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Abstract. We consider a stochastic differential equation on the real line which is
driven by two correlated Brownian motions B+ and B− respectively on the positive
half line and the negative half line. We assume |d〈B+, B−〉t| ≤ ρ dt with ρ ∈ [0, 1).
We prove it has a unique flow solution. Then, we generalize this flow to a flow on
the circle, which represents an oriented graph with two edges and two vertices. We
prove that both flows are coalescing. Coalescence leads to the study of a correlated
reflected Brownian motion on the quadrant. Moreover, we find the distribution of
the hitting time to the origin of a reflected Brownian motion. This has implications
for the effect of the correlation coefficient ρ on the coalescence time of our flows.

1. Introduction

Stochastic flows on graphs have attracted much interest recently (Hajri and
Raimond, 2016, 2014, 2013). As a simple abstraction of change of randomness at
a node connecting two edges, flows on R with the origin having a special role are
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considered, see Le Jan and Raimond (2014). In particular, a stochastic differential
equation is used to represent different dynamics at the negative and positive axes
for the motion of a single particle. In this paper, we consider the equation

dXt = 1{Xt>0}dB
+
t − 1{Xt≤0}dB

−
t , X0 = x (1.1)

for the dynamics of the trajectory X in the flow, where B+ and B− are correlated
standard Brownian motions adapted to the same filtration. Since the usual condi-
tions are not satisfied by the diffusion terms, we first investigate the existence of
a strong solution. Then, we show that there exists a stochastic flow on R based
on this differential equation and use it for generalizing to a stochastic flow on the
circle.

More precisely, let B+ and B− be two Brownian motions, jointly defined on
a probability space (Ω,H,P) and adapted to a filtration (Ft) satisfying the usual
conditions. By the assumption that B+ and B− are Brownian motions, (B+, B−)
is a martingale with respect to (Ft) (Revuz and Yor, 1999, pg. 147), with cross
variation process Ht := 〈B+, B−〉t. Since H is of bounded variation (Karatzas and
Shreve, 1991), it is almost everywhere differentiable. Let ht denote the derivative
dHt/dt when it exists. We assume

|ht| ≤ ρ (1.2)

for almost every t ≥ 0 with ρ ∈ [0, 1) and it follows that

|Ht| ≤ ρt .

Examples of martingales such as (B+, B−) arise as solutions of stochastic differen-
tial equations.

In this paper, we seek for a flow of mapping ϕ based on SDE (1.1) (Le Jan and
Raimond, 2004). Our first result is given as follows.

Theorem 1.1. There exists a unique coalescing stochastic flow of mappings ϕ such
that for all x ∈ R and s ≤ t

ϕs,t(x) = x+

∫ t

s

1{ϕs,u(x)>0}W
+(du)−

∫ t

s

1{ϕs,u(x)≤0}W
−(du)

where (W+,W−) is a white noise with |〈W+
s,t,W

−
u,v〉| ≤ ρ|[s, t] ∩ [u, v]|.

For the proof of coalescence, we make use of a reflected Brownian motion (RBM)
on the quadrant (Varadhan and Williams, 1985). It is constructed from two particle
motion by extracting the parts of the trajectories with opposite signs and assigning
each partial trajectory to a coordinate of the RBM. Clearly, two particles have a
chance to coalesce only if their signs are different. The coordinates of the RBM
are correlated by construction. In the case when the correlation between B+ and
B− is exactly ρt, we find the distribution of the hitting time T0 of the RBM to the
origin. In this way, we not only extend the results of Le Jan and Raimond (2014)
where the finiteness of T0 is proved for ρ = 0, but also find the distribution of T0,
which is of independent interest as well. Its density is given by

fρ(t) =
x

2
√

πt3(1 + ρ)
e−

x2

4t(1+ρ) t > 0 .

We show that coalescence occurs faster as ρ gets closer to 1.
Our flows can be considered as interpolations between the flows associated to

Tanaka’s SDE (Hajri, 2015; Le Jan and Raimond, 2006) and the basic Brownian
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flow considered in Le Jan and Raimond (2014). When 〈B+, B−〉t = ρt in (1.1),
ρ = 1 corresponds to Tanaka’s SDE and the equation of Le Jan and Raimond
(2014) represents the independent case ρ = 0. We study the intermediate, but
more general cross variation process Ht.

Second, we are interested in a flow on the unit circle C = {z ∈ C : |z| = 1}.
When z ∈ C is represented as z = |z|eiθ for θ ∈ R, the argument of z, denoted by
arg(z), refers to the angle θ. We embed an oriented graph with two edges and two
vertices at 1 and eil in C where the angle l ∈ (0, 2π] is fixed. In analogy with (1.1),
a particle is supposed to follow a different Brownian motion on each edge. This
defines a special metric graph and the construction of a flow on this graph follows
directly from the theory in Hajri and Raimond (2014). Formally, we require the
stochastic flow ϕ on the circle C to satisfy the equation

f(ϕs,t(z)) = f(z) +

∫ t

s

f ′(ϕs,u(z))1{arg(ϕs,u(z))∈[0,l)}W
+(du) (1.3)

−
∫ t

s

f ′(ϕs,u(z))1{arg(ϕs,u(z))∈[−2π+l,l)}W
−(du)

+
1

2

∫ t

s

f ′′(ϕs,u(z)) du

for all f ∈ C2(C), as a generalization of the stochastic flow solution to (1.1) on R

given in Theorem 1.1. To that end, we refer to some flows of mappings ϕ+ and
ϕ−, which are flow solutions to two forms of SDE (1.1) with consistent Brownian
motions. The following is an explicit formula for the flow, but only until the argu-
ments ϕ+ and ϕ− move a point z on an edge of the circle to the boundary of the
other edge.

Theorem 1.2. There exists a stochastic flow ϕ on C satisfying (1.3) and such that

ϕs,t(z) =

{

eiϕ
+
s,t(arg(z)) if t < γz,+

s

eil−iϕ−
s,t(l−arg(z)) if t < γz,−

s

(1.4)

where arg(z) ∈ [−2π+ l, l], z ∈ C, almost surely for all s < t where γz,+
s = inf{r ≥

s : ϕ+
s,r(arg(z)) 6∈ (−2π+l, l)} and γz,−

s = inf{r ≥ s : ϕ−
s,r(l−arg(z)) 6∈ (−2π+l, l)}.

We construct the flow more explicitly and prove that it is coalescing. We first
take two particles moving on the plane such that when they are mapped on the
circle they move with respect to the flow on the circle. Then, we construct an
associated RBM on a bounded domain. We show that this process hits one of the
corners in finite time, which in turn implies that coalescence occurs in finite time
at one of the vertices. A further remarkable result is on coalescence time. We find
its distribution explicitly and see that the closer ρ is to 1, the faster the coalescence
occurs.

Our paper is organized as follows. Section 2 gives a series of propositions and
lemmas that prove Theorem 1.1 together with the results on the hitting time dis-
tribution. In Section 3, we show that the flow on the circle is coalescing, and we
also derive the probability law of the hitting time to a vertex.
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2. The flow on R

We refer to Le Jan and Raimond (2004) for the definition of stochastic flows with
independent increments on R. Starting with the solution of SDE (1.1), we study
its flow in this section.

2.1. Strong solution for one-point motion. In order to show that the strong solution
exists, it is sufficient to show pathwise uniqueness and weak existence. The proof of
this fact, as given in Karatzas and Shreve (1991, pg. 309-10) based on Yamada and
Watanabe’s theorem for SDE’s driven by independent Brownian motions, is also
valid for our SDE, where the Brownian motions B+ and B− are not independent.
The crucial point is that (B+, B−) with cross variation process H still takes values
in a Polish space, namely, C(R+,R

2). In view of this, there exist regular versions
of the conditional probability distributions involved and the result follows; see also
Revuz and Yor (1999, pg. 368).

For the existence of a weak solution of SDE (1.1), we demonstrate a probability

space (Ω′,H′,P′) with filtration (F ′
t) and a process (X ′, B+′

, B−′
) adapted to (F ′

t)
that solves (1.1), as given in the following proposition.

Proposition 2.1. There exists a weak solution of (1.1).

Proof : Recall that (B+, B−) is a martingale on (Ω,H,P, (Ft)) with cross varia-
tion process H . When it exists, a solution X of SDE (1.1) is a Brownian motion
by Lévy’s characterization theorem, irrespective of the joint law of (B+, B−). Al-
though the joint distribution of B+ and B− is not specified, it is fixed by H due
to Revuz and Yor (1999, Thm.V.3.9) as dHt = ht dt for almost every t > 0. Ac-
cordingly, we can find a two-dimensional Brownian motion B := (B1, B2)T such
that

(B+
t , B

−
t )T =

∫ t

0

αs dBs (2.1)

where α is a matrix-valued process given by

αs =
1√
2

[ √
1 + hs

√
1− hs√

1 + hs −
√
1− hs

]

as in Revuz and Yor (1999, Thm.V.3.9). Since α is invertible due to assumption

ρ < 1 in (1.2), we have (B1
t , B

2
t )

T =
∫ t

0 α
−1
s d(B+

s , B
−
s )T . Then, B1 and B2 are

independent Brownian motions adapted to (Ft) as 〈B1, B2〉t = 0, for t > 0. There-
fore, (2.1) characterizes the joint distribution of (B+, B−) uniquely in our original
probability space. Now, let

X ′
t = B+

t ,

B+′

t =

∫ t

0

1{X′
s>0}dB

+
s −

∫ t

0

1{X′
s≤0}dB

−
s ,

B−′

t =

∫ t

0

1{X′
s>0}dB

−
s −

∫ t

0

1{X′
s≤0}dB

+
s .

It follows that (X ′, B+′
, B−′

) is adapted to (Ft) and solves (1.1). It is easily checked

that 〈B+′
, B−′〉t = Ht, and (B+′

, B−′
) has the same distribution as (B+

t , B
−
t ) by

an analogous relation to (2.1) where B and (B+, B−) are replaced by B′, and

(B+′
, B−′

), respectively. Note that ρ = 1 is not problematic for demonstrating a
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weak solution. In that case, our arguments above can be modified by an enlargement
of the probability space as in Revuz and Yor (1999, Thm.V.3.9). �

Pathwise uniqueness will be shown next using Prokaj (2013, Thm.2), equiva-
lently, its generalization, which is given in Fernholz et al. (2013, Thm.6.1), based
on the assumption ρ < 1. In the Appendix, we also give an alternative proof of
Proposition 2.2, which reveals the role of the magnitude of the correlation between
B+ and B− by following the steps of Hajri and Raimond (2016, Prop.4.5), where
ρ < 1 is again crucial.

Proposition 2.2. Pathwise uniqueness holds for (1.1).

Proof : Let us define Mt =
B+

t +B−
t

2 and Nt =
B+

t −B−
t

2 . They are continuous local
martingales which are strongly orthogonal, i.e., 〈M,N〉t = 0. Then (1.1) reduces
to

dXt = sgn(Xt)dMt + dNt

We look for c > 0 such that d〈M〉t ≤ cd〈N〉t. This is equivalent to dHt ≤ c−1
c+1 dt.

Since ht ≤ ρ by (1.2), we have dHt ≤ ρ dt with ρ < 1 and the domination relation
is satisfied with c = (1 + ρ)/(1 − ρ). By Prokaj (2013, Thm.2), we may conclude
that pathwise uniqueness holds for (1.1). �

2.2. Coalescence of two particles. Let X and Y be two solutions of SDE (1.1) with
X0 = 0, Y0 = y > 0, which we also refer as two particles starting at 0 and y. Other
starting points can be handled similarly as explained below. For two particles,
there is a chance to meet only if X and Y have opposite signs. Otherwise, they
move lockstep with either B+ or B−. Therefore, we concatenate the trajectories
piecewise only for t > 0 such that Xt ≤ 0 and Yt ≥ 0 in order to prove coalescence.
Define the coalescence time

T = inf{s ≥ 0 : Xs = Ys}
and the quadrant

D = {(x, y) ∈ R
2 : x ≤ 0, y ≥ 0}

which will be the domain of an RBM to be defined as follows. Let

At =

∫ t∧T

0

1{(Xs,Ys)∈D}ds, κt = inf{s > 0 : As > t}

and

(Xr
t , Y

r
t ) = (Xκt

, Yκt
) , t ≤ AT .

Let Lt(X) and Lt(Y ) be the local times of X and Y at 0. Denote by L1
t and L2

t ,
1
2Lκt

(X) and 1
2Lκt

(Y ), respectively. The following lemma identifies (Xr, Y r) as a
reflected Brownian motion in D.

Lemma 2.3. The process (Xr, Y r) is a correlated reflected Brownian motion in D,
obliquely reflected at the boundary with angle π/4 and stopped when it hits (0, 0).
That is, there exist Brownian motions B1 and B2 with |d〈B1, B2〉t| ≤ ρ dt such that
for all t < AT

Xr
t = −B1

t − L1
t + L2

t , Y r
t = y +B2

t − L1
t + L2

t

with 〈B1, B2〉t =
∫ κt

0
1{Xs≤0}hs ds.
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Proof : According to SDE (1.1), the solutions X and Y satisfy

Xt =

∫ t

0

1{Xs>0} dB
+
s −

∫ t

0

1{Xs≤0} dB
−
s , (2.2)

Yt = y +B+
t .

for Brownian motions B+ and B− with 〈B+, B−〉t = Ht, until

τ1 := inf{t > 0 : Yt = 0} .

The process (Xr
t , Y

r
t ) takes values in D = R− × R+ for κt ≤ τ1, equivalently for

t ≤ Aτ1 . To see this, first note that Yt ≥ 0 for t ≤ τ1 ≤ T and consider only

the coordinate Xr
t . Then, for t ≤ τ1 we have At =

∫ t

0 1{Xs<0}ds, which implies
that A increases only during the negative excursions of X . As a result, the path
{Xr

t : 0 ≤ t ≤ Aτ1} takes values in R− as it is the negative part of X over [0, τ1].
By definition of the clock At, the trajectory of (Xr, Y r) is formed piecewise from
that of (X,Y ) as illustrated in dark in Fig.2.1. The process (Xr

t , Y
r
t ) is continuous

0

X
t

Y
t

1

y

t

Figure 2.1. The darker parts of the trajectories of Xt and Yt are
concatenated piecewise to form (Xr, Y r).

on [0, Aτ1 ] because the value of Y is the same at the start and end points of a
positive excursion of X , due to the fact that Xt − Yt is constant when they both
move lockstep with B+ according to SDE (1.1) during the excursion. Moreover, the
evolution of At and the role of its right inverse κt can be sketched as in Karatzas
and Shreve (1991, Rem.6.3.3) to see how they work.

We next derive the Skorohod representation of (Xr
t , Y

r
t ) on [0, Aτ1 ] to find the

angle of reflection and show that is a reflected Brownian motion in R− ×R in this
time interval. By Tanaka formula (Karatzas and Shreve, 1991, Prop.3.6.8) for the
negative part of X , we have

L1
t = −Xr

t −B1
t
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where L1
t = (1/2)Lκt

(X) and B1
t = −

∫ κt

0
1{Xs≤0} dXs =

∫ κt

0
1{Xs≤0} dB

−
s . Putting

B2
t :=

∫ κt

0
1{Xs≤0} dB

+
s , we observe that B2 is also a Brownian motion and

Y r
t = Yκt

= B2
t − L1

t + y

holds from (2.2) and the fact that Xκt
+ B1

t =
∫ κt

0
1{Xs>0} dXs, which is −L1

t .
Now, we have

〈B1, B2〉t =
∫ κt

0

1{Xs≤0}d〈B+, B−〉s =
∫ κt

0

1{Xs≤0}dHs =

∫ κt

0

1{Xs≤0}hs ds .

It follows that

|d〈B1, B2〉t| = |hκt
| dt ≤ ρ dt

as |ht| ≤ ρ for all t, and by definition of κt as right continuous inverse of At =
∫ t

0
1{Xs≤0} ds. Explicitly, we have

(Xr
t , Y

r
t ) = (0, y) + (−B1

t , B
2
t )− (L1

t , L
1
t ) t ≤ Aτ1 .

Thus, for t ≤ Aτ1 , (X
r
t , Y

r
t ) is a correlated reflected Brownian motion on R− × R

with oblique reflection of angle π/4 by Harrison and Reiman (1981, Thm.1) for
Skorohod representation of multidimensional reflected diffusions, provided that we
show L1

t increases only at those times t such that Xr
t = 0. This can be shown

easily as in Le Jan and Raimond (2014, Lem.4.3) by approximating the equation
Xr

t = −B1
t − L1

t in probability with the upcrossings of X when it takes values
in (−ǫ, 0), as ǫ ↓ 0. Therefore, L1

t increases only when Xr
t = 0 in view of the

downcrossing representation of local time (Karatzas and Shreve, 1991, Thm.6.2.23),
which is symmetric, to upcrossings.

Now, starting with (x, 0) := (Xτ1 , Yτ1), with x < 0, we replaceX,Y,B+, B− with
Xτ1+·, Yτ1+·, B

+
τ1+·−B+

τ1, B
−
τ1+·−B−

τ1. In (Aτ1 , Aτ2 ] where τ2 = inf{t > 0 : Xt = 0},
according to (1.1) we have

Xt = x−B−
t ,

Yt =

∫ t

0

1{Ys>0} dB
+
s −

∫ t

0

1{Ys≤0} dB
−
s .

Similar to [0, Aτ1 ] above, (X
r
t , Y

r
t ) is a correlated reflected Brownian motion on

R × R+ with angle of reflection π/4 for t ∈ (Aτ1 , Aτ2 ]. In particular, Y r is a
reflected Brownian motion on R+ with local time

L2
t = Y r

t −B2
t

where B2
t =

∫ κt

0
1{Ys>0} dYs =

∫ κt

0
1{Ys>0} dB

+
s from Tanaka formula. This time,

X is on the negative axis and satisfies

Xr
t = Xκt

= x+ L2
t −B1

t

where we put B1
t := −

∫ κt

0
1{Ys≤0} dB

−
s . It follows that

(Xr
t , Y

r
t ) = (x, 0) + (−B1

t , B
2
t ) + (L2

t , L
2
t )

and |d〈B1, B2〉t| ≤ ρ dt as before.
Alternating as above, the process (Xr, Y r) constructed in this way is continuous

in D by definition and satisfies

(Xr
t , Y

r
t ) = (0, y) + (−B1

t , B
2
t )− (L1

t , L
1
t ) + (L2

t , L
2
t ), for t < AT

since L1 and L2 are not positive at the same time for t < AT . �
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Note that the proof of Lemma (2.3) considers a starting point of the form (0, y)
or (x, 0). If the process (X,Y ) starts from (x, y) ∈ D with x < 0 < y, then
with these starting points for (Xr, Y r) the same proof applies after (X,Y ) hits the
boundary of D. Clearly, the case y < 0 < x is symmetric with D replaced by
{(x, y) ∈ R

2 : x ≥ 0, y ≤ 0}. If (x, y) is in the first or third quadrant, with the
same sign, then we can define (Xr, Y r) after the hitting time of one of X and Y to
0. The following lemma indicates coalescence.

Lemma 2.4. P{T < ∞} = 1.

Proof : Let L1, L2 be as in Lemma 2.3 and define Lr := L1 + L2, which is the
local time of (Xr, Y r) at the boundary {x = 0} ∪ {y = 0}. Let T0 = inf{t ≥
0 : Xr

t = Y r
t = 0}, the hitting time of the RBM to the origin. Along the very

same lines of the proof of Le Jan and Raimond (2014, Lem.4.6), one can show that
P{Lr

T0
< ∞} = 1. The cross variation process of B1 and B2 and the upper bound ρ

appear in an obvious way in the proof. Then, since 1
2 (LT (X)+LT (Y )) = Lr

T0
< ∞

and since X is a Brownian motion, it follows that T < ∞ a.s. �

Since the solution of (1.1) is strong, when two particles meet they stay together
thereafter.

2.3. Feller property and the flow. Since there exists a strong solution to (1.1), we
may define Pn

t (x, dy), n ≥ 1, as the law of (X1, . . . , Xn) which are n solutions of
the same equation with initial conditions X i

0 = xi, i = 1, . . . , n. We will prove
(Pn

t )n≥1 defines a compatible family of Feller semigroups next.

Lemma 2.5. The family of Markovian semigroups corresponding to n-point motion
corresponding to (1.1) is Feller, for each n ≥ 1

Proof : We will check Condition (C) of Le Jan and Raimond (2004, Thm.4.1) as
a sufficient condition for Feller property. Let (X,Y ) be the two-point motion.
Condition (C) is verified if for every t > 0 and ε > 0

lim
|y−x|→0

P
(2)
(x,y){ |Xt − Yt| > ε, t < T } = 0. (2.3)

Assume 0 < y − x < ε, then

P
(2)
(x,y){Yt −Xt > ε, t < T } ≤ P

(2)
(x,y){ sup

t≥0
(Yt −Xt) ≥ ε}

= P
(2)
(x,y){Y0 −X0 ≥ ε}+ 1

ε
E
(2)
(x,y)[(y − x)1{Y0−X0<ε}]

=
y − x

ε

where the first equality follows from Karatzas and Shreve (1991, problem 1.3.28).
Then, (2.3) follows. �

Now, let W+ and W− be two given white noises with |〈W+
s,t,W

−
s,t〉| ≤ ρ(t − s),

for s < t. By the results of Section 2.1, the equation

ϕs,t(x) = x+

∫ t

s

1{ϕs,u(x)>0}W
+(du)−

∫ t

s

1{ϕs,u(x)≤0}W
−(du) (2.4)

has a strong solution ϕ for each x ∈ R and s ≤ t. As in the proof of Le Jan
and Raimond (2014, Thm.1.1), the mappings ϕs,t : R → R, for s, t rational, can
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be defined on the same probability space. Then, the solutions can be extended
to all s, t ∈ R+ and they will satisfy (2.4) by continuity in view of Lemma 2.5.
Measurability and cocycle property follows by similar arguments as in Hajri (2011,
pg. 81) and Kunita (1990, pg. 161). Hence, the proof of Theorem 1.1 is complete.

2.4. Distribution of T0. In this part, we find the distribution of the time it takes the
reflected Brownian motion (Xr, Y r) to hit the origin under the simplified condition
that the cross variation process is exactly equal to ρt. Let (X,Y ) be a two point
motion of our SDE

dXt = 1{Xt>0}dB
+
t − 1{Xt≤0}dB

−
t

where 〈B+, B−〉t = ρt with X0 = x > 0 and Y0 = 0. Remember the reflected
Brownian motion constructed in subsection 2.2 as

Xr
t = x+B1

t + L1
t − L2

t , Y r
t = −B2

t + L1
t − L2

t

which is on R+×R−. From the proof of Lemma 2.3, 〈B1, B2〉t = ρt as a consequence
of 〈B+, B−〉t = ρt . Let Vt = 1√

2
(Xr

t − Y r
t ). Note that Vt = 0 if and only if

Xr
t = Y r

t = 0. Now define Mt := Vt − V0 and T (s) := inf{t ≥ 0 : 〈M〉t > s}.
Then, Mt ∈ Mloc, 〈M〉t = (1 + ρ)t, and T (s) = s

1+ρ . By Karatzas and Shreve

(1991, Thm. 3.4.6), we may conclude that the time changed process Bs = M s
1+ρ

is

a standard one dimensional Brownian motion. Now define the following stopping
times:

T0 = inf{t ≥ 0 : Vt = 0}, S = inf{s ≥ 0 : Bs = − x√
2
}.

Note that T0 is also the first hitting time of Mt to − x√
2
. We know that P{S ∈

ds} = |x|
2
√
πs3

e−
x2

4s ds. Then, we may conclude that

P{T0 ∈ dt} = (1 + ρ)−
1
2

x

2
√
πt3

e−
x2

4t(1+ρ) dt .

Now let F̄ρ(t) = P(T0 > t) and define F̄ (t) = F̄0(t). Then, we have

F̄ρ(t) =

∫ ∞

t

(1 + ρ)−1/2 x

2
√
πs3

e−
x2

4s(1+ρ) ds .

By a change of variable s to s/(1 + ρ), we get

F̄ρ(t) =

∫ ∞

t(1+ρ)

x

2
√
πs3

e−
x2

4s ds

which gives the relation F̄ρ(t) = F̄ (t(1 + ρ)). That is, the probability of the time
it takes the reflected Brownian motion to hit the corner being greater than a fixed
t > 0 is equal to F̄ (t(1 + ρ)). This probability gets smaller, equivalently the
probability of hitting the corner gets larger, as the correlation coefficient ρ increases.

3. Flows on a Circle

In this section, R is replaced with a circle, where we study an application of our
flow (Le Jan and Raimond, 2004).
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3.1. The flow. We study the flow solution of SDE (1.1) on the unit circle C =
{z ∈ C : |z| = 1}, which will be denoted by ϕ in this section. An oriented graph
with two edges and two vertices at 1 and eil is embedded in C, where l ∈ (0, π] is
fixed. We assume that vertex 1 is the tail and eil is the head for both edges. Let
C+ = {z ∈ C : arg(z) ∈ (0, l)} and C− = {z ∈ C : arg(z) ∈ (−2π + l, 0)}. See
Fig. 3.2 for an illustration.

0

l

−2π+l

1

e
il

l

0

−2π+l

subgraph of vertex 1 subgraph of vertex e
il

Figure 3.2. Illustration of the circle C and its subgraphs

A function f is said to be differentiable at z ∈ C if

f ′(z) = lim
h→0

f(zeih)− f(z)

h

exists. For all f ∈ C2(C), we require ϕ to satisfy

f(ϕs,t(z)) = f(z) +

∫ t

s

f ′(ϕs,u(z))1{arg(ϕs,u(z))∈[0,l)}W
+(du) (3.1)

−
∫ t

s

f ′(ϕs,u(z))1{arg(ϕs,u(z))∈[−2π+l,0)}W
−(du)

+
1

2

∫ t

s

f ′′(ϕs,u(z)) du

by Ito formula, where W+, W− are correlated white noises with 〈W+
s,t,W

−
u,v〉 ≤

ρ (| [s, t] ∩ [u, v] |), ρ ∈ [0, 1). Note that ρ = 1 gives Tanaka’s flow on the circle as
studied in Hajri and Raimond (2013), and ρ = 0 yields a flow on the circle as a
special case of Hajri and Raimond (2014).

The construction of the flow ϕ on C follows directly from Hajri and Raimond
(2014, Thm.3.2), which theorem is for more general metric graphs. We adapt the
steps of the construction there for the special case of our flow on the circle. In
particular, ϕ is given in Theorem 1.2 in terms of the auxiliary flows ϕ+ and ϕ− on
R, which are the respective flow solutions of

dϕ+
s,t(x) = 1{ϕ+

s,t(x)>0}W
+(dt) − 1{ϕ+

s,t(x)≤0}W
−(dt)

and

dϕ−
s,t(x) = 1{ϕ−

s,t(x)≤0}W
−(dt)− 1{ϕ−

s,t(x)>0}W
+(dt)
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with x ∈ R. For the flow ϕ+, the origin 0 corresponds to 1 on the circle and the first
subgraph in Figure 3.2, whereas for ϕ−, the second subgraph in Figure 3.2 is valid
and the origin 0 corresponds to eil on the circle. The arrows on the edges illustrate
the sign, that is orientation, of the white noise W+ or W−. The sign is positive if
the arrow is in the increasing direction on the real line, and negative otherwise.

For z ∈ C, let

τzs = inf{r ≥ s : 1{z∈C+}e
i(arg(z)+W+

s,r) + 1{z∈C−}e
i(arg(z)−W−

s,r) = 1 or eil}

which is the hitting time of the particle to one of the vertices {1, eil}. We consider
the minimum of l and 2π − l, which is l by the assumption l ∈ (0, π], and we let

As,t = { sup
s<u<v<t

max(|W+
u,v|, |W−

u,v|) < l}

in order to control the support of the flow that will be constructed almost surely.
On As,t, let

ϕ0
s,t(z) =

{

1{z∈C+}e
i(x+W+

s,t) + 1{z∈C−}e
i(x−W−

s,t) if t ≤ τzs
eiϕ

+
s,t(x)1{ϕ0

s,τz
s
(z)=1} + ei(l−ϕ−

s,t(l−x))1{ϕ0
s,τz

s
(z)=eil} if t > τzs

(3.2)

with x = arg(z), and set ϕ0
s,t(z) = z on Ac

s,t. For n ∈ N, let Dn = {k2−n : k ∈ Z}.
For s > 0, let sn = sup{u ∈ Dn : u ≤ s} and s+n = sn + 2−n. For every n ≥ 1 and
s ≤ t, we define

ϕn
s,t = ϕ0

tn,t ◦ ϕ0
tn−2−n,tn

◦ . . . ◦ ϕ0
s+n ,s+n+2−n ◦ ϕ0

s,s+n
. (3.3)

Let Ωn
s,t = {sup{s<u<v<t:|v−u|≤2−n} max(|W+

u,v|, |W−
u,v|) < l}, and let Ωs,t = ∪nΩ

n
s,t.

Due to continuity of W , we have P(Ωs,t) = 1. Then, ϕ on C is constructed as

ϕs,t(ω) := ϕn
s,t(ω) (3.4)

for ω ∈ Ωs,t, where n = ns,t = inf{k : ω ∈ Ωk
s,t}, and ϕ(ω, z) := z for ω ∈ Ωc

s,t.

3.2. Flow and Feller property. We first prove the flow property.

Lemma 3.1. ϕ satisfies the flow property: for s < t < u, ϕs,u = ϕt,u ◦ ϕs,t .

Proof : We first prove the flow property for ϕ0. We will show that

ϕ0
u,v = ϕ0

t,v ◦ ϕ0
u,t (3.5)

for all u < t < v, almost surely on Au,v. Note that Au,v ⊂ Au,t ∩ At,v. Suppose
z ∈ C+, and assume ϕ0

u,τz
u
(z) = 1 if τzu < v for brevity of notation. When v ≤ τzu , we

have Z := φ0
u,t(z) = ei(arg(z)+W+

u,t). Then, τZt = τzu and (3.5) holds by additivity

of the white noise. If t ≤ τzu < v, then ϕ0
u,t(z) =: Z, ϕ0

u,v(z) = eiϕ
+
u,v(x) with

x = arg(z), and τZt = τzu < v. Therefore, we have

ϕ0
t,v ◦ ϕ0

u,t(z) = ϕ0
t,v(Z) = eiϕ

+
t,v(X) = ei(ϕ

+
t,v◦ϕ+

u,t(x)) = eiϕ
+
u,v(x) = ϕ0

u,v(z)

where X = arg(Z), and we used the fact that ϕ+ is a flow. If t > τzu , we have

ϕ0
u,v(z) = eiϕ

+
u,v(x) = ei(ϕ

+
t,v◦ϕ

+
u,t(x))
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by the flow property of ϕ+. On the event Au,v ∩ {t > τzu}, φ+
t,v(Y ) takes values in

(0, 2π) for Y ∈ (0, 2π). Since X := ϕ+
u,t(x) ∈ (0, 2π) also in this case, this implies

that ei(ϕ
+
t,v(ϕ

+
u,t(x))) = eiϕ

+
t,v(X) ∈ (0, 2π). Therefore, we can write

eϕ
+
t,v◦ϕ+

u,t(x) = eϕ
+
t,v(X) = ϕ0

t,v(e
iX) = ϕ0

t,v(Z) = ϕ0
t,v(ϕ

0
u,t(z))

on Au,v∩{t > τzu}. Then, (3.5) follows. The same arguments are valid if ϕ0
u,τz

u
(z) =

eil, but with slightly more involved notation.
Now by definition of ϕs,t as given in (3.4) almost surely, we have ϕs,t = ϕn

s,t.

Also, for all s ≤ u < v ≤ t such that |v−u| ≤ 2−n, we have Ωn
s,t ⊂ Au,v. Therefore,

we can apply the flow property (3.5) on each interval (u, v) ∈ {(s, s+n ), (s+n , s+n +
2−n), . . . , (tn, t)}. In particular, we consider the finer mesh s+m, s+m + 2−m, . . . , tm
since s+n , s

+
n + 2−n, . . . , tn are also in Dm, for m ≥ ns,t. We get

ϕs,t = ϕn
s,t = ϕ0

tm,t ◦ ϕ0
tm−2−m,tm

◦ . . . ◦ ϕ0
s+m,s+m+2−m ◦ ϕ0

s,s+m
= ϕm

s,t

for all m ≥ ns,t almost surely.
For m ≥ max(ns,u, ns,t, nt,u) and s < t < u, we have

ϕs,u = ϕm
s,u = ϕm

um,u ◦ . . . ◦ ϕm
t+m,t+m+2−m ◦ ϕm

tm,t+m
◦ ϕm

s,tm

= ϕm
um,u ◦ . . . ◦ ϕm

t+m,t+m+2−m ◦ ϕm
t,t+m

◦ ϕm
tm,t ◦ ϕm

s,tm

= ϕm
t,u ◦ ϕm

s,t = ϕt,u ◦ ϕs,u

by the definition of ϕm in (3.3), and the flow property (3.5) for ϕ0 on (tm, t+m),
equivalently for ϕm on this interval. �

In the following lemma, we prove a sufficient condition for Feller property of ϕ.
By Le Jan and Raimond (2004, Lem. 1.11), an additional condition is

lim
t→0

E[f(ϕ0,t(z)] = f(z)

for all z ∈ C, but this is satisfied trivially by bounded convergence theorem.

Lemma 3.2. For all f ∈ C(C) and s ≤ t

lim
d(x,y)→0

E[(f ◦ ϕs,t(x) − f ◦ ϕs,t(y))
2] = 0

for every x, y ∈ C.

Proof : First we will show that ϕ0
s,t is Fellerian. For this it is enough to show that

d(ϕ0
0,t(x), ϕ

0
0,t(y)) converges to zero in probability for all t > 0, and x ∈ C as y → x.

The proof relies on two facts: ϕ+, ϕ− are Fellerian and W+
τy
0
will converge to W+

τx
0

in probability as y → x (similarly for W−), so P(ϕ0
0,τy

0
(y) 6= ϕ0

0,τx
0
(x)) will converge

to 0 as y → x. Note that

d(ϕ0
0,t(x), ϕ

0
0,t(y)) = d(ϕ0

0,t(x), ϕ
0
0,t(y))1A0,t + d(x, y)1Ac

0,t
.

Now assume that x ∈ C+. Fix t > 0. On the event {t < τx0 } ∩ {t < τy0 } we have
d(ϕ0

0,t(x), ϕ
0
0,t(y)) = |arg(y)−arg(x)|. The probability of the event {(t < τx0 )∩ (t ≥

τy0 )} will converge to 0 as y → x, and on the event {t ≥ τx0 } ∩ {t ≥ τy0 }, the Feller
property of ϕ+ and ϕ− will give us the desired result. The other cases are similar.
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Note that the flow ϕn
s,t constructed in (6) is Fellerian since it is a composition

of Fellerian mappings which are independent from each other. Now let ǫ > 0 and
k ∈ N such that P{ns,t > k} < ǫ. Then for all x, y ∈ C, since P(Ωs,t) = 1, we have

E[(f ◦ ϕs,t(x)− f ◦ ϕs,t(y))
2] ≤

∑

n≤k

E[(f ◦ ϕn
s,t(x)− f ◦ ϕn

s,t(y))
2] + 4ǫ||f ||2∞

since ϕn
s,t is Fellerian for all n, we get

lim
d(x,y)→0

E[(f ◦ ϕs,t(x) − f ◦ ϕs,t(y))
2] ≤ 4ǫ||f ||2∞ .

As ǫ is arbitrary, the result follows. �

Proof of Theorem 1.2: SDE (1.1) is satisfied on each edge by construction of ϕ as
a stochastic flow and (3.1) follows. We have ϕs,t = ϕ0

s,t on As,t. It follows that

(1.4) holds on As,t as both pieces of the definition of ϕ0 given in (3.2) coincide with
ϕ+ (and ϕ−) after a transformation. We will show this on {t < γz,+

s } (t < γz,−
s is

similar). For m ≥ ns,t, we have

ϕs,t = ϕ0
tm,t ◦ . . . ◦ ϕ0

s+m,s+m+2−m ◦ ϕ0
s,s+m

(3.6)

If t < γz,+
s , then each point in the mesh s+m, s+m+2−m, . . . , tm is also less than γz,+

s .
Therefore, each ϕ0

u,v, where (u, v) ∈ {(s, s+m), (s+m, s+m+2−m), . . . , (tm, t)}, will map

into C− ∪ {1} ∪ C+, and will coincide with ϕ+
u,v after the isometric transformation

from C to R. That is, we have

ϕs+m,s+m+2−m ◦ ϕs,s+m
(z) = exp[iϕ+

s+m,s+m+2−m
(arg(e

iϕ+

s,s
+
m

(x)
))]

= exp[i ϕ+

s+m,s+m+2−m
◦ ϕ+

s,s+m
(x)] = e

iϕ+

s,s
+
m+2−m

(arg(z))

with x = arg(z), and in view of (3.6) we get

ϕs,t(z) = eiϕ
+
s,t(arg(z))

almost surely, when t < γz,+
s . �

3.3. Coalescence. In this section, we will prove that two particles on the unit circle
C with respect to the flow given in Theorem 1.2 meet in finite time almost surely.
Consider the two particle motion as represented by (eiXt , eiYt) where X and Y
are solutions of SDE (1.1), with (eiX0 , eiY0) = (eix, 1), 0 < x < l. This is an
embedding of C into the plane which allows us to focus on the processes X and Y .
Let B+ and B− be two Brownian motions with Ht := 〈B+, B−〉t. Each of X and
Y has the same increments as B+ in

⋃

n∈Z
(2nπ, 2nπ + l] and as −B− elsewhere.

Furthermore, we identify each interval of the form [2nπ, 2nπ + l], n 6= 0, with the
interval [0, l], and the intervals of the form [−2nπ + l,−2(n − 1)π], n 6= 1, with
[−2π + l, 0] since the argument of a point on the circle is mapped to the latter
intervals. Then, the coalescence time is given by

T = inf{s ≥ 0 : (Xs, Ys) = (0, 0) or (Xs, Ys) = (l,−2π + l)}
and the region

D = [0, l]× [−2π + l, 0]
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is considered. Define, as before, At =
∫ t∧T

0
1{(Xs,Ys)∈D}ds, its right continuous

inverse κt = inf{s > 0 : As > t}, and the process (Xr
t , Y

r
t ) = (Xκt

, Yκt
) together

with the local times

L1
t =

1

2
Lκt

(X, 0) , L2
t =

1

2
Lκt

(X, l) , L3
t =

1

2
Lκt

(Y, 0) , L4
t =

1

2
Lκt

(Y,−2π+l)

where Lt(X, a) and Lt(Y, b) denote the local times of X and Y at a and b, respec-
tively, for a, b ∈ R.

Lemma 3.3. Suppose (X0, Y0) = (x, 0) with 0 < x < l. The process (Xr, Y r) is
a correlated reflected Brownian motion in the bounded domain D which is stopped
when it hits (0, 0) or (l,−2π + l). That is, there exist two Brownian motions B1

and B2 with |〈B1, B2〉t| ≤ ρ dt such that for all t < AT

(Xr
t , Y

r
t ) = (x, 0) + (B1

t ,−B2
t ) + (L1

t , L
1
t )− (L2

t , L
2
t )− (L3

t , L
3
t ) + (L4

t , L
4
t ) .

Proof : We consider

Xt = x+B+
t , Yt =

∫ t

0

1{Ys>0}dB
+
s −

∫ t

0

1{Ys≤0}dB
−
s

according to SDE (1.1) until the stopping time τ̄1 = τ1 ∧ τ2 ∧ τ3 where

τ1 = inf{s ≥ 0 : Xs = 0}, τ2 = inf{s ≥ 0 : Xs = l}, τ3 = inf{s ≥ 0 : Ys = −2π+ l}.
Note that for t ≤ τ̄1, (X

r
t , Y

r
t ) takes values in D = [0, l]× [−2π + l, 0]. That Y r

t is
a reflected Brownian motion on [0, 2π − l] follows similarly as in Lemma 2.3. By
Tanaka formula for the negative part of Y , we have

L3
t = −Y r

t −B2
t

where B2
t = −

∫ κt

0 1{Ys≤0}dYs =
∫ κt

0 1{Ys≤0}dB
−
s and L3 turns out to be the local

time of Y r
t at 0. Putting B1

t =
∫ κt

0
1{Ys≤0}dB

+
s , we observe that it is also a

Brownian motion and

Xr
t = x+B1

t − L3
t

holds by the construction of X and the fact that
∫ κt

0
1{Ys>0}dYs = −L3

t . Note that

we have |d〈B1, B2〉t| ≤ ρ dt just as in the proof of Lemma 2.3. Thus, (Xr
t , Y

r
t ) is

a correlated reflected Brownian motion on [0, l]× [−2π + l, 0]. More explicitly, we
have

(Xr
t , Y

r
t ) = (x, 0) + (B1

t ,−B2
t )− (L3

t , L
3
t ) t ≤ Aτ̄1 .

We will consider the three possibilities at τ̄1 in i)-iii) below depending on the value
of τ̄1 and continue the construction by considering a new origin and a new subgraph
for X or Y to start with.

i) If τ̄1 = τ1, we have (Xτ̄1 , Yτ̄1) = (0, y), for some y ∈ [−2π+ l, 0]. Now, replace
X , Y , B+, B− with Xτ̄1+., Yτ̄1+., B

+
τ̄1+., B

−
τ̄1+.. Define the following stopping times

τ4 = inf{s ≥ 0 : Xs = l} τ5 = inf{s ≥ 0 : Ys = 0} τ6 = inf{s ≥ 0 : Ys = −2π+ l}
and let τ̄2 = τ4 ∧ τ5 ∧ τ6 to confine the process in region D. Construct X and Y in
the interval (τ̄1, τ̄2] as

Yt = y −B−
t , Xt =

∫ t

0

1{Xs>0}dB
+
s −

∫ t

0

1{Xs≤0}dB
−
s .

Then, Xr
t is a reflected Brownian motion on [0, l] with local time L1

t at 0:

L1
t = Xr

t −B1
t
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by Tanaka formula and again by construction Y satisfies

Y r
t = −B2

t + L1
t

where B1
t =

∫ κt

0 1{Xs>0}dB
+
s and B2

t =
∫ κt

0 1{Xs>0}dB
−
s as before. More explicitly,

we have

(Xr
t , Y

r
t ) = (0, y) + (B1

t ,−B2
t ) + (L1

t , L
1
t ) t ∈ (Aτ̄1 , Aτ̄2 ]

ii) If τ̄1 = τ2, then (Xτ̄1 , Yτ̄1) = (l, y), y ∈ [−2π + l, 0]. We replace X , Y , B+,
B− with Xτ̄1+., Yτ̄1+., B

+
τ̄1+., B

−
τ̄1+.. Define the following stopping times

τ4 = inf{s ≥ 0 : Xs = 0} τ5 = inf{s ≥ 0 : Ys = 0} τ6 = inf{s ≥ 0 : Ys = −2π+l}
and let τ̄2 = τ4 ∧ τ5 ∧ τ6. Construct X and Y in the interval (τ̄1, τ̄2] as

Yt = y −B−
t , Xt = l −

∫ t

0

1{Xs>l}dB
−
s +

∫ t

0

1{Xs≤l}dB
+
s .

Then, Xr
t is a reflected Brownian motion on [0, l] with local time L2

t at l:

L2
t = l +B1

t −Xr
t

by Tanaka formula where B1
t =

∫ κt

0
1{Xs≤l}dB

+
s is a Brownian motion. Again, by

construction Y satisfies

Y r
t = y −B2

t − L2
t

where B2
t =

∫ κt

0
1{Xs≤l}dB

−
s is a Brownian motion. We get

(Xr
t , Y

r
t ) = (l, y) + (B1

t ,−B2
t )− (L2

t , L
2
t ) , t ∈ (Aτ̄1 , Aτ̄2 ] .

iii) If τ̄1 = τ3, then (Xτ̄1 , Yτ̄1) = (x′,−2π + l), for some x′ ∈ (0, l). Then, we
replace X , Y , B+, B− with Xτ̄1+., Yτ̄1+., B

+
τ̄1+., B

−
τ̄1+ and define

τ4 = inf{s ≥ 0 : Xs = 0} τ5 = inf{s ≥ 0 : Xs = l} τ6 = inf{s ≥ 0 : Ys = 0}
and let τ̄2 = τ4 ∧ τ5 ∧ τ6. In (τ̄1, τ̄2], X and Y satisfy

Xt = x′ +B+
t , Yt = −2π + l +

∫ t

0

1{Ys≤−2π+l}dB
+
s −

∫ t

0

1{Ys>−2π+l}dB
−
s .

Similar to previous cases, Y r
t is a reflected Brownian motion on [−2π + l, 0] with

local time L4
t at −2π + l:

L4
t = Y r

t +B2
t + 2π − l

where B2
t =

∫ κt

0
1{Ys>−2π+l}dB

−
s , and Xr

t = x′ + B1
t + L4

t where B1 =
∫ κt

0 1{Ys>−2π+l}dB
+
s . More explicitly, we have

(Xr
t , Y

r
t ) = (x,−2π + l) + (B1

t ,−B2
t ) + (L4

t , L
4
t ) t ∈ (Aτ̄1 , Aτ̄2 ] .

As a result, we get the desired representation. �

Note that other starting points in D can be handled similarly. Now, consider

the process Vt :=
Xr

t −Y r
t√

2
. It follows that Vt =

x√
2
+

B1
t+B2

t√
2

, which is a martingale

with limt→∞〈V 〉t = ∞. That is, Vt is a time changed Brownian motion. Define
T0 = inf{t ≥ 0 : Vt = 0 or Vt = 2π}. Then, T0 < ∞ almost surely. To see this, note
that 0 ≤ Vt ≤ 2π for all t, and Vt = 0 if and only if Xt = Yt = 0 and Vt = 2π if
and only if Xt = l and Yt = −2π + l. Therefore, the correlated reflected Brownian
motion will hit one of the corners (0, 0) or (l,−2π + l) in D in finite time, almost
surely.



1462 M. Çağlar, H. Hajri and A. H. Karakuş

Lemma 3.4. P{T < ∞} = 1.

Proof : Let Ut =
Xr

t +Y r
t√

2
, and note that −2π+l√

2
≤ Ut ≤ l√

2
. Putting Lr =

√
2(L1 −

L2 − L3 + L4), we get

Ut =
x√
2
+

B1
t −B2

t√
2

+ Lr
t

and

E[Ut∧T0 ] =
x√
2
+ E[Lr

t∧T0
] .

It follows that Lr
t∧T0

is finite for each t > 0 since Ut is bounded. This yields

Lr
T0

< ∞. In particular, L1
T0
, which is equal to 1

2LT (X, 0), is finite almost surely.
Since X is a Brownian motion, this implies that T < ∞ almost surely. �

3.4. Distribution of T0. In this section, we will use the notation of Lemma 3.3 and
the subsequent definitions, and assume that Ht = ρt with ρ ∈ [0, 1). Note that
〈V 〉t = (1 + ρ)t. Define Mt = Vt − V0. Then M is a martingale with M0 = 0.
Since 〈M〉t = (1 + ρ)t it is a time changed Brownian motion. Then, by the same
arguments as given in Section 2.4, Bs := Ms/(1+ρ) is a one dimensional Brownian
motion. Recall that T0 = inf{t ≥ 0 : Vt = 0 or Vt = 2π} and let

S = inf{s ≥ 0 : Bs = − x√
2

or Bs = 2π − x√
2
} .

We have P{T0 ∈ dt} = P{S ∈ (1 + ρ)dt}. Since the distribution of S is known
(Borodin and Salminen, 2002) as

P{S ∈ dt} =

+∞
∑

k=−∞
(−1)k

2π(k + 1)− x√
2√

2πt3
e−

(2π(k+1)− x√
2
)2

2t dt ,

the distribution of T0 is given by

P{T0 ∈ dt} =

+∞
∑

k=−∞
(−1)k

2π(k + 1)− x√
2

√

2π(1 + ρ)t)3
e−

(2π(k+1)− x√
2
)2

2(1+ρ)t (1 + ρ)dt .

This leads to the complementary distribution function

F̄ρ(t) = P{T0 ≥ t} =

+∞
∑

k=−∞

∫ ∞

t

(−1)k
2π(k + 1)− x√

2
√

2π(1 + ρ)s)3
e−

(2π(k+1)− x√
2
)2

2(1+ρ)s (1 + ρ)ds

where the interchange of integration and summation is justified by uniform conver-
gence of the series. By a change of variable from (1 + ρ)s to s, we get

P{T0 ≥ t} =

+∞
∑

k=−∞

∫ ∞

(1+ρ)t

(−1)k
2π(k + 1)− x√

2√
2πs3

e−
(2π(k+1)− x√

2
)2

2s ds

=

∫ ∞

(1+ρ)t

P{S ∈ ds} = P{S ≥ (1 + ρ)t} .

As a result, it becomes more likely for the reflected process to hit one of the corners
before a fixed time t when the correlation coefficient ρ increases.
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Appendix

Following the steps of Hajri and Raimond (2016, Prop.4.5), we give an alternative
proof of Proposition 2.2, which reveals the role of the correlation between B+ and
B−. Let (X,B+, B−) and (X ′, B+, B−) be two solutions with X0 = X ′

0 = 0. Set
sgn(x) = 1{x>0} − 1{x≤0}. By the occupation times formula

∫

(0,∞]

La
t (X −X ′)

da

a
=

∫ t

0

1{Xs−X′
s>0}

d〈X −X ′〉s
Xs −X ′

s

.

Also observe that

d〈X−X ′〉s=
[

1−1{Xs>0,X′
s>0}−1{Xs≤0,X′

s≤0}+(1{Xs>0,X′
s≤0}+1{Xs≤0,X′

s>0})hs

]

2ds.

So, we have

|d〈X −X ′〉s| ≤
[

|1− 1{Xs>0,X′
s>0} − 1{Xs≤0,X′

s≤0}|
+|1{Xs>0,X′

s≤0} + 1{Xs≤0,X′
s>0}|.|hs|]2ds

≤ 2|sgn(Xs)− sgn(X ′
s)| ds

since |hs| ≤ ρ < 1.
Let {fn} ⊂ C1(R) such that fn → sgn pointwise and {fn} is uniformly bounded

in total variation. By Fatou’s lemma we get
∫

(0,∞]

La
t (X −X ′)

da

a
≤ 2 lim inf

n

∫ t

0

1{Xs−X′
s>0}

|fn(Xs)− fn(X
′
s)|

Xs −X ′
s

ds

≤ 2 lim inf
n

∫ t

0

1{Xs−X′
s>0}

∣

∣

∣

∣

∫ 1

0

f ′
n(Z

u
s )du

∣

∣

∣

∣

ds

where Zu
s = (1 − u)Xs + uX ′

s. Now observe that

d〈Zu〉s
ds

=

{

1 if Xs > 0, X ′
s > 0 or Xs ≤ 0, X ′

s ≤ 0,

2(1 + hs)u
2 − 2(1 + hs)u+ 1 if Xs > 0, X ′

s ≤ 0 or Xs ≤ 0, X ′
s > 0.

This shows that for all 0 ≤ ρ < 1 there exists a constant A > 0 such that for all
s ≥ 0, and u ∈ [0, 1] d〈Zu〉s ≥ ds

A , since this polynomial in u has its minimum for

u = 1/2 and it has roots (1 ±
√

(hs)2−1
hs+1 )12 . For |hs| ≤ ρ < 1 it has no real roots.

We have the following inequality:
∫

(0,∞]

La
t (X −X ′)

da

a
≤ 2A lim inf

n

∫ 1

0

∫ t

0

|f ′
n(Z

u
s )|d〈Zu〉sdu

≤ 2A lim inf
n

∫ 1

0

∫

R

|f ′
n(a)|La

t (Z
u)dadu .

Now taking expectations and using Fatou’s lemma we get

E

[

∫

(0,∞]

La
t (X −X ′)

da

a

]

≤ 2A lim inf
n

∫

R

|f ′
n(a)|da sup

a∈R,u∈[0,1]

E[La
t (Z

u)] .

By Tanaka’s formula, we have

E[La
t (Z

u)] = E[|Zu
t − a|]− E[|Zu

0 − a|]− E

[

∫ t

0

sgn(Zu
s − a)dZu

s

]

≤ E[|Zu
t − Zu

0 |] .
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The right hand side is uniformly bounded with respect to (a, u) which gives us
∫

(0,∞]

La
t (X −X ′)

da

a
< ∞ .

Since lima↓0 La(X −X ′) = L0(X −X ′) this implies that L0
t (X −X ′) = 0 and thus

by Tanaka’s formula, |X − X ′| is a local martingale which is also a nonnegative
supermartingale with |X0 −X ′

0| = 0 and finally X and X ′ are indistinguishable.
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(2011).

H. Hajri. On flows associated to Tanaka’s SDE and related works. Electron. Com-
mun. Probab. 20, no. 16, 12 (2015). MR3314651.

H. Hajri and O. Raimond. Tanaka’s equation on the circle and stochastic flows.
ALEA Lat. Am. J. Probab. Math. Stat. 10 (1), 415–448 (2013). MR3083932.

H. Hajri and O. Raimond. Stochastic flows on metric graphs. Electron. J. Probab.
19, no. 12, 20 (2014). MR3164765.

H. Hajri and O. Raimond. Stochastic flows and an interface SDE on metric graphs.
Stochastic Process. Appl. 126 (1), 33–65 (2016). MR3426510.

J. M. Harrison and M. I. Reiman. Reflected Brownian motion on an orthant. Ann.
Probab. 9 (2), 302–308 (1981). MR606992.

I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, volume 113
of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition
(1991). ISBN 0-387-97655-8. MR1121940.

H. Kunita. Stochastic flows and stochastic differential equations, volume 24 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge (1990). ISBN 0-521-35050-6. MR1070361.

Y. Le Jan and O. Raimond. Flows, coalescence and noise. Ann. Probab. 32 (2),
1247–1315 (2004). MR2060298.

Y. Le Jan and O. Raimond. Flows associated to Tanaka’s SDE. ALEA Lat. Am.
J. Probab. Math. Stat. 1, 21–34 (2006). MR2235172.

Y. Le Jan and O. Raimond. Three examples of Brownian flows on R. Ann. Inst.
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