ALEA, Lat. Am. J. Probab. Math. Stat. 16, 85-139 (2019) A‘ﬂ‘:@‘\
DOL: 10.30757/ALEA.v16-05 ‘

Weak convergence on Wiener space:
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Abstract. We consider sequences of random variables living in a finite sum of
Wiener chaoses. We find necessary and sufficient conditions for convergence in law
to a target variable living in the sum of the first two Wiener chaoses. Our condi-
tions hold notably for sequences of multiple Wiener integrals. Malliavin calculus
and in particular the I'-operators are used. Our results extend previous findings
by Azmoodeh et al. (2015) and are applied to central and non-central convergence
situations. Our methods are applied to investigate stable convergence and we ex-
clude certain classes of random variables as target variables for sequences living in
a fixed Wiener chaos.
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1. Introduction

1.1. Overview. The aim of this paper is to provide new criteria for non-central
convergence in law for sequences of polynomial functionals of a Brownian motion
W. In particular, we consider the convergence in law of a sequence of random
variables {F},}, to a target variable X, where:
e the random variables F, have a representation of the form
F, = Z;lzl I,(fnp) for a fixed m > 2, where I,(-) is the Wiener integral of
order p with respect to the Brownian motion W
e the target variable X lives in the sum of the first two Wiener chaoses
associated with W and can be represented as:
k1 k2
X = L(fi) + I(f2) = aN + > bi(R? = 1) + Y. [c;(P? = 1) + d; P}],
i=1 i=1
where all coefficients b;, ¢; and d; are non-zero and N, R;, P; are indepen-
dent standard normal variables for 1 < i < k; and 1 < j < ko. We shall see
that this representation covers in particular random variables of the form:

n
X =alUp + Z )\z(UzQ — 1),
i=1
where all coefficients \; are non-zero, U, ..., U, are independent standard
normal variables and Uj is a standard normal variable which may be cor-
related to Uy, ..., Up,.

Our main result (Theorem 1.1) gives a necessary and sufficient criterion for the
convergence in law to X:

Theorem 1.1. Consider 0 < k1,ko < 00 and

ko

k1
X =ILi(f1) + I2(f2) = aN + Z bi(R? —1) + Z[Ci(PE — 1)+ d; P, (1.1)
i=1 1=1

where N,Ry,..., Ry, P1,..., Py, i N(0,1). Suppose that at least one of the
parameters a, ki, kg is non-zero. Consider a sequence {F,}, of non-zero random
variables such that F, = Y | Ii(fn) for p = 2 fized and {f,;}, < H®" for
1 <i < p. Define:

k1 ko

P(z) = 2" e [ T(@ = b)) [ [ (@ = ¢))*.

Jj=1 Jj=1
Asn — o0, the following conditions (a) and (b) are equivalent:
(a) (1) &r(Fn) — kr(X), forr=1,...,deg(P),

deg(P)
P(’“>(O)
(2)E|[E| )] o

(Fr—l(Fn) - ]E[Fr—l(Fn)])

E, — 0,

(b) FE, Lo X, asn — o,

In this paper, we consider functionals of a Brownian motion. By a standard
isometry argument (see e.g. Nualart and Peccati, 2005, Section 2.2), the results
immediately extend to the framework of an isonormal Gaussian process on a general
real separable Hilbert space H.
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The notations used in this theorem are introduced in Section 2. In particular,
the representation of X in Eq. (1.1) is detailed in Eq. (3.3) and (3.5), &.(Y) is
the r-th cumulant of a random variable Y and the sequence {I';(F},)}, is defined
recursively using Malliavin operators. In Section 3 the representation of the target
random variable in Eq. (1.1) is derived.

Our main result unifies, generalizes and extends previous findings. More precisely,

Theorem 1.1:

e further extends to a non-central setting the seminal paper Nualart and
Peccati (2005) and in particular Nourdin and Peccati (2012, Theorem 5.3.1)
by dealing with central limit theorems for sequences living in a finite sum
of Wiener chaoses,

e extends Nourdin and Poly (2012, Theorem 3.4) by considering a sequence
{F,}, of random variables which are no longer restricted to the second
Wiener chaos but live in a finite sum of Wiener chaoses,

e extends Nourdin and Peccati (2009a, Theorem 1.2), Azmoodeh et al. (2015,
Theorem 3.2) and Dobler and Peccati (2016, Proposition 1.7) by considering
target variables involving linear combinations of independent x? distributed
random variables and adding a possibly correlated normal variable,

e improves Azmoodeh et al. (2015, Theorem 3.2) by replacing L?-convergence
with L'-convergence and finding thus a necessary and sufficient criterion
for convergence in law for a large class of target variables, in particular for
linear combination of independent central y? distributed target variables.

In addition to these applications which are discussed in Section 4, Theorem 1.1 is
used to investigate stable convergence in Section 5.

1.2. History and motivation. The study of convergence in law for sequences of mul-
tiple Wiener integrals, by variational techniques, has been the object of an intense
study in recent years. The starting point of this line of research is Nualart and
Peccati (2005). In this reference and later in Nualart and Ortiz-Latorre (2008),
the authors gave necessary and sufficient criteria for the convergence in law of a
sequence of multiple Wiener integrals I,,(f, ) to a standard normal variable N: If
the functions f,, are symmetric in the p > 2 variables with E[L,(fn,)*] — 1, as
n — o0, then the following conditions are equivalent:

(Z) E[Ip(fnip)4] - 3; asmn — 90,

(1) | frp Q1 frpllgocr—2n — 0, asn — w0, for everyl=1,...,p—1,
2

(iii) | DLy(fup)3 5" p, as 0 — o,

() Ip(fnp) LN asn — o0,

Notice that D is the standard Malliavin derivative operator and f, , ®; fnp is
the contraction of order I, see Section 2.2. The equivalence of (i), (ii) and (iv) has
been found in Nualart and Peccati (2005), the equivalence of either one of these
conditions with (iii) has been proved later in Nualart and Ortiz-Latorre (2008).
Considering the proof of Nualart and Ortiz-Latorre (2008, Theorem 4), it is easy
to see that condition (iii) above can be replaced by:

(ii6") E[IDI(Fu) 3 | I (Fu)] 57 p, as n— .

This is remarkable since conditions of this form play a crucial role in Azmoodeh
et al. (2015) and in the main result of the present paper. Since this characterisation
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has been published, limit theorems have been extended beyond standard normal
target variables. In Nourdin and Peccati (2009a), the authors establish, for p >
2 even, necessary and sufficient conditions for a sequence {I,(f, )}, of multiple
Wiener integrals to converge in law to a Gamma random variable. The conditions
found by Nourdin and Peccati use contractions, convergence of the first moments of
I,(fn.p) and Malliavin derivatives. In particular, the results of Nourdin and Peccati
(2009a) cover the convergence in law of a sequence of multiple Wiener integrals to

a random variable X; Law Zle(Nf — 1) with N; independent standard normal
variables and 1 < k < o0. X; has a centered x? law with k degrees of freedom.
The authors also prove that the convergence is stable in this case. More results
about stable convergence can be found in Peccati and Taqgqu (2008) and in the
more recent work Nourdin et al. (2016a).

For the case p = 2, linear combinations of independent centered 2 distributed
random variables are important since it is known that every element X5 of the

second Wiener chaos has a representation of the form X, & Y (N = 1),
where 1 < n < o0 and {N;}, is a sequence of independent standard normal variables,
see Janson (1997, Theorem 6.1). It is proved in Nourdin and Poly (2012), that
every sequence {I5(fn )}, which converges in law has a limit of the form agNy +
>t @i(N2 —1), where N; are independent standard normal variables. In Nourdin
and Poly (2012, Theorem 3.4) the authors use cumulants and a polynomial @ to
characterise this convergence in law if n < o0.

The idea of using polynomials to find necessary and sufficient conditions for the
convergence in law has proved to be useful. In Azmoodeh et al. (2015), the authors
consider the more general problem of finding necessary and sufficient conditions for
a sequence {F,} to converge to a random variable with a representation of the
form

k
iz (N2—1), Np,...,N. "< N(0,1), (1.2)

where F,, are random variables living in a (fixed) finite sum of Wiener chaoses, see
Section 2.1. For k < oo, their main finding, Azmoodeh et al. (2015, Theorem 3.2)

provides a necessary and a sufficient condition for F, Lay X3, as n — o0, in terms
of Malliavin operators I';, defined in Section 2.3.

Linear combinations of independent centered x? distributed random variables as
in Eq. (1.2) are of great interest because of their role within the second Wiener
chaos. This class of random variables is important in stochastic geometry as well.
In Marinucci et al. (2016), the authors consider the two-dimensional torus and prove
the weak convergence of the normalized nodal length of the so-called ‘arithmetic
random waves’, to a target variable M, defined by:

. —1-n 2 —1+7 2

Mn . 2W(X1 1) + 2W(X2 1)’ ne [0’ 1]7
where X, X5 are independent standard normal variables. An important element
of the proof is the fact that the Wiener chaos expansion of the normalised nodal

length is dominated by its fourth order chaos component.
Another line of research, which is closely connected to the previous results, in-
vestigates the convergence of sequences living in a finite sum of Wiener chaoses by
using distances between probability measures. In this context, the distance between
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two laws F' and G is defined as:

dye(F,G) = sup |E[h(F)] - E[1(G)]],
hest

where 2 is a class of functions. Different classes ## lead to distances such as
the Wasserstein, total variation and Kolmogorov distance, see Nourdin and Peccati
(2012, Appendix C) for details. Upper bounds for the total variation and smooth
distances are proved in Nourdin and Peccati (2009b) and Nourdin and Poly (2013).
For most of these results, the distance of a distribution to a centered normal dis-
tribution or a centered y? distribution with v degrees of freedom is considered.
Recently, in Dobler and Peccati (2016) a new estimate is proved for the Wasser-
stein distance of a distribution to a centered 2 distribution with v degrees of
freedom. In particular, the authors find a new necessary and sufficient criterion for
sequences living in a fixed Wiener chaos to converge in law to X; defined above.

In Arras et al. (2016a) the authors consider target variables of the form given in
Eq. (1.2):

k
X3 = Y ai(N? - 1),
1=1

where the coefficients are not necessarily pairwise distinct and Ny,..., N are in-
dependent standard normal variables. The authors discuss Stein’s method for this
class of target variables and apply a new and original Fourier-based approach to
derive a Stein-type characterisation. The polynomials used in Nourdin and Poly
(2012); Azmoodeh et al. (2015) and I'-operators, see Azmoodeh et al. (2015); Nour-
din and Peccati (2012), are combined with the integration by parts formula of
Malliavin calculus to derive a Stein operator which allows to characterise target
variables as in Eq. (1.2). The authors consider a linear combination of I'-operators
which shall be generalized in the present paper and the 2-Wasserstein distance. In
general, the 2-Wasserstein distance between the laws of random vectors U and V
is defined as follows:

dw, (U, V) = (if E[|X — Y[2])? |

where the infimum is taken over all joint distributions of X and Y with respective
marginals U and V, and | - |4 stands for the Euclidean norm on R¢, see Arras et al.
(2017, Definition 1.1). It is shown that:

k+2
sz(anX3) <C (\/ A(F,) + Z |“r(Fn) - "67'(X3)|> )
r=2

where C is independent of n, the quantity A(F,,) can be expressed in terms of
cumulants , and polynomials, the sequence {F},}, must satisfy several conditions
which hold in particular for sequences living in the second Wiener chaos. It is
proved in particular that:

if dimgspan (af,...,a7) = k, see Eq. (1.2). This shows that A(F,) — 0, as
n — o0, is sufficient for convergence in the 2-Wasserstein metric which implies
convergence in law. In Arras et al. (2017), it is shown that the convergence of the
cumulants can not be omitted in the general case. In addition to the upper bound
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found in Arras et al. (2016a), a lower bound for the 2-Wasserstein metric is derived
in Arras et al. (2017), namely:

dw, (Fn, X3) = C'\/A(F,),

where C” > 0 is independent of n and the sequence {F},}, lives in the second Wiener
chaos. In other words, for sequences living in the second Wiener chaos, weak conver-
gence to X3 is equivalent to A(F,) — 0, as n — o0, if dimgspan (of,...,03) = k.
The so-called Stein-Tikhomirov method is considered in Arras et al. (2016b). This
method can be seen as a combination of Stein’s method with other methods to
measure the rate of convergence of a sequence of random variables. The authors
consider in particular the Stein-type characterisation found in Arras et al. (20164,
Theorem 2.1) and apply their version of the Stein-Tikhomirov method. The same
linear combination of I'-operators as in Arras et al. (2016a) is used and the so-called
transfer-principle allows to find upper bounds on smooth Wasserstein distances us-
ing upper bounds on the difference of the characteristic functions of the approxi-
mating sequence and the target variable. For sequences living in the sum of the
first p Wiener chaoses and constants C,© > 0 depending only on p, the following
bound is proved:

dw, (Fp, X3) < C A, |log(A,)]°,

where A,, is expressed in terms of cumulants and I'-operators. In particular, if £ > 3
in Eq. (1.2), we have for the Kolmogorov distance that dko(Fp, X3) < B+VA,.
Finally the authors find bounds for A, if {F},}, lives inside a fixed Wiener chaos
and k = 1 in Eq. (1.2). Even though the aforementioned papers present important
new results for target variables living in the second Wiener chaos, none of them
considers target variables living in the sum of the first two Wiener chaoses with
possibly correlated first and second order components.

The results of Azmoodeh et al. (2015, Theorem 3.2) are the starting point of
the present work. As anticipated, we shall consider a sequence {F,}, of random
variables living in a finite (fixed) sum of Wiener chaoses and provide necessary

and sufficient conditions for F}, Lay X4, as n — o, where k < o0 and X has the
following, more general form:

k ..
Xy = Z [Oéi(NiQ— 1) +51‘Ni]7 Ny, ..., Ng i (0,1). (1.4)
im1

The representation in Eq. (1.4) is equivalent to one in Eq. (1.1), where we have
dropped all vanishing coefficients and regrouped independent normal variables.
Both representations (1.1) and (1.4) are useful for the discussion to follow. Ran-
dom variables as in Eq. (1.4) are important since every random variable living in
the sum of the first two Wiener chaoses has a representation of this form, with
k < oo, see Janson (1997, Theorem 6.2). Our conditions make, as in Azmoodeh
et al. (2015), use of the operators I';. Clearly such a result can be seen as extension
of Azmoodeh et al. (2015, Theorem 3.2). For sequences of random variables living
in a finite sum of Wiener chaoses, we shall apply our methods and results to derive
necessary and sufficient criteria to prove stable convergence to target variables with
representations as in Eq. (1.4).
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1.3. Results and plan. The paper is organized as follows:

- In Section 2, we introduce the necessary notations and give a brief introduction
to Malliavin calculus. The basic elements of this theory shall be needed in the
forthcoming proofs.

- In Section 3, we prove our characterisation in Theorems 3.8 and 3.11. The main
Theorem 1.1 is then a direct consequence of these theorems.

- In Section 4, we apply Theorem 1.1 to several situations, such as the convergence
in law to a normal variable or a centered x? distributed random variable with
k1 degrees of freedom. We shall also recover the results of Azmoodeh et al.
(2015). In Theorem 4.6, we give sufficient conditions, based only on cumulants
and contractions. We conclude this section by giving a criterion which excludes
certain classes of target variables for sequences living in a chaos of odd order.

- In Section 5, we give criteria which can be used to determine whether a sequence
converges stably.

2. Preliminaries

2.1. Multiple Wiener integrals.  The reader is referred to Nourdin and Peccati
(2012), Nualart (2006) or Di Nunno et al. (2009) for a detailed introduction to
multiple Wiener integrals. Consider the real Lebesgue space H = L2([0,T], A7),
where A is the Lebesgue measure on [0,7]. The real separable Hilbert space
H is endowed with the standard scalar product (h,g)g := SOT hgdX for all h,g €
H. We write H®P for L?([0,T]7,\}), where A, := NP|[0,T]?, and define HOP
as the subspace of H®P containing exactly the functions which are symmetric on
a set of Lebesgue measure TP. Consider a complete probability space (2,P,F)
and a standard Brownian motion (Wt)te[o,T] with respect to IP and the filtration
(Ft)tefo,r]- Define for every h e H:

W(h) = I,(h) = j " haws,

then W (h) € L?(Q2) := L?(Q,P), in other words W (h) is square-integrable. We
have for h,ge H:

E[W (h) W(g)] = E[11(h) I.(g9)] = <{h, 9)n-
More generally the g-th Wiener chaos is defined as closed linear subspace of L?(12)
which is generated by the random variables of the form H,(W (h)) where h € H

with [|h|g = 1 and Hy is the ¢g-th Hermite polynomial. The elements of the ¢-th
Wiener chaos can be represented as multiple Wiener integrals. For every f, € H Op;

Ip(fp) = f fp(tly'-',tp)thl ...thp
[0, 7?

T tp t3 to
=p'f <f .[ (f fp(tla"'atp)th1> th2 ...thpl) thp.
0 0 0 0

It is well known that every F' € L?(Q) has a representation of the form F =
Z;O:O I,(fp), where Iy(fo) = fo = E[F] and the right-hand side converges in L?(2).
We have moreover for p,q > 1:

Bl (£5) La(90)] = Lpmg) P! CFps 9D 0 = Lipg j[ IR TC S
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For two function f, € HOP and g, € H®Y, the contraction of r indices is defined for
1<r<pnqby:

(fp (S gq)(tla s 7tp+q72r) = [ ]fp(th e bpr, S)Qq(tpferla ooy tprg—2r, 5) d)\r<s>
0,T]"

We have f, ®, g, € HPT972". The symmetrization of f, ®, g, is f,®,g,. We shall

also need the multiplication formula for multiple Wiener integrals. For f, € H Op

and g4 € H®9_ we have:

e = 271 () (2) s

r
r=0

2.2. Malliavin calculus. The reader is referred to Nourdin and Peccati (2012), Nu-
alart (2006) or Azmoodeh et al. (2015) for a detailed introduction to Malliavin calcu-
lus. Let £ > 1 and F' be a random variable with F' = f (W (hy), ..., W (hy)) where f
is an infinitely differentiable rapidly decreasing function on R* and hq, ..., hj € H.
Then F is called a smooth random variable and S is the set containing exactly the
smooth random variables. The Malliavin derivative of F' is defined by:

k
DF =Y hi(t) 0, f (W (), ..., W (i)

0

k T T
:i;hi(t) oif (L hi(s)dWs,...,J hk(s)dWs>. (2.2)

We have that D; is closable from L2(2,P) to L?(Q2 x [0,T],P®\7), that is (see
Di Nunno et al., 2009 or Nualart, 2006, Proposition 1.2.1): If a sequence {H,}, .y
c L?(Q,P) converges to 0, that is E [H?L] — 0 as n — o, and D¢ H,, converges in
L2(Q2 x [0,T],P®A7) as n — oo, then lim, ., DiH,, = 0. We write Dom D for
the closed domain of D. Moreover the Malliavin derivative has a closable adjoint §
(under P). The operator 0 is called the divergence operator or, in the white noise
case, the Skorohod integral. The domain of § is denoted by Dom 4, it is the set of
square-integrable random variables v € L2(Q x [0, T], P®Ar) with:

E[(DF,vyg| < c, \VE[F?],
for a constant ¢, (depending on v) and all F' € D%? where D!? is the closure of the
class of smooth random variables with respect to the norm:

1/2
3 :

12 = (E[F*]+E[|DF|%])

With the scalar product (F,G)1 2 = E[FG] + E[(DF, DG)y], D*? is a Hilbert
space. If v € Dom 6, then 6(v) is the element of L?(Q,P) characterised by

E[F5(v)] = E[(v, DF)p]. (2.3)

This relation is often called the integration by parts formula. We have the more
general rule (see Nourdin and Peccati, 2012, Proposition 2.5.4) for F' € D'2 v e
Dom § such that Fv € Dom ¢:

§(Fv) = Fé(v) —{(DF,v)y. (2.4)
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For multiple Wiener integrals and f € H®® we have (see for instance Nualart,
2006, p.35):

T T
D,,D,, ...Dmf J Fn, - ye)dWy, ... dW,, (2.5)
0 0

k! T T
=— ol flyry e yk—, 1, x)dWy, o AW,
(k’ _ l)! L JO Y Yr—1
Formula (2.3) can be generalized for the multiple divergence (see Nourdin and
Peccati, 2012, p.33): If v € Dom &' and F € D"2:
E[Fé'(v)] = ELD'F,v)ye], (2.6)

see Nourdin and Peccati (2012) or Nualart (2006) for details. For m > 1, p > 1
and the m-th Malliavin derivative D™ F', we can define D™P? as the closure of the

class of smooth random variables with respect to the norm | - |, , defined by:
m 1/p
[ Ellm,p = <E[|F|p] +),E [||D1F||Z®i]>
i=1
We define D% := N7 _; np2y D™P.

2.3. Cumulants and Toperators. The reader is referred to Azmoodeh et al. (2015)
or Nourdin and Peccati (2012) for a detailed introduction to cumulants, Malli-
avin operators and I'-operators in particular. The r-th cumulant of a random
variable F exists if the r-th moment of F exists and is defined as k,.(F) :=
(=) j;,. log E[exp(itF)];4—o. The operator L, defined as L = — ZZOZO qJyq, is the in-
finitesimal generator of the Ornstein-Uhlenbeck semi-group where J; is the orthogo-
nal projection operator on the g-th Wiener chaos. The domain of L is D*2. L admits
a pseudo-inverse L~! and for any F € L?(2), we have L™!F = — 2211 %JQ(F). For
F e D™, the sequence of random variables {I';(F')}, € D® is recursively defined as
follows:

Ti(F) =(DF,~DL™'T;,_1(F))g, fori=1,
and I'o(F) = F. For F € D® and r > 0, we define: M,.(F) =T,(F)—E[T.(F)].

2.4. Stable convergence. The concept of stable convergence is used in Section 5.
The reader can find an extensive discussion of this topic in Jacod and Shiryaev
(2003) or Hausler and Luschgy (2015), the basic facts are resumed in Nourdin
et al. (2016a). Consider a sequence {F),}, of real random variables on the complete
probability space (€2, F,P), see Section 2.1. Let F be a real random variable defined
on some extended probability space (Q’ , F ,IP"). We say that F), converges stably

to F, written F}, = F,as n — oo, if:

LmE [Z exp (i\F,,)] = E' [Z exp (iAF)],
for every A € R and every bounded F-measurable random variable Z. Obviously,
stable convergence implies convergence in law, whereas the converse does not hold
in general. We notice that the P-completion of the o-field generated by the set

{ILi(f) : f € H with | f|g = 1} is F. We have thus the following useful characteri-
sation of stable convergence:

F, %5 F if and only if (F,, [i(f)) " = (F,1i(f)) " for every f e H with |[f|m = 1.
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3. Main results

We start with an example in order to motivate the reader.
Ezample 3.1. Consider sequences {hy 2}, , {fﬁf%} ,{ 7(1])2} cH®? for 1<i<k
n “n

and 1 < j < ko for k&1 > 0 and ko > 0. Suppose that the sequences {Ig(f(g)} ,

{IQ (gfj%)} and {I3(hy 2)}, converge in law to a standard normal variable and that
(kn,2,ky, 0)HeH — 0, for any distinct sequences {k2,}, and {k:'Qn}n chosen among

{hn2}n’{fy(zz)2} ,{ (j)} for 1 < i< kyandl<j <k We have then, see
n

n,2
n

Peccati and Tudor (2005, Theorem 1), as n — oo:

Is(An2)s To(£12), - I (F530), Ia(gld), - T () T 5 2T,

where ZT := (N, Ry,...,Ri,, P1,..., Py,)" has a kj + ko + 1-dimensional standard
normal distribution. The continuous mapping theorem yields that, as n — co:

)

Iy(hn,2) + kzb (B —1) + kz |ei (6522 =1) + i) 3.1)

kl k2
BN+ Y bR - 1)+ Y. [e(PE 1) +dPy] (3.2)
i=1 j=1

where N, Ry,...,Rp,, P1,..., Py, bid- (0,1). Tt is easy to see that the expression

in Eq. (3.1) has a representation of the form I4(¢n,4)+Io(pn.2) +@n.o for ¢, € HOL,
I =0,2,4, and lim, ¢, 0 = 0. We find with Slutsky’s theorem that I4(¢n.4) +

In(pn2) 5 aN + S8 bi(R? = 1) + 352 [ (P? — 1) + d; Py, as n — 0.

Remark 3.2. In the present paper we give necessary and sufficient conditions for
weak convergence towards target variables as in Eq. (3.2). We illustrate now why
this class of target variables is important.

Consider a random variable X living in the sum of the first two Wiener chaoses:

X = I1(f1) + Ig(fg), (33)

with f; € H and fo € H®?. It is known, see Janson (1997, Theorem 6.1) or Nourdin
and Peccati (2012, Proposition 2.7.13), that I»(f2) = >y, ax(l1(hg)? — 1) for
an orthonormal system {h;|i € N} ¢ H. Suppose from now on that ay # 0 for
1 <k < N and ap = 0 for every k > N. Consider the projection of f; on
span(hl, . .,hN), then we find fl = Blhl + ...+ BNhN + Boho, where HhOHH =1
and hg L span (hq,...,hy). Hence:

N
X = Boli(ho) + Z [Bi11(h1) + ai(I1(hs)* — 1)]. (3.4)

i=1
Since <h;, hjym = 6; 5, we have that {I(ho),...,I1(hn)} is a set of independent
standard normal variables and some of the coefficients fy, . . ., Sy may be equal to 0.

The representation of X found in Eq. (3.4) is thus equivalent to the representation
in Eq. (3.2):
k1 k2
X =aN + Y bi(R} —1) + Y [e;(P? — 1) + d; P, (3.5)
i=1 i=1
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where b; # 0, c;jd; #0for 1 <¢ < k;, 1 <j<kyand N,R;, P; are independent
standard normal variables hvmg in the first Wiener chaos. A similar argument
applied together with the multiplication formula for Wiener integrals shows that

X = Il(fl) + Ig(fg) fOI‘S

ko k1 k2
fr=aho+ Y il , o= bhi®hi + Y c;hi®M], (3.6)
i=1 i=1 i=1
for a set of orthonormal functions ho, hi, ..., hg,, b, ... by,

If &y = 0, we set b; = 0 for every j and the empty sum in the representations
above is removed. Notice that an empty product equals 1. We proceed similarly if
ko = 0. If on the other hand k; # 0, we suppose that b; # 0 for every j = 1,...,k;.
We proceed similarly if ko # 0.

The following Lemma shows that random variables with a representation as in
Eq. (3.5) extend the class of random variables with a representation as in Eq. (1.2)
by adding a (possibly correlated) normal variable.

Lemma 3.3. Consider the following families of random variables:

(A) X " aN+Z§;1 bi(R2—1)+ 202, [¢i (P2 —1) +d;P,], where N, Ry, ..., Ry,,
P Py "X N(0,1) and by # 0 for 1 <i < ky if k1 > 0 and cid; # 0 for
1<i<k if ko > 0.

(B) Y ™2 aUy + 3" N\(U2 — 1) where \; # 0 for 1 <i < n ifn > 0 and

7. z d.

(0,1).

Then class (A) coincides with class (B). In other words every random variable in
(A) has a representation as in (B) and vice versa.

(Uo, Uy, ..., U,) T is a centered normal vector such that Uy, ..., U,

Proof: (1) Consider X "2 aN + Zf;l bi(R? — 1) + Zl lei(P?—1) + d;P;] as in
(A), then, if a? + Y2, d2 #
L ko k1 k2
X & <GN + Z dzpl> + Z bl(Rf - 1) + Z Ci(PiQ - 1)
i=1 i=1 i=1

k2 ko k1 ko
a? Zd2M—dP + Y bi(RE = 1)+ > (PP —1).
=1

i=1 1/a2+2k2 d2 =1

Define v
aN+>,2, d; P; .
ﬁ fOT 1= O,
a?43,2, dz
Ui=1R, for 1< kl,
Pifkl f07' ki+1<i<k + k27

and drop the corresponding terms if k; = 0 or kz = 0. After renaming the
coeflicients, we find the following representation with n := ky + ks:

k2 n
a2+ Y Uy + Y (U7 — 1),

i=1 i=1

and (Up, Uy, ..., Un)—r is clearly centered and normal since every linear combi-
nation >} | a;U; is normal. This last property follows directly from N, Ry, ...,
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Ry, Pi,..., Py, " N(0,1). The definition of Uy, .., U, yields that Uy, ...,
U " N(0,1). Tfa® + 3% d? = 0, then a = dy = ... = dy, = ky = 0. The
equivalence of both representations is trivial in this case.

(2) Consider Y "2 aty + S Ai(U2 = 1) as in (B). Since the case a = 0 is
clear, we suppose that a # 0 and Uy ~ N(0,1). Let U := (U, Uy, ..., Up,)" ~
N(O(ns1yx1, %) for a positive semi-definite matrix ¥. Since Uy, ..., Uy i
N(0,1), we have:

1‘01 s On

g1
N =

Il’lXﬂ

On

We suppose first that detX =1 — 3" , 02 > 0 then ¥ = BB for B defined

by:
B .= < vdet X ‘ g1 On ) E]R(n-f-l)x(n-ﬁ-l).
Onx1 ‘ Lnxn
Consider a n + 1-dimensional standard normal vector V' = (Vo,V1,..., V)T,

then U Law BV. Hence:

YLiwa<\/vaJr01V1+...+GnVn) + Ai(Vf*l)
1=1
Vet BV + 3 [M(VE - 1) + aoiVi]. (3.7)
=1

Noticing that some of the covariances o; may be zero, Eq. (3.7) yields the
representation (A) after renaming the independent standard normal random
variables and the coefficients.

Consider now the case det = 0, a standard normal vector (Vi,...,V,)T
and define B € R(+1x7.

B .= ( 01 crr Op ) eR(n-&-l)Xn.
Lixn

Then BBT =X and U "2" BV, hence:

Y2 (0Vi+ o Va) + D MV = 1) N N(VE - 1) + a0 Vi)
=1

n
i=1

The statement follows now as above.

O

Remark 3.4. The random variable X in (A) may lead to a degenerate normal
vector (Up,Uy,...,U,) " in (B). In particular a = k; = 0, kz = 1 leads to X Law
di Py + c1(P? — 1) and the corresponding normal vector (U, U;)" is degenerate.
It can be easily deduced from the proof of Lemma 3.3 that (Ug,Uy,...,U,)" is
non-degenerate if a # 0 or ko = 0. In order to simplify our calculations, we shall
consider in this paper target variables of class (A).

We shall need the characteristic function and the cumulants of X, defined in
Eq. (3.3) and (3.5).
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Lemma 3.5. Consider ki,ko >0 and
ko

k1
= L(fi) + I(f2) = aN + Y bi(R? = 1) + Y. [e;(P? — 1) + d; ],

i=1 i=1
as defined in Eq. (3.3) and (3.5) where N,Ry,..., Ry, ,P1,..., Py, s N(0,1).
We have with A, := 4c} + d? for the characteristic function px of X :

N i xQAj + 2ic;x
J dize; — 2

1

vx(x) = exp <

kl k2
x [ (= 2iaby) ™2 T = 2iae;) 172,
j=1 j=1

where, as usual, an empty product equals 1 and an empty sum equals 0. Moreover
px is the unique solution of the initial value problem y(0) = 1 and:

k1
H (1 — 2ixb;) H(l — 2ixc;)?
j=1 j=1

k1 k1 ko
= y(x) (—xa2 —1 Z bj> H (1 — 2izb;) H (1 — 2ixc;)?

Jj=0 Jj=1

k1 ka2
+y(z) | [ (1 — 2ixd;) Z (H(l - Qixcj)2> (2zc] — 21 — 2izey) — 2Pic ;)

j=1 =1 \j#l
ko k1

+y(a) | [(1 = 2ize;)® D it | [(1 — 2iab;). (3.8)
j=1 =1 j#l

Proof: Using the characteristic function of the non-central x? distribution and the
representation:

d:\? d%+4c
Cj(PJ2_1)+dej_cj<Pj+2(j]> _7]46. j,
7

J
we find for the characteristic functions:

Sﬁbj(Rf.—l)(x) = (1 — 2ixb;) Y2 exp (—izb;),

. _ 22N\ + 2icix

Pe;(P2—1)+d;p; (¥) = (1 = 2ixcy) 12 exp <42;cj_2j> :

Hence, with the independence of the standard normal random variables:

ox(r) = gan (v H Pb;(R2— 1) n Pej(P2—1)+d; P; (z)

2,.2 k1

ky ks
= exp (_a; ) n(l — 2ixb;) 2 exp (—ix Z bj> H (1 — 2ixe;) "2
i=1 /) =1

j=1

k2 2 .
T2 A + 2icjx
>< S —
P (Z dize; — 2 )

j=1




98 C. Krein

22N + LA + 2icjx
=ex
P dizcy — 2
k‘l 2
x [ (1= 2ixb;) =2 1_[(1 — 2ize;) V2,
j=1 j=1
Notice that - 7T lzma \/1—121‘104 —afor every real constant c, thus ¢y (z)
equals:
2z + 2ic; e (227, + 2ic;x) dic;
—xa? — b Ay« ae g J J
SDX( ( (E(I i Z le 421‘6] —2 J; (47,l'Cj - 2)2

+Z 1—2b +Z 1—22xc]>

k‘1 k‘g
A icj
2 _ j 22 TV
= —za® — by — =3
ex(@) ( S 2 i ; 1 — 2izcy Z (1- 21:1:0]

j=1 Jj=1
b2 C? ul ibj
+2x; T~ 2iz¢,)? J; 1— 2z'a:bj> ‘
Multiplying by [ 152, (1 — 2iab;) [152, (1 — 2izc;)? # 0 yields:
k1 ko
() [ [ = 2iaby) [ (1 - 2iac;)?
Jj=1 Jj=1
k1 k1 ks
= px(x) (maQ —1 Z bj> H — 2ixb;) n (1 — 2ixc;)?
ji=0 /] j=1 j=1
k1 ko
+ox(x) | | (1 — 2ixb;)) 2 ( (1 — 2ixcy) ) 2zc] — a1 — 2ize)) — 2®ici ;)
Jj=1 =1 \j#l
ks k1
+ox (@) [ [(1 = 2iae)? Y ib | (1 — 2ixby).
j=1 =1 Al

Thus ¢x is a solution of the initial value problem. The uniqueness of the solution
follows with the Cauchy-Lipschitz theorem since

k
2 A, ic;
2 _ e B AV
— —xa? — bi —
* v ZZ I mz I—Zimc] ]Z 1*21:1363
ks )
1b;
2 7
* xZ 17221'0]) +;1f2mbj

is continuous and bounded on every (real) interval. O

Remark 3.6. Notice that it may be possible to simplify the differential equation
if not all coefficients are pairwise different. In Theorem 1.1, 3.8 and 3.11, this
simplification may yield a polynomial of smaller degree. For a special case, this
problem is discussed in Theorem 4.9 and Remark 4.10. For the rest of this section
we shall allow that not all coefficients are pairwise different. In the case of pairwise



Weak convergence on Wiener space: targeting the first two chaoses 99

different coefficients, the differential equation cannot be simplified and the same
observation holds for the polynomials in the previously cited theorems.

Lemma 3.7. Consider ki,ko = 0 and
kl k2
X =L(f) + L(f2) = aN + Y bi(R} = 1) + Y [ei(P? = 1) + d; P;],

i=1 i=1
as defined in Eq. (3.3) and (3.5) where N,Ry,...,Rg,, P1,..., Pr, “rk N(0,1).
Then, forr = 2:

kl k2
Kr(X) = a1y + Y 27 (r = D)IB) + > [27 7 (r — 1)lef + 27 rlel 22
j=1 j=1
Proof: We have ka(N) = a?, k,(N) = 0 for r > 2 and (RS — 1) = 2" '(r — 1)!.
We notice:

di \? 2
2 o _ j J ,
CJ(PJ_1)+d]PJ_CJ<PJ+QCJ> —ch—cj,
hence for r > 2:
di\°
2 T J
nr(cj(Pj —1)+4d,;P;) = Ciky [(Pj + 20j> 1 )

Using the formula for the cumulants of the non-central x? distribution, we have for
S~ N(p,1):
ke (S?) = 277 — DI + rp?),

thus:

I
nr[cj(PjQ—l)—i—dej] = 27"_1(7“—1)!c§ ll + (QCJJ) 7“1 = 27"_1(r—l)!c§+27"_3r!c;72d?.
The result follows now with the independence of the random variables. O

We can now prove the first part of our main result: a sufficient criterion for the
convergence in law to X.

Theorem 3.8. Consider ki,ks = 0 and
k1 k2
X =Li(f) + Io(f2) = aN + Y bi(R} = 1) + Y [ei(P? = 1) + d; P;],
i=1 i=1
as defined in Eq. (3.3) and (3.5) where N,Ry,...,Ri,, P1,..., Py, RS N(0,1).
Suppose that at least one of the parameters a, k1, ko is non-zero. Consider a se-
quence {F,}, of non-zero random variables with F,, = Y1, I;(fn,:) for p = 2 fized
and { fn,i}, © HO" for 1 <i < p. Define:
ks ko
P(z) = z' a0 H(Jc —bj) H(m —c;)?.
j=1 j=1
If the following conditions hold, as n — o0:
(1) kr(Fp) — ke (X), forr=1,...,deg(P),
deg(P)

(r)
wE|E| Y 20w F) B E)

E |l —o,

r=1
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Law
then F, = X, asn — o0.

Proof: Notice that an empty product equals 1 and an empty sum equals 0. We
prove the result for a # 0, the other case can be treated similarly. We shall use
and extend an idea of Nourdin and Peccati, see Nourdin and Peccati (2009a, Para-
graph 3.5). Since sup,, k2(F,,) < o0, we have with Chebychev’s inequality that the
sequence {F,}, is tight. We shall use the following corollary of Prokhorov’s The-
orem: Consider a tight sequence {F,}, of random variables. If every subsequence
{Fn,}, which converges in law has the same limit Y, then the initial sequence {F,},,
converges in law to Y. We consider thus a subsequence {F,, }, which converges
in law to some random variable Y. We notice that limy ka(Fy,, ) = lim, k2(F),) =
r2(X), hence sup, E[F? ] < co. Since {F,}, lives in a fixed finite sum of Wiener
chaoses, the hypercontractivity property implies sup;, E[|Fy,, |"] < oo for every r > 2.
With F,, 'Y, as k — o0, we have E[Y?] = limy E[F2,] = lim,, E[F2] = ra(X) #
0. Hence Y is a non-zero random variable and we have limy &, (Fy,, ) = £,(Y) for
every r. On the other hand we have lim,, ,(F,) = k.(X) for r = 1,..., deg(P),
thus:
kr(X) = k,:(Y), forr=1,...,deg(P).

To simplify the notations and to avoid complicated indices we shall write from now
on {F,}, for the subsequence. By the previous corollary, the proof is complete
if we can prove that ¢p, converges to ¢x. We shall prove this by showing that
py = lim, ¢F, solves the initial value problem of Lemma 3.5. This implies that

vy = px and hence Y "2 X The proof is divided in 5 steps:

e Step 1: We show that ¢4 (0) = 0 and find an alternative representation for
Elexp(izF,)Tr(Fp)].
e Step 2: We calculate:

deg(P) P 0

E - g1 xP(@ k)1 (Fa) | (3.9)
and:
deg(P)
P™(0
P ) Blexp(izF, ) B[, () (310)
r=1 :

e Step 3: We calculate ¢} (x) H;ﬁ:l(l — 2ixb;) Hfil(l — 2ixc;)?.
e Step 4: We find an expression for:

k k2
v (x) (—ma —sz)]_l[1—2mb 1_[1—2mcj
j=1 j=1

+ oy (2) H 1 — 2ixb; Z H 1-— szcj 2xcl —xA (1 — 2ize) — x2zclAl)

1=1j%#l
ko k1
+ oy (@) [ [(1 = 2ize;)® > ik | [(1 — 2iaby).
j=1 =1  j#l

e Step 5: The proof is completed by showing that the expressions found in
the last two steps are equal. Then ¢y is the unique solution to the initial



Weak convergence on Wiener space: targeting the first two chaoses 101

value problem in Lemma 3.5, Y and X are thus equal in distribution and
Law
F, = X,asn— o.

For the ease of notation, we define k := 2ks + k1 , G1(x) := H;“:l(l — 2izb;) and
Ga(x) := ]_[j L(1 = 2ixe;)?.

Step 1. The random variable Y is non-zero and has moments of every order. We
notice that for x = 0, the differential equation of Lemma 3.5 holds for ¢y if we
can prove ¢y (0) = 0. We notice that E[|F,|] < oo, hence ¢ (0) = i E[F,] = 0.
On the other hand limn ¢ (x) = @y () for every x € R since sup, E[F2] <

oo and iF, exp(izFy,) LAy Yy exp(izY) by the continuous mapping theorem. We
have thus ¢y-(0) = lim, ¢} (0) = 0. We suppose now that x # 0 and calculate
Elexp(ixF, )T F,] for r € N. For r € {0,1}:

Elexp(izF,)To(F,)] = —i E[exp(izFy)iF,] = —igh (2),
E[exp(izFy,)T'1(F,)] = E[exp(izF,){DF,,—DL " F,)u]
= %E[(Dexp(i F,),—DL7'F,)u] = le E[exp(izF,)(—SDL™'F,)]
= Blexp(izF)Fu] = — - ¢l (2),
and for r > 1:
E[exp(izF,)T,(Fp)] = Elexp(izF){DFy, — DL~ 'T'_1(Fy)) ]
= L E[D expiaF,), ~DL T, 1 (Fu)w] = - Elexp(iaFy)[-6DL™'T, 1 (F)]]

= % ]E[GXP(Zan)[Frfl(Fn) - ]E[FTfl(Fﬂ):I]]

= %]E[exp(ian)Fr,l(Fn)] - %E[exp(ian)] E[T,—1(Fn)].

Iteration yields:
Elexp(izF, )T (Fy)] = —i(iz) "¢ ( Z_: —i(Fu)]. (3.11)

Step 2. We calculate now the sum in (3.9). We have:

kE+2 p(r) +2 p(r)
iy, (@) 3 o iyt = il () (210 Y D i)
— —igly (2)(2i2)P (221x>

= —igp, (v)(2iz) <2ix)2jﬁl <2ix ) ﬁ (2“3 - j>2

— i, () i) G (2)Gile).
With Eq. (3.11) we have thus:

k+2 k+2
PO©O) ., POO)
E Z =1 exp(izFp)lr_1(F) | = —igk, (x) Z g1 (i) + op, ()

r=1

r=1
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e |SSPOO) (“EIL, o(F)] ELs(F)]  ETi(F)]
E LZ_?) rl2r—1 ( (iz)! (1)2 T (i) )

= —igl (2) (2i2)F1G(2)Go(z)

- “O(ng) _P;;(QO) E[T (F,)] + % E[T2(F,)] +

e g BTk

- e [P0 ey )+ S wira ) +

+(15f;)2!)2(’(21 E[r“(Fn)]] - ‘p(l“;;gf) (ﬁk;;ggil [Ty (Fy)]. (3.12)

We calculate the sum in (3.10) using E[T'.(F,,)] = kry1(Fpn)/r! and E[To(F,)] =
E[F,] =0:

E+2 k+2
P™(0) . P"(0) k. (F,)
TZZI o1 Elexp(izF) BTy 1 (Fn)] = ; L (11 (). (3.13)
Step 3. We have thus for the limit of the expression on the right-hand side of

Eq. (3.13), as n — oo:

k+2
P"(0) i (X) P"(0) ,
Prie) 3 Tt gy e g e
L] RSN 2 (zwr g grsr!c;—zdgﬂ
= riar=t = (r—1)! = (r —1)!
N\ PO(0) : 2 2 p(r)
SR D3p> R LIRS LU S
j=1r=1 ’ j=1r=1 4c; —1
(—1)k1a2 k2 5 L
T G H b
j=1  j=1
k1 ko ko ko
= ov(a) | 1 POy + 3 Pley)+ 3, 6 P )4+ (1) 114 Hb
Jj=1 Jj=1 j=1
1 2T 2T
= gev @D e [[S] b (3.14)
Jj=1 Jj=1

We have with M,_; :=T,_1(F,) — E[[,_1(F,)], as n — oo:

E lexp(mpn) lf P(T)(O)Mrﬂ(Fn)} . [ . lk+2 P™(0)
hence:

g1 2, g Mro(Fn)
k+2
pr)
limE [exp(ian) > (O)Fr_l(Fn)]

g

‘|_>()7

r=1
rlor—1
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k42 k+2
. _ PM(0 ) P (0
= tmE |explizF) Y 20O () | v imer, @)Y PT O B, ()
r=1 " r=1 "

k+2
. P™(0
=0+ limyp, (2) > Tr(_l) E[T,_1(F,)],

r=1

using Eq. (3.12) and Eq. (3.14), we have with lim, E[[',.(F,)] = k,4+1(X)/r! for
r=1,...,deg(P) — 1:

k k Pr+2)(0) x (X)
; ; r—m-+2
— iy () (2iz) * G (= Z ey (@) (i)™ Z (r+2) |2T+1 (r—m+1)!
m=1 r=m

ko
:% (@) klzn Hb (3.15)

We have used that lim, ¢, (v) = lim, ¢} (r) pointwise. This can be seen using
the continuous mapping theorem and sup,, E[F2] < co. Multiplying Eq. (3.15) by
i(2ix) 1 yields:

k k (r+2) K (X)
/ 2 k+1 —-m r—m+2
Py ()G Z: i) iy (@ :2 r+2) 2T+1 r—m+1)!

+ igoy(x)(%x)]“'l 1)k1a2 1‘[ ]‘[ b;. (3.16)

Step 4. We have:

k1 k1 ko
li7rln ©F, (x)[(—xa2 -4 2 bj> 1_[(1 — 2ixb;) 1_[ 1 — 2izc;)?
=1 =1 =1

ko k1
+ [ [ = 2iwe;)? Y iy | [(1 — 2iaby)
j=1 =1  j#l
k1 k2
+ ] ] = 2iab;) ) (H(l - zmcj)2> [22¢} — xA (1 — 2izc) — :c%‘clAl]]
j=1 1=1 \j#l

k1 k1
= ipy (2)(iza® — Z b;)G1(z)Ga(x) + iy (z)Ga(x) Z by H(l — 2ixb;)

j=1 =1 j#l

+ipy ()G1(x Z (n (1- Zixcj)Q) [izA (1 = 2izey) + (iz)* A — 2ixc] |

=1 \j#!

= ipy (v)iza®Gy(x)Ga(x) + ipy (z

”M”

[—bu(1 — 2iaby) + bi] [ [(1 - 2ixd))

3#l
+ iy (z Z (n (1- 2ixcj)2> [z (1 — 2izer) + (ix) 2 — 2ixc] ]
I=1 \j#l
= iy (2)iza’G1(2)Ga(z) + ipy (z x)2ix Z b7 H (1 — 2ixb;) + ipy (x)G1(x)

=1 J#l
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i (H (1— 2ixcj)2> [z (1 — 2ime;) + (ix) ey — 2ixc]] . (3.17)

Step 5. We have that Y "2¥ X if and only if the right-hand side of Eq. (3.17) equals
¥y (x)G1(x)Ga(z) or, using the previous results and Eq. (3.16) in particular, if the
following equality holds:

i " ECOPOED () gy paa(X
;(2195)'“ iy (z)(ir) l; ).2(721 (T_l;fl))!
k1 g2 ko k1
iy (a)(2i)t T ”2 1411

= ipy (2)iza®G1(2)Ga(z) + iy (x)2ixGa(x Z b7 H (1 — 2ixb,)
=1 J#l

+ipy (2)G1(z Z (H (1— mcj)?) [izA)(1 — 2izc)) + (iz)*q A — 2izc}] .
=1 \j#l
(3.18)

If py (z) # 0, we can divide by ipy (z) and compare the coefficients of x, x2, 23,
on the left- and right-hand side of Eq. (3.18). For this final part of the proof, see
Appendix. Considering the previous remarks, this concludes the proof. O

Remark 3.9. (1) Notice that the proof of Eq. (3.18) for the general case is rather

lengthy and technical. This is basically due to the differential equation derived
in Lemma 3.5 from which follows Eq. (3.18). For special cases, such as the
case considered in Azmoodeh et al. (2015), the differential equation simplifies
considerably and therefore a relatively simple recurrence for the moments of
the target variable can be proved. In Azmoodeh et al. (2015), the authors have
used this recurrence to prove their main result. In the general case however,
this recurrence is hard to handle, therefore we have chosen to use differential
equations rather than recurrence relations.
We illustrate now how the proof of the crucial equation can be simplified for
the class of target variables considered in Azmoodeh et al. (2015). Notice that
fora=c;=d; =0, k =k and X "2 3% b(N2 —1) with Ny,..., N, "=
N(0,1), we have to check the following equation:

kz—:l (Qix)k kil P(r+2)( ) Kp— l+2(X) 223? L Zk: b, ﬁ b
- . — i j
= )t A (r+2)20 (r =14 1)! R

k
=2iz y. b7, [ ] (1 — 2ixby), (3.19)

where P(z) := x]_[i;l(gc — b;). We use the following relation which can be
proved by induction over [:

k-1 P(7+2) k

(r+2) Z = kllelelv (3:20)

r=l —
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where 1 <!l <k —1 and:

T = > by x...oxb,, 1<m<k—2
i1 <...<im
P15 tm FJ

and T éj ) := 1, see Definition 6.1 for details. We have thus for the left-hand side
of Eq. (3.19):

k—1 k—1 (r+2) K (X) k
(2i P2 ) (1)k(2
& iz) g r+2) '2r+1 i1y i) Zl 1:[
k—1 — (r k r—Ii+1 _ r—1+2
= sz Z ) 0) 2 =y 1)!bj
r+1 _ |
= = 7"—|—2 12 = (r—1+1)!
k k
223: Z H
i=1  j=1
k—1

k k k
(2@':10) k = 1Zb2 P 1 L~ 2zxk2binbj,

and for the right-hand side of Eq. (3.19):

l

I
—_
-
Il
_
<
Il
—_

k
2ix Z b2, Z Z (—=2ixb;y) x ... x (—=2ixb;,) + 2ix Z b2,
m=1

Jj=1 4u1<...<ij
Pl yenns #m

k
= Y (2iz) (- Z 2 = 3 i) S R
1

=0

o
—

> oS
Il
= O

(i) L (= 1)kt Z 2T+ (2ix)* (—1)k

m=1

> =
|
_

k
(2iz) (= 1)P I SRR T (2i)F (1)

m=1

M- b s

Il
_

This proves that Eq. (3.19) holds.
e (r+2) Koy .
In the general case, the calculation of Zd e(P)=2 (1: +2+)T2£(«)+)1 (Tiﬁ(l);,) is lengthy.

The following relations are needed and can be proved by induction over [, for
the ease of notation define &’ := 2kg + k1 + 15010

! PO+ (0)

ZI o) b;”’l k’—l 121)2 Z Ti(lj)Sizsi37

i1t+ig+ig
=K/ —1—1
k-1 r k
Pl +2)(0) > r+2—1 ( 1)k'7l 1
— (r+2)l =
ko
2 2N 1,808P v N TsPsP |, (3.21)
j=1 i1+ig+ig i1+ig+iz

=k/—1—1 ko]
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and
k' —1 k
P(r+2) (0) 2
(r—1+2)c~'d?
; (r+2)! = J

11745 Mig i3
i1+ig+is i1+ig+is
=k/—1—1 =k'—1-2

kz . . . .
:(—1)’6—1—121 22 Y 1,808 +ejdz Y T80 |, (3.22)
o

where S; and Si(]) are defined similarly to Tim with the coeflicients by, ..., by,
replaced by ¢y, ..., ck,, see Definition 6.1 for details.

In particular, equations (3.21) and (3.22) imply that the proof of Eq. (3.18) is
technical. In Proposition 6.2 we present a proof of the latter equation which
does not require Eq. (3.21) and (3.22). The coefficients of the polynomials
on both sides of Eq. (3.18) are compared directly. This proof still remains
complicated and lengthy. As mentioned above, this is due to the form of the
differential equation for the characteristic function of the target variable in the
general case.

Theorem 3.8 extends Azmoodeh et al. (2015, Theorem 3.2,(ii) — (i)) since it
holds for a more general set of target random variables X and we have L!-
convergence instead of L?-convergence.

We notice that for the proof it is essential that, as n — oo:

dEg(P) P('r‘) (0)

E exp(ian) = WMr—l(Fn)
deg(P) i
. PO
—E | exp(izF,)E Z WM,._l(Fn) F, || —o.
r=1 :

Since | exp(ixF,,)| = 1, the triangle inequality shows that it is sufficient to have:

E, — 0,

as n — o0. This L!-convergence is weaker than L2-convergence which results
typically from the Cauchy-Schwarz inequality, used to control unbounded fac-
tors.

Different random variables X may lead to the same polynomial P. Let N be
Law Law

a standard normal variable, X; = N? —1+d;N and Xo = N2 — 14 dyN
with d; # d2 non-zero, then Theorem 3.8 yields the polynomial P(z) = z(x —
1)2. A similar observation holds for Nourdin and Poly (2012, Theorem 3.4)
where the constant ug only appears in the limit of the second cumulant. In
our case, the condition (1) of Theorem 3.8 discerns both cases. For special
cases it may be useful to consider a polynomial which is different from the
‘standard polynomial’ defined in Theorem 3.8. This observation is founded in
the initial value problem established in Lemma 3.5. It can be shown that the
differential equation in Lemma 3.5 can be simplified if the b; or the (c¢;,d;)

are not pairwise different. For instance, if X; "2 (N2 — 1) + (N2 — 1) and
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Ni, Ny &4 (0,1), Lemma 3.5 yields a differential equation which can be

simplified to yield Nourdin and Peccati (2009a, Eq. (1.9)).

We proceed now to the proof of the converse of Theorem 3.8. We shall need the
following Lemma which generalizes Azmoodeh et al. (2015, Eq. (3.6)).

Lemma 3.10. Let P(z) := o't le#0 ]_[kl (z—b; )]_[z (x—c)? and X = Ii(f1) +
I5(f2), see Eq. (3.3), then:

deg(P) P(T) (0)

P rl2r—1

(T (X) —E[L,_1(X)]) =0 ] =1

r=1

Proof: In this proof all the equalities between random variables hold with probabil-
ity 1. We consider iterated contractions recursively defined as follows for f, € H®?:

f2®1 f2 = fa; f2®(p)f2 = (f2®§p71)f2) ®1 fa,

for p > 2. We use the representation for X given in Eq. (3.3) and Eq. (3.6).
(1) We prove by induction over r > 1:

Do(X) = [0, (X)] = 2 (@ f2) + 2771 3L (.. (o1 f1)®1 f2) - )& fo)
r+1

2”2 SR (91®192)B1g5) - )®1gr)-

g9j=1r1
g;=1f2, for iz#j

(3.23)

Notice that all iterated contractions on the right hand side of Eq. (3.23) run
over r + 1 functions.

For r = 1, we have with the stochastic Fubini theorem and the multiplication
formula for multiple Wiener integrals:

[1(X) =(DX,-DL™'X)y = QL(fa(t, ") + f(t), [ (fo(t, ) + Fu()m
T

T
= 2J0 L(f2(t,)®fa2(t, ) + f2(t, )@ fa(t, )dt + 3J Li(fa(t, )@/ (t))dt

0
T
2
d
+L fi(t)"at
:212(f2®1f2)+3Il(f2®1f1)+2Hf2H%1®H+Hle%{-

The claim follows since the expectation of every multiple Wiener integral is 0.
Suppose now that the claim holds for some r > 1, then:

I'1(X) =(DX,—DL'T. (X))

= @ (fao(t, ) + A1), 27 L0 f2) (8, )
+27713((c . (f2®1 f1)®1 f2) .- R f2) (1))

r+1

L or-1 2 Z (- (1 ®192)@193) - . - P1gr41) ()1

95=r1
gi—fz for i%j

= 2L f) + 27 HBY T o, o)
+2"30((. .. (fo®1/1)R1f2) . ) ®1f2)R1 f2)
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r+1

+ 2" Z 2 L((- (1®192)®193) - - )®1grt2)

9j=r1
ql—fz for i#j

+ 2 L (R f)&1 f1) + 27
x <3<( c(f2®1f1)®1f2) .. )R fa, fiom

r+1

+ Z Z (. (91®192)®193) - - ~)®1gr+17f1>H)~

95="r1
91—f2 for i#j

Hence Eq. (3.23) follows for r + 1.
(2) For r = 2, we have the following equalities:

28 f2 = Z b} hi®h; + Zcrh’@)h (3.24)
i=1
k2
(- (91®192)®193) - - . )®19r = Z ¢, (3.25)
i=1

where the last equality holds if exactly one of the functions g1, ..., g. equals fi,
all remaining functions g; being equal to fo. We notice that (hl®hl)®1(h3®h;)
= 0 and (h;@h;)@l(h;&)h;) = 1[1 =7] h/®h/ and (hz®hz)®1(h]®h3) =
11i—j1hi®h;. Hence fo®: fo = Z b2h;®h; + Y¥2. 2R ®h), and, generally:

lel

F& 2 = Z by hi®h; + Z el i @h.

1=1 =1
To prove Eq. (3.25), we suppose first that go = fi and g1 = g3 =... =g, =
fQ. Then:
kl kz k‘z k2
91®192 = [2@1f1 = (Z bihi®h; + Z cil;®h; > ®1 (aho + 2 dih; ) = > cid;hi.
i=1 = = i=1
Since g1 = g3 = ... = g, = fa, it is now easy to see that:
(- (1®192)®193) - - )®1gr = 2 ¢ dihj.
If, on the other hand g; = ... = g; = fo for [ > 1, we can use Eq. (3.24) to see
that

(.. (91®192)®193) - - )®1g1 = fz@il)fz Z bLhi®h; + Z cthi@ht,

and we can proceed as above to see that Eq. (3.25) holds.
(3) Considering Eq. (3.23), it is easy to see that
deiP) P(T) (O)

19r—1
= rl2

(Fr—l(X) - E[Fr—l(X)])
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lives in the sum of the first two Wiener chaoses. We consider the projection
of the random variable above on the first respectively on the second Wiener
chaos. We have with Eq. (3.23):

deg(P) p(r) /
7% T (0 B0 | = g o)

deg(P) p(r)
+ ]:!2’“(—01) 272 BL((-. . (f2®1f1)®1f2) - )R f2)

r=2

+ 2 D h((- (91®192)@1g3) - )R1gy)

g9j=r1
gb—fQ for i%j

ko deg(P

- 1120 L(f1) +Z Z 2r 1 (2772 (3h; + (r — 2)hy) dic; ™)
=1 r=

P’ 0 ko deg(P P(r) -
- 1éo Lify) + Z Z () I (R) (r + 1)dscr L.
i=1 r=
If @ = 0, we have:
P'(0 & PO

’ 1'—1 :

If a # 0, we have P'(0) = 0, hence Eq. (3.26) holds in both cases and:

deg(P) P( )( )
h| 2 T (0~ B (X))
ko deg(P)
1 PO (0) .
T2 Zl Zl 0 (h) (r+ Ddic ™
ko deg(P) ko deg(P)
1 PU©0) N i P"0) , /
=3 d; Z e I (h) 5 - Z L I ()
i=1 r=1 i=1 r=1
/ 1 & di /
- Z diP'(c;) 11 (h) + 3 > ;P(cz-)h(hi) -
i=1 i=1

We have for the projection on the second Wiener chaos with Eq. (3.24):

deg(P) P(7) (0)
rli2r-1

r=1

J2 (Prfl(X) - E[Frfl(X)])

deip) P(r) (O)

19or—1
= rl2

ki deg(P)

=2

=1 r=1

21 (f2®gr)f2>

) o 1)

P(r) (0) ko deg(P)
7l 2(hi®h:) ; ;
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= N P(b) Lo (hi®hs) + 3 Plen) Lo(h@h,) = 0
i=1 i=1
(4) Since 2 := Zfigl(lt)) 1:!(212(701) (Tr—1(X) = E[I—1(X)]) equals J1(Z) + J2(Z), the

claim of the Lemma follows now directly.
O

Theorem 3.11. Consider ki,ks = 0 and
k2

k1
X =Li(fi) + I(f2) = aN + > bi(R? = 1) + > [c;(P? = 1) + d; P}],

i=1 i=1

as defined in Fq.(3.3) and Eq. (3.5) where NyRy,..., Ry, P1,..., Py, i N(0,1).
Suppose that at least one of the parameters a, k1, ko is non-zero. Consider a se-
quence {F,}, of non-zero random variables with F,, = Y7 _| I;(fn,;) for p = 2 fized
and {fni}, < HO®' for 1 <i < p. Define:

1 ko
P(z) = z' a0 H(m - H T — c]
i i=1

If F, Lo X, as n — o, then the following limits hold, as n — c0:
(1) k:(Fp) — £:(X), forr=1,..., deg(P),

deg(P) (r)
(2) E|E Z F;'T(_Ol) (Fr—l(Fn) - E[Fr—l(Fn)]) ‘Fn — 0.

Proof: The proof of this theorem is identical to Azmoodeh et al. (2015, Theorem
3.2, Proof of (i)— (iii)). It is enough to replace Azmoodeh et al. (2015, Lemma
3.1) by Lemma 3.10. O

Proof of Theorem 1.1. The main result of this paper is now a direct consequence of
Theorem 3.8 and Theorem 3.11. ([

Remark 3.12. (1) We notice that, for any sequences of integrable random variables
{F,}, and {G,},,, we have that E[|F,|] — 0 implies E[|E[F},|G,]|] — 0, as
n — oo:

E[| E[Fu|Gnll] < E[E[|Fu] [Gnl] = E[[Fu]] = 0, as n — .

Hence, with the notations of Theorem 1.1, a set of sufficient conditions for
Law
F = X, as n — oo is:
Kr(Ey —>/€,« ), forr=1,...,deg(P),
dcg &

T'QT or—1 (Frfl(Fn> - ]E[Frfl(Fn)]) -0,
=1

where @ > 1. If @ = 2,we can use Eq. (2.1) to calculate the expectation in (2’).

(2) For a = 2, conditions (1’) and (2’) can be expressed in terms of conditions

for contractions. However the resulting conditions are usually complicated as

indicates the following example:
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Consider p > 2 even, a # 0, b # 0 and a sequence of functions {f, ,} < HOP
such that, as n — o0:

p!an,pH%@p — a® + 20°, (3.27)

2
{Fnp®py2frps frp) e — 8b° [p!(p/2)! (p]/)2) 1 ' (3.28)

Define sets A; and By for every even integer | with 2 <1 < 3p — 4:
Ay = {(s,t)eNQ:ISSSp—l, 1<t<pn(2p-—2s), 3p—2(s+t):l},
B :={seN:1<s<p-1, 2p—2s=1},

ety =pts == (01 (170 (327,

mm:@—m@‘ﬂé

Define for every even integer I a condition Cy by:

and:

— 0.

HO!

Z C(Z%Svt)(fn,p®sfn,p)®tfn,p —2b Z k(pvs)fn,p®sfn,p

(s,t)eA; seB;

If conditions C; hold for every even integer | with 2 <1 < 3p — 4, we have, as
n — 00:

L(fap) ™ aN + (2 —1), N, & "% N(0,1).

The proof of this result is omitted, another example for such conditions can
be found in Azmoodeh et al. (2015, Theorem 4.1).

4. Applications

We notice that our results about convergence in law of sequences living in a finite
sum of Wiener chaoses can be extended to match convergence in total variation, see
for instance Nourdin and Peccati (2012, Appendix C). Indeed a direct application of
our results together with Azmoodeh et al. (2015, Lemma 3.3) or Nourdin and Poly
(2013, Theorem 3.1) proves that we can replace the convergence in law of sequences
living in a finite sum of Wiener chaoses by convergence in total variation.

4.1. Recovering classical criteria. As a direct consequence of Theorem 1.1, we get
the following Corollary 4.1 which extends Azmoodeh et al. (2015, Theorem 3.2). We
have proved that (2) is necessary and sufficient for convergence in law whereas the
authors in the cited reference need L2-convergence of the conditional expectation

to prove F), Lay X, as n — . As pointed out in Remark 3.9 this results from
the Cauchy-Schwarz inequality. Moreover, Corollary 4.1 extends the first part of
Dobler and Peccati (2016, Proposition 1.7) to more general linear combinations of
independent central x? distributed random variables. As anticipated, if b; = ... =
br = 1, the polynomial P can be simplified.
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Corollary 4.1. Consider X = Ir(f2) = Y bj(RZ — 1) for Ry,..., Ry, “%*
N(0,1) and b; # 0 for i = 1,...,k, see Eq. (3.3) and (3.5). Define P(z) =
I‘H?=1($ —b;). Let {F,}, be a sequence of non-zero random variables such that
each F,, lives in a finite sum of Wiener chaoses, i.e. F,, = >" | Ii(fn:) forn>1

and m = 2 fized, {fn;}, < H® for 1 < i < m. The following two asymptotic
relations (1) and (2) are equivalent, as n — o0:

(2) (a) kr(Fp) = ke (X), forr=2,....k+1,

k+1
P™(0
(b) E l E [Z £r0) (T,_1(F,) —E[T,_1(F,)]) Fn] ] — 0.

(1) F, ™' X ;
L ri2r=t
Proof: Use Theorem 1.1 with a = ko = 0. (]

We come now to the seminal paper Nualart and Peccati (2005) of Nualart and
Peccati in which the authors have characterised the convergence in law to a standard
normal random variable. Since this first paper, the conditions given in Nualart and
Peccati (2005) have been extended, see for instance Nourdin and Peccati (2009a).
Taking k1 = ko = 0 and a = 1, we have with Theorem 1.1 the following characteri-
sation which corresponds to condition (7ii’) cited in Section 1.2:

Corollary 4.2. Consider X = al(hg) for I1(ho) ~ N(0,1) and a # 0. Let {F,},,
be a sequence of non-zero random variables such that each F, lives in a finite sum of
Wiener chaoses, i.e. Fry = 37" Ii( fn;) forn =1 and m > 2 fized, {fy}, < H®
for 1 < i < m. The following two asymptotic relations (1) and (2) are equivalent,
as n — o0:
(1) F, ™" X,
(2) (a) K2(Fn) — a?,

(b) E HE [<DFn, DL 'F5y — a?

\)

Proof: The equivalence of (1) and (2) follows directly from Theorem 1.1 with
P(x) = 22, since:

|—o.

2
P)(0) 1
2 rlor—1 (Frfl(Fn) - E[Frfl(Fn)]) = 5 (Fl(Fn) - "EZ(FH)) .
r=1 "
If (2) holds, we have clearly lim,, x2(F),) = a?. If (1) holds, the latter limit follows
from Azmoodeh et al. (2015, Lemma 3.3). O

Remark 4.3. The equivalence of (1) and (2) in the last corollary can be extended to
sequences {F,}  living in D*? if some assumptions on the boundedness of the I';-
operator is added. Indeed we can prove that (1) implies (2) if sup,, E[I'1 (F},)?] < .
It is unsure whether the equivalence of (1) and (2) holds without any additional
assumptions if {F,}, < D2,

We use now Remark 3.12 to recover more criteria for the convergence in law, see
Corollary 4.4. Notice that (1) is Nourdin and Peccati (2012, Theorem 5.3.1) for the
case of a sequence {F),}, living in a fixed sum of Wiener chaoses, whereas (2) is the
sufficient part of the criterion given in Nourdin and Peccati (2009a, Eq. (1.3)) with
L2-convergence replaced by L'-convergence. Since all LP-norms inside a fixed sum
of Wiener chaoses are equivalent, the criterion given in (2) below is thus necessary
and sufficient.
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Corollary 4.4. Consider X = al(ho) for I1(ho) ~ N(0,1) and a # 0. Let {F,},,

be a sequence of non-zero random variables with ko(F,) — a?, as n — .

(1) If Fy = X" Ii(fny) forn =1, m =2 fived with {f,;}, < H® for1<i<m
and, as n — o0

E[(DF,,—DL™"F,yg —a’|] — 0,

then F), L&wX, as n — o0.
(2) If Fy, = Iy(fnp) with {fnp}, < HOP and, as n — oo:

E[[1/p| DF,[7; — a*|] -0,

Law
then F, = X, as n — 0.

4.2. New applications. For the rest of the section we suppose that p is even. Notice
that if p is odd, we cannot have:

k1
L(fap) 5 aN + D bi(R? — 1),

i=1

as n — o for ky = 1, sup,, | fnpllger < o0 and Z§=1 b3 # 0. This can be checked
using the third cumulant and Eq. (2.1), see Nourdin and Peccati (2009a, Remark
1.3). More generally, if p > 3 is odd, we can exclude a large set of possible tar-
get random variables by using the fact that all odd-order cumulants are zero, see
Remark 4.10 for details.

The following Lemma shall be needed to prove a sufficient criterion based on the

convergence of some contractions and cumulants.

Lemma 4.5. Consider p1, pz =1, f € HOP' and g e HOP2. We have for 0 <r <

P1 A p2!

1/ ®rgl3, 4 ps—ar < [f®r9l7, 1 po—2r = Kf ®pi—r 9 @por 9 roien |
< |f ®pi—r fluoen 19 ®pa—r glueen < If ®pi—r flasen 9] Her
< | f %0 190F00s -

Proof: The first inequality is a standard result. The first equality follows from
Nourdin and Rosinski (2014, Eq. (2.5)). The next inequality follows from the
Cauchy-Schwarz inequality. The last inequalities follow from the following general
result:

|f ®r gllrow+ra-2n < | fllmer 9] HEP: )

which is, again, a consequence of the Cauchy-Schwarz inequality. O

Theorem 4.6. Consider ki,ks = 0 and

k}l k2
X =L(fi) + I(f2) = aN + > bi(R? = 1) + > [c;(P? = 1) + d; P}],
i=1 i=1
as defined in Eq. (3.3) and Eq. (3.5) where N,Ry, ..., Ry, , P1,..., Py, “x (0,1).
Suppose that at least one of the parameters a, k1, ko is non-zero. Consider a se-
quence {Fy,}, of non-zero random variables with F,, = I,(fnp) for p = 4 fized,
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even, and {fyp}, < HOP. Define:

k1 k2 -1 2
P(l’) — x1+1[a#0] H(m — b]) n(x — C])2 ;C (p/2) ( /2 ) ;
j=1 J=1

l ~(l ~
fn P@p/anp - fn N fn p@;/;l fn,p = (fn,p@é/)gfn,p) ®p/2fn7p, fOT le N>0.

Asn — o, we have I,(fnp) Law x if the following hold:
br(Ip(fnp)) = ke(X), forr=1,..., deg (P), (4.1)
| frp®1frpllgoer—2n — 0,  for every 1 <1< p—1 with | # p/2, (4.2)

degP P(T)( )

rlor—1 o1 Jnp p/zfn,pc — 0. (4.3)

r=1

H®p
Proof: (1) We notice that, for p > 4 even, condition (4.2) is equivalent to:
| frop®i [ pl H@@p-20 — 0, for every 1 <1 <p—1 with [ +# p/2,

see Nourdin and Peccati (2009a, Proposition 3.1). If p = 2, we have necessarily
ko = 0 and the convergence in law of sequences {I>(f,,2)},, is completely char-
acterised by necessary and sufficient criteria in Nourdin and Poly (2012), see
Remark 4.7.
(2) We first prove that, except for the contractions fn7p®i;)2fn7p forr = 2,...,
deg(P), all the contractions, appearing in the representation of M, =
—1(Ip(frp)) —E[Lr—1(Ip(frp))] for r = 2,...,deg(P), converge to zero (in
the corresponding Hilbert-space norm). With \/mood( h et al. (2015, Proposi-
tion 2.1), we have for ¢ > 1 that I';(I,(fn,p)) — E[I:(Ip(fn,p))] equals:

Z ep(r1, ..oy Ti)

(r1,eer)ES:
X I(i+1)p72rlf...f2n((' .. (fn,p®r1 fn,p)®r2fn,p) s fn,p)@)mfn,p)a
where S; is the set of elements (r1,...,r;) such that:
1<r<p, ..., 1<r<(ip—2r —...—2r,_1) AD;
rI<p,...,T1+...+r_1<ip/2, i+1)p—2r—...—2r; #0,
and ¢,(r1,...,r;) is defined recursively, see Azmoodeh et al. (2015, Proposition

2.1). For (r1,...,1;) € Si\{(p/2,...,p/2)}, we prove that, as n — co:
[C- - (frp®rs frp)@ra frip) - - fop) B frp

If r1 # p/2, we have | f1p®r, frplgoee—2m) — 0, as n — o0, since 11 # p. If

|H@[(i+1)p72'r17,.,727'13] — 0. (44)

i>2andr =p/2,letrm=...=r;=p/2and rj;1 #p/2with1 <j<i—1.
We have rj,1 # p, since otherwise the definition of S; yields the following
contradictions:
j+1
f+p—2rk< , ifj+1<i—1,
and:

0#(i+1)p—2) rp=(i+1)p—2(—1)p/2—2p=0, ifj+1=i
k=1
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Thus, with Lemma 4.5:
= = = 2
H( . (fn1p®7’1 fn#’)®7’2 fn,p) ce f",P)®Tj+1 fn,P”H®[(j+2)z7*27"1*-~-*27‘j+1]
= (+1) 5 2
= H (fn,p /2 fn,p) ®Tj+1fn,p
2j+2
< an,p| 1;®p ”fn,p ®p—m+1 fn,p”H®<2Tj+1>-
Since 1 < 7j41 < p—1 and 741 # p/2, we have that 1 < p—1r;41 <p—1
and p — 741 # p/2. Thus |fnp ®pr,py frpllgeero — 0, as n — oo, since

sup,, | fn.plger < 00, Eq. (4.4) is proved.
(3) With Eq. (4.4), we have for ¢ > 1, as n — o0:

HOLG+2)p—2r1—... =27 1]

E [ (o)) — EI s ] = 0220/, (5803 1)) |

=E [(Fi([p(fn,p)) = E[Ls(Lp(fnp))] — c;[p (f”xp®1(j/;1)f”’p))2] =0

where we have used the definition of ¢, and Azmoodeh et al. (2015, Propo-
sition 2.1). For ¢ = 0, we have trivially E[(To(Lp(frnp)) — E[Lo(Lp(frp))] —
Ip(fmp))Q] = 0. Thus with M,_1 := T'voa(Lp(fnp)) — E[Tr—1(Lp(fap))], as
n — oo:

deg(P) P(r) (0)

E rl2r—1

(Moot = 7 0 (faa®dun) ) | | =00 (45)

On the other hand, as n — oo:

deg(P) 2

P™(0 o
E Z W(—l)cg_llp (fn,p@é/;fnyp)

r=1

deg(P) p(r) ?

- ©) rr g0
=c, Zp! Z o1 pfrp®p2frp — 0. (4.6)

r=1

H®p

The result follows with Eq. (4.5) and (4.6), the reverse triangle inequality,
Theorem 1.1 and Remark 3.12.
(Il

Remark 4.7. If p = 2 and {fn 2}, < H®?, it is known that I7(f,2) Ly X7 as
n — oo implies that X’ has a representation as in Eq. (1.2) with k3 < o0 and
ko = 0. In particular, if k1 < o0, k3 = @ = 0 and p = 2, Theorem 4.6 holds
and is the sufficient part of Azmoodeh et al. (2015, Proposition 3.1). It is shown in
Azmoodeh et al. (2015) that the conditions of Theorem 4.6 are also necessary for the
case p = 2. The case p =2, k1 < 0, a # 0 and ko = 0 is not covered by Azmoodeh
et al. (2015) but it can be shown that the conditions given in Theorem 4.6 are
also necessary conditions for this case. This can be proved using Nourdin and Poly
(2012, Theorem 3.4) and Nourdin and Peccati (2012, Eq. (2.7.17)).

We give now an example for the use of Theorem 4.6 in the case ko = 0 where
the approximating sequence lives in a fixed Wiener chaos. We notice that it is so
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far unknown whether a sequence living in a fixed chaos can converge to a target
variable as in Theorem 4.6 with ko # 0, see Remark 4.10.

Ezample 4.8. Consider p > 2 and sequences of non-zero functions { f ,},,, {9n.p},, <
HOP and {hy,2p}, = HO®P) such that the sequences {I,(fn)},, {Ip(9np)}, and
{I2p(hn,2p)}, converge in law to a standard normal variable. We also suppose that
{Frps Gnpyger — 0, as n — . We have then, see Peccati and Tudor (2005,
Theorem 1), as n — o0:

Ip(Fap)s Ip(Gnp)s Tap (B 2p) T 5 (Ry, Ry, N)T,

where (R, Rz, N)T has a 3-dimensional standard normal distribution. Using the
continuous mapping theorem, Nualart and Peccati (2005, Theorem 1) and proceed-
ing as in Nourdin and Peccati (2009a, Proposition 4.1), it is easy to see that, as
n — 00:

Law
Lp(¢nzp) > X =N+ (R 1) — (R3 1),

where @52 1= fnp®fnp — Inp®Gn.p + hn2p. Alternatively the latter convergence
in law can be proved using Theorem 4.6. Define:

_ 1 4 1)’
o (ofs- 1)2 (/2! (/2)2 i)

We shall need the following limits, as n — oo:

( ) <fn,p<>:§fn,pa9n,p®gn,p>H®<2P> — 0, _

(b) <fn p®fn s n 2p>H®(2p) — 0 and <gn p®gn,pa hn,2p>H®(2P) I 0,
(©) [(fr.p®Fnp)®p(gn p®np) | He@n — 0,
(d)
)

|(fn, p®fn7p)®p n2p| rew — 0 and H(gn,p@)gnm)@p n2p| HOw — 0,
(e HSOH,Q;DQ?;) Pn,2p — ]{72p 1fn p®fnp kr 1gn p®gn pHH®(2p) — O forr = 2 3 4
(£) on,2pR10n,2p | g@@p-200 — 0 for 1 < l 2p—1 and [ # p.
These statements (a)-(f). can be proved using Nualart and Peccati (2005, Theo-
rem 1) and Nourdin and Peccati (2009a, Theorem 1.2) We check the conditions of
Theorem 4.6.
(1) We prove that lim,, k4 (I2p(¢n,2p)) = ka(X). The convergence of the cumulants
of order 2 and 3 can be seen similarly using (a)-(f) and Nourdin and Peccati

(20094, Eq. (3.4)). We use k4(I2p(on.2p)) = E[I2p(pn,2p)*] — 3E[L2p(0n,2p)*]?
and Nourdin and Peccati (2009a, Eq. (3.6)):

(r—1)! <2f__11> ’ r! (27?)2 (4p — 2r)!

X H‘Pn,2p®r90n,2p|\H®<4p—2r)

3 2p— 1\, (2p\°
—tim @200 (P71 () eollennSrnalioon

lim K4 (IZp (‘Pnﬂp))

HM”

n 2p
= lim %(2;0)2(2? —1)! (25__11)219! (if) 2 (2p)!

X Hk2pfn,p®fn,p + k2pgn,p®gn,p”§[®<2p)
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= lirrln%@pf(p —1)! <2p - 1)219! (2p>2 (2p)!

p—1 p
x (kSprn,p®fn,p”§1®<2p) + knggn,p@gn,p i]@(zm)

2 2
= lim %(217)2(:0 —1)! (2;?__11) p! (?) (2p)!
x (H(fn7p®fn,p)®p(fn,p®fn7p)H?ﬁ[@(zp)
+ H(gn,p®gn,p)®p(9n,p®gn,p)H?{@(?m)
= ka(R? — 1) + ka(R% — 1) = ra(X).

The fifth equality follows from Nourdin and Peccati (2009a, Theorem 1.2.(iv)).
For the last equality we have used that, for independent random variables, the
cumulant of the sum equals the sum of the cumulants and «,(N) = 0 for every
r = 3. We have thus proved Eq. (4.1). Notice that Eq. (4.2) holds because of
(f). We have P(z) = 2%(z — 1)(z + 1) and:

P'(0) = P"(0) =0, P"(0)/(2!2) = —1/2 , P™W(0)/(4!2%) = 1/8.
We check now Eq. (4.3):

2P0
3 (0)

rl2r—1

wn,2p®g) ©n,2pChp

r=1 H®(2p)

2
_%p

9 (@n,2p®p§0n,2p - k2pfn,p®fn,p - k2pgn,p®gn,p)

~

H®(2p)
4
C2p

+
8

~ (4 ~ ~
<50n72p®; )Sﬁn@p - k%pfn,p@)fmp - k%pgn7p®9n7p)

H®(2p)
2 1.2

k
2p™2p 5
8 fn,p@fn,p
H®(2p)

) - O,
H®(2p)

as n — 0. Theorem (4.6) yields now Is,(¢n,2p) " X, as n — .

C

1 -
+ Cgkap (‘_2fn,p®fn,p +

2 1.2
czpk%

- 8

gn,p®gn7p

1 ~
- §gn,p®gn7p +

We consider now the convergence in law to random variable with a centered y?
law and compare the new criterion of Theorem 4.6 with the main result of Nourdin
and Peccati (2009a). We shall see that in this case, both criteria are equivalent.

Theorem 4.9. Consider k1 > 0, a = ko = 0 and X = Zf;l(Rf — 1) as defined
in FEq. (3.3) and Eq. (3.5), where Ry, ..., Ry, “r N(0,1). Consider a sequence
{F.}, of non-zero random wvariables with F,, = I,(fnp) for p = 2 even fized and
{fup}, © HOP. Define P(z) = xz(z — 1)* and suppose that ks (F,) — 2ki, as
n — o0. The following conditions a., b. and c. are equivalent, as n — o0:

a. F, "X,

b. 1) [|fnp®ifrpl o2y — 0,  for every 1 <1 <p—1 withl +# p/2,,

2) ”fn,p@pﬂfn,p —2/¢p frpllaer — 0
c. 1) | frop@ifnplaeee—ay — 0,  forevery 1 <I<p—1 withl #p/2,,
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deg(P)
PO©) o)
2) Z Flor—1 —or—1 Jnp p/anmC —0
r=1

®p
3) ko (I(fap)) — Fr(X), forr=1,....deg (P).

Proof: The equivalence of a. and b. is proved in Nourdin and Peccati (2009a). We
prove the equivalence of b. and c. for k; > 2 since b. and c. are clearly equivalent
if ky = 1.

Suppose that b. holds, than a. holds as well and sup,, E[F?] < o0 together with
the hypercontractivity property yields that sup,, E[|F},|"] < oo for every r > 1, thus
E[F!] — E[X"] for every r € N. Hence c.3) holds. We have with k = ky:

k+1 k+1
PO k
T b hs®latun = 10X ( 5)) 0

=1 =1
k k
" L_Zl c;+1(_2>—l§(f)< 0" (088" = = FrBo b )
k
-2 Y (5 ot () <2>°cpfn,p1
r=1
u il k 1+1) 1
— (—1)F [;c‘i’+1(_2)_l2(’">( 1) l(fn,p®§7/§ Frp — fn,p®§,)2fn,p)
k
— (=Depfnp Z (ﬁ) (_1)r1
r=0
i i k I+1 l
~ (1) lzc;;l(z)lzm( 1y~ <fnp®§,/;  fop — fn,p®;}2fn,p)],
=1 r=I[

where we have used that Zf:o (fj) (=1)" = (=1 +1)* = 0. We have for [ > 2, as

n — oo:
I+1 l
@35 Fw = 2o fno®afus|
= H fn p®p/2fn p 2/Cpfn,p)®p/2fn,p) --)®p/2fn,PHH®P

< an,p®p/2fn7p 2/cpfnp ”H®p Hfmp
hence c¢.2) follows with the triangle inequality. Suppose now that c. holds. We have

H®p 07

to prove that |2 fn, p®$)2fn7p — 2¢p frpl3@e — 0, as n — 0, or equivalently:

2
pufn,p@;/éfn,p

=c <fn,p® gfn,;m fn, p>H®p + 4Cprn pHH®2
- 4Cp<fn,p®p/2fn,137 fn,p>H®P — 0. (48)
We have used in the last step that:

(2)

%{®P 4Cp<f”7p®p/2f”7p7f"7P>H®P + 4C§an7p %{®P

(k+1)

~(1—1
<fn,p®p/2fn,pa fn p®p/2fn,p>H®P - <fn,p®p/2 fn,pa fn,p®1()/2 )fn,;n>H®T’7

for all integers k,l with & > 1 and [ > 2. This can be checked directly using the
integral representation of the contractions.
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o If k1 =2, ¢.2) yields that, as n — co:

- ~ (3
Hcpfn,p - Cgfn,p@p/an,p + C;/4fn,p®z(;/)2fn,pHH®p — 0,

hence, since sup,, || fnplger < 00, as n — co:

~ ~ (3
Acpfrp s Cpfnp — C?)fn,p®p/2fn,p + C;/4fn7p®g(a/)2fn7p>H®P — 0.

The linearity of the scalar product yields that relation (4.8) holds.
e If k1 > 3, the calculations made in the proof of Theorem 4.6, together with
Nourdin and Peccati (2012, Theorem 8.4.4) and c.3) show that:

0 = lim [ i (F) = plli = Dl 2 fup@ya " fps Frporres |
ki(Fpn)
pl(i - 1)105}2]
211k,
pley

. = (i—1)
0= hrILn |:<fn7p®p/2 fn7p7 fn7P>H®p _

= (i—1)

= lign [<fn7p®p/2 frp: fn,p>H®P] -
fori=3,...,k + 1. Thus:
lim [ 4 fn o @35 s Frpdiren + 462 fu gl
k12 (8 + 8 — 16)

_4Cf7<fn,p®p/2fn,pvfn,p>H®i"] = * =0

i—
p

This completes the proof. O

Remark 4.10. (1) The equivalence of a. and b. above is the main result of Nourdin

and Peccati (2009a, Theorem 1.2). Theorem 4.9 shows that, although the
polynomials defined throughout this paper may not always be of minimal degree
if some of the coefficients are equal, the criterion of Theorem 4.6 is necessary and
sufficient in some situations. It is yet unknown if the conditions of Theorem 4.6
are always necessary and sufficient.

Notice that the problem of characterising possible target variables amongst all
random variables with a representation as in Eq. (3.5) is far from being solved
if the approximating sequence lives in a fixed Wiener chaos. Indeed further
research on this topic is needed in order to make a comprehensive statement,
but it seems doubtful that c;(P — 1) + d; Py with ¢;,d; # 0 is a possible
target for a sequence living in a chaos of fixed order. For every sequence
living in a Wiener chaos of odd order, all moments of odd order vanish which
reduces the class of possible target variables X = Zle[ci(Pf —1) +d; P;] with
Pi,.... P e (0,1) considerably. The following criterion allows to exclude
such target variables by just considering the coefficients ¢; and d;. Suppose
without loss of generality that the coefficients satisfy the following conditions:

e Cy,...,cp €R*

® Cpy1=...=c¢ =0,
e the coefficients cy, ..., c,, are sorted in increasing order of their absolute
values and:
ler] = lea| = ... = [en, | < lera] = - = ek, |
<...< |Ck171+1| =...= |Ckz|7

where kg :=0< k1 <ks <...<k;=m.
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Then I,(fnp) Lay X, as n — oo, for p = 3 odd, implies that:
(i) m is even,
(ii) k; is even for every i € {1,...,1} and, more precisely:
[{kici +1<j<ki:c;>0}|=|{kica+1<j<ki:c; <O}

(iii) we have for every i € {1,...,1}:

ki

i=k;_1+1

An analogue version holds for target variables in class (B) of Lemma 3.3.

5. Stable convergence

In this section we consider sequences of non-zero random variables living in a
finite sum of Wiener chaoses. The sequences are supposed to converge in law to a
non-zero target variable X and we ask whether the sequence also converges stably.
Our first result follows from Nourdin et al. (2016b, Theorem 1.3). As before, we
shall write oy for the characteristic function of a random variable Y.

Theorem 5.1. Consider p > 3 and the random variable X "2 aN + Zf;l b;(R? —
1)+3%2 [e;(P2=1)+d; P;] where N,Ry,... Ry, P1,..., Py, “5" N(0,1). Assume

i=1
that {gnp}, < HP and, as n — o0:

|gn,p ®p—1 gnplHRH — 0. (5.1)

If I,(gn.p) Law X as n — oo, then:

st.

Ip(gnp) = X, (5.2)

or, equivalently, for every F-measurable random variable Z :
T Law T
(Ip<gn7iﬂ)?z) - (X’ Z) ’

where F is introduced in Section 2.1, and X is independent of the underlying Brow-
nian motion.

Proof: Consider f € H with ||f|xz = 1. We have to prove that, as n — oo:

(L(F) Lp(gnp) T 25 (L), X)T, (5.3)

see Section 2.4, where I1(f) is independent of X. Since I,(gnp) is a non-zero

random variable, we have | g, , oo

mer # 0 for every n € N. Define g, , := \/j
’ Plgn.»l%0p
for every n, then I,(g;, ,) tay X/VA, as n — oo, where A := a2 + 23" b2 4

i=1"1
Zfil(%f +d7) # 0. We have E[I,(g}, ,)°] = 1 and with Eq. (5.1), as n — o0
1

o2 | ——— — 0.
7 pllgn ol en

Hg;L,p ®1 fH?q@(p—l) < Hgn,p ®p—1 9n,p

— a =

Nourdin et al. (2016b, Theorem 1.3) yields with a, := 1/4/p!|gn |
1/\/2, as n — 00:
en(p)(t) ex (ta/VA) = o1, () (t1) ©x/valta)

2
H®p
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= liﬁnE [exp (itlfl(f) + dtal,( gnp )]
= lim E [exp (it [y (f) + it2anTp(gn.p))]
= lim (E [exp (it1 [1(f) + itaaly(gnp))]
+ E[exp (it [1(f) + itz2aly(gn,p)) (exp(itz(an — a)lp(gn,p)) —1)]) -
We have with e — 1| < |z| for every x € R:

[E [exp (it1 11 (f) + it2aly(gn.p)) (exp(ita(an — a)Ip(gnp)) — D]
E [lexp(itz(an — a)Ip(gn,p)) = 1] < E[lt2(an = a)Ip(gn.p)]]

<
< [ta(an — a)| E[Lp(gnp)*]"? < t2(an — a)|  [p!suD |gn.p| % — 0,

as n — 0. Hence:
o1,() (1) @x (t2/VA) = I E [exp (it 1 (f) + it2aly(gn.p))]
and with t}, 1= to/\/A:
o) () ex (t5) = imE [exp (it Iy (f) + ito Dy (gn.p)) ] -

Since (t1,th) — @y, (1) (t1)@x (th) is the characteristic function of (I1(f), X)" where
I,(f) is independent of X, we have that Eq. (5.3), or equivalently Eq. (5.2) holds.
Since f € H with |f|g =1 is arbitrary, the statement follows with the remarks of
Section 2.4. O

Remark 5.2. The proof of the previous theorem was straightforward since the con-
verging sequence of random variables lives in a fixed Wiener chaos. Under these
assumptions, Nourdin et al. (2016b, Theorem 1.3) yields the desired stable con-
vergence. If the sequence of random variables is allowed to live in a finite sum of
Wiener chaoses or if assumption (5.1) does not hold, the conditions ensuring stable
convergence involve '-operators.

For the next results, the target variables are (again) supposed to have the form:
Xx e N+Zb (R?—1) +ch 1) + d;P], (5.4)

where N, R;,..., Rk, P1,..., Py, are independent standard normal variables and
b; # 0 for 1 <7 < kq, as well as ¢;d; # 0 for 1 < j < ky. We suppose that at least
one of the parameters ki, ks is positive. We shall use the convention 0° := 1.

Theorem 5.3. Consider p > 3, k1,ke =0 and X as defined in Eq. (5.4). Suppose
that {gn.}, < HO for 1 <1< p and:

Define P(x) = x'tliazo0 Hf;l(x —b) Hfij(x —¢j)? and suppose that, as n — 0:

Kr(Fn) = k(r) o= 1_gpa® + >0 277 (r = 1)Ib]
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r—2 72
rc; j

+Z2”r_1 (; o ) for2<r<deg(P),  (5.5)

deg() (r) 1
> PO (0B~ B (BOD B 0, (5.6)

If the following two conditions hold, as n — oo, for every f € H with |f|g =1 and
k= 2ko + kq:

E [exp (i(t1 11 (f) + t2Fn)) (DI (f), DF.)r] — 0,  for every (ti,t2) € R?, (5.7)

& I 2 (DI o) p) () k+1{az0)
it t toF, : — jtg)F L aro1 =0
ity E|exp (i(ita 1 (f) + t2F)) (DIL(f) 2 e 2 (i)
a>1,820
X (—DL_ll“lg(Fn)»H] — 0, for every (t1,tz) € R?, (5.8)

then F, A X, asn — o0, and X is independent of the underlying Brownian motion.

Proof: Theorem 3.12, Eq. (5.5) and Eq. (5.6) imply that F, Lay X, as n — .
Define:
By 1= E[exp (i(t111(f) + t2Fn)) (DL (f), DFoym]
Ay = E[exp (111 (F) + t2F)) (DL ().~ DL~ T (Fa )11 Loy,
pn(tr,t2) := E[exp (i(t1 11 (f) +t2F0))] -

The obvious dependence of (t1,t2) is dropped in the first equalities. The proof is
divided in three steps:

e we derive two equations involving derivatives of ¢,,,
e we prove that the sequence {(I1(f),F,)"}, is tight and that we have

(ILi(f), Fn) T Ly (Ii(f),X)T, as n — o0, where X is independent of I (f),

e we conclude that F,, 55 X ,as n — o0, and X is independent of the under-
lying Brownian motion.

(1) Consider (t1,t2) € R x R*. Then for r > 2:

Elexp (i(t1 L1 (f) + t2Fn)) Tra (F3)]
= E [exp (i(t1 L1 (f) + t2F},)) (DF,, —DL™'T,_(F,)u |

_ % E [exp (i(t 11 (f) + taF,)) (itaDF, + ity DI, (f), ~ DL~ 'Ty_(Fy) ]

— % ]E [exp (Z(tlll (f) + tg )) <D11( ) 7DL71FT_2(Fn)>H]
= i E [CXP (i(tlll(f) + tQFn)) Fr—Q(Fn)] - %‘Pn(tla t2) E[FT—2(FH)]
_ @Ar ..
ZtQ

We have used the integration by parts rule and —0DL~'F = F —E[F] for every
F € L?(Q). Repeating this first calculations once again if r — 2 > 1, we find:

E[exp (i(t1 11 (f) + t2Fy)) Tro1 (F)]
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1 1 . 1
= < Efexp (i(t1 11 (f) + t2Fn)) Drs(Fn)] — ——n(t1, t2) E [T —3(F5)]
ity \ ito ito
itl 1 Ztl
_7Ar7 - nt7t EFT* Fn _7Ar )
A ) = ot o) B a(Fa)] - A,
and iteration yields finally for r > 1:
E [exp (i(t1 L1 (f) + t2F)) Tr1 (F)]
1 .
= (Z.tg)rfl E [eXp (Z<t1[1(f) + t2Fn)) FO(FTL)]
1 1
- (pn(thtz) - = E[F (Fn)] — 1t - Ag.
u+BZ:T'71 (ZtQ) B ' Lx#»ﬁZ:'V'fl (Zt2)a ﬁ
a,B=1 a=1,8=0

With S22 (ty,t2) = i E [exp (i(t1 11 (f) + t2F)) Fu], we find:

E[exp (i(t1 11 (f) + t2F)) Tro1 (F)]
(Zt;la@fn (t1,t2) — on(ti,t2) M;ﬂ (Z_t;a E[[s(F,)]
. 1 -
— 1ty a+ﬁ2=r_l WAB.

Hence, for all (¢1,t2) € R x R*:

deg(P)

E | exp (i(t111(f) + t2Fp)) Z

r=1

P(™)(0)

W (Fr—l(Fn) —E [Fr—l(Fn)])

_ —degz(jp) POWO) i dengy s
- r120=1 (ity)™ =1 oty * 0 °

EPNURAND SIS R Y
Pnl1, 12 ~ rlor—1 = (itg)o‘ 5|
a,B>1
deg(P) deg(P)
PO(0) #y(Fy) P"(0) !
— onltn,t —it o1 (itz)e o
(2] (1 2) T; rlor—1 (T’—l)' 1 Z rlor—1 a+ﬂZ:7"*1 (Ztg)a B ( )
a=1,8=0

With Ty (I1(f)) — 1 = 0, we find for (¢1,t2) € R* x R:
0 =E [exp (i(t1[1(f) + t2Fy)) (T'1(11(f)) — 1)]
= E [exp (i(t1 [ (f) + taF)) (DL(f), =DL™'L(f))r] — @nltr, t2)

_ %]E [exp (i(t1 11 () + t2F)) ity DIy (f) + itsDF,, —~ DL~ L, (f))1]

— %E [exp (Z(tl_[l(f) + t2 )) <D.Fn7 DL 1[1( )>H] — @n(tl,tg)

= %E lexp (i(t1 1 (f) +t2Fy)) ili(f)] — Z%E lexp (i(t1 11 (f) + t2Fy))
x (DFpn, DI (f))u] — on(ti, t2)
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1 6<pn itg
= —— t1,t t1on(t1,t — —Bqy. 5.10
i (22 +neanm) - 225 (5.10)

(2) We prove that the sequence {(I1(f), Fn)T}n is tight. We have with the Markov
inequality, for K — oo:

P(L(f)?+F2>K) < K 'E[L(f)?+ F2] = K' (1 + E[F2))

<Kt (1 + sup]E[Fi]) — 0.

Consider a subsequence {(I; (f),Fm)T}l which converges in law to a random
vector V = (V1,V2)T. If we have that V is the same for every converging

subsequence and V "2 (I (f), X)T, where I;(f) and X are independent, then
we have that {(I; (f),Fn)T}n converges in law to the same limit. We have
that @n, (t1,t2) = E [exp (i(t1 [ () + 02F0,))] = o,v)7 (f1, t2) =2 0% (t1, 2),
as | — 0. Since we have Eq. (5.6) and Eq. (5.8), we have for (¢1,t2) € R x R*
and | — oo with Eq. (5.9):

€ prI0y i o

—(t1,t
rl2r—1 (itz)rfl Oto ( b 2)

deg(P)

P™(0) 1 k(B+1)

— 0¥t ,t . A
©*(t1,t2) 1; r1or—1 a+BZ:3T71 (itg)® B!

a,B=1

r=1

deg(P)
PU(0)  k(r)
— o*(th, o) et oy = (5.11)
r=1
aﬁonl (7(,0*

Notice that, as | — o0, we have s e, by the continuous mapping theorem
and kg1 (Fn)/B! — k(8 + 1)/8!, as n — oo, since Eq. (5.5) holds. We have:

890* I a(pm K . .
——(t1,t2) = lim (t1,t2) = UmE [exp (i(t1 [1(f) + t2Fy,)) iFn, ],
atg l 6t2 l

hence:

0p* . . .
Oto (t17 0) = II{HE [eXp ('Ltlll (f)) ’LFnz]

= —HmE [exp (it (/) (W DL(f), ~DL ™ Fy )] = 0.

To see this, apply Eq. (5.8) with 5 = 0. We find similarly % (0, ;) = 0. Multi-
plying Eq. (5.11) by (it2)*Tte#01 | we find the following equation for (t1,t5) € R?:

Y Po(0)

a ES
i(itQ)k+1[a#o]7T+1i(tl, t2)

~orier-t Oty
deg(P)
PO(0 . _k(B+1
— ©*(t1,12) Z W(—l) Z (Zt2)k+1[a#0] (5'>
r=1 az{i{j:;;1
deg(P)
: PM(0) k(r
— (itg) P01 o* (11 £5) 2 7“'27,(_1)(7’£i)' =0, (5.12)

r=1
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with ¢*(0,0) = 1 and %(0,2) = % (t,,0) = 0. From Eq. (5.10), we find
with n replaced by n; and | — oo, for (t1,t2) € R* x R:
*

aa%(tl,tg) + tlgo*(thtg) =0. (513)
We have used that condition (5.7) implies that By converges to 0 in Eq. (5.10).
Since %(O, to) = 0, the differential equation (5.13) holds for every (¢1,t2) € R2.
We have thus a system of partial differential equations, given by Eq. (5.12) and
Eq. (5.13), with the conditions *(0,0) = 1 and % (0,t5) = %2 (t1,0) = 0.
We notice that the calculations in the proof of Theorem 3.8, in particular
Step 1, Eq. (3.12) and Eq. (3.13) show that the function (¢1,t2) — @x(t2)
satisfies Eq. (5.12) and we have px(0) = 1 as well as ¢/ (0) = 0. For a
standard normal random variable M, the function (¢1,t2) — @ar(t1) satisfies
Eq. (5.13) and we have ¢ (0) = 1 as well as ¢,(0) = 0. A solution of the
system is given by the function (¢1,t2) — @ar(t1)ex(t2). Suppose that ¢ is
another solution of the system. Define U(t1,t2) := @(t1,t2)/(or(t1)ex (t2)).
Notice that oas(t1)ex(t2) # 0 for t1,t € R. For to # 0, Eq. (5.12) yields an
expression of the form g%(tl, ta) = P(t1,t2) Q(t2), where @ is a function which
depends only on t5. Since Eq. (3.12) and Eq. (3.13) hold, we have with the
same function @ the representation 22X (t5) = x (t2) Q(t2). Hence:

a—\l’(h ) = P(t1, 12)Qt2) ot (1) px (t2) — Pt ta)ox (B2) Qt2) P (t1) _
oty [onr (t1)ex (t2)]°

We find %(tl, 0) = 0 since g%(tl, 0) = ¢'x(0) = 0. A similar calculation shows
that gT‘II(th t3) = 0, hence V¥ = 0 on R2. We conclude that ¥ is constant and
since ¥(0,0) = 1, we have that:

@(t1,t2) = N (t1)px (t2).

(3) We have finally that every subsequence which converges in law, has the same
limit (I;(f), X)" with X independent of I;(f). Since the P-completion of the
o-field generated by {I1(f) : f € H,||f||zr = 1} is the o-field F of the Brownian
motion, an application of Nourdin et al. (2016a, Lemma 2.3.) concludes the
proof, see Section 2.4.

O

The following Corollary 5.4 is a special case of the implication (2) = (3) in
Nourdin et al. (2016b, Theorem 1.3).

Corollary 5.4. Consider p = 3, k1,ka > 0 and X as defined in Eq. (5.4). Suppose
that {gn p}, < HOP, define P(x) = x'T1iar0) Hf;l(x—bi) H?il(x—cj)Q and suppose
that, as n — o0:

k1

Kr(Fn) = k() i= 1_ga® + Y. 277 (r — )W}
1=1
rc;f_zdz

ko
+ ;2“1(7‘ —1)! (c’; + 4]> . for2<r < deg(P),
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deg(P)
PM(0 I
’/‘!27"(_3 (Frfl(Fn) - E[Prfl(Fn)]) = 0.

r=1

If the following condition holds, as n — oo, for every f € H with |f|g = 1:
|9n.p ®1 flHEG-1 =0, (5.14)

then I,(gn.p) i X, as n — o, and X is independent of the underlying Brownian
motion.

Proof: We prove that Eq. (5.7) and Eq. (5.8) hold, Theorem 5.3 yields then the
statement.
(1) We have, as n — o0:

E[KDL(f), DIy(gnp) > < E|IpL-1(gn, @1 )

= p*(p = ! gnp @1 fl30m-—1) — 0.
We have used the stochastic Fubini theorem for multiple Wiener integrals, and
Eq. (5.7) holds since |exp (i(t111(f) + t2Lp(gnp)))| = 1.
(2) To prove that Eq. (5.8) holds, we notice that I'y(I,(gn,p)) has a representation
as a finite linear combination of random variables of the following form with

b
R:=3%_
I(b+1)p72R ( .- (gn,p®r1gn,p)®r29n,p) .- ~)®mgn,p) »
see Azmoodeh et al. (2015, Proposition 2.1) for details and the set containing

(r1,...,7p) in particular. We can represent (DI (f), —DL™'Ty(I,(gnp)))n as
finite linear combination of terms having the following form:

O Ipsyp—2r-1 (- (9n.0®r Gnp) - - )Or, Gnp) () )1

T
= I(b+1)p—2R—l (j ( e (gn,p®rlgn,p) .. ~>®rbgn,p)( ) t)f(t)dt> . (515)

0
o Let A:=(b+1)p—2(ry + ...+ 1) > 1, then we can represent
(- (9n.p@r np) - )@, Gnp(1, - -, T 4)

as finite linear combination of integrals of the following form:
J Inp(Y1,0, X1.0) - Gnp(Yor1,0, Xpr1,0)dY10 oo dYpyay, (5.16)
[0,T]"%

where [ is a summation index, Y; ; and X ; represent collections of variables
such that:
— UYT1Y; ) contains R elements and every element is in exactly two of
the (non-empty) sets Y1 5,..., Ypq1,,

— (VYY) n {2, ma) = O,

- L')?IllXiJ = {.731, NN ,IA} .
We have then with z,, € {z1,...,24} and Nourdin and Rosinski (2014,
Lemma 2.3), as n — oo:

b1 2
J[ . (f[ [ T oo Vi, Xi) f(2m)dYay ... dYbH,ldzm>
0,T]A-

0,T]R+1 ;7
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dry...dza
x LA g @1 e Lo 3er — 0.
T

o Let A:=(b+1)p—2(ry + ...+ 1) = 1, then we can represent

(- (9np®r1 9n,p)Or9np) - - )®r, G p(T0)
as linear combination of integrals as in Eq. (5.16) and all but one set X;;
is empty. Assume without loss of generality that X ; is the non-empty
set, containing the integration variable, say xo. Hence, with Nourdin and
Rosiniski (2014, Lemma 2.3), as n — oo:
2

f[ o T 0020000 (20) 90y Vi JAVis - Vi
0,T]R+1

2

b+l
J (gnp ®1 ) (Y1) n Inp(Yi)dY1y ... dYyiqy
[o0.77% i=2

s

< 9np ®1 Flfsw-v |9nplirer — 0.

Combining these results, we find with (y; +... +y,)* < ¢ (y% +...+ yg) that:

2
T
E I(b+1)p72R71 (L (... (gn,p®r1gn,p)®rzgn,p) . -)®rbgn,p( ) t)f(t)dt>

converges to 0, as n — o0, hence:
E [<D11(f), _DLilrb(Ip(gnyp)»%i] -0,

since (DI1(f), —DL™T4(I,(gnp)))m can be represented as linear combination
of integrals as in Eq. (5.15). Eq. (5.8) follows since |exp(i(t11(f) + t2Lp(gnp)))|
=1.

(]

Remark 5.5. Eq. (5.14) holds if |gn p®p—19n.pllHer — 0, as n — oo. This follows

directly from Lemma 4.5.
We have the following converse of Theorem 5.3.

Theorem 5.6. With the notations of Theorem 5.5, consider p = 3, k1,ks = 0 and
X as defined in Eq. (5.4). Suppose that {gn,}, < HO for1 <1< p, and:

p
F, = Z Il(gn,l)v
=1

If condition (5.6) holds and F, i X, as n — o0, where X is independent of the
underlying Brownian motion, then for every f € H with |f|g = 1:

(1) Eq. (5.7) and Eq. (5.8) hold,
(2) lim, (Zf;zl(l + 1) gn1-1®1-19n,141, [Rf Y ren + E [(DI(f), DFnﬁI]) =0.

Proof: (1) Consider an arbitrary element f € H with | f||z = 1. The stable conver-

gence and the independence property imply that (I1(f), F,,)" Lay (Li(f),X)T,
as n — oo, where X is independent of I;(f). Hence:

lim @n, (t1, t2) = lim E[exp(i(t [ (f) + t2Fn))] = o1, () () x (t2),
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and Eq. (5.9) together with Eq. (3.11) implies that Eq. (5.8) holds for every
(t1,t2) € R x R*. With Eq. (5.10), we have that Eq (5.7) holds for every
t1,ta # 0. To see that Eq. (5.7) holds for t; = 0,t5 # 0, calculate the derivative
with respect to ty:

%0 11,t3) = i Efexp (11 (1) + F2)) 1)
hence:
a;)n (0,t2) = i B [exp(itoFy,) 1 (f)] = ¢ E [exp(ito Fy,) (—6 DL~ 111(f))]

=K [exp (ZtQFn) <’Lt2DFn, DIl(f)>H] .
By the continuous mapping theorem, we have:
(exp(itaFn), Ti(f) T = (exp(ita X), i ()

as n — o0, and X is independent of I;(f). Since sup,, E [|exp(it2Fn)I1(f)|2] =
sup,, E[11;(f)?] = 1 < o0, we have:

li}bnE [exp(itaFn) 1 (f)] = ¢x (t2) E[11(f)] = 0,

thus, as n — oo:

0= i (1) BLR ()] = lim 220, 2)
= —lithE[exp (itg n)<DFmDI1(f)>H].

We prove that Eq. (5.7) holds for t5 = 0,¢; # 0:

7)
Elexp(it1 11(f)) (DLL(f), DFn)r]
= (it1) " E[City fexp(it1 11 (f)), DFn)u]
= (it1) " E[8(it f exp(iti [1(f))) Fn]
= (ity) L E[(it1 1 (f) + 1) exp(iti [1(f)) Fn] — 0,

as n — 00.We have used Eq. (2.4) in the last step, the convergence follows as
above and Eq. (5.7) holds for t2 = 0,¢; # 0. In the case ¢t; = to = 0, we find
with the independence property and Eq. (2.3) that Eq. (5.7) holds. We see
similarly that:

Opn,
Ots

On the other hand, Eq. (5.8) yields for t2 = 0 the following condition:

ity PRI 201 (0)
(k + 1+ Lpgpq))!2F T aral

0 = lim —= (tl,()):—lirrlntlE[exp(z‘tlfl(f))<DI1(f),—DL’1Fn>H]. (5.17)

E [exp (it111(f)) (DI (f),—DL 'F,)g] — 0, (5.18)

as n — 0. Since P*+1+liao#01(0) # 0, the convergence in Eq. (5.18) follows
clearly from Eq. (5.17). We conclude that Eq. (5.7) and (5.8) hold for every
(tl,tg) eR x R.

(2) Consider an arbitrary element f € H with |f|% = 1. Since (I1(f),Fn)" tayy
(Ii(f),X)T, as n — oo, where I, (f) ~ N(0,1) is independent of X, we have
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that (I,(f)%, F?)" by (I, (f)?,X?), as n — o, by the continuous mapping
theorem, hence I1(f)2F2 "5 I, (£)2X2, as n — 0. We have that:

stip]E [(Ffll(f)Q)Q] < o0. (5.19)

this follows from the hypercontractivity property and the Cauchy-Schwarz in-
equality. Hence:

0 = lim (E[F;11(f)°] — E[FR]E[L(£)]) . (5.20)
since I1(f) is independent of X. With Eq. (5.20):

0 = lim (E[F}11(f)*] — E[F;]E[L(f)*])
= lim (E[FL(f)(=6DL™'Ii(f))] — E[F7])
— lim (E [(D(F21,(f)), ~DL™"L(f))u] — E[F2])

n

= lim (2E [, [y(fKDF,, DL(f)u] + E[F2DL ()} - E[F2])
- 2117?1E[Fn11( }DF,,DI,(f)>x], (5.21)

and with the stochastic Fubini theorem for multiple Wiener integrals:

p
<DIl(f)v DFn>H = Z lIl—l(gn,l®1f)a
=1

P
Fuli(f) = Y. D1 (gna®F) + Z U1 (gn i1 f)
=1

=1
p
Z I141(9n®f) + (DI (f), DF,) .
=1

Hence with Eq. (5.21):

0= hm< [Z I141(9na®F) ZUZ 1(gn l®1f)] +E[DIL(f), DFQ%])

p+1 p—l
< lZ I(gn1—1®f) Z(l + 1)Il(gn,l+1®1f)]

35

+E[(DLi(f), DF,)3])
=1

g

l+ DX Gn1-1®f, gn1+1®1 fyper + E[(DI(f), DFn>%I])

H

=h

=
< (L4 D)X gn1-1®—19n1+1, [ yuen + E[(DIL(f), DFn>§{]> .

The last equality can be checked directly using the definition of contractions.
O

Corollary 5.7. Let the notations and assumptions of Theorem 5.0 prevail and
suppose that F,, = Y7 I1(gn,) i3 X, as n — o0, where X is independent of the
underlying Brownian motion. Consider f € H arbitrary.

(1) If F, = I,(gn.p), then we have lim,, | g, ,®1 f| goo-1 = 0.
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(2) If limy, |gn1+1®1-19n.1—1|HeH = 0, for every 2 <1 < p — 1, then we have
limy, |gn,i®1 f|gec-—1 =0, for every 1 <1 < p. )
(3) If F, = pjl(gn,pfl) + 1p(gn,p), then we have limy, |gn p—1®1 f|pew-> =
hmn ”gn,p®1fHH®(P*1) = 0.
We can recover Nourdin and Peccati (2009a, Proposition 4.2. and Remark 4.3.).

Proposition 5.8. Consider p > 4 even and a sequence {gn p}, < H®P such that
I,(gn,p) L N2 — 1, as n — oo, where N is a standard normal variable. Then
Iy(gn,p) % ON2 1, as n — o, and N? — 1 is independent of the underlying
Brownian motion.

Proof: Nourdin and Peccati (2009a, Theorem 1.2.) implies with P(z) = z(z — 1),
as m — oo:

2 p)

> P (0 Uy,) B (1,,)0)

r=1 ""

= 1y(gns) ~ HT1(Ep(9n0)) + 5 EIC1 Ty (0]
= 1y(9ns) — 3T1p(n) + 3 Ellp(0)7] 550

Moreover the convergence in law implies that |gn p®p—19n.pl|HE — 0, 83 1 — 0.
Notice that in condition (5.8) in Theorem 5.3 we must have (a,3,7) = (1,0,2)
and condition (5.8) is then satisfied if condition (5.7) holds. We check now condi-
tion (5.7).

[E [exp (i(t1 1 (f) + t21p(9n))) <DI1 (£), DIy(gnp))i|
<E[(DL(f), DI,(gn )]

=E[p*Ip-1(gnp @1 £)*] = 2° (0 — D!|gnp @1 fHew-1
<P (0~ D90 s®p-19npl ez | f13 — 0,

as n — oo. O

6. Appendix

Definition 6.1. (1) Consider k; > 0. If k1 > 0, we suppose that b; # 0 for every
j=1,..., k. We set:

1 fO’I‘jZO,

T, = 2 biy X ...x b, for1<j<k,
1<i1<...<ij<k1
0 forj¢{07]-v"'7kl}a

and forl=1,..., k:

1 for =0,
Z biy X ... x by, for1<j<k —1,

1<ip<...<ij<kp
i1seig AL

0 for 5¢{0,1,..., k3 —1}.

o _
T =
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If k1 = 0, we set b; = 0 for every j, Tp = 1 and T} = Tj(l) = 0 for all other
values of j and [.

(2) Consider ko > 0. If ko > 0, we suppose that c;d; # 0 for every j = 1,..., ks.
We set:

1 for 7 =0,

S; = Z Ciy X ... xcy; for 1<j< ko,
1<i1<4..<ij<k72
0 f07”j¢{0,1,...,k2};

and forl=1,... ko:

1 for j =0,
0 Z Ciy X ... X ¢y for 1<j<hky—1,
Sj T isii<..<ij<ko
15000 ;él
0 for j¢{0,1,... ko —1}.

If by = 0, we set ¢; = d; = 0 for every 7, So = 1 and S; = SJ(-I) = ( for all other
values of j and [.

Proposition 6.2. Proof of Eq. (3.18).

Proof: We prove that Eq. (3.18) holds for « # 0. Suppose that zyy (z) # 0 and
divide Eq. (3.18) by ipy (z):

k k r+2 For_142(X . _1)k1q2 k2 k1
Z (2iz) k+1 Z 5 |2r+1 76_[.51)) (229:)#&%1—[0? Hbj
=1 r=I[ Jj=1 j=1
= iza’Gy(x)Ga(x) + 2ixGy(x Z b7 H (1 — 2izb;)
=1 J#l
ko
+Gh(z) ) (]_[(1 — zz‘xcj)2> [izA(1 — 2ize)) + (ix)*q A — 2izc}].  (6.1)
I=1 \j#l

We determine an alternative representation for P(z) and calculate P®(0)/1!. We
have with k = 2ky + k1

k ks ks
Plz)==x ﬁx—b nx—CJQ—xxknl—b]/xnl—c]/x
i=1 =1 = =1

k1 ko
pht2 Z Z JlT 1) Sj2(—1)j35j3$_j1_j2_j3
Jj1=0 j2,j3=0
k
k2 Z P (=1)P Z T}, 55,55,

Jitj2+is=p

+

k+2 l
Z ( Z 13, SjQSj3> :
=2 Jitje+iz=k+2-I
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If for instance k1 = 0, we have T = 1y} and the formula above holds also for the
cases k1 =0, ko = 0 and k; = ko = 0. Hence:

)
e S

l!
Jitj2+iz=k+2-1

We compare now the terms in z, on the left-hand side of Eq. (6.1) we have:

k+1(: \k+1—k P(k+2)(0) - 2 S 2 S 2, 72
j=1 j=1
and for the right-hand side of Eq. (6.1):

Ky ks
ira® + 2ix Z b7+ Z[ixAl — 2ixc?],
=1 =1
the desired equality for the terms in x follows The term in 2**! on the left-hand
side of Eq. (6.1) is 2% (iz)kT1(—1)k142 HJ L ¢ 51:1 b;, and on the right-hand side
of Eq. (6.1) we have:

ko ko k1

k1
iza’ n(—2xicj)2 n(—Qi:cbj) = (iz)" 1 (—2)%a? 1_[ n b
_ ( )k+1 k12k 2 1_2[ 1_1[ b

We have for the term in 2™ and 1 < m < k + 1 on the left-hand side of Eq. (6.1):

R PrH1=m+2) () 5, (X) N PE2)(0) ki1 (X)
(k+1—m+2)2k=m+2 =770 0 (4 2)12k+1 ]
9m— 1
_ 2k+1(ix)m (—1)’”71 Z T, 85,55, 2k+1 K2 (X)
leJy'Lz_JrB

Rm+1 <X>
m!

0
o+ (DY T,85,8; DTest

J1+iz2+i3
=0

ko k1 ko
= (iz)™ [ (=2 ) T5,8,5 <a2 +23 3 +2 ) 05+ ) d?)
j=1 j=1 j=1

Jj1+iz+is
=m—1

k’2 kl
o+ (=20 ) T,85,8 <2m Dlerttpom Y et
j=1 j=1

j1t+iz+is
=0

ko
+ 2™ 2(m 4 1) Z c?lld?}) . (6.2)

We use the relations S; = S](l) + CZSJ(-Z_)1 and T = Tj(l) + blT;l_)l if k1, ke > 0, and set
Z(l) 2324-]3 = S](i)Sj(i). We consider the powers of b; in Eq. (6.2) and suppose
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that k1 # 0 for the next calculation.
k1
Z (_2)m71 Z Ty, Sj2sj3 2bl2 +ooot (_2)0 Z lesjz‘sjs. me;n+1
=1 Jj1+i2+is Jj1+i2+is
—m—1 o
a l l
=2 Mm@V ) )85, S, | b
=1 j1jri12+lj3
l l m
+...+ Z (T](l) + blTj(l)fl)sz‘Sjs bl +1
j1+i'20+j3
b | 0 !
=27 Z (_l)mil Z le szsjs bl2 + (_1)m71 Z Tj(l)szsjs bl3
=1 jl:-,{,,z_+1j3 Jj1+i2+is

=m—

m— l m— l
+(=pm Y 1108;,85, |b} + (~1)™ 2 > 75,85, | bt
jl;ryﬂy']/z_gjz J1tiz+is

—m—3

! m l m
o DY 1SS, [t e (-0 | D 1S, s, ot
J'1+i20+j3 jlijzzrjg,

k1
m m— l
=2"(-1) 12 Tj(l)Sths bl2 )
=1 J1+iz2+is

—m—1

hence:

(72)m71 Z le sz Sjs lez +..+ Z le Sj2Sj3 meznﬂ
=1 jl:-,{,,z_ﬁjg' 11+J:'20+j3

- (72)7”*1 i l( Z TJ(f)SjQSj:s) 2bl2] :
=1

Jit+je2+jz=m—1

Notice that, with our settings, the previous equality holds also if k&y =0 or k; =0

We consider now the powers of ¢; in Eq. (6.2) and suppose that ks > 0 for the next
calculation.

k2

Z (_Q)m_l Z leszSjs 20?

j=1 J1+i2+33

=m—1

o+ (20 D) T SS, |2t (6.3)

j1+i2+is
=0
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k2
=2 > (=)™ TSRS, |G+ | D) 1SS |t
7j=1 Jj1+i2+3i3 J1+i2+i3
=m—1 =0
kz kl m—1
=2m Y 3 T, Y (- D SuSs |t
j=141=0 r=0 Jo+is
=m—1—r—jq
SR ol G) () ()
=2m2 Z Ty G 2 (Sj] +CJSJ2 1)(5] +stjg—1) C;H
j=1j1=0 r=0 :7njf1+;j5’7j1
SRS e () ()
= 277l Z Z le (_1)m_1_7 [an 1—r—j1 §+2+2Z —2—r— ch§+3
j=141=0 r=0
+Z(])3 . ch§+4]
S ) ) 4)
=2" Z Z le(_l)mil [ZTVZ 1—j1 J Z"]L 2—7J1 ¢ +Z —3—J1 ;L]
j=1j1=0
SN ) 5 )
w2 3N T ()R 29, 22D 2
j=171=0
o+ 27n i Zl T. [Z(]) m 4 22( ) m+1 + Z( J) m+2]
J1 1-4, 65 “1-5,6j
j=1j1=0

ko
m m+1
+2 Ecj .
j=1

Hence the expression in Eq. (6.3) equals:

k k
2m(f1)m*1§1 M1, 880 2 g am i 31,8080
j=1 j=1

Jj1+i2+i3 Jj1+i2+3i3
=m—2

=m—

m—1 k}g

xA2(-)" 4 ()2 w2m Y3 DT 1,898

r=2 j=1 \ J1+i2+i3
=m—1-r

~ [(_1)m717r + 2(_1)m717(r71) + (_1)m+17r] C;+2

kg k2
= (=2 3 D 1,880 22— (—2m 2 Y | Y 1,898 4l
j_

J1+12+13 Jj=1 j1+j2+]3

The resulting equality holds also if k; = 0 or k3 = 0. In the latter case, we have
Sj(é) =¢; = d;j = 0 and an empty sum in (6.3) equals 0. For the terms of the form
crd? in Eq. (6.2), we can make a similar calculation. For the calculation below, we
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suppose that ks # 0.
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D ET Y TSRS, |+ (=) Y ThSuS, |3die

Jj=1 J1+i2+3i3 J1+i2+3i3
=m—1 =m—2

o (=20 D] T5S5S |2 m e+ Ddi e

Jj1+i2+is
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J1+iz2 +13
1
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11+J2+J3 Jj=1 Jj1+i2+33
=m-—1 =m—2

The resulting equality holds also if k&; = 0 or ks = 0. We have finally for the
term in 2™ and 1 < m < k + 1 on the left-hand side of Eq. (6.2):

P(k+17m+2) (O)

P(k+2)(0)
k+1
27 (i) ((k + 1 —m + 2)12k—m+2

MWE[FM(X)D
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J1% 72
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Jj1tiz2+is
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(22 Y [N TSP | (e — )
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k1
+ ( m m 2 Z T](lJ) sz Sjg ) b?
=1 j1t+i2+is

+(ix)™(=2)" e [ Y 15,858, |- (6.4)

Jj1+i2+3i3
=m-—1
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Consider now the term in 2™ for 1 < m < k+ 1 on the right-hand side of Eq. (6.1).

Define:
a:) .
Qm (Z Cimz> = cpa™

i=0
Q@ 1s thus the projection of a series (or a polynomial) on its term of degree m.

The terms in ™ for 1 < m < k + 1 on the right-hand side of Eq. (6.1) are given
by:

k1
1202 Qum—_1(G1(2)Ga(x)) + 2i2Qum_1 <G2(:p) M| Ja- mbj))

=1 j#l

k2
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=1 J#l
+ (12)? Q-2 < Z al [ (1 - 2ixc)) )
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2
— 2i2Qp—1 (Gl(x) Yal]a- 2z':ccj)2> . (6.5)
=1 j#
We calculate now the projections appearing in the expression above.
k] ) kf?
G1(x)Ga(z) = 2 (—2ix)' Ty, Z —2ix)72S;, Z —2iz)2 S,
j1=0 j2=0 j3=0
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k'l 1 kl 1
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k‘l kl l
. <G2(a;) M- Zixbl)> = (=2iz)™ ' Y0} 7"5;,5;,
=1 J#l =1 J1+J2+J%
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Notice that these equalities hold if k; > 0 and k2 > 0. The following equalities can
be derived as above:
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kz k2
-1 <G1($) Z it H(l - 2ixcj)2> = (—2iz)™ ! Z i Z TJISJ2 S’(l
=1 J#l =1 Jj1+iz2+is

=m—

We have thus for expression (6.5):
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This equality holds (again) for k; > 0 and ke > 0. Comparing Eq. (6.4) and
Eq. (6.6), we find the desired equality of the terms in ™ on the left-hand and the
right-hand side of Eq. (6.1). O
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