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Abstract. In this article we study the influence of regularly varying probabil-
ity measures on additive and multiplicative Boolean convolutions. We introduce
the notion of Boolean subexponentiality (for additive Boolean convolution), which
extends the notion of classical and free subexponentiality. We show that the distri-
butions with regularly varying tails belong to the class of Boolean subexponential
distributions. As an application we also study the behaviour of the Belinschi-Nica
map. Breiman’s theorem studies the classical product convolution between regu-
larly varying measures. We derive an analogous result to Breiman’s theorem in
case of multiplicative Boolean convolution. In proving these results we exploit the
relationship of regular variation with different transforms and their Taylor series
expansion.

1. Introduction

In the set up of quantum probability the notion of stochastic independence plays
a very crucial role. Schürmann (1995) conjectured that there are only three no-
tions of independence arising out of algebraic probability spaces. This conjecture
was established by Speicher (1997) who showed that tensor (classical), free and
Boolean independence are the only ones. See for further details see Ben Ghorbal
and Schürmann (2002); Muraki (2003). The main aim of this article is to study
the Boolean convolution and its properties when the measures belong to the class
of heavy tailed random variables.
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The additive Boolean convolution of two probability measures µ and ν on the
real line (denoted by µ⊎ν) was introduced in Speicher and Woroudi (1997) and the
multiplicative Boolean convolution of two probability measures µ and ν (denoted

by µ ×∪ ν) was introduced in Bercovici (2006) where µ and ν are both defined
on the non-negative part of the real line. Later Franz introduced the concept of
Boolean independence and defined Boolean convolutions using operator theory in
Franz (2009), which is similar to the approach of Bercovici and Voiculescu for the
free convolutions in Bercovici and Voiculescu (1993). The definitions of Boolean
convolutions using Boolean independence also agree with the former definitions.

In this article we are interested in a certain class of measures having power law
tail behaviour. A measure is called regularly varying of index −α, for some α > 0, if
µ(x,∞) ∼ x−αL(x) for some slowly varying function L(x) (see explicit definition in
next section). Such measures form a large class containing important distributions
like Pareto and Fréchet and classical stable laws. The class of distribution functions
with regularly varying tail index −α, α > 0 delivers significant applications in
finance, insurance, weather, Internet traffic modelling and many other fields. In
this paper, we want to realise what happens with the Boolean convolutions of the
probability measures which have regularly varying tails. In particular we want to
address the following question:

Question 1. Suppose µ and ν are two probability measures supported on [0,∞) with
regularly varying tails of indices −α and −β respectively (α and β non-negative).

Then what can be said about the tail behaviour of µ ⊎ ν and µ ×∪ ν?

When one considers the case of classical additive convolution, the answer is well
known and the principle of one large jump gives that the heavier tail dominates.
In fact it is well known, if µ is regularly varying of index −α, then µ is (classical)
subexponential in the sense that µ∗n(x,∞) ∼ nµ(x,∞) as x → ∞ for all n > 1.
For a contemporary review on subexponential distributions and their applications
we refer to Foss et al. (2011); Goldie and Klüppelberg (1998); Jessen and Mikosch
(2006). The case of free additive convolution was studied by Hazra and Maulik
(2013) and it is related to the free extreme value theory of Ben Arous and Voiculescu
(2006). One of the main aim of this article is to extend this result to the Boolean
additive convolution.

The case of multiplicative convolution turns out to be more interesting and
challenging. In classical independence, the role of Breiman’s theorem is very crucial
in this result. In an influential work Breiman (1965) he showed the following: If µ
and ν are positively supported measures, µ is regularly varying of index −α and ν
is such that

∫∞

0
yα+ǫν(dy) < ∞ (for some ǫ > 0) then

µ⊛ ν(x,∞) ∼

∫ ∞

0

yαν(dy)µ(x,∞) as x → ∞, (1.1)

where µ ⊛ ν denotes the classical multiplicative convolution. A similar result can
be obtained when ν is a regularly varying measure (see Jessen and Mikosch, 2006).
The result in the case of free multiplicative is still unknown to the best of our
knowledge. We provide an example later to show the behaviour is much different
from the classical case. In the Boolean convolution, the behaviour turns out to be
much similar for multiplicative convolution and in that case again the heavier tail
wins. We derive the explicit description in Theorem 2.6. The constants appearing
though change from the classical case.
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The study of Boolean independence and convolutions although not studied as
rigorously as free independence has already established its importance in many
areas. The Boolean convolutions of probability measures are also used in studying
quantum stochastic calculus, see Ben Ghorbal and Schürmann (2004). The Boolean
Brownian motion and Poisson processes are investigated using Boolean convolutions
to study the Fock space in Privault (2001) andHamdi (2015). We can also observe
the connection between Appell polynomials and Boolean theory in Anshelevich
(2009).The Boolean stable laws and their relationship with free and classical stable
laws were extensively studied in recent works (see Arizmendi and Hasebe, 2013,
2014; Anshelevich et al., 2014; Arizmendi and Hasebe, 2016). In a more recent
study of classification of easy quantum groups, it was shown the non-commutative
analogue of de Finetti’s theorem (quantum exchangeability) holds true and the
notions of free independence, classical independence and half independence arise in
this context (see Banica et al., 2012). The relation between Boolean independence
and de Finetti’s theorem was recently studied by Liu (2015). Recently it has been
established that in some random matrices, the asymptotic Boolean independence
can arise (see Lenczewski, 2011; Male, 2011; Popa and Hao, 2017).

As an application for the above results we determine the behaviour of the
Belinschi-Nica map which is a one parameter family of maps {Bt}t>0 on set of
probability measures and was introduced by Belinschi and Nica (2008) (see pre-
cise definition in next section). It is well known that classical infinitely divisible
distributions are in bijection with the free infinitely divisible distributions. Here
the map B1 turns out to be a bijection from Boolean to free infinitely divisible
distributions. In fact it turns out that (Bt(µ))t>1 is ⊞-infinitely divisible for every
probability measure µ. The relationship with free Brownian motion and complex
Burgers equation makes it an extremely important object of study. The map was
further studied in Arizmendi and Hasebe (2013), Arizmendi and Hasebe (2014). In
this article we study the case when µ is a heavy tail distribution and show that µ is
regularly varying of index −α if and only if Bt(µ) is regularly varying −α for t > 0.
In particular, it shows that the support of Bt(µ) will be unbounded whenever µ
has such regularly varying tails. The Boolean extreme value theory was recently
explored in Vargas and Voiculescu (2017) in parallel to the study of free extreme
value theory (Ben Arous and Voiculescu, 2006). We show that in the subexponential
case, the tail behaviour of Boolean, free and classical extremes are asymptotically
equivalent. It is known that the classical subexponential random variables satisfy
the principle of one large jump, that is, if {Xi} are i.i.d. subexponential random
variables, then for all n ≥ 1,

P (

n∑

i=1

Xi > x) ∼ nP (X1 > x) ∼ P ( max
1≤i≤n

Xi > x) as x → ∞.

The free max convolution, denoted by ∨ , was introduced in Ben Arous and Voi-
culescu (2006) and the analogous result for the free one large jump principle was
obtained in Hazra and Maulik (2013). In this article we show that Boolean subex-
ponential distributions follow the principle of one large jump also.

The main techniques involved in the proof of the above results is to study the
transforms and their Taylor series expansion. In particular we show the remainder
terms of the respective transforms carries information about the regular variation
and also it is preserved under certain operations such as taking a reciprocal. These
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results can be independent in their own interest and can be used to study various
properties of the transforms involved in free and Boolean independence. Such ideas
were first explored in the works of Bercovici and Pata (1999) to show the bijection
between free infinitely distributions with the classical counter parts. Other works
relating the remainder terms of Cauchy and R-transforms were studied in Bercovici
and Pata (2000); Benaych-Georges (2006); Hazra and Maulik (2013).

Outline of the article: In the next section we develop the set-up and state
our main results precisely. To prove the results we use various transforms and
their relationship with the tail of the measures. In Section 2 we introduce some of
the transforms used, an interesting property of the Belinschi-Nica map {Bt}t>0 in
Theorem 2.5 and the principle of one large jump in Proposition 2.4. In Section 3 we
state the relationship between the tail of a regularly varying probability measure the
remainder of 1/B-transform followed by defining the remainder terms. In Section 4
we use these relations to provide proof of the results for the additive Boolean
convolutions. Section 5 contains the proof of Theorem 2.6 about the multiplicative
Boolean convolution. Finally in section 6 we prove the technical results which are
presented in Section 3.

2. Preliminaries and main results

A real valued measurable function f defined on non-negative real line is called

regularly varying (at infinity) with index α if for every t > 0, f(tx)
f(x) → tα as x → ∞.

If α = 0, then f is said to be a slowly varying function (at infinity). Regular
variation with index α at zero is defined analogously. In fact, f is regularly varying
at zero of index α, if the function x 7→ f( 1x ) is regularly varying at infinity of
index −α. Unless otherwise mentioned, the regular variation of a function will be
considered at infinity. For regular variation at zero, we shall explicitly mention
so. A distribution function F on [0,∞) has regularly varying tail of index −α if
F (x) = 1 − F (x) is regularly varying of index −α. Since F (x) → 0 as x → ∞ ,
we must necessarily have α > 0. A probability measure on [0,∞) with regularly
varying tail is defined through its distribution function. Equivalently, a measure µ
is said to have a regularly varying tail of index −α, if µ(x,∞) is regularly varying
of index −α as a function of x.

The real line and the non-negative part of the real line will be denoted by R

and R+ respectively. The complex plane will be denoted by C and for a complex
number z, ℜz and ℑz will denote its real and imaginary parts respectively. Given
positive numbers κ and δ, let us define the following cone:

∆κ = {z ∈ C
− : |ℜz| < −κℑz} and ∆κ,δ = {z ∈ ∆κ : |z| < δ},

where C+ and C− are the upper and the lower halves of the complex plane respec-
tively, namely, C+ = {z ∈ C : ℑz > 0} and C− = −C+. Then we shall say that
f (z) → l as z goes to 0 n.t. (non-tangentially), if for any ǫ > 0 and κ > 0, there
exists δ ≡ δ (κ, ǫ) > 0, such that |f (z)− l| < ǫ, whenever z ∈ ∆κ,δ.

We shall write f (z) ≈ g (z), f (z) = o (g (z)) and f (z) = O (g (z)) as z → 0
n.t. to mean that f (z) /g (z) converges to a non-zero limit, f (z)/g (z) → 0 and
f (z) /g (z) stays bounded as z → 0 n.t. respectively. If the non-zero limit is 1 in
the first case, we write f (z) ∼ g (z) as z → 0 n.t. For f (z) = o (g (z)) as z → 0
n.t., we shall also use the notations f (z) ≪ g (z) and g (z) ≫ f (z) as z → 0 n.t.
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M and M+ are the set of probability measures supported on R and R+ re-
spectively. By Mp we mean the set of probability measures on [0,∞) whose p-th
moment is finite and do not have the (p+ 1)-th moment.

2.1. Additive Boolean convolution. For a probability measure µ ∈ M, its Cauchy
transform is defined as

Gµ (z) =

∫ ∞

−∞

1

z − t
dµ (t) , z ∈ C

+.

Note that Gµ maps C+ to C−. The Boolean additive convolution is determined by
the transform Kµ which is defined as

Kµ (z) = z −
1

Gµ (z)
, for z ∈ C

+. (2.1)

For two probability measures µ and ν, the additive Boolean convolution µ ⊎ ν is
determined by

Kµ⊎ν (z) = Kµ (z) +Kν (z) , for z ∈ C
+ (2.2)

and µ ⊎ ν is again a probability measure.
Our first result describes the behaviour of additive Boolean convolution under

the regularly varying measures. Suppose {Xi}i>1 be independent (classically) and
identically distributed non-negative regularly varying random variables of index
−α, α > 0 and denote Sn = X1 +X2 + · · ·+Xn. Then it is known that

P (Sn > x) ∼ nP (X1 > x) as x → ∞. (2.3)

The proof of the above fact can be found in Feller (1971). If a sequence of random
variables follows (2.3) then they are called subexponential. In the case of free
additive convolution, the parallel result was shown in Hazra and Maulik (2013),
which states:

µ⊞n (y,∞) = (µ⊞ · · ·⊞ µ)
︸ ︷︷ ︸

n times

(y,∞) ∼ nµ (y,∞) as y → ∞,

when µ has regularly varying tail of index −α, α > 0. We show that result can be
extended to Boolean additive convolution also. To state the result we first introduce
the definition of Boolean subexponentiality:

Definition 2.1. A probability measure µ on [0,∞), with µ (y,∞) > 0 for all y > 0,
is said to be Boolean-subexponential if for all n ∈ N,

µ⊎n (y,∞) = (µ ⊎ · · · ⊎ µ)
︸ ︷︷ ︸

n times

(y,∞) ∼ nµ (y,∞) as y → ∞.

Our first result shows that analogue of the classical and free case is also valid in
Boolean set-up.

Theorem 2.2. If µ is regularly varying of index −α with α > 0, then µ is Boolean-
subexponential.

The proof uses the relation between µ and Gµ developed in Hazra and Maulik
(2013) and also extensions to the transforms Kµ.
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2.2. Applications of Boolean subexponentiality. In this subsection we see two impor-
tant applications of Boolean subexponentiality. As mentioned in the introduction
that there are three universal notions of independence and these three notions give
rise to corresponding extreme value theory. We first show that subexponentiality
in all the three notions are asymptotically equivalent. In the second application
we show how the Belinschi-Nica map related to free infinitely divisible indicator
behaves for a regularly varying measure.

2.2.1. Applications to Boolean extremes. The very immediate upshot of the defini-
tion of Boolean subexponentiality is the principle of one large jump which gives us
the asymptotic relation between the sum and maximum of a finite collection of i.i.d.
probability distributions. The extreme value theory in Boolean independence was
recently explored in Vargas and Voiculescu (2017). We briefly recall the definition
of Boolean max convolution from Vargas and Voiculescu (2017).

Definition 2.3. Let F1, F2 be two distributions on [0,∞). Their Boolean max
convolution is defined by,

(F1 ∨∪ F2)(t) = F1(t) ∧∪ F2(t)

where the operation ∧∪ is defined as

(x ∧∪ y)−1 − 1 = (x−1 − 1) + (y−1 − 1) for all x, y ∈ [0, 1].

Let D+ be the set of all probability distributions on [0,∞). Then D+ forms
semigroup with respect to both the classical max convolution “ · ” and the boolean
max convolution “ ∨∪ ”. Further it is proved there that the map X : (D+, ·) →
(D+,∨∪), given by,

X(F )(t) = exp
(

1−
1

F (t)

)

for all t ∈ [0,∞), F ∈ D+ (2.4)

is an isomorphism while the inverse map is

X−1(F )(t) = (1− log(F ))
−1

(t) =
1

1− log (F (t))
for all t ∈ [0,∞) F ∈ D+. (2.5)

The above isomorphism is obtained by observing an interesting isomorphism be-
tween the two semigroups ([0, 1],∧∪) and ([0, 1], .) where “ . ” is the usual mul-
tiplication of real numbers. Here we give an affirmative answer for the one large
jump principle in the Boolean case and combining all the results of the classical,
free and Boolean instances we can further say that all the tails of classical, free and
Boolean max convolutions are asymptotically equivalent for the class of regularly
varying distributions. We shall use the notations F∨∪n and F⊎n for the distributions
F ∨∪ · · · ∨∪ F
︸ ︷︷ ︸

n times

and F ⊎ · · · ⊎ F
︸ ︷︷ ︸

n times

respectively.

Proposition 2.4. The principle of one large jump holds true for Boolean-
subexponential distributions, namely, if F is Boolean-subexponential then for ev-
ery n ≥ 1,

F⊎n(y) ∼ F∨∪n(y) as y → ∞.

Moreover if F is regularly varying with index −α, α > 0, then for all n ≥ 1,

F∨∪n(y) ∼ F ∨n(y) ∼ Fn(y) as y → ∞ (2.6)

where Fn arises out of the classical max convolution of classical independent random
variables Z1, · · · , Zn having identical distribution F .
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2.2.2. Application to the Belinschi-Nica map. Before going to the multiplicative
Boolean convolution we want to show an application of the above result to the
Belinschi-Nica map. Let us recall that ⊞ denotes the free additive convolution of
measures. Let us consider the map Bt : M → M for all t > 0, given by

Bt(µ) = (µ⊞(1+t))⊎
1

1+t µ ∈ M. (2.7)

This map was introduced in Belinschi and Nica (2008) noting that every probability
measure on R is infinitely divisible with respect to additive Boolean convolution.
It was also shown there that if µ ∈ M+ then Bt(µ) ∈ M+. When t = 1, the
map B1 coincides with the Bercovici-Pata bijection between M and the class of
all free infinitely divisible probability measures supported on R. Here for better
understanding we can consider the maps Bn : M+ → M+ for non-negative integers
n and from the definition (2.7), we have

Bn(µ)
⊎(1+n) := Bn(µ) ⊎Bn(µ) ⊎ · · · ⊎Bn(µ)

︸ ︷︷ ︸

(1+n times)

= µ⊞ µ⊞ · · ·⊞ µ
︸ ︷︷ ︸

(1+n times)

=: µ⊞(1+n).

(2.8)

Theorem 2.5. The following are equivalent for a probability measure µ ∈ M+.

(1) µ is regularly varying with tail index −α.
(2) Bt(µ) is regularly varying with tail index −α, for t > 0.

Furthermore, if any of the above holds, we also have as y → ∞,

µ(y,∞) ∼ Bt(µ)(y,∞).

An interesting connection with complex Burgers equation was established in
Belinschi and Nica (2008) using the following function

h(t, z) = FBt(µ)(z)− z, ∀t > 0, ∀ z ∈ C
+,

where Fν is the reciprocal of the Cauchy transform. Note that it can also be
written as h(t, z) = −KBt

(z). It was shown that h(t, z) satisfies the following
complex Burgers equation

∂h

∂t
(t, z) = h(t, z)

∂h

∂z
(t, z).

The complex Burgers equation (also known as the free analogue of heat equation)
arises naturally due to the connections with free Brownian motion (see Voiculescu,
1993). In the following section while proving Theorem 2.2 we shall study the
remainder term in the K transform of a measure µ and hence from the above result
one can easily derive the asymptotic behaviour of the remainder term of h(t, z)
(taking the Taylor series expansion in z) when µ has a regularly varying tail. Note
that in the power series expansion of K, the coefficients, which are also known as
Boolean cumulants can be directly computed using the moments recursively. We do
not write the details of such applications but it would be clear from the derivations
later.

2.3. Multiplicative Boolean convolution. Now we define the multiplicative Boolean
convolution of two probability measures defined on R+. For µ ∈ M+ the function

Ψµ (z) =

∫

R

zt

1− zt
dµ (t) , z ∈ C \ R+
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is univalent in the left-plane iC+ and Ψµ (iC+) is a region contained in the circle
with diameter (µ (0)− 1, 0). It is well known that,

Ψµ

(
z−1
)
= zGµ (z)− 1. (2.9)

We now recall the following from Anshelevich et al. (2014). For µ ∈ M+, define
the η-transform of µ as ηµ : C \ R+ → C \ R+

ηµ (z) =
Ψµ (z)

1 + Ψµ (z)
. (2.10)

It is clear that µ is determined uniquely from the function ηµ. For µ ∈ M+ it is

known that ηµ((−∞, 0)) ⊂ (−∞, 0), 0 = ηµ(0
−) = limx→0,x<0 ηµ(x), ηµ(z) = ηµ(z)

for z ∈ C \ R+. Also π > arg(ηµ(z)) > arg(z), for z ∈ C
+.

The analytic function

Bµ (z) =
z

ηµ (z)
(2.11)

is well defined in the region z ∈ C \ R+. Now for µ, ν ∈ M+, their multiplicative

Boolean convolution µ ×∪ ν is defined as the unique probability measure in M+ that
satisfies

B
µ ×∪ ν

(z) = Bµ(z)Bν(z) for z ∈ C \ R+. (2.12)

Note that for µ, ν ∈ M+ which satisfies

(a) arg(ηµ(z)) + arg(ην(z))− arg(z) < π for z ∈ C+ ∪ (−∞, 0), and
(b) at least one of the first moments of one of the measure µ or ν

exists finitely, then µ ×∪ ν ∈ M+ is well-defined.

In this paper whenever we write the probability measure µ ×∪ ν, it is assumed that

the first momentm(ν) of ν must exist due to the definition of multiplicative Boolean
convolution. The mean exists means it is strictly positive since the measures are
supported on the positive half of the real line. When two measures shall have the
same regularly varying tail, we will assume that there exists some c ∈ (0,∞) such
that ν(x,∞) ∼ cµ(x,∞) as x → ∞. The case where this asymptotics of tail sums
fails is explained in Remark 5.3. Now here is the main result for multiplicative
Boolean convolution:

Theorem 2.6. Let µ, ν ∈ M+. If µ is regularly varying of tail index −α and ν
is regularly varying of tail index −β where α 6 β and µ ×∪ ν ∈ M+ then µ ×∪ ν is
also regularly varying with tail index −α, furthermore,

µ ×∪ ν (y,∞) ∼ m (ν)µ (y,∞) if α < β,

µ ×∪ ν (y,∞) ∼ (1 + c)m (ν)µ (y,∞) , if α = β,

where m(ν) is the mean of ν.

Note that the result differs from the classical Breiman’s result (1.1) in terms
of the constants which appear in the tail equivalence relation. In classical case,
the α-th moment of ν appears and in multiplicative Boolean the first moment
appears only. We end the section with a related open question for free multiplicative
convolution.
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2.4. Open questions. We list some of the open questions in this subsection before
going to the technicalities of the proof.

(1) Suppose µ and ν are in M+ and have regularly varying tails of index −α
and −β respectively. Then what is the tail behaviour of µ ⊠ ν? From a
result from Bercovici and Pata (1999, Proposition A4.3) it follows that if µ
is ⊞ stable of index 1/(1 + s) and ν is of index 1/(1 + t) then µ ⊠ ν is ⊞

stable of index 1/(1+s+t). This already shows that the classical Breiman’s
theorem is not true in free set-up and hence it would be interesting to know
what kind of behaviour the µ⊠ ν distribution inherits.

(2) In a recent work Jacobsen et al. (2009) it was shown that if one takes the
inverse problem of Breiman’s theorem, that is, if one knows that µ⊛ν has a
regularly varying tail of index −α then under some necessary and sufficient
conditions on ν can determine that µ also has regularly varying tail of same
index. It would be interesting to explore if such inverse problems can be
answered in the free or Boolean set-up.

(3) Following Belinschi and Nica (2008) we recall the definition of ⊞-divisibility
indicator φ(µ) of µ given by

φ(µ) = sup{t ∈ [0,∞) : µ ∈ Bt(M)} ∈ [0,∞].

The Cauchy distribution µca (which has regularly varying tail of index −1)
is fixed by the map B1 (which is in fact the Boolean to free Bercovici-Pata
bijection). Therefore by definition of B1 we have µ⊎2

ca = µ⊞2
ca (moreover

µ⊎t
ca = µ⊞t

ca for all t > 0) and this along with the formula φ(Bt(µ)) = φ(µ)+t
allows us to conclude that φ(µca) = ∞ as observed by Belinschi and Nica.
It would be interesting to understand if one can take ⊞-infinitely divisible
distributions with regularly varying tails and see if φ(µ) = ∞ in such cases
also.

The rest of the paper is devoted to proofs of the above results. We first develop
the Tauberian type results for different transforms and then apply them to prove
the results.

3. Regular variation of the remainder terms of Ψ, η and B transform

In this section we define the remainder term of B-transforms and shall see how
regular variation is linked to it. These relations will be used to prove the main
results. Note that although the B transform is used to define the multiplicative
Boolean convolution, it can be used in the analysis of the additive transform by its
relation to K transform in the following way. From the relations (2.1), (2.9), (2.10)
and (2.11) it follows that

Kµ

(
z−1
)
=

1

Bµ (z)
. (3.1)

For µ ∈ Mp, following Benaych-Georges (2006, Theorem 1.5), we have the following
Laurent series like expansion

Gµ(1/z) =

p+1
∑

i=1

mi−1(µ)z
i + o(z(p+1)), z → 0 n.t., p ≥ 0.
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Therefore using (2.9), we get

Ψµ(z) =

p
∑

i=1

mi(µ)z
i + o(zp) as z → 0 n.t., p ≥ 1.

The remainder term rGµ
(z) of the Cauchy transform was defined in Hazra and

Maulik (2013), given by:

rGµ
(z) := zp+1(Gµ(z)−

p+1
∑

i=1

mi−1(µ)z
−i). (3.2)

Using (2.9) and the above expressions we define the remainder term rΨµ
(z) of the

Ψ-transform.

rΨµ
(z) :=

{

z−p(Ψµ(z)−
∑p

i=1 mi(µ)z
i), if p ≥ 1

Ψµ(z), if p = 0.
(3.3)

Using (2.9), (3.2) and (3.3), we get

rGµ
(z) = rΨµ

(z−1). (3.4)

Therefore we have from (3.4),

ℜrGµ
(z) = ℜrΨµ

(z−1) and ℑrGµ
(z) = ℑrΨµ

(z−1). (3.5)

Thus the remainder terms of η and B transforms can be defined analogously. Also
from (2.11) and the fact that z lies either in the upper half or the lower half of the
complex plane, we have,

1

Bµ
(z) :=

1

Bµ(z)
=

ηµ (z)

z
.

Using Ψµ(z) has no constant term in its Taylor series expansion, we have for
p > 1, µ ∈ Mp,

r 1
Bµ

(z) = rηµ
(z) . (3.6)

Equating the real and imaginary part for the above identity we get

ℜr 1
Bµ

(
−iy−1

)
= ℜrηµ

(
−iy−1

)
and ℑr 1

Bµ

(
−iy−1

)
= ℑrηµ

(
−iy−1

)
. (3.7)

When p = 0, that is, µ ∈ M0, we write

r 1
Bµ

(z) =
1

Bµ
(z) and

1

Bµ

(
−iy−1

)
= iyηµ

(
−iy−1

)
.

We will later see 1/Bµ(z) in this case goes to infinity as z → 0 non-tangentially but
still we want to say it is a remainder term as it helps in keeping analogy with the
other cases notationally.

Let µ ∈ M+ and is regularly varying of tail index −α. Then there exists a
non-negative integer p such that µ ∈ Mp. We split this into five cases as follows:
(i) p is a positive integer and α ∈ (p, p+ 1); (ii) p is a positive integer and α = p;
(iii) p = 0 and α ∈ [0, 1); (iv) p = 0 and α = 1; (v) p is a natural number and
α = p+ 1, giving rise to the following five theorems.

In the following we compare the tails of µ and the behaviour of the remainder
term of the 1/Bµ. The proof of these five theorems are deferred to the last section
and depends crucially on ideas developed in Hazra and Maulik (2013).

We first consider the case where p is a positive integer and α ∈ (p, p+ 1).
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Theorem 3.1. Let µ be in Mp, p > 1 and p < α < p + 1. The following are
equivalent:

(1) µ (y,∞) is regularly varying of index −α.
(2) ℑr 1

Bµ

(
−iy−1

)
is regularly varying of index − (α− p) and

ℜr 1
Bµ

(
−iy−1

)
≈ ℑr 1

Bµ

(
−iy−1

)
as y → ∞.

If any of the above statements holds, we also have, as z → 0 n.t.,

z ≪ r 1
Bµ

(z); (3.8)

and as y → ∞,

ℑr 1
Bµ

(−iy−1) ∼ −
π (p+ 1− α) /2

cos (π (α− p) /2)
ypµ (y,∞) ≫ y−1 (3.9)

and

ℜr 1
Bµ

(−iy−1) ∼ −
π (p+ 2− α) /2

sin (π (α− p) /2)
ypµ (y,∞) ≫ y−1. (3.10)

Next we consider the case where p is a positive integer and α = p. In this case
although (3.9) holds but the final asymptotic of (3.10) need not be true.

Theorem 3.2. Let µ be in Mp, p > 1 and α = p. The following are equivalent:

(1) µ (y,∞) is regularly varying of index −p.
(2) ℑr 1

Bµ

(
−iy−1

)
is is slowly varying and

ℜr 1
Bµ

(−iy−1) ≫ y−1 as y → ∞. (3.11)

If any of the above statements holds, we also have, as z → 0 n.t.,

z ≪ r 1
Bµ

(z);

and as y → ∞ we have,

ℑr 1
Bµ

(−iy−1) ∼ −
π

2
ypµ (y,∞) ≫ y−1. (3.12)

In the third case we consider α ∈ [0, 1).

Theorem 3.3. Let µ be in M0 and 0 ≤ α < 1. The following are equivalent:

(1) µ (y,∞) is regularly varying of index −α.
(2) ℑ 1

Bµ

(
−iy−1

)
is regularly varying of index −(α− 1) and

ℜ
1

Bµ

(
−iy−1

)
≈ ℑ

1

Bµ

(
−iy−1

)
as y → ∞

If any of the above statements holds, we also have, as z → 0 n.t.,

z ≪ z
1

Bµ
(z);

and as y → ∞ we have,

−y−1ℜ
1

Bµ
(−iy−1) ∼ −

π (1− α) /2

cos (πα/2)
µ (y,∞) ≫ y−1 (3.13)

and

y−1ℑ
1

Bµ
(−iy−1) ∼ −dαµ (y,∞) ≫ y−1 (3.14)
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where

dα =

{
π(2−α)/2
sin(πα/2) , when α > 0,

1, when α = 0.

In the fourth case we consider α = 1 and p = 0.

Theorem 3.4. Let µ be in M0 and α = 1, r ∈ (0, 1/2). The following are equiva-
lent:

(1) µ (y,∞) is regularly varying of index −1.
(2) ℑ 1

Bµ

(
−iy−1

)
is slowly regularly varying and

y−1 ≪ −y−1ℜ
1

Bµ

(
−iy−1

)
≪ y−(1−r/2). (3.15)

If any of the above statements holds, we also have, as z → 0 n.t.,

z ≪ z
1

Bµ
(z) ;

and as y → ∞ we have,

y−(1+r/2) ≪ y−1ℑ
1

Bµ

(
−iy−1

)
∼ −

π

2
µ (y,∞) ≪ y−1+r/2 (3.16)

Finally, we consider the case where p > 1 and α = p+ 1.

Theorem 3.5. Let µ be in Mp, p > 1 and α = p+ 1, r ∈ (0, 1/2). The following
are equivalent:

(1) µ (y,∞) is regularly varying of index − (p+ 1).
(2) ℜr 1

Bµ

(
−iy−1

)
is regularly varying of index −1 and

y−1 ≪ ℑr 1
Bµ

(
−iy−1

)
≪ y−(1−r/2). (3.17)

If any of the above statements holds, we also have, as z → 0 n.t.,

z ≪ r 1
Bµ

(z) ; (3.18)

As y → ∞ we have,

y−(1+r/2) ≪ ℜr 1
Bµ

(
−iy−1

)
∼ −

π

2
ypµ (y,∞) ≪ y−(1−r/2). (3.19)

The proof of these theorems are deferred to Section 6.

4. Additive Boolean subexponentiality

To prove the Theorem 2.2 we need the following lemma.

Lemma 4.1. Suppose µ and ν are two probability measures in [0,∞) with regularly
varying tails of index −α and suppose ν(y,∞) ∼ cµ(y,∞) for some c > 0. Then

µ ⊎ ν (y,∞) ∼ (1 + c)µ (y,∞) as y → ∞.

Proof : Depending on where the index α > 0 lies, the proof can be split into five
cases as described in Section 3. We shall present the proof for the case when p ≥ 1
with µ ∈ Mp and α ∈ (p, p+1). We shall use Theorem 3.1 to derive this case. The
other cases can be dealt in exactly similar fashion using the four other results stated
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Section 3. Using the relation (3.1) we define the remainder term of the K-transform
in the following obvious way:

rKµ

(
1

z

)

= r 1
Bµ

(z). (4.1)

For α ∈ (p, p+ 1) using Theorem (3.1) and taking imaginary and real parts of
(4.1), we have

ℑrKµ
(iy) ∼ −

π(p+ 1− α)/2

cos(π(α − p)/2)
ypµ(y,∞),ℜrKµ

(iy) ∼ −
π(p+ 2− α)/2

sin(π(α − p)/2)
ypµ(y,∞)

(4.2)
respectively.

An analogous equation for measure ν can be derived with µ being replaced by
ν in (4.2). Now the equation (2.2) and the definition of the remainder term gives,
rKµ⊎ν

(z) = rKµ
(z) + rKν

(z). Therefore

ℑrKµ⊎ν
(iy) ∼ −

π (p+ 1− α) /2

cos (π (α− p) /2)
(1 + c) ypµ (y,∞) as y → ∞, (4.3)

ℜrKµ⊎ν
(iy) ∼ −

π (p+ 2− α) /2

sin (π (α− p) /2)
(1 + c) ypµ (y,∞) as y → ∞,

which are regularly varying of index − (α− p) with ℑrKµ⊎ν
(iy) ≈ ℜrKµ⊎ν

(iy) and
we conclude µ ⊎ ν ∈ Mp by looking at the remainder term of Kµ⊎ν . Now again
using Theorem 3.1 for the measure µ ⊎ ν, we have

ℑrKµ⊎ν
(iy) ∼ −

π (p+ 1− α) /2

cos (π (α− p) /2)
ypµ ⊎ ν (y,∞) as y → ∞. (4.4)

Combining (4.3) and (4.4) the result follows. �

The proof of Theorem 2.2 is immediate using induction which we briefly indicate
below.

Proof of Theorem 2.2: Let µ be regularly varying of tail index −α and supported
on [0,∞). We prove

µ⊎n (y,∞) ∼ nµ (y,∞) as y → ∞. (4.5)

by induction on n. For n = 2 (4.5) follows from the Lemma 4.1 with both the
measures as µ and c = 1. To prove (4.5) for n = m + 1 assuming n = m we take
c = m and ν = µ⊎n in Lemma 4.1. �

4.1. Proof of Proposition 2.4 and Theorem 2.5.
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Proof of Proposition 2.4: Using (2.4) and (2.5) we have for any y ∈ [0,∞),

F∨∪n(y) = X−1
(
(X(F (y))n

)

= X−1

(

exp
(

n−
n

F (y)

)
)

=
1

1− log

(

exp
(

n− n
F (y)

)
)

=
F (y)

n− (n− 1)F (y)
.

Thus for any y > 0,

F∨∪n(y) = 1− F∨∪n(y) = 1−
F (y)

n− (n− 1)F (y)
=

nF (y)

1 + (n− 1)F (y)
.

Now noting the fact that F (y) → 0 as y → ∞, we have as y → ∞

F∨∪n(y) ∼ nF (y) ∼ F⊎n(y). (4.6)

The last asymptotic follows by the definition of Boolean-subexponentiality.
The asymptic (2.6) follows by combining (4.6), Proposition 1.1 of Hazra and

Maulik (2013)( in particular for any n ∈ N, F ∨n(y) ∼ nF (y) as y → ∞),
Lemma 3.8 of Jessen and Mikosch (2006) and the fact that regularly varying dis-
tributions are classical, free and Boolean subexponential. �

Proof of Theorem 2.5: The proof is obvious for t = 0. Initially we shall prove the
result for integer points t = n, n ∈ N. After that we shall extend the proof for
any non-negative real number t. We start with letting µ to be regularly varying
of tail index −α. Again to keep the exposition simple we derive the result when
α ∈ (p, p + 1) for some p ∈ N. In the other cases the result follows by similar
argument using corresponding asymptotic relations.

We have from (2.8),

KBn(µ)⊎(1+n)(iy) = Kµ⊞(1+n)(iy).

Therefore using (2.2) we can write the above expression as

(1 + n)KBn(µ)(iy) = Kµ⊞(1+n)(iy). (4.7)

Since µ has regularly varying tail of index −α, from Theorem 1.1 of Hazra and
Maulik (2013) we can conclude that µ is free subexponential, i.e.

µ⊞(1+n)(y,∞) ∼ (1 + n)µ(y,∞) as y → ∞, (4.8)

which shows that the probability measure µ⊞(1+n) ∈ M+ is also regularly varying
of index −α at infinity. Therefore, using the relation between the remainder term
of K and B transforms (see (4.1)) and Theorem 3.1 we get as y → ∞,

ℑrK
µ⊞(1+n)

(iy) ∼ −
π(p+ 1− α)/2

cos(π(α − p)/2)
ypµ⊞(1+n)(y,∞), (4.9)
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which is regularly varying of index −(α − p). Now taking imaginary parts of the
remainder terms on both sides of (4.7) and using (4.9), we get

(1 + n)ℑrKBn(µ)
(iy) = ℑrK

µ⊞(1+n)
(iy)

∼ −
π(p+ 1− α)/2

cos(π(α − p)/2)
ypµ⊞(1+n)(y,∞)

(4.8)
∼ −

π(p+ 1− α)/2

cos(π(α− p)/2)
(1 + n)ypµ(y,∞),

Therefore

ℑrKBn(µ)
(iy) ∼ −

π(p+ 1− α)/2

cos(π(α− p)/2)
ypµ(y,∞), (4.10)

which is again regularly varying of index −(α − p). Similar calculations by taking
the real part in place of imaginary part gives ℜrKBn(µ)

(iy) is regularly varying of

index −(α−p), in particular we shall then have ℑrKBn(µ)
(iy) ≈ ℜrKBn(µ)

(iy). Now
the definition of both additive Boolean convolution and the map B allows us to
deduce that Bn(µ) ∈ Mp if and only if µ ∈ Mp. Thus applying (3.9) we get Bn(µ)
is regularly varying of index −α and

ℑrKBn(µ)
(iy) ∼ −

π(p+ 1− α)/2

cos(π(α− p)/2)
ypBn(µ)(y,∞). (4.11)

Hence from (4.10) and (4.11) we have as y → ∞,

µ(y,∞) ∼ Bn(µ)(y,∞).

Conversely, suppose that Bn(µ) is regularly varying of index −α. Here also we
further suppose that α ∈ (p, p + 1) with p > 0. When α = p or α = p + 1 the
conclusion can be made by using similar arguments and corresponding asymptotic
relationships from Hazra and Maulik (2013). Now using Theorem 2.2 we have,
Bn(µ) is Boolean-subexponential, i.e.;

Bn(µ)
⊎(1+n)(y,∞) ∼ (1 + n)Bn(µ)(y,∞), (4.12)

which also shows that Bn(µ)
⊎(1+n) is regularly varying of tail index −α. Let us

recall the Voiculescu transform of a measure µ. It is known from Bercovici and
Voiculescu (1993) that Fµ = 1/Gµ has a left inverse F−1

µ (defined on a suitable

domain) and φµ(z) = F−1
µ (z) − z. For probability measures µ and ν one has

φµ⊞ν(z) = φµ(z)+φν(z) on an appropriate domain. The asymptotics of remainder
of φµ were derived in Hazra and Maulik (2013). We can write from (2.8),

ℑrφ
µ⊞(1+n)

(iy) = ℑrφ
Bn(µ)⊎(1+n)

(iy), (4.13)

where rφµ
(z) is the remainder term of the Voiculescu transform of µ. Now using

the fact that Bn(µ)
⊎(1+n) is regularly varying of tail index −α, we get by applying

Theorem 2.1 of Hazra and Maulik (2013) ℑrφ
Bn(µ)⊎(1+n)

(iy) is regularly varying of

index −(α− p) and

ℑrφ
Bn(µ)⊎(1+n)

(iy) ∼ −
π(p+ 1− α)/2

cos(π(α − p)/2)
ypBn(µ)

⊎(1+n)(y,∞),

(4.12)
∼ −

π(p+ 1− α)/2

cos(π(α− p)/2)
yp(1 + n)Bn(µ)(y,∞). (4.14)
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Now combining (4.13), (4.14) and using the fact that rφµ⊞ν
(z) = rφµ

(z) + rφν
(z),

we have

ℑrφµ
(iy) ∼ −

π(p+ 1− α)/2

cos(π(α − p)/2)
ypBn(µ)(y,∞). (4.15)

This shows that ℑrφµ
(iy) is regularly varying of index −(α−p) and again applying

Theorem 2.1 of Hazra and Maulik (2013), we get

ℑrφµ
(iy) ∼ −

π(p+ 1− α)/2

cos(π(α − p)/2)
ypµ(y,∞). (4.16)

Combining (4.15) and (4.16) it follows µ is regularly varying of tail index −α and
as y → ∞,

µ(y,∞) ∼ Bn(µ)(y,∞).

Therefore we are done for the integer case. Further we recall the definitions of µ⊞t

and µ⊎t form Belinschi and Nica (2008) (See also Speicher and Woroudi, 1997 and
Belinschi and Bercovici, 2004 for more details):

For any t > 1 and µ ∈ M+ there exists µ⊞t ∈ M+ satisfying φµ⊞t(z) = tφµ(z)
and thus

rφ
µ⊞t (z) = trφµ

(z) (4.17)

on a truncated angular domain (e.g. z with 1/z ∈ ∆κ,δ for some positive κ, δ) where
they are well defined. Also for any t > 0 and µ ∈ M+ there exists µ⊎t ∈ M+ such
that Kµ⊎t(z) = tKµ(z) on the upper half plane. So

rKµ⊎t (z) = trKµ
(z). (4.18)

Now successive use of (4.17), Hazra and Maulik (2013, Theorem 2.1-2.4) ac-
cording to suitable cases, the fact µ ∈ Mp implies µ⊞t ∈ Mp which follows from
Benaych-Georges (2006, Theorem 1.5) and the definition of K transform, we can
say that any probability measure µ with regularly varying tail of index −α, α > 0
is more than free subexponential, i.e.,

1) If µ is regularly varying of tail index −α then µ⊞t is also so for all t > 1. In
particular, as y → ∞, we have µ⊞t(y,∞) ∼ tµ(y,∞).

Also using (4.18), Theorem 3.1-3.5 for respective cases and the fact that µ⊎t ∈
Mp whenever µ ∈ Mp we shall be able to conclude that

2) If µ is regularly varying of tail index −α then µ⊎t is also so for all t > 0. In
particular, as y → ∞, we have µ⊎t(y,∞) ∼ tµ(y,∞).

Now the above facts and similar calculations done in the above proof for the
integer case gives us the result for any non-negative real number t. �

5. Result on multiplicative Boolean convolution

In this short section we will prove Theorem 2.6 using the relation of B-transform
with the multiplicative Boolean convolution. We begin by observing that when µ
has p moments and ν has q moments, then the Boolean multiplicative convolution
of µ and ν has exactly p moments if p 6 q.

Lemma 5.1. Suppose p 6 q, µ ∈ Mp and ν ∈ Mq, then µ ×∪ ν ∈ Mp.
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Proof : Note that when µ has infinite mean the result is obvious. Now suppose µ
and ν both have finite mean then from the definition of the remainder terms we
can write the B-transforms of µ and ν in the following way

f1 (z) :=
1

m(µ)Bµ
(z) = 1 + c1z + · · ·+ cp−1z

p−1 + zp−1rf1 (z)

where ci, i = 1, 2, · · · , p− 1 are real constants and

f2 (z) :=
1

m(ν)Bν
(z) = 1 + d1z + · · ·+ dp−1z

p−1 + · · ·+ dq−1z
q−1 + zq−1rf2 (z)

where dj , j = 1, 2, · · · q − 1 are also real constants. Taking the product of f1 (z)

and f2 (z) we see that 1
B -transform of µ ×∪ ν has a Taylor series expansion of order

p− 1 by (2.12). Now it is easy to see that µ ∈ Mp is equivalent to 1
Bµ

(z) having a

Taylor series expansion of order p− 1 (see Theorem 1.5 of Benaych-Georges, 2006).

Therefore we see that µ ×∪ ν ∈ Mp. �

Following equation (2.12) and using the results in Section 3 we shall derive the
relation between the real or imaginary parts of the remainder terms of the product
of two B-transforms. The Theorem is split into several cases depending on the
existence of integer moments of the two measures involved.

Theorem 5.2. Suppose α 6 β and let µ and ν be regularly varying with indices −α
and −β respectively. So there exists a non-negative integer p such that α ∈ [p, p+1]
and µ ∈ Mp. We also suppose that ν has finite first moment.1 Then we have the
following:

(1) Suppose α < β.
(a) If 1 6 p < α < p+ 1 or α ∈ (0, 1), then as y → ∞

ℑr 1
BµBν

(
−iy−1

)
∼ m (ν)ℑr 1

Bµ

(
−iy−1

)
and

ℜr 1
BµBν

(
−iy−1

)
∼ m (ν)ℜr 1

Bµ

(
−iy−1

)
.

(b) If p > 1, α = p, then as y → ∞

ℑr 1
BµBν

(
−iy−1

)
∼ m (ν)ℑr 1

Bµ

(
−iy−1

)
and

ℜr 1
BµBν

(
−iy−1

)
≫ y−1.

(c) If p = 0, α = 1, r ∈ (0, 1/2), then as y → ∞

ℑr 1
BµBν

(
−iy−1

)
∼ m (ν)ℑr 1

Bµ

(
−iy−1

)
and

y−1 ≪ −y−1ℜr 1
BµBν

(
−iy−1

)
≪ y−(1−r/2).

(d) If p > 1, α = p+ 1, r ∈ (0, 1/2), then as y → ∞

ℜr 1
BµBν

(
−iy−1

)
∼ m (ν)ℜr 1

Bµ

(
−iy−1

)
and

y−1 ≪ ℑr 1
BµBν

(
−iy−1

)
≪ y−(1−r/2).

1This is needed to define multiplicative Boolean convolution.
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(2) Suppose α = β and there exists some c ∈ (0,∞) such that ν(x,∞) ∼
cµ(x,∞). Then (1a)(with only p > 1), (1b) and (1d) holds with m(ν) is
replaced by (1 + c)m(ν) at each places.

We shall provide a detailed proof of this result in Section 6. We prove the main
Theorem 2.6 for multiplicative Boolean convolution using the above result.

Proof of Theorem 2.6: Suppose µ ∈ Mp, 1 6 p < α < p + 1 and ν ∈ Mq, q > p
with α < β then using (2.12) and (1a) of Theorem 5.2 we have as y → ∞,

ℑr 1
B

µ ×∪ ν

(
−iy−1

)
∼ m (ν)ℑr 1

Bµ

(
−iy−1

)
and

ℜr 1
B

µ ×∪ ν

(
−iy−1

)
∼ m (ν)ℜr 1

Bµ

(
−iy−1

)
.

Therefore using (3.9), (3.10) and above asymptotics, we get

ℑr 1
B

µ ×∪ ν

(
−iy−1

)
∼ −

π (p+ 1− α) /2

cos (π (α− p) /2)
ypm (ν)µ (y,∞) and (5.1)

ℜr 1
B

µ ×∪ ν

(
−iy−1

)
∼ −

π (p+ 2− α) /2

sin (π (α− p) /2)
ypm (ν)µ (y,∞) as y → ∞.

So ℑr 1
B

µ ×∪ ν

(
−iy−1

)
≈ ℜr 1

B

µ ×∪ ν

(
−iy−1

)
are both regularly varying − (α− p).

By Lemma 5.1, we have µ ×∪ ν ∈ Mp and therefore by applying the reverse im-

plication of Theorem 3.1 we get µ ×∪ ν is regularly varying of index −α and again

using the asymptotic equivalence (3.9) of Theorem 3.1 for the measure µ ×∪ ν we
have,

ℑr 1
B

µ ×∪ ν

(
−iy−1

)
∼ −

π (p+ 1− α) /2

cos (π (α− p) /2)
ypµ ×∪ ν (y,∞) . (5.2)

Hence from (5.1) and (5.2) we get µ ×∪ ν (y,∞) ∼ m (ν)µ (y,∞). The other cases
can be similarly dealt with using Theorem 5.2 and the remaining four theorems in
Section 3. We skip the details.

�

Remark 5.3. As we have mentioned in the beginning of Theorem 2.6, we have not
dealt with the case when µ and ν both have the same regularly varying tail index
but they are not tail balanced which can happen only in the case when p > 1, µ is
in Mp and ν is in Mp+1 but they are both regularly varying of tail index −(p+1).

In this case similar calculations will show that µ ×∪ ν (y,∞) ∼ m (ν)µ (y,∞), i.e.,
the constant in the left of the asymptotic is 1 instead of the form 1 + c.

6. Proofs of Theorems 3.1 to 3.5 and Theorem 5.2

To keep the paper self contained we recall the following results from Hazra and
Maulik (2013, Theorem 2.1-2.4). The results there gave the relation between µ and
the remainder of Cauchy transform. We use the equation (3.5) to rewrite them in
terms of remainder of Ψµ when p is a positive integer and α ∈ (p, p+ 1):
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Theorem 6.1. Let µ be in Mp, p > 1 and p < α < p + 1. The following are
equivalent:

(1) µ (y,∞) is regularly varying of index −α.
(2) ℑrΨµ

(
−iy−1

)
is regularly varying of index − (α− p) and

ℜrΨµ

(
−iy−1

)
≈ ℑrΨµ

(
−iy−1

)
.

If any of the above statements holds, we also have, as z → 0 n.t.,

z ≪ rΨµ
(z); (6.1)

as y → ∞

ℑrΨµ

(
−iy−1

)
∼ −

π (p+ 1− α) /2

cos (π (α− p) /2)
ypµ (y,∞) ≫ y−1 (6.2)

and

ℜrΨµ

(
−iy−1

)
∼ −

π (p+ 2− α) /2

sin (π (α− p) /2)
ypµ (y,∞) ≫ y−1. (6.3)

When p is a positive integer and α = p.

Theorem 6.2. Let µ be in Mp, p > 1 and α = p. The following are equivalent:

(1) µ (y,∞) is regularly varying of index −p.
(2) ℑrΨµ

(
−iy−1

)
is is slowly varying and

ℜrΨµ

(
−iy−1

)
≫ y−1. (6.4)

If any of the above statements holds, we also have, as z → 0 n.t.,

z ≪ rΨµ
(z);

as y → ∞

ℑrΨµ

(
−iy−1

)
∼ −

π

2
ypµ (y,∞) ≫ y−1 (6.5)

If we consider α ∈ [0, 1), then

Theorem 6.3. Let µ be in M0 and 0 ≤ α < 1. The following are equivalent:

(1) µ (y,∞) is regularly varying of index −α.
(2) ℑΨµ

(
−iy−1

)
is regularly varying of index −α and

ℜΨµ

(
−iy−1

)
≈ ℑΨµ

(
−iy−1

)
.

If any of the above statements holds, we also have, as z → 0 n.t.,

z ≪ Ψµ(z);

as y → ∞

ℑΨµ

(
−iy−1

)
∼ −

π (1− α) /2

cos (πα/2)
µ (y,∞) ≫ y−1 (6.6)

and
ℜΨµ

(
−iy−1

)
∼ −dαµ (y,∞) ≫ y−1 (6.7)

where dα is as in (3.3).

Finally, when p > 0 and α = p+ 1.

Theorem 6.4. Let µ be in Mp, p > 1 and α = p + 1, r ∈ (0, 1/2). The following
are equivalent:

(1) µ (y,∞) is regularly varying of index − (p+ 1).
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(2) ℜrΨµ

(
−iy−1

)
is regularly varying of index −1 and

y−1 ≪ ℑrΨµ

(
−iy−1

)
≪ y−(1−r/2). (6.8)

If any of the above statements holds, we also have, as z → 0 n.t.,

z ≪ rΨµ
(z) ;

as y → ∞

y−(1+r/2) ≪ ℜrΨµ

(
−iy−1

)
∼ −

π

2
ypµ (y,∞) ≪ y−(1−r/2). (6.9)

To study the relation between the remainder terms of Ψ and η transforms we
consider the following classes of functions which contains Ψµ depending on regular
variation of µ. We shall show that the classes are closed under certain operations.
Let H denote the set of analytic functions A having a domain DA such that for all
positive κ, there exists δ > 0 with ∆κ,δ ⊂ DA.

Definition 6.5. Let Z1,p denote the set of all A ∈ H which satisfies the following
conditions:

(R1) For p > 0, A has Taylor series expansion with real coefficients of the form

A(z) =

p
∑

j=1

ajz
j + zprA(z)

where a1, · · · , ap are real numbers and for p = 0 we interpret the term in
the sum as absent.

(R2) z ≪ rA(z) ≪ 1 as z → 0 n.t.
(R3) ℜrA(−iy−1) ≈ ℑrA(−iy−1) as y → ∞.

Let Z2,p be the same as Z1,p with (R1) and (R2) but (R3) is replaced by

(R3′) y−(1+r/2) ≪ℜrA(−iy−1)≪ y−(1−r/2) and y−1 ≪ℑrA(−iy−1)≪ y−(1−r/2)

for any r ∈ (0, 1/2).

Let Z3,p be the same as Z1,p with (R1) for p > 1 and same (R2) but (R3) is replaced
by

(R3′′) ℜrA(−iy−1) ≫ y−1 and ℑrA(−iy−1) ≫ y−1.

Remark 6.6. Suppose that µ(y,∞) is regularly varying −α and µ ∈ Mp with
α ∈ [p, p+ 1]. Then note the following:

(1) If p > 1, p < α < p + 1 or p = 0, 0 6 α < 1, then Ψµ(z) ∈ Z1,p. This
follows from Theorem 6.1 and Theorem 6.3.

(2) If p > 0, α = p+ 1, then Ψµ(z) ∈ Z2,p. This follows from Theorem 6.4.
(3) If p > 1, α = p, then Ψµ(z) ∈ Z3,p. This follows from Theorem 6.2.

Hence the proposition 6.7, given below, allows us to conclude that Ψµ(z) ∈ Zi,p if
and only if ηµ(z) ∈ Zi,p for any fixed i ∈ {1, 2, 3} and p ∈ {0, 1, 2, · · · }.

Proposition 6.7. For any fixed i ∈ {1, 2, 3} and p > 0 (excluding Z3,0 as this set
is not defined), if A(z) ∈ Zi,p then B(z) = A(z)(1 ± A(z))−1 ∈ Zi,p. Furthermore,
we have

(1) rB(z) ∼ rA(z), as z → 0 n.t.;
(2) ℜrB(−iy−1) ∼ ℜrA(−iy−1) as y → ∞ and
(3) ℑrB(−iy−1) ∼ ℑrA(−iy−1) as y → ∞.
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Proof : We shall divide this proof into some cases because depending on i and p
the calculations are different. We shall only show for B(z) = A(z)(1 + A(z))−1.
Exactly same calculation will prove the result for B(z) = A(z)(1−A(z))−1.

(1) Suppose A ∈ Z1,0. Then rA(z) = A(z). Therefore rB(z) = B(z). This
shows that (R1) is satisfied.

Now,

B(z) = A(z)(1 +A(z))−1 (6.10)

= A(z) + o(|A(z)|) as z → 0 n.t. (6.11)

Therefore, we have B(z) ∼ A(z) as z → 0 n.t. Therefore (R2) is satisfied.
From (6.11) we have,

ℜB(−iy−1) = ℜA(−iy−1) + o(|A(−iy−1)|),

ℑB(−iy−1) = ℑA(−iy−1) + o(|A(−iy−1)|).

Now to show the equivalence of the real parts and imaginary parts, it is
enough to show that

|A(−iy−1)|

ℜA(−iy−1)
and

|A(−iy−1)|

ℑA(−iy−1)

remains bounded as y → ∞. We shall show the first part only as the second
one follows by the same arguments.

(∣
∣
∣
∣

A(−iy−1)

ℜA(−iy−1)

∣
∣
∣
∣

)2

=
(ℜA(−iy−1))2 + (ℑA(−iy−1))2

(ℜA(−iy−1))2

= 1 +

(
ℑA(−iy−1)

ℜA(−iy−1)

)2

,

which goes to a constant as y → ∞ by the fact that A satisfies (R3).
Therefore (R3) is satisfied for B(z) and the asymptotics in the statement
also remain true.

(2) Suppose A ∈ Z1,p, p > 1. We note that |A(z)| → 0 as z → 0 n.t. Thus
we have the following series expansion using equation (2.10) for B(z) near
zero:

B(z) =

p
∑

i=1

(−1i+1)(A(z))i +O
(
(A(z))p+1

)
.

Using (R1) and (R2) we get

(A(z))p+1

zprA(z)
=

(
A(z)

z

)p+1
z

rA(z)
→ 0

as z → 0. Hence

B(z) =

p
∑

i=1

((−1i+1)(

p
∑

j=1

mjz
j + zprA(z))

j) + o (zprA(z)) . (6.12)

We expand the term in the right-hand side of (6.15). As z ≪ rA(z), all
powers of z with indices greater than p can be absorbed in the last term on
the right-hand side. Then collect upto p-th power of z to form a polynomial
P (z) of degree at most p with real coefficients without the constant term.
Finally we consider the terms containing some powers of rA(z) which will
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contain terms of the form zl1(zprA(z))
l2 for integers l1 > 0 and l2 > 1 with

leading term zprA(z) and the remaining terms can be absorbed in the last
term in the right-hand side. Thus we get,

B(z) = P (z) + zprA(z) + o(zprA(z)).

Therefore (R1) is satisfied. Now by uniqueness of the Taylor series expan-
sion, we have

rB(z) = rA(z) + o(rA(z)). (6.13)

Therefore rB (z) ∼ rA (z). So (R2) is satisfied. Thus

ℜrB (z) = ℜrA (z) + o (|rA (z) |) ,

ℑrB (z) = ℑrA (z) + o (|rA (z) |) .

Now from (R3) and same calculations like in the first case we get that B(z)
is satisfying (R3).

(3) Suppose A ∈ Z2,0. Here we only need to show (R3′) as (R1) and (R2) have
been already shown in case 1. From (6.10),

B (z) = A (z) +O
(
|A (z) |2

)
.

Consequently,

ℜB (z) = ℜA (z) +O
(
|A (z) |2

)
,

ℑB (z) = ℑA (z) +O
(
|A (z) |2

)
.

It is enough to show that
|A(−iy−1)|2

ℜA(−iy−1) and
|A(−iy−1)|2

ℑA(−iy−1) both goes to zero as

y → ∞. For that

|A
(
−iy−1

)
|2

ℜA (−iy−1)
= ℜA

(
−iy−1

)
+

(
ℑA

(
−iy−1

))2

ℜA (−iy−1)

= ℜA
(
−iy−1

)
+

(

ℑA
(
−iy−1

)

y−(1−r/2)

)2
y−(1+r/2)

ℜA (−iy−1)
y−1+3r/2,

which goes to zero as y → ∞ using (R3′) for A(z). For the other terms
similarly note that

|A
(
−iy−1

)
|2

ℑA (−iy−1)
= ℑA

(
−iy−1

)
+

(
ℜA

(
−iy−1

))2

ℑA (−iy−1)

= ℑA
(
−iy−1

)
+

(

ℜA
(
−iy−1

)

y−(1−r/2)

)2
y−1

ℑA (−iy−1)
y−1+r

also goes to zero as y → ∞ using (R3′) for A(z). Thus (R3′) is obviously
satisfied by B(z).

(4) Suppose A ∈ Z2,p, p > 1. Here we need to show only (R3′). From (6.12)
we can write using a similar argument given in case (2),

B(z) = P (z) + zprA(z) + c1z
p+1 +O(zp+1rA(z)).

Therefore,

rB (z) = rA(z) + c1z +O(zrA(z)). (6.14)
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So, rB (z) ∼ rA (z) and evaluating (6.14) at the point z = −iy−1,

rB
(
−iy−1

)
= rA(−iy−1) + c1(−iy−1) + O(zrA(−iy−1))

and after taking the real parts on both sides, we have

ℜrB
(
−iy−1

)
= ℜrA

(
−iy−1

)
+O

(
y−1|rA

(
−iy−1

)
|
)
.

Now,
∣
∣
∣
∣
∣

y−1|rA
(
−iy−1

)
|

ℜrA (−iy−1)

∣
∣
∣
∣
∣

2

=
1

y2
+

1

y2

(

ℑrA
(
−iy−1

)

ℜrA (−iy−1)

)2

and

y−1ℑrA
(
−iy−1

)

ℜrA (−iy−1)
=

ℑrA
(
−iy−1

)

y−(1−r/2)

y−(1+r/2)

ℜrA (−iy−1)
y−1+r

goes to zero as y → ∞ by (R3′). As a consequence we conclude that
ℜrB

(
−iy−1

)
∼ ℜrA

(
−iy−1

)
.

For the imaginary part asymptotic we write from (6.14),

rB (z) = rA(z) + O(|z|). (6.15)

Now putting z = −iy−1 and taking imaginary parts on both sides we get

ℑrB
(
−iy−1

)
= ℑrA(−iy−1) + O(|y−1|)

and note that yℑrA
(
−iy−1

)
→ ∞ as z → ∞ by (R3′).

Hence ℑrB
(
−iy−1

)
∼ ℑrA(−iy−1). So we are done in this case.

(5) Suppose A ∈ Z3,p, p > 1. Here (R1) and (R2) is shown in case (2). Now
we write the following using (6.15),

ℜrB
(
−iy−1

)
= ℜrA

(
−iy−1

)
+O

(
|y−1|

)
,

ℑrB
(
−iy−1

)
= ℑrA

(
−iy−1

)
+O

(
|y−1|

)
.

Now yℜrA
(
−iy−1

)
and yℑrA

(
−iy−1

)
both go to infinity as y → ∞ by

(R3′′). This shows that (R3′′) is also satisfied by B(z) in this case.

�

We give the proofs of the main theorems stated in Theorem 3.1–Theorem 3.5.
We shall only prove Theorem 3.1 and the rest of the theorems will follow by similar
arguments.

Proof of Theorem 3.1: Combining Theorem 6.1, Proposition 6.7 and the definition
of B-transform coming out of η-transform, we get Theorem 3.1 because the asymp-
totic relationship of Ψ-transform follows from Theorem 6.1, the relationship be-
tween Ψ and η transforms follows from the Proposition 6.7 (see also Definition 6.5
and Remark 6.6) and finally the correspondence between η and B transforms is
ensured by equations stated in (3.7). �

Proof of Theorem 5.2: Recall that we have assumed µ ∈ Mp is regularly varying
tail index −α, α > 0 with α ∈ [p, p + 1]. Since ν is regularly varying with tail
index −β with β > α and ν has finite first moment, there exists a positive integer
q > 1 with q > p and ν ∈ Mq. The proof of this theorem is split up into different
cases depending on p, q and α, β. It contains a number of subcases because the
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asymptotic relations and the Taylor series like expansions differ with respect to the
position of α and β in the lattice of non-negative integers.

Case (1a) Recall that in this case we have assumed either 1 6 p < α < p+ 1 or
0 = p 6 α < p+ 1 = 1.

Subcase (i) Let µ ∈ M0, ν ∈ Mq, 2 6 q and 0 6 α < 1 and q 6 β 6 q + 1.
Define

f1 (z) :=
1

Bµ
(z) and

f2 (z) :=
1

m(ν)Bν
(z) = 1 + d1z + · · ·+ dq−1z

q−1 + zq−1rf2 (z) ,

where dj , j = 1, 2, · · · , q − 1 are real coefficients. Therefore

f1 (z) f2 (z) = f1 (z) + d1zf1 (z) + · · ·+ dq−1z
q−1f1 (z) + zq−1f1 (z) rf2 (z)

and using Lemma 5.1

rf1f2(z) = f1 (z) f2 (z) = f1 (z) +O (|zf1 (z) |) . (6.16)

Taking the imaginary parts of (6.16), we get

ℑrf1f2(−iy−1) = ℑf1
(
−iy−1

)
+O

(
y−1|f1

(
−iy−1

)
|
)
.

Observe,

y−1 |f1
(
−iy−1

)
|

ℑf1 (−iy−1)
=

((
ℜf1

(
−iy−1

))2
+
(
ℑf1

(
−iy−1

))2

y2 (ℑf1 (−iy−1))
2

)1/2

=




1

y2
+

1

y2

(

ℜf1
(
−iy−1

)

ℑf1 (−iy−1)

)2




1/2

→ 0 as y → ∞,

using (3.13) and (3.14). Hence ℑrf1f2(−iy−1) ∼ ℑf1
(
−iy−1

)
as y → ∞. Using

same arguments for real part we also have ℜrf1f2(−iy−1) ∼ ℜf1
(
−iy−1

)
.

Subcase (ii) Let µ ∈ M0, ν ∈ Mq, q = 1 and 0 6 α < 1 and q 6 β 6 q + 1.
The case is similar to q > 2. Here the equation (6.16) gets replaced by

rf1f2(−iy−1) = f1
(
−iy−1

)
+ f1

(
−iy−1

)
rf2
(
−iy−1

)
.

Taking real part and imaginary part we have ℜrf1f2(−iy−1) ∼ ℜf1
(
−iy−1

)
and

ℑrf1f2(−iy−1) ∼ ℑf1
(
−iy−1

)
respectively using

ℑf1(−iy−1)
ℑf1(−iy−1) ,

ℜf1(−iy−1)
ℜf1(−iy−1) ,

ℜf1(−iy−1)
ℑf1(−iy−1)

∼ a nonzero constant and |rf2
(
−iy−1

)
| → 0 both as y → ∞. So the p = 0 case is

done.
Subcase (iii) Here suppose µ, ν ∈ M1 and 1 < α < β < 2. Let f1 (z) =
1

m(µ)Bµ
(z) and f2 (z) =

1
m(ν)Bν

(z). Then

fi (z) = 1 + rfi (z) for i = 1, 2

Therefore,

rf1f2(z) = rf1 (z) + rf2 (z) + rf1 (z) rf2 (z) .

So,

rf1f2(−iy−1) = rf1
(
−iy−1

)
+ rf2

(
−iy−1

)
+ rf1

(
−iy−1

)
rf2
(
−iy−1

)
(6.17)

= rf1
(
−iy−1

)
+O

(
|rf2

(
−iy−1

)
|
)
.
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Thus taking the real and imaginary parts

ℑrf1f2(−iy−1) = ℑrf1
(
−iy−1

)
+O

(
|rf2

(
−iy−1

)
|
)

and

ℜrf1f2(−iy−1) = ℜrf1
(
−iy−1

)
+O

(
|rf2

(
−iy−1

)
|
)
.

Using (3.9) and (3.10),
(

|rf2
(
−iy−1

)
|

ℑrf1 (−iy−1)

)2

=

(
ℜrf2

(
−iy−1

))2
+
(
ℑrf2

(
−iy−1

))2

(ℑrf1 (−iy−1))2
∼

y1−βl1(y)

y1−αl2(y)
→

y→∞
0,

where lk(y), k = 1, 2 are slowly varying functions. Therefore we get ℑrf1f2(−iy−1)
∼ ℑrf1

(
−iy−1

)
. Similarly taking the real parts one can show ℜrf1f2(−iy−1) ∼

ℜrf1
(
−iy−1

)
.

Subcase (iv) Let µ, ν ∈ M1 and 1 < α < 2, β = 2. The case is similar to the
previous one. Using (6.17), we get

ℑrf1f2(z) = ℑrf1 (z) + ℑrf2 (z) + ℑ (rf1 (z) rf2 (z)) .

So the expression for the imaginary part becomes

ℑrf1f2(z) = ℑrf1 (z) + ℑrf2 (z) + ℑrf1 (z)ℜrf2 (z) + ℜrf1 (z)ℑrf2 (z) .

Using similar type of arguments with the help of (3.19) and (3.17),
we get ℑrf1f2(−iy−1) ∼ ℑrf1

(
−iy−1

)
. The real part can be dealt similarly.

Subcase (v) Suppose µ, ν ∈ Mp, p = q > 2 and p < α < β 6 p+ 1. Write

f1 (z) :=
1

m(µ)Bµ
(z) = 1 + c1z + · · ·+ cp−1z

p−1 + zp−1rf1 (z) .

f2 (z) :=
1

m(ν)Bν
(z) = 1 + d1z + · · ·+ dp−1z

p−1 + zp−1rf2 (z) ,

where ci and di, 1 6 i 6 p− 1 are some real constants. So,

f1 (z) f2 (z) = 1 + e1z + · · ·+ ep−1z
p−1 + zp−1 (rf1 (z) + rf2 (z) +O (|z|)) ,

where ei, 1 6 i 6 p− 1 are real constants. Therefore,

rf1f2(z) = rf1 (z) + rf2 (z) +O (|z|) .

Taking imaginary and real part on both sides we obtain

ℑrf1f2(−iy−1) = ℑrf1
(
−iy−1

)
+ ℑrf2

(
−iy−1

)
+O

(
y−1

)
, (6.18)

ℜrf1f2(−iy−1) = ℜrf1
(
−iy−1

)
+ ℜrf2

(
−iy−1

)
+O

(
y−1

)
. (6.19)

When p < α < β < p+ 1, we can use (3.9) and (3.10) to get

ℑrf2
(
−iy−1

)

ℑrf1 (−iy−1)
and

ℜrf2
(
−iy−1

)

ℜrf1 (−iy−1)
→ 0 as y → ∞.

Also, yℑrf1
(
−iy−1

)
, yℜrf1

(
−iy−1

)
→ ∞ as y → ∞ by (3.9) and (3.10) in the

respective cases.
When p < α < p+ 1, β = p+ 1 we have

ℑrf2
(
−iy−1

)

ℑrf1 (−iy−1)
= −

ℑrf2
(
−iy−1

)

y−(1−r/2)

1

cy(p−α)l (y)

1

y1−r/2
,

where c is a constant and l (y) is a slowly varying function and r as in Theorem 3.5.
To make this quantity tend to zero as y → ∞ using (3.9) and (3.19) we need
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(p− α+ 1− r/2) > 0. This can be done by a suitable choice of r ∈ (0, 1/2) since
p+ 1− α > 0. Exactly same can be done for the real parts also.

Subcase (vi) Now suppose µ ∈ Mp, ν ∈ Mq, 1 6 p < q and p < α < p+ 1 and
q 6 β 6 q + 1. Here we have,

f1 (z) :=
1

m(µ)Bµ
(z) = 1 + c1z + · · ·+ cp−1z

p−1 + zp−1rf1 (z) (6.20)

and

f2 (z) :=
1

m(ν)Bν
(z) = 1 + d1z + · · ·+ dp−1z

p−1 + · · ·+ dq−1z
q−1 + zq−1rf2 (z) ,

(6.21)

where ci, 1 6 i 6 p− 1 and dj , 1 6 j 6 q − 1 are some real constants. It is easy to
see using p < q we have

rf1f2(z) = rf1 (z) +O (|z|) . (6.22)

Observe that the asymptotics follow since yℑrf1
(
−iy−1

)
, yℜrf1

(
−iy−1

)
→ ∞ as

y → ∞ (using (3.9) and (3.10) respectively).

Case (1b) The second part of the theorem deals with the case p > 1 and α = p.
We split again the proof into several subcases.

Subcase (i) 1 6 p = α < β < p+ 1 or α = p, p < q 6 β 6 q + 1. In this case
we can define f1 and f2 as in (6.20) and (6.21) respectively and one can get the
imaginary part asymptotics using the similar calculations as in the proof of (1a).
We only need to show ℜrf1f2(−iy−1) ≫ y−1 in the above cases. But it is obvious
since p, q > 1 and ℑrf1(−iy−1),ℜrf1(−iy−1) ≫ y−1.

Subcase (ii) Suppose p = q = 1, α = p and β = p + 1. Then we have form
(6.17)

ℑrf1f2(−iy−1) = ℑrf1
(
−iy−1

)
+ ℑrf2

(
−iy−1

)
+ ℑrf1

(
−iy−1

)
ℜrf2

(
−iy−1

)

+ ℜrf1
(
−iy−1

)
ℑrf2

(
−iy−1

)

ℜrf1f2(−iy−1) = ℜrf1
(
−iy−1

)
+O(|rf2

(
−iy−1

)
|). (6.23)

Now using (3.17), (3.12), we get

ℑrf2
(
−iy−1

)

ℑrf1 (−iy−1)
=

ℑrf2
(
−iy−1

)

y−(1−r/2)

1

y1−r/2

1

l(y)
→ 0 as y → ∞, (6.24)

also observe

ℑrf1
(
−iy−1

)
ℜrf2

(
−iy−1

)

ℑrf1 (−iy−1)
= ℜrf2

(
−iy−1

)
→ 0 as y → ∞.

Therefore ℑrf1f2(−iy−1) ∼ ℑrf1
(
−iy−1

)
. We now consider the equation (6.23).

Observe that from (3.11) and (3.18)

ℜrf1
(
−iy−1

)
≫ y−1 and y

∣
∣rf2

(
−iy−1

)∣
∣ =

∣
∣
∣
∣
∣

rf2
(
−iy−1

)

−iy−1

∣
∣
∣
∣
∣
≫ 1.

These show that ℜrf1f2(−iy−1) ≫ y−1.
Subcase (iii) Now let p = q > 2, α = p and β = p + 1. For imaginary

part again using the equations (6.18), (3.12) and calculations as in (6.24) we have
ℑrf1f2(−iy−1) ∼ ℑrf1

(
−iy−1

)
. The real part asymptotics follow from (3.11),

(3.19).
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Case (1c) Let µ ∈ M0, ν ∈ Mq, 1 6 q and α = 1 and q 6 β 6 q + 1
with α 6= β. In this case we have from (6.16), ℑrf1f2(−iy−1) = ℑf1

(
−iy−1

)
+

O
(
y−1|f1

(
−iy−1

)
|
)
.

Now

y−1 |f1
(
−iy−1

)
|

ℑf1 (−iy−1)
=

((
ℜf1

(
−iy−1

))2
+
(
ℑf1

(
−iy−1

))2

y2 (ℑf1 (−iy−1))
2

)1/2

=




1

y2
+

1

y2

(

ℜf1
(
−iy−1

)

ℑf1 (−iy−1)

)2




1/2

→ 0 as y → ∞

because

y−1ℜf1
(
−iy−1

)

ℑf1 (−iy−1)
= y−1ℜf1

(
−iy−1

)

yr/2
yr/2

ℑf1 (−iy−1)

=
ℜf1

(
−iy−1

)

yr/2
1

y1−r/2ℑf1 (−iy−1)
→ 0 as y → ∞

using (3.16) and (3.15). Therefore ℑrf1f2(−iy−1) ∼ ℑf1
(
−iy−1

)
.

Again from (6.16), ℜrf1f2(−iy−1) = ℜf1
(
−iy−1

)
+ O

(
y−1|f1

(
−iy−1

)
|
)
. Now

if we are able to show that ℜrf1f2(−iy−1) ∼ ℜf1
(
−iy−1

)
then we are done. For

that we proceed exactly as in the case of imaginary part of this case. It is enough

to show that y−1ℑf1(−iy−1)
ℜf1(−iy−1) → 0 as y → ∞ to get the required result. Note in this

case ℜf1
(
−iy−1

)
→ ∞ and using (3.16) and (3.15), we get

y−1ℑf1
(
−iy−1

)

ℜf1 (−iy−1)
= y−1+r/2ℑf1

(
−iy−1

)

yr/2
1

ℜf1 (−iy−1)
→ 0 as y → ∞.

Case (1d) Suppose µ ∈ Mp, ν ∈ Mq, 1 6 p < q and α = p+1 and q 6 β 6 q+1
with α 6= β. In this case we have ℑrf1f2(−iy−1) = ℑrf1

(
−iy−1

)
+ O

(
y−1

)
from

(6.22). yℑrf1
(
−iy−1

)
→ ∞ as y → ∞ by (3.17). Therefore ℑrf1f2(−iy−1) ∼

ℑrf1
(
−iy−1

)
.

For the real part calculations we recall (6.20), (6.21) and write the remainder
term of f1f2(z) in the following way:

rf1f2(z) = rf1 (z) + dz + zrf1 (z) + zrf2 (z) +O
(
|z2|
)
.

Where d is some real constant. We note that the term zrf2 (z) may or may not
occur in the above expression depending on the value of q−p = 1 or > 1. Therefore

ℜrf1f2(−iy−1) = ℜrf1
(
−iy−1

)
−

ℑrf1
(
−iy−1

)
+ ℑrf2

(
−iy−1

)

y
+O

(
y−2

)
.

Using (3.18), y2ℜrf1
(
−iy−1

)
→ ∞ as y → ∞. For the term in the middle after

dividing by ℜrf1 (−iy−1) we observe the following:
When q 6 β < q + 1 the numerator is regularly varying with tail index between

(−1, 0] while the denominator is slowly varying and this allows us to conclude that
the term

ℑrf1
(
−iy−1

)
+ ℑrf2

(
−iy−1

)

yℜrf1 (−iy−1)
→ 0 as y → ∞.
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Also when β = q + 1 we can write

ℑrf1
(
−iy−1

)
+ ℑrf2

(
−iy−1

)

yℜrf1 (−iy−1)
=

1

y1−r

ℑrf1
(
−iy−1

)
+ ℑrf2

(
−iy−1

)

y−(1−r/2)

y−(1+r/2)

ℜrf1 (−iy−1)

→ 0 as y → ∞, using (3.19) and (3.17). Thus ℜrf1f2(−iy−1) ∼ ℜrf1
(
−iy−1

)
.

Proof of Theorem 5.2 (2) In this case we assume α = β, µ, ν ∈ Mp and
ν(x,∞) ∼ cµ(x,∞) for some c ∈ (0,∞). The methods are similar to the previous
one, so we will only briefly sketch the proofs.

Case (i) Suppose p > 1 and p < α = β < p+ 1.
Subcase (i) First suppose p = 1. Then from (6.17), we have

rf1f2(−iy−1) = rf1
(
−iy−1

)
+ rf2

(
−iy−1

)
+ o

(
|rf1

(
−iy−1

)
|
)
.

Taking imaginary parts on both sides we get

ℑrf1f2(−iy−1) = ℑrf1
(
−iy−1

)
+ ℑrf2

(
−iy−1

)
+ o

(
|rf1

(
−iy−1

)
|
)
.

Using (3.9), (3.10) and the tail equivalence condition we derive

ℑrf2
(
−iy−1

)

ℑrf1 (−iy−1)
→ c and

(

|rf1
(
−iy−1

)
|

ℑrf1 (−iy−1)

)

→ (1 + c2)1/2 as y → ∞.

Therefore we have ℑrf1f2(−iy−1) ∼ (1+c)ℑrf1
(
−iy−1

)
. Exactly same calculations

taking the real part into consideration gives ℜrf1f2(−iy−1) ∼ (1+ c)ℜrf1
(
−iy−1

)
.

Subcase (ii) Suppose p > 2. Then we have the equation (6.18), given by

ℑrf1f2(−iy−1) = ℑrf1
(
−iy−1

)
+ ℑrf2

(
−iy−1

)
+O

(
y−1

)
.

Here also using (3.9) we get as y → ∞

ℑrf2
(
−iy−1

)

ℑrf1 (−iy−1)
→ c and yℑrf1

(
−iy−1

)
→ ∞.

Thus ℑrf1f2(−iy−1) ∼ (1 + c)ℑrf1
(
−iy−1

)
and exactly same calculation with real

parts give ℜrf1f2(−iy−1) ∼ (1 + c)ℜrf1
(
−iy−1

)
.

Case (ii) When α = p, similar calculations like above provides ℑrf1f2(−iy−1) ∼
(1+c)ℑrf1

(
−iy−1

)
since we have the same imaginary part asymptotics in this case

also. The calculations done in the proof of (1b) assures us ℜrf1f2(−iy−1) ≫ y−1.
Case (iii). Here we suppose p > 1, α = β = p+ 1.
Subcase (i) First consider p = 1. From (6.17), we have

ℜrf1f2(−iy−1) = ℜrf1
(
−iy−1

)
+ ℜrf2

(
−iy−1

)
+ ℜ(rf1

(
−iy−1

)
rf2
(
−iy−1

)
).

Now from (3.19),

ℜrf2
(
−iy−1

)

ℜrf1 (−iy−1)
→ c as y → ∞.

Also
ℜrf1

(
−iy−1

)
ℜrf2

(
−iy−1

)

ℜrf1 (−iy−1)
= ℜrf2

(
−iy−1

)
→ 0 as y → ∞

and using (3.19) and (3.17) we observe that

ℑrf1
(
−iy−1

)
ℑrf2

(
−iy−1

)

ℜrf1 (−iy−1)
=

ℑrf1
(
−iy−1

)

y−(1−r/2)

ℑrf2
(
−iy−1

)

y−(1−r/2)

y−(1+r/2)

ℜrf1 (−iy−1)

1

y1−3r/2
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→ 0 as y → ∞. Thus ℜrf1f2(−iy−1) ∼ (1 + c)ℜrf1
(
−iy−1

)
. Exactly same cal-

culation taking the imaginary part gives us ℑrf1f2(−iy−1) ∼ (1 + c)ℑrf1
(
−iy−1

)
.

Therefore we are done when p = 1.
Subcase (ii) Suppose p > 2. The real part can be dealt as in the proof of case

(1d). For the imaginary part note that from (6.18) we have

ℑrf1f2(−iy−1) = ℑrf1
(
−iy−1

)
+ ℑrf2

(
−iy−1

)
+O

(
y−1

)
.

Now as y → ∞, y−(1−r/2) ≫ ℑrf1
(
−iy−1

)
, ℑrf2

(
−iy−1

)
≫ y−1 by (3.17). There-

fore we have ℑrf1f2(−iy−1) ≫ y−1. Noting the fact that y−1 ≪ y−(1−r/2) finally

we get ℑrf1f2(−iy−1) ≪ y−(1−r/2), r ∈ (0, 1/2).
�
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A. Ben Ghorbal and M. Schürmann. Non-commutative notions of stochastic in-
dependence. Math. Proc. Cambridge Philos. Soc. 133 (3), 531–561 (2002).
MR1919720.
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