x, y ∈ (0,∞) and some constant C, then there exists a solution to
ez0(σ, b), and furthermore this solution is unique.

5.4.1. Proof of Proposition 1.5. We now return to the existence of Zλ as in (1.5),
for fixed λ ∈ R. In this setting σ(s, x) ≡ 1, but

b(s, x) := λ− s− α(x, λ− s), (5.16)

is neither bounded below nor satisfies the global Lipschitz property. However, by
Proposition 5.5, for any R > 0, we can define bR(s, x) such that bR(s, x) is bounded
and globally Lipschitz in x; and bR(s, x) = b(s, x) whenever (s, x) ∈ [0, R]× [0, R].
Then Theorem 5.6 asserts that there is a unique pair of processes (Zλ,R,Kλ,R)
corresponding to this drift, where Zλ,R(0) = 0.

Let τλ,R be the time at which Zλ,R first hits R. Take R′ ≥ R. Then, it is clear
that Zλ,R is equal to Zλ,R

′
up to time R∧ τλ,R almost surely. Also, since b(s, x) is

bounded above by λ, it follows that τλ,R →∞ as R→∞ almost surely. Therefore,
we may define

Zλ(t) = lim
R→∞

Zλ,R(t),

for almost all paths of W , and Zλ. It is immediate that Zλ satisfies (1.5). Further-
more, any solution (Zλ,Kλ) to (1.5) must coincide with (Zλ,R,Kλ,R) up to τλ,R,
and so uniqueness of (Zλ,Kλ) follows as well, as required for Proposition 1.5.

5.5. Convergence of non-negative Markov processes. It remains to show that The-
orem 1.9 follows from Proposition 1.10 as claimed.

A general framework for showing convergence of Markov processes to the solu-
tions of SDEs was introduced by Stroock and Varadhan in the 60s (see, for example,
Stroock and Varadhan, 2006). The convergence of Markov processes to reflected
diffusions is treated by Stroock and Varadhan (1971) in high generality, allowing
for general boundaries in Rd, and inhomogeneous stickiness at the boundaries.

We assume that a sequence of Markov chains ZN , N ∈ N is given, where ZN

has discrete state space SN ⊆ R≥0, with 0 ∈ SN , and initial condition ZN (0) = 0.
We define the time-inhomogeneous transition operator πN as

πNn (x, y) = P
(
ZN (n+ 1) = y

∣∣ZN (n) = x
)
, n ∈ N, x, y ∈ SN .

We consider a time-rescaling (h(N))N∈N for which h(N)→ 0 as N →∞.

Remark. In our specific example, we have SN = N−1/3Z≥0, and h(N) = N−2/3.
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Then, for every x ∈ SN , we define the following rescaling transition quantities
corresponding to drift, diffusivity, and macroscopic jump probabilities, respectively,

bN (t, x) =
1

h(N)

∑
y∈SN

(y − x)πNbt/h(N)c(x, y),

aN (t, x) =
1

h(N)

∑
y∈SN

(y − x)2πNbt/h(N)c(x, y),

∆ε =
1

h(N)

∑
y∈SN
|y−x|>ε

πNbt/h(N)c(x, y).

The following theorem, which is a special case of Theorem 6.3 from Stroock
and Varadhan (1971), gives conditions under which time-rescaled versions of ZN

converge to SDEs with reflection.

Theorem 5.7. Suppose we have that for any T,M > 0, and any ε > 0,

lim
N→∞

sup
t∈[0,T ]

sup
x∈SN
x≤M

∆N
ε (t, x) = 0, lim inf

N→∞
inf

t∈[0,T ]
aN (t, 0) > 0

lim
N→∞

sup
t∈[0,T ]

sup
x∈SN

0<x≤M

∣∣aN (t, x)− 1
∣∣ = 0, lim

N→∞
sup
t∈[0,T ]

sup
x∈SN

0<x≤M

∣∣bN (t, x)− b(t, x)
∣∣ = 0,

and that furthermore b(·, ·) satisfies the global Lipschitz condition (5.15) of the pre-
vious theorem. Then

ZN
(
b t
h(N)c

)
t≥0
⇒ (Z(t))t≥0,

as N →∞ with respect to the topology of uniform convergence on D[0, T ] for each
T <∞, where Z is the unique solution to e0(1, b), as given by Theorem 5.6.

5.5.1. Proof of Theorem 1.9. Now let ZN,p be the exploration process of F (N, p),
satisfying the conditions of Theorem 1.8. Again, in our setting, we must account
for the fact that the drift of Zλ is neither bounded nor globally Lipschitz.

Recall from (5.16) and the following paragraph the definitions of b(s, x) and
bR(s, x). For any R ∈ N, we can construct a Markov process (ZN,p,Rn , n ≥ 0) whose
transition probabilities coincide with those of ZN,p whenever n ∈ [0, TN2/3] and
ZN,p,Rn ≤ RN1/3, and for which, by Proposition 1.10,

N1/3E
[
ZN,p,R
tN2/3+1

− ZN,p,R
tN2/3

∣∣ZN,p,R
tN2/3 = xN1/3

]
→ bR(t, x),

uniformly for t ∈ [0, T ] and x in any compact interval in (0,∞). We define the

rescaled process Z̃N,λ,R from ZN,p,R analogously to (1.8). Then we have Z̃N,p,R
d→

Zλ,R uniformly on [0, T ].
From this,

P

(
sup

n∈[0,TN2/3]

ZN,p,Rn > RN1/3

)
→ 0,

as R→∞, and so as processes on [0, T ], the law of Z̃N,p,R converges to the law of

Z̃N,p as R → ∞, and the law of Zλ,R converges to the law of Zλ. Thus we have
proved Theorem 1.9.

Combining with the results of Sections 2 and 3, the proof of our main result
Theorem 1.8 is now also complete.
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6. Lifting from F (N, p) to F (N,m)

So far we have worked in the context of the model F (N, p) (since in that case the
transition probabilities in the exploration process are rather more straightforward
to work with than in the case of the model F (N,m)). In this section we show that
Theorem 1.8 for F (N, p) implies Theorem 1.7 for F (N,m).

As discussed in Section 1.4.2, if we had natural monotonicity properties for the
families F (N, p) and F (N,m), then it would be straightforward to deduce Theo-
rem 1.7 from Theorem 1.8 by a sandwiching argument. Instead, we will construct
an “almost monotonic” coupling. The idea of Lemma 6.2 below is that, within the
scaling window, if the difference between m− and m+ is small compared to N2/3

as N → ∞, then we can couple F (N,m−) and F (N,m+) so that with high prob-
ability, the former is contained in the latter. This coupling is achieved, informally
speaking, by adding edges one by one uniformly at random, unless doing so would
create a cycle. The next lemma will provide an upper bound on the probability
that a cycle does in fact appear.

Lemma 6.1. Let H be a forest on [N ], and let S2 = S2(H) be the sum of the
squares of the component sizes of H. Let k edges, chosen independently and uni-
formly at random from [N ]× [N ], be added to H. (For convenience we allow self-
edges and repeated edges). The probability that the resulting graph contains a cycle

(including a self-edge or a repeated edge) is at most
2kS2/N2

1− 2kS2/N2
. In particular if

k = o(N2/S2), then the graph is a forest with high probability as N →∞.

Proof : Let the components of H be C1, . . . , Ca with sizes x1, . . . , xa.
To create a cycle, for some r ≥ 1, and some distinct b1, b2, . . . , br, we have to

add an edge between Cbi and Cbi+1
for each 1 ≤ i ≤ r − 1, and an edge between

Cbr and Cb1 . This creates a cycle containing r new edges (and also perhaps some
further edges which were already part of H).

The probability that a given edge has endpoints in Cb and Cb′ is 2xbxb′/N
2

if b 6= b′, and x2
b/N

2 if b = b′, so by a union bound, the probability that at
least one of the k new edges created has endpoints in Cb and Cb′ is at most
2kxbxb′/N

2. For fixed r and b1, . . . , br, a simple conditional probability argument
then gives a bound on the probability of creating a collection of edges as specified,
of (2k/N2)r(xb1xb2) . . . (xbr−1xbr )(xbrxb1), which is (2k/N2)rx2

b1
. . . x2

br
.

Summing over r and over distinct b1, . . . , br, we obtain that the probability of
creating a cycle is at most

∑∞
r=1

(
2k
N2S

2
)r

, which gives the claimed bound. �

We don’t know whether F (N,m + 1) stochastically dominates F (N,m) in gen-
eral; that is, whether there is a coupling such that F (N,m) ⊂ F (N,m + 1) with
probability 1. We get round this by introducing a method to create a coupling
which is “monotone with high probability”.

Let Hm ∼ F (N,m), and consider generating H̄m+1 by adding an edge chosen
uniformly at random (from [N ]× [N ]) to Hm. Let A be the event that H̄m+1 is a
forest.



Critical random forests 957

We claim that conditional on A, the distribution of H̄m+1 is F (N,m+ 1). For

P
(
H̄m+1 = H ′

)
=

∑
e∈E(H′)

1

N2
P (Hm = H ′ \ {e})

=
∑

e∈E(H′)

1

N2

1

f(N,m)

=
m+ 1

N2f(N,m)
,

which is indeed constant over H ′.
Define also Ȟm+1 to be distributed according to F (N,m + 1), independently

from Hm and the added edge. Now define

Hm+1 =

{
H̄m+1 on A
Ȟm+1 on Ac

.

Then indeed Hm+1 ∼ F (N,m+ 1), and P (Hm ⊂ Hm+1) ≥ P (A).
We may extend this; starting from Hm, sequentially add k edges independently

and uniformly, to give graphs H̄m+1, H̄m+2, . . . , H̄m+k.
LetAj be the event that adding the first j edges does not create a cycle (including

a self-edge or repeated edge).
Let Ȟm+1, . . . , Ȟm+k be independent samples from F (N,m+1), . . . , F (N,m+k)

respectively, and independent of Hm, H̄m+1, . . . , H̄m+k.
Now define

Hm+j =

{
H̄m+j on Aj
Ȟm+j on Acj

.

ThenHm+j ∼ F (N,m+j) for j = 0, 1, . . . , k, and P (Hm ⊂ Hm+1 ⊂ · · · ⊂ Hm+k) ≥
P (Ak).

Lemma 6.2. Let m = N/2+O(N2/3) as N →∞. Define p− and p+ by N2p−/2 =
bm−N3/5c and N2p+/2 = dm+N3/5e.

Then there is a coupling of F− ∼ F (N, p−), F ∼ F (N,m), and F+ ∼ F (N, p+)
such that with high probability as N →∞, F− ⊆ F ⊆ F+.

Proof : Let M− have the distribution of the number of edges of F (N, p−), and
independently let M+ have the distribution of the number of edges of F (N, p+).

Note that if, conditional onM− andM+, F− ∼ F (N,M−) and F+ ∼ F (N,M+)
then the unconditional distributions of F− and F+ are F (N, p−) and F (N, p+),
respectively.

(2.7) and (4.2) tell us that in this regime, the probability that the number of
edges of the graph F (N, p) deviates from N2p/2 by N3/5 or more goes to 0 as
N →∞.

So with high probability as N →∞, we have M− ∈ (m− 2N3/5,m) and M+ ∈
(m,m+ 2N3/5). If either of these fails, we give up trying to do anything smart and
simply set F− ∼ F (N,M−), F ∼ F (N,m) and F+ ∼ F (N,M+) independently.

Otherwise, we have M− < m < M+, and we use the above idea of adding edges
sequentially. Throughout the construction below we condition on M− and M+ and
regard them as fixed.
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Let HM− ∼ F (N,M−), and sequentially add K = M+ −M− ≤ 4N3/5 edges
independently and uniformly, to give graphs H̄M−+1, H̄M−+2, . . . , H̄M+ . As before,
let Aj be the event that adding the first j edges does not create a cycle.

Let ȞM−+1, . . . , ȞM+ be independent samples from F (N,M− + 1), . . . ,
F (N,M+) respectively, and independent of HM− , H̄M−+1, . . . , H̄M+ .

Now for 1 ≤ j ≤ K, define

HM−+j =

{
H̄M−+j on Aj
ȞM−+j on Acj

.

Then HM−+j ∼ F (N,M− + j) for j = 0, 1, . . . ,K, and HM− ⊂ HM−+1 ⊂ · · · ⊂
HM+ whenever AK occurs.

In particular define F− = HM− , F = Hm and F+ = HM+ . Then (uncondition-
ally), F−, F and F+ have the desired marginal distributions, and will be ordered
as desired whenever the event AK occurs. So to complete the proof it suffices to
show that AK occurs with high probability as N →∞.

Let S2(HM−) be the sum of squares of the component sizes of HM− . We
know that, averaging over M−, the distribution of HM− is that of F (N, p−).
This is stochastically dominated by G(N, p−), and so Corollary 2.5 tells us that
E
[
S2(HM−)

]
≤ E

[
S2(G(N, p−)

]
= O(N4/3). In particular, S2(HM−) ≤ N4/3+ε

with high probability as N →∞, for any ε > 0.
But the number of edges K that we add in the sequential construction is at most

4N3/5. So Lemma 6.1 tells us that if indeed S2(HM−) ≤ N4/3+ε, then (if ε is taken
sufficiently small) with high probability no cycle is created by adding K edges to
HM− . Hence the event AK occurs with high probability as desired. �

Finally, we can deduce our main scaling limit result for the model F (N,m).

Proof of Theorem 1.7: If m has the given asymptotics, and p− and p+ are defined
in terms of m as in Lemma 6.2, then p− = 1/N + (λ + o(1))N−4/3, and the same
is true for p+.

From Theorem 1.8, this means that the rescaled component sizes of both
F (N, p−) and F (N, p+) have the limit in distribution given by Cλ.

But from Lemma 6.2, if the component sizes of F (N, p−) and F (N, p+) both
have this distributional limit, then the same must be true of F (N,m), and we are
done. �
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