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Abstract. This article introduces the operator-scaling random ball model, gen-
eralizing the isotropic random ball models investigated recently in the literature
to anisotropic setup. The model is introduced as a generalized random field and
results on weak convergence are established in the space of tempered distributions.

1. Introduction

In the past ten years, random ball models have appeared as a simple and yet
flexible class of random fields that characterize various types of spatial dependence
structures, see Kaj et al. (2007); Breton and Dombry (2009); Biermé et al. (2010);
Breton and Dombry (2011); Görgens and Kaj (2014); Gobard (2015); Breton and
Gobard (2015); Biermé and Estrade (2006); Pilipauskaitė and Surgailis (2016). In
particular, in several regimes, their scaling limits are self-similar and with long-
range dependence, see Samorodnitsky (2016); Pipiras and Taqqu (2017); Beran
et al. (2013). Such properties are desirable when modeling various real world phe-
nomena and thus such results have a broad range of applications.
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In words, a random ball model consists in a collection of random balls in Rd with
locations following a homogeneous Poisson point process and with independent and
identically distributed random radius and weights. Thus, each realization of random
balls on the space can be naturally viewed as a linear functional on an appropriate
space of test functions. Asymptotic behaviors are then of interest, when all the balls
are simultaneously rescaled by a parameter ρ, and at the same time the intensity of
balls also changes with respect to ρ. Under mild assumption on the distribution of
the radius, limit theorems can be established for ρÑ 0 or ρÑ8, corresponding to
the zoom-out or zoom-in cases respectively. In both cases, the qualitative behavior
of the limit random fields, whether exhibiting spatial dependence or not, depends
on whether the random balls are dense or sparse in the limit, in certain sense to be
specified below.

The random ball models can be viewed as generalizations of certain one-
dimensional models based on Poisson point processes that appeared in the study
of Internet traffics, see for example Mikosch et al. (2002); Kaj and Taqqu (2008)
and references therein. However, the extension to high dimensions presents new
technical challenges, and should not be viewed as simple generalization of the one-
dimensional results. In particular, the developments until now have two main limi-
tations. First, results so far in the literature focus on isotropic random ball models
(except for Pilipauskaitė and Surgailis, 2016). That is, the random fields have the
same distribution in each different direction. This feature, from the application
point of view, makes the model much less attractive. Second, the tightness of the
scaled random fields is difficult to establish. Usually random ball models are de-
fined as a random field tXpµquµPM indexed by a family of measures M on Rd. The
tightness of such random fields, after appropriate normalizations, is only established
for very restricted classes of M, see e.g. Breton and Gobard (2015); Breton and
Dombry (2011).

The goal of this paper is to establish limit theorems for a general class of random
ball models, and to remove the aforementioned two limitations.

First, we provide a general framework of random ball models exhibiting
anisotropic features and hence include all previously considered ones as special
cases. It is now well understood that a natural generalization of notion of self-
similarity, widely used in stochastic processes and time series, is the so-called
operator-scaling property for random fields introduced by Biermé et al. (2007).
A random field tZtutPRd is said to be pE,Hq-operator-scaling, if

tZcEtutPRd
d
“ cH tZtutPRd , for all c ą 0, (1.1)

where E is an appropriate d ˆ d matrix, cE :“
ř8

k“0pE log cqk{k! is also a ma-
trix, and H ą 0. Taking E to be the identity matrix, the above says that the
random field Z is self-similar. The motivation of allowing general matrix E is to
generalize this notion to anisotropic random fields. Such random fields are often
of practical importance in various applications, and they also present theoretical
challenges. Families of anisotropic random fields are known, and path properties
have been investigated. See for example Biermé and Lacaux (2009); Li et al. (2015);
Meerschaert et al. (2013); Xiao (2009). At the same time, the development of limit
theorems for anisotropic random fields is still at an early stage. For some recent
results, see for example Biermé et al. (2017); Li and Xiao (2012); Wang (2014); Pu-
plinskaitė and Surgailis (2015); Lavancier (2007); Durieu and Wang (2018+); Shen
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and Wang (2017). In this article, we also consider more general random sets than
balls, precisely sets of finite perimeter.

Second, we view the random ball models as distribution-valued random elements,
also known as generalized random fields, and establish weak convergence in the
space of tempered distributions. A complete description of self-similar generalized
Gaussian random fields was obtained by Dobrushin (1979) and allows to obtain
essentially all Gaussian, translation- and rotation-invariant, H-self-similar gener-
alized random field as scaling limits of a random balls model, see Biermé et al.
(2010). Beyond the Gaussian framework, generalized Lévy random field, including
stable generalized random field have been investigated by Unser and Tafti (2014),
where they are named as sparse stochastic processes. Distribution-valued random
variables and stochastic processes are already widely used to describe fluctuations
of empirical measures of complex particle systems, including notably interacting
particle systems (Kipnis and Landim, 1999) and branching particle systems (Hol-
ley and Stroock, 1978; Kipnis and Landim, 1999; Bojdecki et al., 2007; Li and Xiao,
2012), just to mention a few.

The paper is organized as follows. Section 2 presents background on generalized
random fields, the precise definition of the random ball model, and the four regimes
of convergence that we investigate. The limit theorems are stated in Section 3, while
their proofs are postponed in Section 6. In Section 4, we study statistical properties
of the limit random fields. To conclude, a pointwise representation is obtained in
Section 5 and some illustrations are given in the appendix.

Throughout, C stands for real constants that may change values from line to
line. Without ambiguity, for x P Rd, |x| denotes its Euclidean norm. We write
a_ b “ maxpa, bq and a^ b “ minpa, bq for a, b P R.

2. Background and definitions

2.1. Generalized random fields. The standard references for generalized random
fields include notably Gel’fand and Vilenkin (1964); Gel’fand and Shilov (1964);
Dobrushin (1979); Kallianpur and Xiong (1995); Fernique (1967). In words, these
fields are defined as random variables with values in a space of distributions (or
generalized functions). To this end we consider the Schwartz space SpRdq of all
real-valued infinitely differentiable rapidly decreasing functions on Rd, and S 1pRdq
its topological dual, the space of tempered distribution. As usual SpRdq is equipped
with the topology that corresponds to the following notion of convergence: fn Ñ f
if and only if for all N P N :“ t0, 1, 2, . . . u and j “ pj1, . . . , jdq P Nd

}fn ´ f}N,j :“ sup
zPRd

p1` |z|qN
ˇ

ˇDj pfn ´ fq pzq
ˇ

ˇÑ 0, as nÑ8,

where Djfpzq “ B
j1 ¨¨¨B

jd

Bz
j1
1 ¨¨¨Bz

jd
d

fpzq denotes the partial derivative of order j.

We will actually also consider the space

S1pRdq :“

"

f P SpRdq;
ż

Rd
fpzqdz “ 0

*

.

Note that S1pRdq “ span
 

Djf ; f P SpRdq, j P t0, 1ud, j1 ` ¨ ¨ ¨ ` jd “ 1
(

. For con-
venience, we also write S0pRdq “ SpRdq and thus we will be able to use SnpRdq
for n P t0, 1u in the sequel. We denote by S 1npRdq the topological dual of SnpRdq



1404 H. Biermé, O. Durieu and Y. Wang

and by p ¨, ¨ q the duality bracket. We usually consider two distinct topologies on
S 1npRdq. The strong topology is induced by the family of semi-norms

qBp¨q “ sup
fPB

|p ¨ , fq|, B bounded in SnpRdq.

The weak topology on S 1npRdq is the topology induced by the family of semi-norms
|p ¨ , fq|, f P SnpRdq. A first remark is that both topologies generate the same Borel
σ-field denoted by BpS 1npRdqq, see Biermé et al. (2017).

A generalized random field is an S 1npRdq-valued random variable, that is a mea-
surable mapping X from a probability space pΩ,A,Pq to pS 1npRdq,BpS 1npRdqqq. For
such a generalized random field X, we let its evaluation at f P SnpRdq be denoted
by Xpfq, which is a real random variable on the same probability space.

The law of a generalized random field X is uniquely determined by its charac-
teristic functional

LXpfq :“

ż

Ω

eiXpfq dP, f P SnpRdq.

Further, X induces a family of random variables Xpfq on pΩ,Aq indexed by f P
SnpRdq, with characteristic functions given by

E
´

eitXpfq
¯

“

ż

Ω

eitXpfqdP “ LXptfq, t P R.

By linearity, the finite-dimensional distributions of X are simply obtained with

LXpa1f1 ` ¨ ¨ ¨ ` akfkq “ E
´

eira1Xpf1q`¨¨¨`akXpfkqs
¯

,

for all k ě 1, a1, . . . , ak P R and f1, . . . , fk P SnpRdq.
In practice, however, given a family of real random variables tXpfqufPSnpRdq on

a probability space pΩ,A,Pq satisfying

Xpaf ` bgq “ aXpfq ` bXpgq a.s. for all a, b P R, f, g P SnpRdq, (2.1)

a priori it is not clear whether a corresponding S 1npRdq-valued random variable
exists. When this can be achieved, namely if there exists an S 1npRdq-valued random
variable X̃, possibly defined on another probability space pΩ̃, Ã, P̃q, such that for
all k ě 1, f1, . . . , fk P SnpRdq, A1, . . . , Ak P BpRq,

PpXpf1q P A1, . . . , Xpfkq P Akq “ P̃
´

X̃pf1q P A1, . . . , X̃pfkq P Ak

¯

,

we say that X̃ is a version ofX “ tXpfqufPSnpRdq, as in Definition 9.1.1 of Samorod-
nitsky and Taqqu (1994). Let us quote that this notion is weaker than the notion of
regularization from Itô (1983). Actually, a regularization X̃ of X should be defined
on the same probability space pΩ,A,Pq than X and satisfies X̃pfq “ Xpfq a.s. for
all f P SnpRdq. However, when we deal with convergence in law for most of the part
of the paper, the notion of version is enough for our purpose: once the existence
of a version is proved, it suffices to work with the characteristic functionals of the
original individual random variables. At only a few occasions we shall establish
results in the stronger notion of regularization.

We recall below two fundamental theorems when working with limit theorems of
generalized random fields, both based on characteristic functionals. The following
theorem is a direct consequence of Minlos–Bochner’s theorem, see Corollary 2.2 in
Biermé et al. (2017).
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Theorem 2.1. Let X “ tXpfqufPSnpRdq be a collection of real random variables
on pΩ,A,Pq satisfying (2.1). If LX : SnpRdq Ñ C is continuous then X admits a
version that is an S 1npRdq-valued random variable.

Recall that a sequence of generalized random fields tXmumě1 converges in dis-
tribution to X, denoted by Xm ñ X, in S 1npRdq given the strong topology if for all
ϕ : S 1npRdq Ñ R continuous for the strong topology and bounded,

ż

S1npRdq
ϕpuqdPXmpuq ÝÑ

mÑ8

ż

S1npRdq
ϕpuqdPXpuq.

Similarly, Xm ñ X in S 1npRdq given the weak topology, if the above holds for all
ϕ : S 1npRdq Ñ R that is bounded and continuous with respect to the weak topology.
As a consequence of Lévy’s continuity theorem (Theorem 2.3 in Biermé et al., 2017),
we can state the following result, see Corollary 2.4 in Biermé et al. (2017).

Theorem 2.2. Let tXmumě1, X be S 1npRdq-valued random variables. The following
conditions are equivalent:

‚ Xm ñ X in S 1npRdq given the strong topology,
‚ Xm ñ X in S 1npRdq given the weak topology,
‚ LXmpfq Ñ LXpfq for all f P SnpRdq.

Since both notions of convergence are equivalent, we shall just write Xm ñ X
in S 1npRdq in the sequel.

Proofs of Theorems 2.1 and 2.2: We refer to Fernique (1967) for the stated results
in the more general framework in terms of nuclear spaces. For the special case
S 1pRdq ” S 10pRdq, we refer to Biermé et al. (2017) where self-contained and simpli-
fied proofs can be found. These results can then be extended for S 11pRdq by following
the idea of Proposition 2.1 from Dobrushin (1979). Let us quote that fixing a func-
tion ψ P SpRdqzS1pRdq, one can define the continuous map U : S 11pRdq Ñ S 1pRdq
by UpLqpfq “ Lpπpfqq, where for f P SpRdq,

πpfq “ f ´ cpfqψ P S1pRdq,
with cpfq “

ş

Rd fpxqdx{
ş

Rd ψpxqdx. Hence any S 11pRdq-valued random variable X
coincides with the restriction of an S 1pRdq-valued random variable Y , defined by
Y pfq “ Xpπpfqq, f P SpRdq. By using the so-defined map U and applying results
on S 1pRdq, the desired results for S 11pRdq follow. �

2.2. A generalized random ball model. Now we define the random ball model on Rd.
Throughout, the operator-scaling is associated to a d ˆ d real matrix E, of which
all eigenvalues have strictly positive real parts, denoted by a1 ě ¨ ¨ ¨ ě ad ą 0. Let
q “ trpEq ą 0 be the trace of the matrix E.

We consider the kernel operator defined for px, rq P Rd ˆ p0,8q and f P SpRdq,
by

TEr fpxq :“

ż

Rd
KE
r px, yqfpyqdy with KE

r px, yq :“ 1BEpx,rqpyq. (2.2)

Here and throughout, BEpx, rq is the shifted and scaled “ball” given by

BEpx, rq “ x` rEB, x P Rd, r ą 0,

based on a fixed bounded measurable set B Ă Rd with 0 P B, vB :“ LebdpBq P
p0,8q and LebdpBBq “ 0, where Lebd is the Lebesgue measure on Rd. Thus
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vr :“ LebdpBEpx, rqq “ rqvB . Note that we keep the name “random ball” from the
original model but here the set B can be a much more general set than a ball. We
only assume that B is a set of finite perimeter in the sense that

PerpBq :“ sup

"
ż

B

divϕpxq dx : ϕ P C1
c pRd,Rdq, }ϕ}8 ď 1

*

ă 8, (2.3)

where C1
c pRd,Rdq is the set of continuously differentiable functions with compact

support (e.g. B can be any bounded convex set). According to Theorem 14 in
Galerne (2011), (2.3) is equivalent to the fact that the covariogram gB : Rd Q x ÞÑ
LebdpB X px`Bqq of the set B is Lipschitz, and thus there exists C ą 0 such that

LebdpB∆px`Bqq “ 2pgBp0q ´ gBpxqq ď C|x|, for all x P Rd. (2.4)

We first define the model as a collection of random variables indexed by f P
SpRdq, and then prove the existence of regularizations afterwards. The rescaled
random ball field is defined as

XE
ρ pfq :“

ż

RdˆR`ˆR
mTEr fpxqNρpdx, dr, dmq, f P SpRdq, (2.5)

where Nρ is a Poisson random measure on Rd ˆ R` ˆ R with intensity

λpρqdxF pdr{ρqGpdmq.

Intuitively, the origins of random balls are distributed as a homogeneous Poisson
process with intensity λpρq, and each random ball is scaled with a random radius
with distribution Fρpdrq :“ F pdr{ρq, and is associated with a random weight m
with distribution G. Positions, scalings and weights are assumed to be independent.
There are a few natural assumptions on F and G. First, the expected volume of a
random ball is assumed to be finite. That is,

vB

ż

R`
rqF pdrq ă 8. (2.6)

Moreover, we assume that, for some Cβ ą 0,

F pdrq “ pprqdr with pprq „ Cβr
´1´β as r Ñ 0q´β , (2.7)

with the convention, 0δ “ 0 if δ ą 0 and 0δ “ 8 if δ ă 0. This condition is
introduced in a compact form for both zoom-in/out scalings to be explained in
Section 2.3. It reads as pprq is regularly varying at 0 with index ´1´β, only when
β ă q; otherwise (2.6) will be violated. Similarly, pprq is regularly varying at infinity
with index ´1 ´ β when β ą q. Next, for the random weights, their distribution
G is assumed to be integrable and in the domain of attraction of certain stable
distribution Sαpσ, b, 0q with α P p1, 2s, σ ą 0, b P r´1, 1s. That is, for independent
random variables Mi with common distribution G,

M1 ` ¨ ¨ ¨ `Mn

n1{α
ñ Sαpσ, b, 0q with α P p1, 2s. (2.8)

A standard reference for stable distributions and processes is Samorodnitsky
and Taqqu (1994). Under (2.6) and (2.8) with α ą 1, the random field (2.5) is
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well-defined and integrable. This follows from the fact

E
`

|XE
ρ pfq|

˘

ď

ż

RdˆR`ˆR
|m|TEr |f |pxqλpρqdxF pdr{ρqGpdmq

ď λpρqρqEp|M |qvB}f}L1

ż

R`
rqF pdrq,

where M is a real random variable of distribution G and }f}
L1 :“

ş

Rd |fpyq|dy.
Hence, a centered rescaled random ball field can be defined by

Y Eρ pfq :“ XE
ρ pfq ´ E

`

XE
ρ pfq

˘

, f P SpRdq.

We come to the generalized random field interpretation of XE
ρ and Y Eρ .

Proposition 2.3. Under assumption (2.6), XE
ρ and Y Eρ are almost surely elements

of S 1pRdq and therefore of S 11pRdq. As a consequence, they admit regularizations in
S 1pRdq and therefore in S 11pRdq.

Proof : Let us quote that f ÞÑ TEr fpxq P S 1pRdq, and moreover for all k ě 0,

|TEr fpxq| ď

˜

ż

BEpx,rq

p1` |y|q´kdy

¸

sup
zPRd

p1` |z|qk|fpzq|.

It follows that,
|XE

ρ pfq| ď CEρ,k sup
zPRd

p1` |z|qk|fpzq|,

with
CEρ,k :“

ż

RdˆR`ˆR
|m|

ż

BEpx,rq

p1` |y|q´kdyNρpdx, dr, dmq.

Note that

E
`

CEρ,k
˘

“ λpρq

ż

RdˆR`ˆR
|m|

ż

BEpx,rq

p1` |y|q´kdydxFρpdrqGpdmq

“ λpρqρqEp|M |qvB
ż

R`
rqF pdrq

ˆ
ż

Rd
p1` |y|q´kdy

˙

,

which is finite under assumption (2.6) as soon as k ą d. Hence, CEρ,k ă 8 a.s. for
k ą d, so that XE

ρ P S 1pRdq a.s. Since we also have f ÞÑ EpXE
ρ pfqq P S 1pRdq by

taking expectation in the previous computations, it follows that the centered field
Y Eρ is also in S 1pRdq a.s. The last part of the proposition is easy since to obtain a
regularization in S 1pRdq of a process X which is almost surely element of S 1pRdq,
it suffices to modify it by setting Xpωq ” 0 for the ω P Ω such that Xpωq R S 1pRdq,
see Fernique (1967), p.40. �

The limit theorems will be based on the characteristic functionals of the centered
rescaled random fields

LY Eρ pfq “ E exp
`

iY Eρ pfq
˘

“ exp

˜

ż

RdˆR`
φGpT

E
r fpxqqλpρqdxFρpdrq

¸

, f P SnpRdq,

(2.9)
with

φGptq :“

ż

peimt ´ 1´ imtqGpdmq “ LM ptq ´ 1´ itEpMq, t P R, (2.10)

where M is a real random variable of distribution G satisfying (2.8).



1408 H. Biermé, O. Durieu and Y. Wang

2.3. Zoom-in/out scalings and four regimes. There are two scalings to be considered
in the limit theorems. Recall Fρpdrq “ F pdr{ρq. The case ρ Ñ 8 corresponds to
enlarging the size of each ball, and ρÑ 0 corresponds to shrinking the size of each
ball. We refer to the two scalings as the zoom-in and zoom-out scalings, respectively.

Next, for each type of scaling, there are four qualitatively different regimes. Since
the spatial dependence of the random field is essentially determined by overlaps
of random balls, heuristically we compute the expected weight of rescaled balls
covering a fixed point y, denoted by mpρq, independent from y by stationarity. It
is natural to expect mpρq Ñ c P r0,8s, and we distinguish 8, p0,8q and 0 as three
different cases. Take the zoom-in scaling case first. Clearly only small balls, say
with radius less than 1 (before the ρ-scaling and the constant 1 is irrelevant) should
matter, and we compute

minpρq :“ E

˜

ż

RdˆR`ˆR
m1tyPBEpx,rqu1trď1uNρpdx, dr, dmq

¸

“ EpMqλpρqvB
ż 1

0

rqFρpdrq,

with

λpρq

ż 1

0

rqFρpdrq „

ˆ

Cβ

ż 1

0

rq´β´1dr

˙

λpρqρβ as ρÑ8.

Similarly for the zoom-out case, we compute for number of balls with radius larger
than 1,

moutpρq :“ E

˜

ż

RdˆR`ˆR
m1tyPBEpx,rqu1trą1uNρpdx, dr, dmq

¸

“ EpMqλpρqvB
ż 8

1

rqFρpdrq,

with

λpρq

ż 8

1

rqFρpdrq „

ˆ

Cβ

ż 8

1

rq´β´1dr

˙

λpρqρβ as ρÑ 0.

The calculations above made use of (2.7), and also explain why it is a reasonable
assumption. Notice that the constant is qualitatively irrelevant, only the common
term λpρqρβ matters, and both cases of scaling can be summarized in the compact
form of ρÑ 0β´q.

In summary, there are naturally three regimes of interest, characterized by

λpρqρβ Ñ

$

&

%

8 (dense regime),
c P p0,8q (intermediate regime),
0 ((very-)sparse regime),

as ρÑ 0β´q,

where within the case λpρqρβ Ñ 0 we shall further identify two sub-regimes, named
as sparse and very-sparse regimes in the sequel. We shall establish limit theorems
for different regimes separately, and in each regime our limit theorem and the proof
unify both zoom-in and zoom-out scalings (only zoom-out scaling in the very-sparse
regime). Furthermore, in each regime we specify two parameters, β on the tails of
the radius of random balls, and n indicating the zoom-in (n “ 1) and zoom-out
(n “ 0) scalings.
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3. Scaling limits

We will treat the four regimes separately. In each regime, we first introduce the
limit field as stochastic integral, then show the existence of its generalized random
field version by Minlos–Bochner’s theorem and then prove the weak convergence
by Lévy’s continuity theorem. For easy reading, all the proofs of this section are
postponed to Section 6. The limit fields appearing here are further investigated in
the next sections.

3.1. Dense regime. In the dense regime, we consider

λpρqρβ Ñ8 as ρÑ 0β´q,

and the admissible range of parameters β and n is

β P pq, αqq n “ 0 zoom-out scaling,
β P pq ´ ad, qq n “ 1 zoom-in scaling. (3.1)

The following field appears in the limit. Let α P p1, 2s, σ ą 0 and b P r´1, 1s
be given by (2.8) and Cβ ą 0 be given by (2.7). Let Mα,β be an α-stable random
measure on Rd ˆ R` with control measure σαCβr´1´βdrdx, and constant skewness
function b. For f P SnpRdq, let us define the stochastic integral

ZEα,βpfq :“

ż

RdˆR`
TEr fpxqMα,βpdr, dxq. (3.2)

See Samorodnitsky and Taqqu (1994) for more background on stochastic integrals
with respect to α-stable random measures.

Proposition 3.1. Let α P p1, 2s. For β, n as in (3.1), the process ZEα,β :“

tZEα,βpfqufPSnpRdq in (3.2) is well-defined, has characteristic functional

LZEα,β pfq “ exp

#

´Cβσ
α

ż

RdˆR`
|TEr fpxq|

α
´

1´ ibε
`

TEr fpxq
˘

tan
απ

2

¯

r´1´βdrdx

+

,

(3.3)

where εpsq “ signpsq, and admits a version with values in S 1npRdq.

Then, we can consider weak convergence in S 1npRdq and state the limit theorem
in the dense regime.

Theorem 3.2. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
Under (3.1), if n1pρq :“ ρβλpρq Ñ 8 as ρÑ 0β´q, then

1

n1pρq1{α
Y Eρ ñ ZEα,β as ρÑ 0β´q

in S 1npRdq.

Remark 3.3. We let tZEα,βpfqufPSnpRdq denote the stochastic process indexed by f
via (3.2), and the same notation ZEα,β in Theorem 3.2 for the corresponding version
taking values in S 1npRdq. Similar notations are used for the other regimes.
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3.2. Intermediate regime. In the intermediate regime, we consider

λpρqρβ Ñ aq´β as ρÑ 0β´q with a P p0,8q. (3.4)

The admissible range of parameters β and n is the same (3.1) as in the dense regime.
In this case, the limit field is represented by a Poisson integral. For a P p0,8q and
f P SpRdq, we first define

TEr,afpxq :“

ż

Rd
1a´EBEpx,rqpyqfpyqdy “ TEr{afpa

´Exq (3.5)

and we consider the Poisson integral JEa,α,β defined, for f P SnpRdq, by

JEa,α,βpfq :“

ż

RdˆR`ˆR`
mTEr,afpxqÑβpdr, dx, dmq, (3.6)

where Ñβ is the compensated Poisson random measure on Rd ˆ R` ˆ R` with
intensity Cβr´1´βdxdrGpdmq, with Cβ ą 0 given in (2.7). For more background
on Poisson integrals, see for example Kallenberg (1997).

Proposition 3.4. Let a P p0,8q. For β, n as in (3.1), the process JEa,α,β in (3.6)
is well-defined on SnpRdq, has characteristic functional

LJEa,α,β pfq “ exp

#

ż

RdˆR`
φGpT

E
r,afpxqqCβr

´1´βdrdx

+

, (3.7)

where φG is defined by (2.10) and admits a version with values in S 1npRdq.
The limit theorem in the intermediate regime is the following.

Theorem 3.5. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
Under (3.1) and (3.4),

Y Eρ ñ JEa,α,β as ρÑ 0β´q

in S 1npRdq.

3.3. Sparse regime. The sparse regime correspond to

λpρqρβ Ñ 0 as ρÑ 0β´q with λpρq Ñ 0q´β . (3.8)

The admissible range of parameters of β and n is
β P pq, αqq n “ 0 zoom-out scaling,
β P pq2{pq ` adq, qq n “ 1 zoom-in scaling. (3.9)

Set γ “ β{q P pq{pq ` adq, 1q Y p1, αq. Let M p1q
γ be a γ-stable random measure

having control measure σ1,γ dx with

σ1,γ :“ vB

˜

Cβq
´1

ż

R`
p1´ cosprqqr´1´γdr

ż

R
|m|γGpdmq

¸1{γ

,

and constant skewness function

bγ :“ ´

ş

R εpmq|m|
γGpdmq

ş

R |m|
γGpdmq

.

We define, for f P SpRdq,

Zp1qγ pfq :“

ż

Rd
fpxqM p1q

γ pdxq.
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Note that Zp1qγ pfq is well-defined since f P SpRdq Ă LγpRdq and its characteristic
functional is given by

L
Z
p1q
γ
pfq “ exp

ˆ

´σγ1,γ

ż

Rd
|fpxq|γ

´

1´ ibγεpfpxqq tan
γπ

2

¯

dx

˙

. (3.10)

Proposition 3.6. For α P p1, 2s and γ P pq{pq ` adq, 1q Y p1, αq, the process Zp1qγ
admits a version with values in S 10pRdq Ă S 11pRdq.

Theorem 3.7. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
Under (3.8) and (3.9) with n2pρq :“ pλpρq1{βρqq and γ “ β{q, we have

1

n2pρq
Y Eρ ñ Zp1qγ as ρÑ 0β´q,

in S 1npRdq.

Remark 3.8. Note that the result in the case β P pq2{pq` adq, qq is also new for the
isotropic case when E “ Id (the identity matrix).

3.4. Very-sparse regime. In this regime, consider

λpρqρβ Ñ 0, λpρq Ñ 8 as ρÑ 0. (3.11)

The admissible range of parameters for the very-sparse regime is

β P pαq,8q n “ 0 zoom-out scaling. (3.12)

Let M p2q
α be a α-stable random measure having control measure σ2,αdx with

σ2,α :“ σvB

˜

ż

R`
rαqF pdrq

¸1{α

and constant skewness function b. For f P SpRdq, we set

Zp2qα pfq :“

ż

Rd
fpxqM p2q

α pdxq.

Proposition 3.9. For α P p1, 2s, the process Zp2qα admits a version with values in
S 10pRdq.

Theorem 3.10. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
Under (3.11) and (3.12), with n3pρq :“ λpρq1{αρq,

1

n3pρq
Y Eρ ñ Zp2qα as ρÑ 0

in S 10pRdq.

3.5. Summary. For comparison, we summarize in a single statement the limit the-
orems of the different regimes.
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Theorem 3.11. Suppose that the assumptions (2.7) and (2.8) on F and G hold.
We have the following weak convergence in S 1npRdq:

pdenseq
1

pρβλpρqq1{α
Y Eρ ñ ZEα,β if λpρqρβ Ñ8, β, n as in (3.1),

pintermediateq Y Eρ ñ JEa,α,β if λpρqρβ Ñ aq´β P p0,8q, β, n as in (3.1),

psparseq
1

pρβλpρqqq{β
Y Eρ ñ Z

p1q
β{q if λpρqρβ Ñ 0, λpρq Ñ 0q´β , β, n as in (3.9),

pvery sparseq
1

ρqλpρq1{α
Y Eρ ñ Zp2qα if λpρqρβ Ñ 0, λpρq Ñ 8, β, n as in (3.12),

where in all cases the limit is considered as ρÑ 0β´q.

4. Properties of the limit fields

In this section, we provide some properties of the limit generalized random fields.
In the dense and intermediate regimes, the limit generalized random fields explicitly
depend on E, and in particular so are their anisotropic properties. For the sparse
and very-sparse regimes, all the dependence structures in the discrete models are
not observable in the limit, and thus the limit generalized random fields have no
specific anisotropic properties. Following Dobrushin (1979), using duality, we can
define the following groups of transformations on SnpRdq:

‚ the group of shift transformations T “ tτhuhPRd :

τhfptq “ fpt´ hq, f P SnpRdq, h P Rd, t P Rd;

‚ the group of E-operator-scaling transformations ∆E “ tδEc ucPp0,8q:

δEc fptq “ c´qfpc´Etq, f P SnpRdq, c P p0,8q, q “ trpEq, t P Rd.

Their analogous T , ∆E on S 1npRdq are then defined by

τhLpfq :“ Lpτhfq, and δEc Lpfq :“ LpδEc fq,

for L P S 1npRdq. Let us note that when the tempered distribution L is given by a
function g, one recovers that τhL is given by the function gp¨`hq and δEc L is given
by the function gpcE ¨q, thanks to the normalization term.

Proposition 4.1. Let α P p1, 2s. For β, n as in (3.1), the generalized random field
ZEα,β in (3.2) is

‚ shift-invariant: @h P Rd,

τhZ
E
α,β

d
“ ZEα,β ,

‚ pE,Hq-operator-scaling for H “
q´β
α P p´qp1´1{αq, 0qYp0, ad{αq: @c ą 0,

δEc Z
E
α,β

d
“ cHZEα,β .

Let us remark that, following Dobrushin (1979), the first property is called the
stationary n-th increments while the second one with E “ Id is the self-similarity
property.
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Proof : It suffices to compute the characteristic functional. Observe that for f P
SnpRq, one has for all h P Rd,

ZEα,βpτhfq “

ż

RdˆR`
TEr fpx´ hqMα,βpdx, drq

d
“ ZEα,βpfq,

by a change of variable, while for all c ą 0,

ZEα,βpδ
E
c fq “

ż

RdˆR`
TEr δ

E
c fpxqMα,βpdx, drq

“

ż

RdˆR
TEr{cfpc

´ExqMα,βpdx, drq

d
“ cpq´βq{α

ż

RdˆR
TEr fpxqMα,βpdx, drq “ cpq´βq{αZEα,βpfq,

where the third step also followed from a change of variable argument. �

For the intermediate case, the limit random field JEa,α,β in (3.6) is not E-operator-
scaling but it has aggregate E-operator-scaling property as described below, gen-
eralizing aggregate similarity property introduced by Biermé et al. (2010).

Proposition 4.2. Under the assumption of Theorem 3.5,

δEk1{pq´βqJ
E
a,α,β

d
“

k
ÿ

i“1

J
E,piq
a,α,β , for all k P N,

where tJE,piqa,α,βui“1,...,k are i.i.d. copies of JEa,α,β. Furthermore,

1

apq´βq{α
JEa,α,β ñ ZEα,β as aÑ 0β´q.

Proof : The first part of the proof follows from straightforward calculation of char-
acteristic functionals, with a similar change of variable argument as above. The
second part of the proof follows from convergence of characteristic functionals for
random variables in the domain of attractions of Sαpσ, b, 0q. The details are omit-
ted. �

At last, remark that in the sparse and very-sparse regimes, the limit random fields
have essentially no dependence structure, as the limit random fields are stochastic
integrals with respect to stable random measures with constant control measure
on Rd. Thus they inherit no specific anisotropic properties. Nevertheless, for any
E1 satisfying the same assumption as E with possibly different eigenvalues, writing
q1 “ trpE1q, it can be shown that

δE
1

c Z
piq
θ

d
“ c

1´θ
θ q1Z

piq
θ

for i “ 1, 2 with legitimate parameter θ.

5. Comments on pointwise representation

Given a tempered distribution L P S 1pRdq, it is a natural question to wonder if
it may be represented by a Borel measurable function g, that is

@f P SpRdq, Lpfq “

ż

Rd
fptqgptqdt.
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We say that a generalized random field X admits a pointwise reprensentation if
there exists a measurable random field t pXptqutPRd , meaning as in Definition 9.4.1
of Samorodnitsky and Taqqu (1994) that pX : Ω ˆ Rd Ñ R is a jointly measurable
function, such that

Xpfq “

ż

Rd
pXptqfptqdt, f P SpRdq.

Conversely, we have the following property.

Proposition 5.1. Let t pXptqutPRd be a measurable random field. If there exists
k P N such that

ż

Rd
p1` |t|q´kEp| pXptq|qdt ă 8,

then the random field X, defined on SnpRdq by Xpfq “
ş

Rd
pXptqfptqdt, admits a

regularization that is a generalized random field. Moreover, if pX is pE,Hq-operator-
scaling for some H ą 0 in the sense of (1.1), then X is pE,Hq-operator-scaling in
the sense of Proposition 4.1.

Proof : Under the assumption, one checks that for all f P SnpRdq,
ż

Rd
| pXptqfptq|dt ď Ck sup

zPRd
p1` |z|qk|fpzq|,

where the random constant Ck “
ş

Rdp1 ` |t|q
´k| pXptq|dt is a.s. finite. This implies

that the linear random fieldX is well-defined and a.s. continuous. Hence there exists
a regularization of X on S 1npRdq, see Fernique (1967), p.40. The last property of
the proposition is straightforward. �

Our centered rescaled random ball field Y Eρ defined in Section 2 clearly admits
a pointwise representation where pY Eρ “ pXE

ρ ´ E pXE
ρ and

pXE
ρ ptq “

ż

RdˆR`ˆR
mKE

r px, tqNρpdx, dr, dmq, t P Rd,

with the same Poisson random measure Nρ than in (2.5). Let us consider the
limit generalized random field ZEα,β of the dense regime in the case of symmetric
weights (b “ 0). Actually, there are two situations that we treated separately in
the following sub-sections.

5.1. The case β P pq ´ ad, qq and H “
q´β
α P p0, ad{αq. In this case, as proved in

Proposition 5.2 below, ZEα,β admits a pointwise representation with

pZEα,βptq “

ż

RdˆR`
p1BEpx,rqptq ´ 1BEpx,rqp0qqMα,βpdr, dxq, t P Rd,

satisfying (1.1) and Mα,β is the same as in the representation of ZEα,β . Let us
introduce C

E
ptq “ tpx, rq; r´Epx´ tq P Bu and note that

pZEα,βptq “Mα,β pCE ptq X C
E
p0qcq ´Mα,β pCE ptqc X C

E
p0qq , t P Rd.

Until here we do not need to assume that Mα,β has skewness function b “ 0.
With the assumption that Mα,β is symmetric, one can check that

!

pZEα,βptq
)

tPRd
f.d.d.
“ tMα,β pVtqutPRd , (5.1)
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with Vt “ C
E
ptq∆C

E
p0q. That is, the random field pZEα,β has a Chentsov’s type

representation (see Samorodnitsky and Taqqu, 1994, Chap. 8). In particular, for
H “

q´β
α P p0, ad{αq the random field pZEα,β generalizes isotropic self-similar pα,Hq-

Takenaka random fields (see p.405 of Samorodnitsky and Taqqu, 1994), defined by
choosing the Euclidean unit ball for B and E “ Id, with ad “ 1.

The representation (5.1) allows us to provide several simulations of our operator-
scaling random ball model with symmetric α-stable (SαS) weights, following similar
ideas as in Biermé et al. (2013). See Figures A.1–A.3 in the appendix.

Proposition 5.2. For β P pq´ad, qq, there exists a measurable version of pZEα,β, also
denoted by pZEα,β, such that ZEα,β coincides in S 11pRdq with the generalized random
field

f P SpRdq ÞÑ
ż

Rd
pZEα,βptqfptqdt. (5.2)

Proof : First note that
ż

Rd
|1BEpx,rqptq ´ 1BEpx,rqp0q|

αdx “ rqhpr´Etq,

with hpzq “ LebdpB∆pz`Bqq. According to (2.4), h satisfies hpzq ď Cp|z| ^ 1q for
some constant C ą 0. It follows that

ż

RdˆR`
|1BEpx,rqptq ´ 1BEpx,rqp0q|

ασαCβr
´1´βdrdx

ď CσαCβ

ż

R`
rqp|r´Et| ^ 1qr´1´βdr

ď CσαCβ

ż

R`
rqp}r´E} ^ 1qr´1´βdrp1` |t|q

“ CEα,βp1` |t|q,

with CEα,β “ CσαCβ
ş

R`p}r
´E}^ 1qrq´β´1dr ă 8 and } ¨ } the subordinated norm,

since β P pq ´ ad, qq. Hence pZEα,βptq is well-defined and is a SαS random variable

with scale parameter bounded by
´

CEα,βp1` |t|q
¯1{α

, for every t P Rd. According
to Theorem 11.1.1 in Samorodnitsky and Taqqu (1994) there exists a measurable
version of pZEα,β since

(1) pt, x, rq P Rd ˆ Rd ˆ R` ÞÑ p1BEpx,rqptq ´ 1BEpx,rqp0qq P R is measurable;
(2) the control measure σαCβr´1´βdrdx is σ-finite.

Noting that by Property 1.2.17 in Samorodnitsky and Taqqu (1994), we have

E
´

| pZEα,βptq|
¯

ď Ep|Sα|q
`

CEα,βp1` |t|q
˘1{α

, (5.3)

with Sα a SαS random variable of scale parameter 1, we may define f P SpRdq ÞÑ
ş

Rd
pZEα,βptqfptqdt that is a.s. in S 1pRdq, thanks to Proposition 5.1.

Now it remains to show that the right-hand side of (5.2) has the same stable law
as ZEα,βpfq “

ş

RdˆR` T
E
r fpxqMα,βpdx, drq. For this we recall that

ż

pZα,βptqfptqdt
d
“

ż

RdˆR`

ˆ
ż

Rd

`

1BEpx,rqptq ´ 1BEpx,rqp0q
˘

fptqdt

˙

Mα,βpdx, drq,

(5.4)
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provided that
ż

Rd
| pZEα,βptq|fptqdt ă 8 a.s.,

see Theorem 11.4.1 in Samorodnitsky and Taqqu (1994). Since f decays rapidly, the
above follows from (5.3) and hence (5.4) holds. To complete the proof, it remains
to remark that for f P S1pRdq, one has

ż

Rd
p1BEpx,rqptq ´ 1BEpx,rqp0qqfptqdt “ TEr fpxq.

�

5.2. The case β P pq, αqq and H “
q´β
α P p´qp1 ´ 1{αq, 0q. In this case, H ă 0

and we do not have direct pointwise representation, but the limit field ZEα,β can be
obtained as the derivative (in the sense of distributions) of a pointwise process. For
all t P Rd, following the same idea as for the definition of ZEα,βpfq for f P SpRdq,
we can define the random variable

qZEα,βptq “ εpt1q ¨ ¨ ¨ εptdq

ż

RdˆR`
TEr 1r0,tspxqMα,βpdr, dxq,

where the random measure Mα,β is the same as in (3.2), r0, ts “
śd
i“1r0, tis, and

εptiq is the sign of ti. The family qZEα,β “ t
qZEα,βptqutPRd is a measurable random field

and, by successive integrations by parts, we can show that ZEα,β “ Dp1,...,1q qZEα,β ,
that is for all f P SpRdq,

ZEα,βpfq “ p´1qd
ż

Rd
qZEα,βptqD

p1,...,1qfptqdt.

This consideration is analogous to Theorem 2.6 and Lemma 3.7 in Breton and
Dombry (2011) for E “ Id and β ą q “ d in D1pRdq the space of distribution
instead of S 1pRdq. We thus refer to Breton and Dombry (2011) for technical details.

6. Proofs of the main results

6.1. Preliminary results. The proofs of our limit theorems follow the same scheme
as in Biermé et al. (2010) or Breton and Dombry (2009) to establish the convergence
of the characteristic functions. They use the two following lemmas concerning
conditions (2.7) and (2.8).

Lemma 6.1 (Lemma 2.4 in Biermé et al., 2010, Lemma 3.2 in Breton and Dombry,
2009). Under the assumption (2.7), if tgρuρą0, g are continuous functions on R`
such that

lim
ρÑ0β´q

|gprq ´ gρprq| “ 0, (6.1)

and for some 0 ă β´ ă β ă β` there exists a constant C ą 0 such that

|gprq| ď Cprβ´ ^ rβ`q, (6.2)
|gρprq| ď Cprβ´ ^ rβ`q, (6.3)

for all r ą 0, then, for Cβ as in (2.7),
ż

R`
gρprqFρpdrq „ Cβρ

β

ż

R`
gprqr´1´βdr, as ρÑ 0β´q.
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Lemma 6.2 (Lemma 3.1 in Breton and Dombry, 2009). Suppose that M is in the
domain of attraction of Sαpσ, b, 0q for some α ą 1, σ ą 0 and b P R. Then

φGptq “ LM ptq ´ 1´ itEpMq „ ´|t|αφα,b,σptq, as tÑ 0,

with
φα,b,σptq “ σαp1´ ibεptq tanpαπ{2qq, (6.4)

where εptq “ signptq. Furthermore, there exists C ą 0 such that for all t P R,
|φGptq| ď C|t|α. (6.5)

The key ingredients for our generalized random ball model are the precise conti-
nuity properties of the operators TEr stated in the following proposition. Recall that
we write vr “ LebdpBEp0, rqq “ rqvB , r ą 0, and for γ ą 0, }f}γ

Lγ
“
ş

Rd |fpxq|
γdx.

Proposition 6.3. (i) For all γ P r1, 2s, r ą 0, and f P SpRdq,

}TEr f}Lγ ď vr}f}Lγ , (6.6)

and
}TEr f}Lγ ď v1{γ

r }f}
L1 . (6.7)

As a consequence, for γ P p1, 2s and β P pq, γqq, there exists some constant C ą 0
such that

ż

R`
}TEr f}

γ
Lγ
r´1´βdr ď C}f}

γ

L1XLγ
, f P SpRdq, (6.8)

with }f}
L1XLγ

:“ }f}
L1
_ }f}

Lγ
.

(ii) For all γ P r1, 2s, r ą 1, and f P S1pRdq,

}TEr f}
γ
Lγ
ď Crq´adp| log r| _ 1q`d´1}f}

γ´1

L1

ż

Rd
|y||fpyq|dy, (6.9)

where `d ď d is the number of eigenvalues of E having the minimal real part ad
(counted with multiplicities). As a consequence, for β P pq ´ ad, qq there exists a
constant C such that

ż

R`
}TEr f}

γ
Lγ
r´1´βdr ď C}f}

γ´1

L1

ż

Rd
p1` |y|q|fpyq|dy, f P S1pRdq. (6.10)

Proof : (i) Note that

}TEr f}L1 :“

ż

Rd
|TEr fpxq|dx ď

ż

Rd

ż

Rd
KE
r px, yq|fpyq|dydx,

with KE
r px, yq “ 1BEpx,rqpyq by (2.2). Hence, by Fubini’s theorem,

}TEr f}L1 ď vr}f}L1 . (6.11)

Moreover,

}TEr f}
2

L2
“

ż

Rd
|TEr fpxq|

2dx ď

ż

Rd
vr

ż

Rd
KE
r px, yq|fpyq|

2dydx “ v2
r}f}

2

L2
,

where we first applied the Cauchy–Schwarz inequality, and Fubini’s theorem at the
end. According to the Riesz–Thorin interpolation theorem (see Bergh and Löfström
(1976)), combining this with (6.11), we get (6.6). Moreover, since by the Cauchy–
Schwarz inequality we also have

}TEr f}
2

L2
ď

ż

Rd

ż

Rd
KE
r px, yq|fpyq|dy}f}

L1
dx “ vr}f}

2

L1
,



1418 H. Biermé, O. Durieu and Y. Wang

it follows by Hölder’s inequality that, for p ą 1 such that γ “ 1{p` 2p1´ 1{pq,

}TEr f}
γ
Lγ
ď }TEr f}

1{p

L1
}TEr f}

2p1´1{pq

L2
ď v1{p

r }f}
1{p

L1
v1´1{p
r }f}

2p1´1{pq

L1
“ vr}f}

γ

L1
.

Since vr “ rqvB with q “ trpEq we can conclude that for β P pq, γqq, by (6.6)
and (6.7),

ż

R`
}TEr f}

γ
Lγ
r´β´1dr ď

´

pvB}f}
γ

L1
q _ pvγB}f}

γ

Lγ
q

¯

ż

R`
rq´β´1 ^ rγq´β´1dr.

Therefore we have proved (6.8).

(ii) The assumption that f P S1pRdq implies that
ş

Rd fpzqdz “ 0 so that

TEr fpxq “

ż

Rd
K̃E
r px, yqfpyqdy,

with K̃E
r px, yq “ 1BEpx,rqpyq ´ 1BEpx,rqp0q. Then, by Hölder’s inequality, one has

}TEr f}
γ
Lγ
“

ż

Rd

ˇ

ˇ

ˇ

ˇ

ż

Rd

`

1BEpy,rqpxq ´ 1BEp0,rqpxq
˘

fpyqdy

ˇ

ˇ

ˇ

ˇ

γ

dx

ď }f}γ´1

L1

ż

Rd

ˆ
ż

Rd

ˇ

ˇ1BEpy,rqpxq ´ 1BEp0,rqpxq
ˇ

ˇ

γ
|fpyq|dy

˙

dx.

Also,
ż

Rd

ˇ

ˇ1BEpy,rqpxq ´ 1BEp0,rqpxq
ˇ

ˇ

γ
dx “ LebdpBEpy, rq4BEp0, rqq “ rqhpr´Eyq

with hpzq “ LebdpBEp0, 1q4BEpz, 1qq “ LebdpB4pz ` Bqq, that does not depend
on E. By (2.4), hpyq ď C|y| for all y P Rd and it follows that,

}TEr f}
γ
Lγ
ď C}f}γ´1

L1

ż

Rd
rq|r´Ey||fpyq|dy. (6.12)

Recall that according to the Jordan decomposition theorem, given E, there exists
an invertible matrix P such that D “ P´1EP has the real canonical form

¨

˚

˝

J1 0
. . .

0 Jp

˛

‹

‚

,

where p corresponds to the number of distinct real parts of eigenvalues and each
block matrix J is either

(i) a Jordan cell matrix of size `
¨

˚

˚

˚

˚

˝

a 0 0

1 a
. . .

. . . . . . 0
0 1 a

˛

‹

‹

‹

‹

‚

,

with a a real eigenvalue of E, or
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(ii) a 2`ˆ 2` matrix in form of
¨

˚

˚

˚

˝

Λ 0
I2 Λ

. . . . . .
0 I2 Λ

˛

‹

‹

‹

‚

with Λ “

ˆ

a b
b a

˙

and I2 “
ˆ

1 0
0 1

˙

,

with a˘ ib (b ‰ 0) being complex conjugated eigenvalues of E.
In either case, for the subordinated norm }¨} of the Euclidean norm on Rd, for each
block J with the corresponding real part of eigenvalue denoted by a, it is shown in
Lemma 3.2 of Biermé and Lacaux (2009) that

ra ď
›

›rJ
›

› ď
?

2`erap| log r| _ 1q`´1, for all r ą 0.

(This is slightly different from Lemma 3.2 in Biermé and Lacaux, 2009, but can be
easily established by following the proof carefully.) Recall that it is assumed that
the real parts of eigenvalues of E satisfy a1 ě ¨ ¨ ¨ ě ad ą 0. Let `d be the size of
the Jordan block associated with ad and note that the other Jordan blocks, if they
exist, are associated with a strictly greater real part. Then, there exists a constant
C ą 0, such that

›

›rE
›

› ď Cradp| log r| _ 1q`d´1, for all r P p0, 1q.

Now, it follows from (6.12) that for f P S1pRdq one has for r ą 1,

}TEr f}
γ
Lγ
ď Crq´adp| log r| _ 1q`d´1}f}

γ´1

L1

ż

Rd
|yfpyq|dy.

Hence, for β P pq ´ ad, qq, f P S1pRdq, combining the above inequality for r ą 1
with (6.7) for r ď 1, we obtain

ż

R`
}TEr f}

γ
Lγ
r´1´βdr ďC

ˆ

}f}
γ´1

L1

ż

Rd
p1` |y|q|fpyq|dy

˙

ˆ

ż

R`
r´1´β`q ^

`

r´1´β`q´adp| log r| _ 1q`d´1
˘

dr,

which proves (6.10). �

6.2. Dense regime.

Proof of Proposition 3.1: First, the stochastic integral ZEα,βpfq in (3.2) is well-
defined as soon as

ż

RdˆR`
|TEr fpxq|

αr´1´βdrdx “

ż

R`
}TEr f}

α
Lα
r´1´βdr ă 8

and this condition follows from Proposition 6.3, with γ “ α, β, n as in (3.1).
It is well known (see Samorodnitsky and Taqqu, 1994, Chap. 3) that the charac-
teristic functional LZEα,β of ZEα,β on SnpRdq is given by (3.3). Now, according to
Theorem 2.1, to prove the existence of a generalized-random-field version of ZEα,β ,
it suffices to prove that LZEα,β is continuous on SnpRdq, that is, for all tfkukPN and
f in SnpRdq such that fk Ñ f in SnpRdq, limkÑ8 LZEα,β pfkq “ LZEα,β pfq. This shall
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follow from the convergence in distribution of the random variables ZEα,βpfk´fq to
0 as k Ñ8, or equivalently from

lim
kÑ8

ż

RdˆR`
}TEr pfk ´ fq}

α
Lα
r´1´βdr “ 0.

By (6.8) and (6.10) of Proposition 6.3 with γ “ α, this is straightforward, since
fk ´ f Ñ 0 in SnpRdq clearly implies that the upper bounds also tend to 0. �

Proof of Theorem 3.2: Note that, by Theorem 2.2, the result follows from the point-
wise convergence of the characteristic functional. Further, by (2.9), we clearly have
for f P SnpRdq,

Ln1pρq´1{αY Eρ
pfq “ exp

˜

ż

RdˆR`
φG

ˆ

TEr fpxq

n1pρq1{α

˙

λpρqdxFρpdrq

¸

.

Since n1pρq Ñ 8, by Lemma 6.2,

φG

ˆ

TEr fpxq

n1pρq1{α

˙

„ ´
1

n1pρq
|TEr fpxq|

αφα,b,σpT
E
r fpxqq, as ρÑ 0β´q,

for φα,b,σ defined in (6.4). Hence, under (2.7), one can apply Lemma 6.1 to prove
that

Ln1pρq´1{αY Eρ
pfq Ñ LZEα,β pfq.

Indeed, recall the uniform bound (6.5) on φG and, thanks to Proposition 6.3, the
fact that for n “ 0,

}TEr f}
α
Lα
ď CE}f}

α

L1XLα
prq ^ rαqq,

and for n “ 1,

}TEr f}
α
Lα
ď CE}f}

α´1

L1

ˆ
ż

Rd
p1` |y|q|fpyq|dy

˙

prq ^ rq´ap | logprq|d´1q.

We can then apply Lemma 6.1 with gρprq “ n1pρq
ş

Rd φGpn1pρq
´1{αTEr fpxqqdx to

both cases β P pq, αqq and β P pq ´ ad, qq. �

6.3. Intermediate regime.

Proof of Proposition 3.4: Recall that the Poisson integral JEa,α,βpfq in (3.6) is well-
defined as soon as

ż

RdˆR`ˆR`

`

|mTEr,afpxq| ^ |mT
E
r,afpxq|

2
˘

r´1´βdxdrGpdmq ă 8.

Let us remark that

|mTEr,afpxq| ^ |mT
E
r,afpxq|

2 ď |mTEr,afpxq|
γ ,

for any γ P r1, 2s. Hence, for β P pq ´ ad, qq Y pq, αqq, choosing γ P r1, αq such that
β P pq ´ ad, γqq, one has
ż

RdˆR`ˆR`
|mTEr,afpxq|

γ r´1´βdxdrGpdmq ď Ep|M |γq
ż

R`
}TEr,af}

γ
Lγ
r´1´βdr ă 8,

in view of Proposition 6.3, since }TEr,af}γLγ “ aq}TEr{af}
γ
Lγ

(see (3.5)). It follows that
the Poisson integral JEa,α,βpfq is well-defined for all f P SnpRdq and the characteristic
functional LJEa,α,β of JEa,α,β is given by (3.7).
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Again, to show the existence of a version of JEa,α,β with values in S 1npRdq, using
Theorem 2.1, it is sufficient to prove that the characteristic functional LJEa,α,β is
continuous on SnpRdq. Let β P pq ´ ad, qq Y pq, αqq and assume that fk Ñ 0 in
SnpRdq. We will show that JEa,α,βpfkq converges in Lγ to 0, which is sufficient to
prove the continuity of LJEa,α,β . Actually, following the proof of Proposition 3.1 in
Breton and Dombry (2011), we can bound γ-moments of the real random variable
JEa,α,βpfq for f P SnpRdq. Since JEa,α,βpfq is centered, for γ P r1, αq, following
Gaigalas (2006) page 461 and using Lemma 2 and Lemma 4 of von Bahr and
Esseen (1965),

E
`

|JEa,α,βpfq|
γ
˘

ď Apγq

ż 8

0

ˆ

1´
ˇ

ˇ

ˇ
LJEa,α,β pθfq

ˇ

ˇ

ˇ

2
˙

θ´1´γdθ,

with Apγq :“ p
ş8

0
p1´ cosxqx´1´γdxq´1 ă 8. But

ˇ

ˇ

ˇ
LJEa,α,β pθfq

ˇ

ˇ

ˇ
ě exp

ˆ

´C|θ|α
ż

RdˆR`
|TEr,afpxq|

αCβr
´1´βdrdx

˙

,

using the upper bound on |φG| given (6.5). It follows that for γ P r1, αq one has

E
`

|JEa,α,βpfq|
γ
˘

ď Apγq

ż 8

0

p1´ exp

ˆ

´2C|θ|α
ż

R`
}TEr,af}

α
Lα
Cβr

´1´βdr

˙

θ´1´γdθ

ď ApγqApα, γq

ˆ

C

ż

R`
}TEr,af}

α
Lα
Cβr

´1´βdr

˙γ{α

,

with Apα, γq :“
ş8

0
p1 ´ expp´sαqqs´1´γds ă 8. Hence the result follows from

Proposition 6.3 since }TEr,af}αLα “ aq}TEr{af}
α
Lα

. �

Proof of Theorem 3.5: Again, by Theorem 2.2, the result follows from the conver-
gence of the characteristic functionals. Observe that,

LJEa,α,β pfq “ exp

#

ż

RdˆR`
φGpT

E
r,afpxqqCβr

´1´βdrdx

+

“ exp

#

Cβ

ż

RdˆR`
φGpT

E
s fpyqqa

q´βs´1´βdsdy

+

by the changes of variables y “ a´Ex and s “ r{a. The rest of the proof can be
done similarly as for Theorem 3.2, starting from (2.9) and applying Lemma 6.1
with gprq “ gρprq “

ş

Rd φGpT
E
r fpxqqdx and the help of Proposition 6.3. �

6.4. Sparse regime.

Proof of Proposition 3.6: Using Theorem 2.1, it is sufficient to prove that Zp1qγ pfkq
converges in distribution to 0 when fk Ñ 0 in SpRdq. This last assertion is obvious
since convergence in SpRdq implies convergence in LγpRdq. �

To prove Theorem 3.7, we consider the maximal function f˚ associated to a
function f of SpRdq,

f˚pxq :“ sup
rą0

1

rqvB

ż

1BEpx,rqpyq|fpyq|dy, x P Rd,

and we shall need the following lemma.
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Lemma 6.4. For all f P SpRdq and all α ą 1, f˚ P LαpRdq.

Proof : By Lemma 6.1.5 in Meerschaert and Scheffler (2004), there exists a norm
} ¨ }0 on Rd such that the mapping p0,8q ˆ tx P Rd | }x}0 “ 1u Ñ Rdzt0u,
pt, θq ÞÑ tEθ, is a homeomorphism. Further, the function t ÞÑ }tEx}0 is increasing
for all x P Rd. Thus, any x P Rdzt0u can be uniquely written as x “ τpxqEθpxq
with τpxq ą 0 and }θpxq}0 “ 1. The function τ is a continuous function that can
be extended to Rd by setting τp0q “ 0. By Lemma 2.2 in Biermé et al. (2007), one
can find κ ě 1 such that

τpx` yq ď κ pτpxq ` τpyqq . (6.13)

Therefore we can introduce the function δpx, yq “ τpy ´ xq, x, y P Rd, which is a
quasi-distance on Rd. We also introduce the sets

CEpx, rq “ ty P Rd | δpx, yq ă ru, r ą 0. (6.14)

SinceB is a bounded subset of Rd, we can find a real r0 ą 0 such thatB Ă CEp0, r0q.
With no loss of generality we assume that r0 “ 1 and we denote C :“ CEp0, 1q.
Thus CEpx, rq “ x ` rEC for all x P Rd and r ą 0, and BEpx, rq Ă CEpx, rq. We
infer that for all x P Rd,

f˚pxq ď
vC
vB

sup
rą0

1

rqvC

ż

1CEpx,rqpyq|fpyq|dy.

The desired result is now a consequence of Theorem 1 and Example 2.4 in Stein
(1993). �

Proof of Theorem 3.7: By Theorem 2.2, it is sufficient to prove the convergence of
the characteristic functionals. The characteristic functional of n2pρq

´1Y Eρ is given
by, recalling that Fρpdrq “ F pdr{ρq,

Ln2pρq´1Y Eρ
pfq “ exp

#

ż

RdˆR`
λpρqφG

ˆ

TEr fpxq

n2pρq

˙

dxFρpdrq

+

“ exp

#

ż

RdˆR`
λpρqφG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dxFρn2pρq´1{q pdrq

+

.

We shall show that
ż

RdˆR`
λpρqφG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dxFρn2pρq´1{q pdrq

Ñ Cβ

ż

RdˆR`
φGpfpxqvBr

qqr´1´βdrdx as ρÑ 0β´q and λpρq Ñ 0q´β . (6.15)

From this, we infer that

Ln2pρq´1Y Eρ
pfq Ñ exp

#

Cβ

ż

RdˆR`
φGpfpxqvBr

qqr´1´βdrdx

+

“ L
Z
p1q
γ
pfq,

for L
Z
p1q
γ
pfq given in (3.10), which completes the proof. The last equality above

is obtained by following the same lines as in Breton and Dombry (2009) pages
3650–3651.
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To prove (6.15), recalling that λpρqρβn2pρq
´β{q “ 1, it suffices to check the

conditions of Lemma 6.1 for

gρprq :“

ż

Rd
φG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dx and gprq :“

ż

Rd
φGpfpxqvBr

qqdx.

First, remark that for f P SnpRdq,

TE
n2pρq1{qr

fpxq

n2pρq
ÝÑ

ρÑ0β´q
vBr

qfpxq

for dx-almost all x, so that

φG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

ÝÑ
ρÑ0β´q

φGpvBr
qfpxqq

for dx-almost all x by continuity of φG. But, by Lemma 6.2,
ˇ

ˇ

ˇ

ˇ

ˇ

φG

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ˇ

ˇ

ˇ

ˇ

ˇ

TE
n2pρq1{qr

fpxq

n2pρq

ˇ

ˇ

ˇ

ˇ

ˇ

α

ď CpvBr
qqαf˚pxqα.

Since f˚ belongs to LαpRdq by Lemma 6.4, Condition (6.1) follows by Lebesgue’s
theorem.

Next, for Condition (6.2), we deal with the cases n “ 0 and n “ 1 separately.
Now, since |φGpuq| ď Cp|u| ^ |u|αq and f P L1pRdq X LαpRdq,

|gprq| ď C

ż

Rd
|fpxqvBr

q| ^ |fpxqvBr
q|αdx ď Cp}f}

L1 vB _ }f}
α
Lα
vαBqpr

q ^ rαqq.

This establishes Condition (6.2) for β P pq, αqq and n “ 0 with β´ “ q and β` “ αq.
Next, when f P S1pRq, remark that

gprq “

ż

Rd
φGpfpxqvBr

qqdx “

ż

Rd
φ̃GpfpxqvBr

qqdx,

with φ̃Gpuq “
ş

peimu´1qGpdmq so that now |φ̃Gpuq| ď Cp1^|u|δq for any δ P p0, 1s.
Hence

|gprq| ď CvδB}f}
δ

Lδ
rqδ.

Choosing δ “ q{pq ` adq P p0, 1q and δ “ 1 respectively, we infer that for n “ 1,
Condition (6.2) holds for β P pq2{pq ` adq, qq with β´ “ q2{pq ` adq and β` “ q,
respectively.

It remains to prove that (6.3) holds. We first consider β P pq, αqq. Using
|φGpuq| ď C|u| and (6.7),

|gρprq| ď C
1

n2pρq
}TEn2pρq1{qr

f}
L1 ď C}f}

L1 r
q. (6.16)

Then, using |φGpuq| ď C|u|α, we can write

|gρprq| ď Crαq
ż

Rd

ˇ

ˇ

ˇ

ˇ

ˇ

TE
n2pρq1{qr

fpxq

n2pρqrq

ˇ

ˇ

ˇ

ˇ

ˇ

α

dx ď C}f˚}α
Lα
rαq,
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that finishes to prove (6.3) when β P pq, αqq. Finally, when β P pq2{pq` adq, qq and
f P S1pRdq, we write gρ “ g

p1q
ρ ` g

p2q
ρ , with

gp1qρ :“

ż

τpxqď2κn2pρq1{qr

φ̃G

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dx

and

gp2qρ :“

ż

τpxqą2κn2pρq1{qr

φ̃G

˜

TE
n2pρq1{qr

fpxq

n2pρq

¸

dx,

where κ ě 1 comes from the quasi-triangular inequality given in (6.13). With this
choice we may write for any z P pn2pρq

1{qrqEB,

τpxq ď κ pτpx` zq ` τpzqq ď κ
´

τpx` zq ` n2pρq
1{qr

¯

,

where, with no loss of generality, we have again assumed that B Ă CEp0, 1q (recall
(6.14)). It follows that τpx ` zq ą 1

2κτpxq for any z P pn2pρq
1{qrqEB and x such

that τpxq ą 2κn2pρq
1{qr. Since f is rapidly decreasing, we get for N ě 1,

ˇ

ˇ

ˇ

ˇ

1

n2pρq
TEn2pρq1{qr

fpxq

ˇ

ˇ

ˇ

ˇ

ď

ż

Rd
1rEBpzq

ˇ

ˇ

ˇ
fpx` n2pρq

E{qzq
ˇ

ˇ

ˇ
dz

ď C

ż

Rd
1rEBpzq

´

1` τpx` n2pρq
E{qzq

¯´N

dz

ď CvBr
q p1` τpxqq

´N
,

where here and below, the constant C “ Cpfq does not depend on r and ρ. Using
that |φ̃Gpuq| ď C|u|δ for δ P p0, 1s, choosing N “ Npδ, qq such that Nδ ą q ` 1, it
follows that

ˇ

ˇ

ˇ
gp2qρ prq

ˇ

ˇ

ˇ
ď Crqδ

ż

Rd
p1` τpxqq

´Nδ
dx ď Crqδ. (6.17)

Moreover,
ˇ

ˇ

ˇ
gp1qρ prq

ˇ

ˇ

ˇ
ď Cn2pρq

´δ

ż

τpxqďCn2pρq1{qr

ˇ

ˇ

ˇ
TEn2pρq1{qr

fpxq
ˇ

ˇ

ˇ

δ

dx

ď Cn2pρq
´δ}TEn2pρq1{qr

f}δ
Lpδ
pn2pρqr

qq
1´1{p

,

by Hölder’s inequality for p ą 1. When n2pρq
1{qr ď 1, we use (6.7) with pδ P r1, 2s.

It follows that
ˇ

ˇ

ˇ
gp1qρ prq

ˇ

ˇ

ˇ
ď Cn2pρq

´δ pn2pρqr
qq

1{p
ˆ pn2pρqr

qq
1´1{p

ď Cn2pρq
1´δrq ď Crqδ, (6.18)

since n2pρq ď r´q. When n2pρq
1{qr ą 1, we use (6.9) for pδ P r1, 2s. By the

assumption that β ą q2{pq` adq, we can choose b P p0, adq such that β ą q2{pq` bq
and

}TEn2pρq1{qr
f}δ

Lpδ
ď C

´

n2pρq
1{qr

¯pq´bq{p

,

by (6.9) since b ă ad. Hence,
ˇ

ˇ

ˇ
gp1qρ prq

ˇ

ˇ

ˇ
ď Cn2pρq

´δ`1´b{qprq´b{p.

Now we can choose δ “ q{pq ` bq P p0, 1q and p “ p1 ` b{qq ą 1 such that δp “ 1
and

ˇ

ˇ

ˇ
gp1qρ prq

ˇ

ˇ

ˇ
ď Crq´b{p1`b{qq “ Crq

2
{pq`bq.
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Combining with the previous bounds (6.17) and (6.18) for the same δ “ q{pq ` bq,
we get

|gρprq| ď Crq
2
{pq`bq,

and we have that (6.3) holds with β´ “ q2{pq ` bq and β` “ q (which we have
shown in (6.16) when considering the case β P pq, αqq). We have thus proved (6.15)
and the theorem. �
6.5. Very-sparse regime. Proposition 3.9 can be obtained as before using Theo-
rem 2.1. The proof of Theorem 3.10 is similar to the one of Theorem 3.7 (see also
the proof of Theorem 2.19 in Breton and Dombry, 2009). The details of this part
are thus omitted.
Appendix A. Illustrations

We provide several simulations of our operator-scaling random ball model, ob-
tained by following similar ideas as in Biermé et al. (2013). For the sake of simplicity
we choose E “ diagpa1, a2q with a1 ě a2 :“ 1 and β P pq ´ ad, qq “ pa1, a1 ` 1q.

α “ 1.7 α “ 1.9 α “ 2

Figure A.1. Operator-scaling random ball with a1 “ 1.2 and
β “ 1.6: the set B is an Euclidean ball, the weights vary according to a
SαSpσq distribution with σ “ 0.1.

a1 “ 1 (isotropic) a1 “ 1.5 a1 “ 2

Figure A.2. Operator-scaling random ball in high intensity with
H “

1`a1´β
α

“ 0.4 and weights following a SαSpσq distribution with
σ “ 0.1. Top: α “ 2 (Gaussian case). Bottom: α “ 1.8.



1426 H. Biermé, O. Durieu and Y. Wang

B1 B1{2 B8

Figure A.3. Operator-scaling random ball in high intensity with
H “

1`a1´β
α

“ 0.3, a1 “ 1.3, weights following a SαSpσq distribution
with σ “ 0.1, and different balls: B1 “ tx P R2 : |x1|` |x2| ď 1u, B1{2 “

tx P R2 : |x1|
1{2
` |x2|

1{2
ď 1u and B8 “ tx P R2 : maxp|x1|, |x2|q ď 1u.

Top: α “ 2 (Gaussian case). Bottom: α “ 1.9.
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