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Abstract. We introduce and analyze a novel type of coalescent processes called
cross-multiplicative coalescent that models a system with two types of particles,
A and B. The bonds are formed only between the pairs of particles of opposite
types with the same rate for each bond, producing connected components made
of particles of both types. We analyze and solve the Smoluchowski coagulation
system of equations obtained as a hydrodynamic limit of the corresponding Marcus-
Lushnikov process. We establish that the cross-multiplicative kernel is a gelling
kernel, and find the gelation time. As an application, we derive the limiting mean
length of a minimal spanning tree on a complete asymmetric bipartite graph with
independent edge weights, distributed uniformly over [0, 1].
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1. Introduction

The coalescence dynamics of clusters with multidimensional weight (mass) vec-
tors was originally considered in Krapivsky and Ben-Naim (1996) and Vigil and Ziff
(1998) in the context of aggregation kinetics with applications to aerosol dynam-
ics and copolymerization kinetics. In this paper, we consider a coalescent process
whose clusters have vector-valued weights in R2

+. The coalescent process begins

with α[n] = αn + o(
√
n) singletons of weight

[
1
0

]
and β[n] = βn + o(

√
n) single-

tons of weight
[

0
1

]
. This continuous time Markov process evolves as follows. Each

pair of clusters with respective weight vectors i =

[
i1
i2

]
and j =

[
j1
j2

]
has the rate

K(i, j)/n for coalescing into a cluster of weight i + j, where

K(i, j) = i1j2 + i2j1

is the cross-multiplicative coalescent kernel governing the coalescent process. Such
process will be called the cross-multiplicative coalescent process.

As a physical model, one may consider a system with two types of particles, A
and B. The process begins with α[n] particles of type A and β[n] particles of type
B. Each particle interacts only with the particles of opposite type, with which
it may form a bond. The bonds are formed independently, each with rate 1/n.
Thus, the bonds may be formed only between the pairs of particles of opposite
types, producing connected components (clusters). In these clusters, each pair of
neighbor vertices will be of opposite type. The model can be interpreted as a bond
percolation model on a complete bipartite graph Kα[n],β[n] with the probability of
an edge being open p = 1−e−t/n increasing from zero to one as the time t increases
from zero to infinity. See Subsection 4.1.

Let ζ [n]i1,i2
(t) denote the number of the components of weight

[
i1
i2

]
at time t. The

hydrodynamic limit

lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s.

for an arbitrary T > 0 is established in Subsection 5.2 via the weak convergence re-
sults in Kurtz (1981) and Ethier and Kurtz (1986) for density dependent population
processes. The limiting functions ζi1,i2(t) indexed by Z2

+ \ {(0, 0)} are expressed as
the solutions of the following modified Smoluchowski coagulation system of differ-
ential equations
d

dt
ζi1,i2(t) = −(βi1 + αi2)ζi1,i2(t) +

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t)

with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 +βδ0,i1δ1,i2 . The above coagulation
system has a unique solution as established in Theorem 3.2 of Section 3. This
solution enables us to prove gelation occurs in the cross-multiplicative coalescent
process and find the gelation time. See Section 3, Corollary 3.7. As a particular
application we find the asymptotic limit for the mean length of a minimal spanning
tree for the complete bipartite graph Kα[n],β[n] with partitions of sizes α[n] =

αn+ o(
√
n) and β[n] = βn+ o(

√
n). See Section 4.



Cross-multiplicative coalescent processes and applications 83

The paper is organized as follows. Section 2 provides the background on co-
alescent processes and gelation. In Section 3 the cross-multiplicative coalescent
process and the corresponding Marcus-Lushnikov process are analyzed. Section 4
gives an application of the cross-multiplicative coalescent process in minimal span-
ning trees. Finally, in Section 5, the weak convergence results from Kurtz (1981)
and Ethier and Kurtz (1986) are applied to Marcus-Lushnikov processes with the
cross-multiplicative kernel. The paper concludes with a discussion in Section 6.

2. Background on coalescent processes and gelation

A general finite coalescent process begins with n singletons (clusters of mass one).
The cluster formation is governed by a symmetric collision rate kernel K(i, j) =
K(j, i) > 0. Specifically, a pair of clusters with masses (weights) i and j coalesces at
the rate K(i, j)/n, independently of the other pairs, to form a new cluster of mass
i + j. The process continues until there is a single cluster of mass n. See Pitman
(2006); Aldous (1999); Bertoin (2006); Berestycki (2009); Evans and Pitman (1998)
and references therein.

Formally, for a given n consider the space P[n] of partitions of [n] = {1, 2, . . . , n}.
Let Π

(n)
0 be the initial partition in singletons, and Π

(n)
t (t ≥ 0) be a strong Markov

process such that Π
(n)
t transitions from partition π ∈ P[n] to π′ ∈ P[n] with rate

K(i, j)/n provided that partition π′ is obtained from partition π by merging two
clusters of π of weights i and j. If K(i, j) ≡ 1 for all positive integer masses i and j,
the process Π

(n)
t is known as Kingman’s n-coalescent process. If K(i, j) = i+ j the

process is called n-particle additive coalescent. Finally, if K(i, j) = ij the process is
called n-particle multiplicative coalescent. The so called Marcus-Lushnikov process

MLn(t) =
(
ζ
[n]
1 (t), ζ

[n]
2 (t), . . . , ζ [n]n (t), 0, 0, . . .

)
(2.1)

is an auxiliary process to the corresponding coalescent process that keeps track
of the numbers of clusters in each weight category. Here we let ζ [n]k (t) denote
the number of clusters of mass k in a coalescent process of n particles at time
t ≥ 0. See Marcus (1968) and Lushnikov (1978) for the original papers. The
latter work considered the gelation phenomenon emerging in some of the Marcus-
Lushnikov processes. The Marcus-Lushnikov process does not differentiate between
the clusters of the same weight, and therefore does not keep track of the merger
history of the n-particle coalescent process.

The deterministic dynamics of the limiting fractions ζk(t) = lim
n→∞

ζ
[n]
k (t)

n of clus-
ters of size k is described by the Smoluchowski system of coagulation equations
Smoluchowski (1916) or by its modified version, the Flory equations, named after
Flory (1953). See Jeon (1998); Norris (1999); Fournier and Giet (2004); Fournier
and Laurençot (2009). The general system of Smoluchowski coagulation equations
with a positive symmetric kernel K(i, j) is the following mean-field approximation
of coalescent dynamics

d

dt
ζj = −ζj

∞∑
i=1

K(i, j)ζi +
1

2

j−1∑
i=1

K(i, j − i)ζiζj−i (k = 1, 2, . . .). (2.2)
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One of the important questions in the theory of Smoluchowski equations is
whether the conservation of mass property

∞∑
j=1

jζj(t) =

∞∑
j=1

jζj(0) (2.3)

holds for all t ≥ 0, or if there exists a time Tgel < ∞ after which the total mass∑∞
j=1 jζj begins to dissipate.

2.1. Gelation. The phenomenon of loosing total mass after a certain finite time Tgel
is called gelation. Time Tgel > 0, if finite, is called the gelation time. The kernel
function K(·, ·) for which such Tgel <∞ is called the gelling kernel. Informally, the
gelation time corresponds to formation of a giant cluster called the gel. The gelation
phenomenon was studied extensively in the coagulations equations literature. See
Aldous (1998, 1999); van Dongen and Ernst (1986); Jeon (1999); Lushnikov (1978)
and references therein. Here, we would like to summarize some (but not all) of the
concepts and results concerning the gelation phenomenon.

Consider a general system (2.2) of Smoluchowski coagulation equations with a
positive symmetric kernelK(i, j), and given initial conditions ζj(0). Then, following
McLeod (1962), we use the Smoluchowski equations (2.2) to obtain

d

dt

∞∑
j=1

jζj =

∞∑
j=1

j
d

dt
ζj = −

∞∑
i,j=1

jK(i, j)ζjζi +
1

2

∞∑
j=1

j−1∑
i=1

(
i+ (j − i)

)
K(i, j − i)ζiζj−i

= −
∞∑

i,j=1

jK(i, j)ζjζi +
1

2

∞∑
i,j=1

(
i+ j

)
K(i, j)ζiζj = 0

provided convergence of
∞∑

i,j=1

jK(i, j)ζjζi. Thus, letting the gelation time be de-

fined via the following critical transition,

Tgel := inf
{
t > 0 :

∞∑
i,j=1

jK(i, j)ζj(t)ζi(t) =∞
}
, (2.4)

we have d
dt

∑∞
j=1 jζj = 0 for t ∈ [0, Tgel), which in turn implies (2.3) for t ∈ [0, Tgel).

Suppose the hydrodynamic limit lim
n→∞

ζ
[n]
k (t)

n = ζk(t) is established for the
Marcus-Lushnikov process with the given kernel K(i, j), where ζk(t) is the solu-
tion of a coagulation system of equations. See Norris (1999); Fournier and Giet
(2004); Fournier and Laurençot (2009). Then the definition of gelation time in
formula (2.4) is replaced with

Tgel := inf
{
t > 0 :

∞∑
j=1

jζj(t) <

∞∑
j=1

jζj(0)
}
. (2.5)

While (2.4) relies on the explosion of higher moments (often, the second moment∑
j j

2ζj) and (2.5) concerns the behavior of the first moment, the two definitions
of gelation are usually equivalent.

Weak convergence of the Marcus-Lushnikov processes to either a Smoluchowski
system or a modified Smoluchowski (Flory) system was explored in Jeon (1998),
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Norris (1999), Fournier and Giet (2004), and Fournier and Laurençot (2009). Specif-
ically, it was shown in Fournier and Giet (2004) that if lim

i→∞
K(i,j)
i = `(j) > 0, then

the hydrodynamic limit of the Marcus-Lushnikov process with kernel K(i, j) is the
solution to the corresponding modified Smoluchowski (Flory) system. While, in
Jeon (1998) and Norris (1999) it was established that lim

i→∞
K(i,j)
i = 0 implies the

hydrodynamic limit of the Marcus-Lushnikov process is the solution to the Smolu-
chowski system.

The question whether Tgel <∞ is the question of whether the gelation phenom-
enon occurs in a given system of Smoluchowski equations. The first mathematical
proof of gelation was produced in McLeod (1962) for the multiplicative kernel. His-
torically, this happened around the time when the formation of a giant cluster in the
Erdős-Rényi random graph model was proved by Erdős and Rényi (1960). The over-
lap in mathematical formulas obtained in the two papers, McLeod (1962) and Erdős
and Rényi (1960), representing the two different branches of mathematics is quite
remarkable. The work of finding a mathematically solid proof of gelation phenom-
enon for other conjectured gelling kernels began fifteen years later with the work of
Lushnikov (1978). It continued with publications of Ziff (1980), Ernst et al. (1982),
van Dongen and Ernst (1986), Jeon (1998, 1999), Escobedo et al. (2002), and many
other mathematicians and mathematical physicists. In Spouge (1983), gelation is
demonstrated numerically for the general bilinear kernelK(i, j) = A+B(i+j)+Cij.
Aldous (1998) proved gelation for K(i, j) = 2(ij)γ

(i+j)γ−iγ−jγ , where γ ∈ (1, 2). While
γ = 2 corresponds to the multiplicative kernel for which, as we know, gelation
also occurs. Jeon (1999) proved that complete and instantaneous gelation occurs
if K(i, j) ≥ ijψ(i, j), where ψ(i, j) is a function increasing in both variables, i and

j, such that
∞∑
j=1

1
jψ(i,j) < ∞ for all i. This includes K(i, j) = (ij)α, α > 1, as a

primary example. Finally, Rezakhanlou (2013) lists sufficient conditions for each of
the three modes of gelation, i.e., simple, instantaneous, and complete.

3. The cross-multiplicative coalescent process

In this section we analyze the cross-multiplicative coalescent process. We are
motivated by the need to extend the theory and applications of coalescent processes
to the particle system, described in the introduction, where not all pairs of particles
interact with each other. Specifically, each particle may bond only with the particles
of the opposite type.

For given α, β > 0, we consider two integer valued functions, α[n] = αn+ o(
√
n)

and β[n] = βn + o(
√
n). We will examine a coalescent process where the weight

of each cluster is a two-dimensional (weight) vector i =

[
i1
i2

]
. Here, i1, i2 ≥ 0 and

i1+i2 > 0. Each cluster of weight i consists of i1 particles of type A and i2 particles
of type B. The coalescent process begins with α[n] + β[n] singletons, of which α[n]

singletons are of weight
[

1
0

]
and the other β[n] singletons are of weight

[
0
1

]
. The

coalescence kernel is defined by

K(i, j) := i1j2 + i2j1 (3.1)
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for any pair of clusters with weight vectors i =

[
i1
i2

]
and j =

[
j1
j2

]
. Each pair of

clusters of respective weights i and j would coalesce into a cluster of weight i + j

with rate K(i, j)/n. The last merger will create a cluster of weight
[
α[n]
β[n]

]
. We

will call this cross-multiplicative coalescent process, and the kernel K(i, j) defined
in (3.1) will be referred to as the cross-multiplicative kernel.

3.1. Coagulation equations. Consider the Marcus-Lushnikov process MLn(t) that
keeps track of cluster counts in the above defined cross-multiplicative coalescent

process that begins with α[n]+β[n] singletons of the two types, α[n] of weight
[

1
0

]
and β[n] of weight

[
0
1

]
. Specifically, let ζ [n]i1,i2

(t) denote the number of components

of weight i =

[
i1
i2

]
at time t. Then MLn(t) is the process with coordinates ζ [n]i1,i2

(t),

i.e.
MLn(t) =

(
ζ
[n]
i1,i2

(t)
)
i1,i2

with the starting values ζ [n]1,0(0) = α[n], ζ [n]0,1(0) = β[n], and ζ [n]i1,i2
(0) = 0 for all other

pairs (i1, i2).
The Smoluchowski coagulation equations for the Marcus-Lushnikov process

MLn(t) with cross-multiplicative kernel are written as follows:
d

dt
ζi1,i2(t) =− ζi1,i2(t)

∑
j1,j2

(i1j2 + i2j1)ζj1,j2(t)

+
1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t) (3.2)

with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 .
A reduced system of differential equations corresponding to the above Smolu-

chowski coagulation equations (3.2) will be given in (3.5). It will take into account
the mass conservation property of the above Marcus-Lushnikov process MLn(t),
and therefore will represent the smaller cluster dynamics over the whole time in-
terval [0,∞).

First, we notice that here the initial total mass is
∑
i1,i2

(i1 + i2)ζi1,i2(0) = α + β.

Moreover, the initial total ‘left mass’ (type A) is
∑
i1,i2

i1ζi1,i2(0) = α and the initial

total ‘right mass’ (type B) is
∑
i1,i2

i2ζi1,i2(0) = β.

Next, we consider the rate of change for the total left mass and the total right
mass, and use (3.2) to obtain

d

dt

∑
i1,i2

i1ζi1,i2(t) =−
∑

i1,i2,j1,j2

i1(i1j2 + i2j1)ζi1,i2(t)ζj1,j2(t)

+
1

2

∑
`1,k1,`2,k2

(`1 + k1)(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t) = 0

(3.3)
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and
d

dt

∑
i1,i2

i2ζi1,i2(t) =−
∑

i1,i2,j1,j2

i2(i1j2 + i2j1)ζi1,i2(t)ζj1,j2(t)

+
1

2

∑
`1,k1,`2,k2

(`2 + k2)(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t) = 0

(3.4)

whenever
∑
i1,i2

(i1 + i2)2ζi1,i2(t) converges.

Here, for t < Tgel,
∑
j1,j2

j1ζj1,j2(t) = α and
∑
j1,j2

j2ζj1,j2(t) = β. Therefore, for any

i1 and i2,
∑
j1,j2

(i1j2 + i2j1)ζj1,j2(t) = βi1 +αi2. Thus, we can consider the following

modified Smoluchowski coagulation system of equations (Flory system):

d

dt
ζi1,i2(t) = −(βi1 + αi2)ζi1,i2(t) +

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2(t)ζk1,k2(t)

(3.5)
with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 . Once again, the
solutions of Smoluchowski coagulation system (3.2) and the above modified Smolu-
chowski coagulation system (3.5) will match up until Tgel. Consequently, the so-
lution (3.10) of the modified Smoluchowski system of equations (3.5) is used in
Subsection 3.3 for establishing the finiteness of the gelation time and for finding its
value, Tgel.

In Subsection 5.2 we establish that the solution to the above modified Smolu-
chowski coagulation system (3.5) is the hydrodynamic limit of the Marcus-
Lushnikov process MLn(t) with cross-multiplicative kernel. Specifically, in equa-
tion (5.6), it is shown that

lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s.

for any given T > 0 and all i1, i2 ≥ 1, where ζi1,i2(t) solves the modified Smolu-
chowski coagulation system (3.5).

3.2. The unique solution of the modified Smoluchowski coagulation system. Next,
we want to find the solution ζi1,i2(t) of the reduced system (3.5) for all t ≥ 0. Here
we observe that ζ1,0(t) = αe−βt and ζ0,1(t) = βe−αt, and extend the approach of
McLeod (1962) by considering the solutions of the following form

ζi1,i2(t) = αi1βi2Si1,i2e
−(βi1+αi2)tti1+i2−1 (3.6)

and plugging them into equation (3.5). After cancelations, we arrive with the
following recursion

(i1 + i2 − 1)Si1,i2 =
1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)S`1,`2Sk1,k2 (3.7)

with initial conditions Si,0 = S0,i = δ1,i, and Si1,i2 = Si2,i1 .
In the next lemma we state the explicit solution to the recursion relation (3.7)

which we prove using a generalization of Abel’s binomial theorem.
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Lemma 3.1. The system of equations (3.7) with the initial conditions Si,0 = S0,i =
δ1,i has the following unique solution

Si1,i2 =
ii2−11 ii1−12

i1!i2!
. (3.8)

Note that the numerator ii2−11 ii1−12 in (3.8) is the total number of spanning trees
in Ki1,i2 . See Austin (1960).

Proof : In Theorem 1.1(3) of Huang and Liu (2010), Abel’s binomial theorem is
generalized as follows:

i1∑
k1=0

i2∑
k2=0

(
i1
k1

)(
i2
k2

)(
v + zi1 − zk1

)k2−1(−z(i1 − k1)
)i2−k2

(−zk2)k1(u+ zk2)i1−k1−1

=
[uv − i1i2z2]ui1−1vi2−1

(v + i1z)(u+ i2z)
(3.9)

Then, we use (3.9) with z = −1 to confirm our candidate solution satisfies (3.7) by
plugging it into the right hand side of (3.7) as follows.

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)S`1,`2Sk1,k2 =
∑

`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

`1k2S`1,`2Sk1,k2

=
∑

`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2,

(k1,k2),(`1,`2)6=(0,0)

``21 `
`1−1
2 kk2−11 kk12
`1!`2!k1!k2!

=
1

i1!i2!

∑
k1: 0≤k1≤i1,
k2: 0≤k2≤i2,

(k1,k2)6=(0,0),(i1,i2)

(
i1
k1

)(
i2
k2

)
kk2−11 (i1 − k1)i2−k2kk12 (i2 − k2)i1−k1−1

=
1

i1!i2!
lim
v→i1
u→i2

{ i1∑
k1=0

i2∑
k2=0

(
i1
k1

)(
i2
k2

)(
v−i1+k1

)k2−1
(i1−k1)i2−k2kk12 (u− k2)i1−k1−1

− ii21 u
i1−1

v − i1
− ii12 v

i2−1

u− i2

}

=
1

i1!i2!
lim
v→i1
u→i2

{ [uv − i1i2]ui1−1vi2−1

(v − i1)(u− i2)
− ii21 u

i1−1

v − i1
− ii12 v

i2−1

u− i2

}
=

1

i1!i2!
lim
v→i1
u→i2

{ i1vi2−1ui1−1
v − i1

+
ui1vi2−1

u− i2
− ii21 u

i1−1

v − i1
− ii12 v

i2−1

u− i2

}
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Hence,

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)S`1,`2Sk1,k2

=
1

i1!i2!
lim
v→i1
u→i2

{
i1u

i1−1 v
i2−1 − ii2−11

v − i1
+ vi2−1

ui1 − ii12
u− i2

}
=

1

i1!i2!

(
(i2 − 1) · ii2−11 ii1−12 + i1 · ii2−11 ii1−12

)
= (i1 + i2 − 1)

ii2−11 ii1−12

i1!i2!
= (i1 + i2 − 1)Si1,i2

thus completing the proof. �

The solution of equations (3.5) follows from (3.6) and Lemma 3.1.

Theorem 3.2. The modified Smoluchowski coagulation system of equations (3.5)
with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 +βδ0,i1δ1,i2 has the unique solution

ζi1,i2(t) =
ii2−11 ii1−12 αi1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1. (3.10)

3.3. Gelation in the cross-multiplicative coalescent process. Next, we prove the
finiteness of the gelation time that, following the approach in (2.5), we define as

Tgel := inf
{
t > 0 :

∑
i1,i2

(i1 + i2)ζi1,i2(t) < α+ β
}
.

Let

s(u, v) :=
∑

(i1,i2)∈Z2
+\{(0,0)}

Si1,i2u
i1vi2 =

∑
(i1,i2)∈Z2

+\{(0,0)}

ii2−11 ii1−12

i1!i2!
ui1vi2 (3.11)

be the generating function of Si1,i2 . The recurrence relation (3.7) implies

u
∂s

∂u
+ v

∂s

∂v
− s = uv

∂s

∂u

∂s

∂v
(3.12)

with the initial conditions ∂
∂us(0, 1) = ∂

∂v s(1, 0) = 1.

Lemma 3.3. Consider the Smoluchowski coagulation system of equations (3.2) with
the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 . Then, a phase transition
occurs at

inf
{
t > 0 :

∑
i1,i2

(i1 + i2)2ζi1,i2(t) =∞
}

=
1√
αβ

.

Note that the above phase transition corresponds to the gelation times as defined
in (2.4).

Proof : We will follow the approach in Aldous (1998, 1999) and Ziff (1980). Let

E(t) :=
∑
i1,i2

i21ζi1,i2(t), F (t) :=
∑
i1,i2

i1i2ζi1,i2(t), and G(t) :=
∑
i1,i2

i22ζi1,i2(t)
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denote all the second order moments of ζi1,i2(t). By differentiating as in (3.3) and
(3.4), we obtain
d

dt
E(t) = 2E(t)F (t),

d

dt
F (t) = E(t)G(t) + F 2(t), and

d

dt
G(t) = 2G(t)F (t)

with the initial conditions E(0) = α, F (0) = 0, and G(0) = β. We require the
finiteness of all third order moments when deriving the above differential equations
for the second order moments. Here the first and the third equations yield E(t) =
α
βG(t). Hence the system reduces to

d

dt
E(t) = 2E(t)F (t) and

d

dt
F (t) =

β

α
E2(t) + F 2(t),

and therefore,

d

dt

(√
β

α
E(t) + F (t)

)
=

(√
β

α
E(t) + F (t)

)2

.

Thus, √
β

α
E(t) + F (t) =

1
1√
αβ
− t

for t < 1√
αβ

. The statement of the lemma follows from the fact that all functions
obtained as all-order partial derivatives of the series (3.11) have the same domain
of convergence. �

For given α, β > 0 and t > 0, define(
x(t), y(t)

)
:= min

{
(x, y) : xe−y = αte−βt, ye−x = βte−αt

}
, (3.13)

where the minimum in one coordinate implies the minimum in another as x and y
solving

xe−y = u and ye−x = v (3.14)
for u, v > 0 are mutually monotonous, e.g. x = uey.

Proposition 3.4. For given u, v > 0, consider the system (3.14). Then, the fol-
lowing holds.

(i) Depending on the values of u and v, the system (3.14) may have one, two,
or no solutions.

(ii) If the system (3.14) has a unique solution, then the solution should satisfy
xy = 1.

(iii) If the system (3.14) has two solutions, then the smallest solution should
satisfy xy < 1, and the largest solution should satisfy xy > 1.

Proof : First, observe that x = ueve
x

, and statement (i) follows from the convexity
of ueve

x

.
Next, suppose (x1, y1) and (x2, y2) are two solutions of (3.14). Then

x1e
−y1 = x2e

−y2 and y1e
−x1 = y2e

−x2 . (3.15)

We express x2 in terms of x1 and y1, obtaining x2 = x1e
y1(e

x2−x1−1). We notice
that there is a unique solution x = x1 of

x = x1e
y1(e

x−x1−1) (3.16)

if and only if x = x1 is the root of 1 = xy1e
x−x1 . This yields statement (ii).
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Finally, suppose there are two distinct solutions of (3.16), and x2 > x1 (implying
y2 > y1). Then, there is a local extremum x ∈ (x1, x2), satisfying 1 = xy1e

x−x1 >
x1y1.

Similarly, suppose there are two distinct solutions of (3.16), and x2 < x1 (im-
plying y2 < y1). Then, there is a local extremum x ∈ (x2, x1), satisfying 1 =
xy1e

x−x1 < x1y1. Hence, statement (iii). �

Prop. 3.4 immediately yields the following corollary concerning the functions
defined in (3.13).

Corollary 3.5. For given α, β > 0 and t > 0, consider
(
x(t), y(t)

)
as defined in

(3.13). Then,
• x(t) = αt and y(t) = βt for all t ≤ 1√

αβ
;

• x(t) < αt and y(t) < βt for all t > 1√
αβ

.

Next, we prove the following lemma.

Lemma 3.6. Consider the solution ζi1,i2(t) of the modified Smoluchowski coagula-
tion system of equations (3.5) with the initial conditions

ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 ,

as found in Theorem 3.2. Then,∑
i1,i2

i1ζi1,i2(t) =
∑
i1,i2

ii21 i
i1−1
2 αi1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1 =

x(t)

t

and ∑
i1,i2

i2ζi1,i2(t) =
∑
i1,i2

ii2−11 ii12 α
i1βi2

i1!i2!
e−(βi1+αi2)tti1+i2−1 =

y(t)

t
,

where x(t) and y(t) are the functions defined in (3.13).

Proof : Observe that∑
i1,i2

i1ζi1,i2(t) = αte−βt
∂s

∂u

(
αte−βt, βte−αt

)
and ∑

i1,i2

i2ζi1,i2(t) = βte−αt
∂s

∂v

(
αte−βt, βte−αt

)
.

By (3.3), (3.4), and Lemma 3.3, we have

αt = αte−βt
∂s

∂u

(
αte−βt, βte−αt

)
and βt = βte−αt

∂s

∂v

(
αte−βt, βte−αt

)
(3.17)

∀α, β > 0 and ∀t < 1√
αβ

. Now, since the function s(u, v) does not depend on the
values of α and β, (3.17) implies

x = xe−y
∂s

∂u

(
xe−y, ye−x

)
and y = ye−x

∂s

∂v

(
xe−y, ye−x

)
for all xy < 1. Hence, by Prop. 3.4 , we have

x = u
∂s

∂u
(u, v) and y = v

∂s

∂v
(u, v)
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whenever (x, y) is the smallest solution of (3.14). The equations

x(t) = αte−βt
∂s

∂u

(
αte−βt, βte−αt

)
and y(t) = βte−αt

∂s

∂v

(
αte−βt, βte−αt

)
∀t ≥ 0,

(3.18)
with x(t) and y(t) defined in (3.13), follow from Proposition 3.4. �

Corollary 3.7. The cross-multiplicative kernel defined in (3.1) is a gelling kernel,
and the gelation time corresponding to the Smoluchowski coagulation system of
equations (3.2) with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2 equals

Tgel =
1√
αβ

.

Proof : Lemma 3.6 and Proposition 3.4 imply that the mass of the system in (3.5)
is conserved until 1√

αβ
, after which time it begins to dissipate, i.e.,
∑
i1,i2

(i1 + i2)ζi1,i2(t) = α+ β if t ≤ 1√
αβ

;∑
i1,i2

(i1 + i2)ζi1,i2(t) < α+ β if t > 1√
αβ
.

�

Recall that we considered two alternative definitions of gelation time in Subsec-
tion 2.1. Definition (2.4) would often describe the time of the explosion of a higher
moment while definition (2.5) is based on the loss of total mass after gelation.
Comparing Lemma 3.3 with Corollary 3.7, we confirm the equivalence of the two
alternative definitions of the gelation time Tgel for the cross-multiplicative kernel,
i.e.,

inf
{
t > 0 :

∑
i1,i2

(i1+i2)2ζi1,i2(t) =∞
}

= inf
{
t > 0 :

∑
i1,i2

(i1+i2)ζi1,i2(t) < α+β
}
.

4. Applications in minimal spanning trees

In this section we demonstrate how the coagulation equations for the cross-
multiplicative coalescent process and the weak convergence results of Section 5 are
used for finding the asymptotic length of the minimal spanning tree on the complete
bipartite graph Kα[n],β[n]. The main result of this section Theorem 4.2 is proved
using Marcus-Lushnikov processes and coagulation equations in Subsection 4.3.

We recall the following quote from Aldous (1998): It turns out that there is a
large scientific literature relevant to the Marcus-Lushnikov process, mostly focus-
ing on its deterministic approximation. Curiously, this literature has been largely
ignored by random graph theorists. The broader goal of this section is in bridg-
ing the gap between the theory of the Smoluchowski coagulation equations for the
Marcus-Lushnikov processes and the random graph theory. Here we concentrate
on analyzing the length of the minimal spanning tree as the prime example that
demonstrates the usefulness of the Marcus-Lushnikov processes and the coalescence
theory in general for answering questions about random graphs. We recall that the
asymptotic limit for the mean length of a minimal spanning tree on Kn with inde-
pendent uniform edge weights over [0, 1] was derived in Frieze (1985). There, it is

shown to be lim
n→∞

E[Ln] = ζ(3) =
∞∑
k=1

1
k3 . In Frieze and McDiarmid (1989), the
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mean length of the minimal spanning tree for the complete bipartite graph Kn,n

with independent edge weights distributed uniformly over [0, 1] was shown to have
the asymptotic limit lim

n→∞
E[Ln] = 2ζ(3). In Beveridge et al. (1998), the minimal

spanning tree problem was addressed for d-regular graphs. In this section, we will
find the mean length of the minimal spanning tree in the case of a complete bi-
partite graph Kα[n],β[n] via a connection between the coalescence theory and the
random graph theory. Note that Kα[n],β[n] is an irregular graph when α 6= β.

4.1. Relation of Erdős-Rényi process on Kα[n],β[n] to cross-multiplicative coalescent.
Let α, β > 0 be given, and consider two integer valued functions, α[n] = αn+o(

√
n)

and β[n] = βn+o(
√
n). Next, we introduce the Erdős-Rényi random graph process

on the bipartite graph Kα[n],β[n] with α[n] vertices on the left side and β[n] vertices
on the right side. In this random graph process on Kα[n],β[n], for each edge e
of α[n]β[n] = αβn2 + o(n

√
n) edges we have an associated random variable Ue,

distributed uniformly on [0, 1]. The random variables {Ue}e are assumed to be
independent. For the “time" parameter p ∈ [0, 1], an edge e is considered “open"
if Ue ≤ p. Erdős-Rényi random graph G(n, p) will consist of all n vertices and all
open edges at time p.

In this Erdős-Rényi random graph process, the probability of two components
merging at a given time depends only on the number of edges that connect those
two components. If connected component Ci and Cj have partition sizes (i1, i2)
and (j1, j2) respectively, then there are i1j2+i2j1 edges which, when opened, would
connect Ci and Cj . Therefore, the cross-multiplicative coalescent process represents
the cluster dynamics of the above Erdős-Rényi random graph process on the bipar-
tite graph Kα[n],β[n] under the time change p = 1− e−t/n. This coalescent process
representation is obtained by letting each cluster connecting i1 vertices on the left
side of the bipartite graph with i2 vertices on the right side of the bipartite graph be

assigned a two-dimensional weight vector
[
i1
i2

]
. Then, the Marcus-Lushnikov pro-

cess ζ [n]i1,i2
(t) corresponding to the cross-multiplicative coalescent process will count

the number of clusters with the weight vector
[
i1
i2

]
at time t.

4.2. The length of the minimal spanning tree on Kα[n],β[n] via ζi1,i2(t). Consider
the Erdős-Rényi random graph model on a complete bipartite graph Kα[n],β[n]. Let
us interpret Ue as the length of edge e. Then one can construct a minimal spanning
tree on Kα[n],β[n]. Let random variable Ln denote the length of such minimal
spanning tree. We want to represent the asymptotic limit of the mean value of Ln
via ζi1,i2(t).

For a random graph process G(n, p) over Kα[n],β[n], Lemma 1 in Beveridge et al.
(1998) implies

E[Ln] =

1∫
0

E[κ(G(n, p))]dp− 1, (4.1)

where κ(G(n, p)) is the number of components in the random graph process G(n, p)
at time p. This will be used in Subsection 4.3 for proving the following theorem.
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Theorem 4.1. Let α, β > 0 and Ln = Ln(α, β) be the length of a minimal spanning
tree on a complete bipartite graph Kα[n],β[n] with partitions of sizes

α[n] = αn+ o(
√
n) and β[n] = βn+ o(

√
n)

and independent uniform edge weights over [0, 1]. Then

lim
n→∞

E[Ln] =

∞∑
i1,i2

∞∫
0

ζi1,i2(t)dt. (4.2)

where ζi1,i2(t) indexed by Z2
+ \ {(0, 0)} is the solution of the modified Smoluchowski

coagulation system (3.5) with the initial conditions ζi1,i2(0) = αδ1,i1δ0,i2+βδ0,i1δ1,i2 .

Observe that if we plug-in the solutions (3.6) of the reduced system of Smolu-
chowski coagulation equations (3.5) into the right hand side of (4.2), we get

∞∑
i1,i2

∞∫
0

ζi1,i2(t)dt =
α

β
+
β

α
+

∑
i1≥1: i2≥1

αi1βi2Si1,i2

∞∫
0

ti1+i2−1e−(βi1+αi2)tdt

=
α

β
+
β

α
+

∑
i1≥1: i2≥1

αi1βi2Si1,i2
(βi1 + αi2)i1+i2

(i1 + i2 − 1)!

= γ +
1

γ
+

∑
i1≥1: i2≥1

γi1Si1,i2
(i1 + γi2)i1+i2

(i1 + i2 − 1)! (4.3)

with γ = α
β .

Next, by combining Lemma 3.1 with (4.3) we obtained the following important
theorem.

Theorem 4.2. Let α, β > 0, γ = α/β, and Ln = Ln(α, β) be the length of a
minimal spanning tree on a complete bipartite graph Kα[n],β[n] with partitions of
sizes

α[n] = αn+ o(
√
n) and β[n] = βn+ o(

√
n)

and independent uniform edge weights over [0, 1]. Then the limiting mean length of
the minimal spanning tree is

lim
n→∞

E[Ln] = γ +
1

γ
+

∑
i1≥1; i2≥1

(i1 + i2 − 1)!

i1!i2!

γi1ii2−11 ii1−12

(i1 + γi2)i1+i2
.

Theorem 4.2 is consistent with Frieze and McDiarmid (1989), where it was shown
that for α = β, lim

n→∞
E[Ln] = 2ζ(3). Indeed, we have the following Corollary

reproducing the results in Frieze and McDiarmid (1989). Observe however that for
α 6= β the bipartite graph is irregular and the results in Frieze and McDiarmid
(1989) no longer apply.

Corollary 4.3. If γ = 1, then

lim
n→∞

E[Ln] = 2ζ(3).

Proof : Abel’s binomial theorem states that
n∑
k=0

(
n

k

)
(x− kz)k−1(y + kz)n−k = x−1(x+ y)n.
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See Riordan (1968); Comtet (1974). Substituting x = nz 6= 0, y = 0, and i = n−k,
we obtain

n∑
i=0

(
n

i

)
in−i−1(n− i)i = nn−1

and therefore, ∑
i1,i2: i1+i2=n

i1Si1,i2 =
∑

i1,i2: i1+i2=n

i1
ii2−11 ii1−12

i1!i2!
=
nn−1

n!
.

Hence,

n ·
∑

i1,i2: i1+i2=n

Si1,i2 =
∑

i1,i2: i1+i2=n

(i1 + i2)Si1,i2 = 2 ·
∑

i1,i2: i1+i2=n

i1Si1,i2 = 2
nn−1

n!

and ∑
i1,i2: i1+i2=n

Si1,i2 = 2
nn−2

n!
.

Plugging the above into (4.3) with γ = 1, we obtain

lim
n→∞

E[Ln] = 2 +
∑

i1≥1: i2≥1

Si1,i2
(i1 + i2)i1+i2

(i1 + i2 − 1)!

= 2 +

∞∑
n=2

 ∑
i1,i2: i1+i2=n

Si1,i2
nn

 (n− 1)!

= 2 +

∞∑
n=2

2
nn−2

n!
· 1

nn
(n− 1)!

= 2 +

∞∑
n=2

2

n3
= 2ζ(3). (4.4)

Thus confirming the results in Frieze and McDiarmid (1989). �

4.3. Proof of Theorem 4.1. Let us give a rigorous proof of Theorem 4.1.

Proof : Observe that

lim
t→∞

∑
i1,i2

i1ζi1,i2(t) = 0 and lim
t→∞

∑
i1,i2

i2ζi1,i2(t) = 0. (4.5)

Indeed, by plugging in ζi1,i2(t) as in (3.10), we obtain

d

dt

∑
i1,i2

i1ζi1,i2(t)=
∑
i1,i2

i1ζi1,i2(t)

(
i1 + i2 − 1

t
−(βi1 + αi2)

)
≤−(α ∧ β)

∑
i1,i2

i1ζi1,i2(t)

for t > 1
α∧β . Thus,

∑
i1,i2

i1ζi1,i2(t), and similarly
∑
i1,i2

i2ζi1,i2(t), would decrease to

zero exponentially fast when t > 1
α∧β .

Now, having established (4.5), for any given ε ∈ (0, 1/4), we can fix T � Tgel so
large that ∑

i1,i2

i1ζi1,i2(t) ≤ αε

2
and

∑
i1,i2

i2ζi1,i2(t) ≤ βε

2
. (4.6)

Notice that the above inequalities (4.6) ties T to ε.
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Fix integers K1 > 0 and K2 > 0, and let

R := R(K1,K2) = {1, 2, . . . ,K1} × {1, 2, . . . ,K2}.
By the equation (5.7) in Subsection 5.2 we have

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣n−1∑
R

ζ
[n]
i1,i2

(s)−
∑
R

ζi1,i2(s)

∣∣∣∣∣ = 0 a.s.

Thus, the probability of the complement of the event

QεR,T,n :=

{∑
i∈R

i1
ζ
[n]
i1,i2

(T )

n
≤ 3

4
αε and

∑
i∈R

i2
ζ
[n]
i1,i2

(T )

n
≤ 3

4
βε

}
(4.7)

is decreasing to zero as n→∞. Moreover,

qεR,T (n) := P
(
QεR,T,n

)
= O(n−2)

by Proposition 5.3 in Subsection 5.3 since

lim
n→∞

√
n

(∑
i∈R

i1
ζ
[n]
i1,i2

(0)

n
−
∑
i∈R

i1ζi1,i2(0)

)
= lim
n→∞

√
n
(
α[n]/n− α

)
= 0

and

lim
n→∞

√
n

(∑
i∈R

i2
ζ
[n]
i1,i2

(0)

n
−
∑
i∈R

i2ζi1,i2(0)

)
= lim
n→∞

√
n
(
β[n]/n− β

)
= 0.

We know from (4.1) that

lim
n→∞

E[Ln] = lim
n→∞

1∫
0

E[κ(G(n, p))]dp− 1 = lim
n→∞

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt− 1

provided the latter limit exists.

We will split
∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n e−t/ndt as follows.

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

T∫
0

∑
i∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt (Term I)

+

T∫
0

∑
i6∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt (Term II)

+
(
1− qεR,T (n)

) ∞∫
T

∑
i∈R

E[ζ
[n]
i1,i2

(t) | QεR,T,n]

n
e−t/ndt (Term III)

+
(
1− qεR,T (n)

) ∞∫
T

∑
i6∈R

E[ζ
[n]
i1,i2

(t) | QεR,T,n]

n
e−t/ndt (Term IV)

+ qεR,T (n)

∞∫
T

∑
i1,i2

E[ζ
[n]
i1,i2

(t) | QεR,T,n ]

n
e−t/ndt (Term V)

(4.8)
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Next, we estimate the terms I-V in (4.8).

Term I. As we establish in (5.6) of Section 5,

lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s.

on [0, T ] for all i =

[
i1
i2

]
∈ R. Therefore,

lim
n→∞

T∫
0

∑
i∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

∑
i∈R

T∫
0

ζi1,i2(t)dt.

Term II. Observe that,

∑
i6∈R

ζ
[n]
i1,i2

(t)

n
≤ 1

n

∑
i1>K1

∑
i2

ζ
[n]
i1,i2

(t) +
1

n

∑
i1

∑
i2>K2

ζ
[n]
i1,i2

(t)

≤ 1

K1n

∑
i1>K1

∑
i2

i1ζ
[n]
i1,i2

(t) +
1

nK2

∑
i1

∑
i2>K2

i2ζ
[n]
i1,i2

(t)

≤ α[n]

K1n
+
β[n]

nK2
≤ 2

α

K1
+ 2

β

K2

for all n large enough. Thus,
T∫

0

∑
i 6∈R

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt = O

(
T

K1

)
+O

(
T

K2

)
.

Term III. We define the R-gel to be the collection of all clusters whose mass vector
is not in R. Let

MRgel(t) =

[
m1(t)
m2(t)

]
(4.9)

denote the total mass vector of all clusters in the R-gel at time t ≥ 0.

Now, conditioning on the event QεR,T,n, we have m1(t) ≥ α(1− ε)n and m2(t) ≥
β(1 − ε)n for all t ≥ T , and n large enough. Thus each cluster in R will be
gravitating toward the R-gel with the rate of at least (α ∧ β)(1 − ε). Consider a
cluster in R at time T . Let T +L be the time it becomes a part of the R-gel. Then,

its contribution to the integral
∞∫
T

∑
i∈R

E[ζ
[n]
i1,i2

(t) | QεR,T,n]
n e−t/ndt is at most

∞∫
T

E[1[T,T+L](t) | QεR,T,n]

n
e−t/ndt ≤

E[L | QεR,T,n]

n
e−T/n ≤ 1

(α ∧ β)(1− ε)n
.

The number of clusters in R at time t ≥ T is∑
i∈R

ζ
[n]
i1,i2

(t) ≤
∑
i∈R

(i1 + i2)ζ
[n]
i1,i2

(t) ≤ (α+ β)εn.
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Therefore,
∞∫
T

∑
i∈R

E[ζ
[n]
i1,i2

(t) | QεR,T,n]

n
e−t/ndt ≤ (α+ β)εn

(α ∧ β)(1− ε)n
=

2ε

1− ε
< 3ε.

Term IV. We let C = {C1, C2, C3, . . . , CM} denote the set of all clusters whose
mass vectors ever exceeded K1 in the first coordinate and/or ever exceeded K2 in
the second coordinate in the history of the process MLn(t), i.e., all clusters that
were ever a part of R-gel. The number of clusters in C is less than α[n]/K1+β[n]/K2.
For each Ci, the emergence time ai is the time of a merger of a pair of clusters in R,
resulting in appearance of a new cluster Ci in R-gel. We enumerate these clusters
in the order they emerge.

LetMi(t) =

[
m1,i(t)
m2,i(t)

]
denote the mass vector of cluster Ci at time t. Consider a

pair of clusters, Ci and Cj , coexisting in the R-gel at time t, such that m1,i,m1,j <
αn/2 and m2,i,m2,j < βn/2. We split their merger rate into two by saying that Ci
absorbs Cj with rate 1

2n

(
m1,i(t)m2,j(t) + m2,i(t)m1,j(t)

)
, and Cj absorbs Ci with

rate 1
2n

(
m1,i(t)m2,j(t) +m2,i(t)m1,j(t)

)
.

There is a finite stopping time

t∗ = min{t ≥ 0 : ∃Ci ∈ C with m1,i(t) ≥ αn/2 or m2,i(t) ≥ βn/2}

when a cluster Ci∗ has its mass vector satisfying either m1,i∗(t
∗) ≥ αn/2 or

m2,i∗(t
∗) ≥ βn/2. After time t∗ the rules of interactions of cluster Ci∗ with

the other clusters in C change as follows. For t > t∗, Ci∗ absorbs Cj with rate
1
n

(
m1,i∗(t)m2,j(t) + m2,i∗(t)m1,j(t)

)
, while Ci∗ itself cannot be absorbed by any

other cluster in C.
Let bi denote the time when cluster Ci is absorbed by another cluster in collection

C. Naturally, there will be only one survivor Ci∗ with bi∗ = ∞. Let Ji = [ai, bi) ∩
[T,∞) denote the lifespan of cluster Ci. Note that a cluster Ci from the collection
C existing at time t ∈ [ai, bi) is absorbed into one of the clusters in the R-gel with
the total instantaneous rate of

λi(t) ≥
1

2n

(
m1,i(t)

(
m2(t)−m2,i(t)

)
+m2,i(t)

(
m1(t)−m1,i(t)

))
,

where m1(t) and m2(t) are as defined in (4.9). Conditioning on the event QεR,T,n
defined in (4.7), we have that if m1,i(t) < αn/2 and m2,i(t) < βn/2 for t ∈ Ji, then
the rate of absorption of Ci into the R-gel is

λi(t) ≥
1

2n
m1,i(t)β

(
(1− ε)n− 1

2
n

)
+

1

2n
m2,i(t)α

(
(1− ε)n− 1

2
n

)
≥ 1

2n
m1,i(t)β

(
3

4
n− 1

2
n

)
+

1

2n
m2,i(t)α

(
3

4
n− 1

2
n

)
≥ m1,i(t)β +m2,i(t)α

8
>
K1β +K2α

8
.

Next,
∞∫
T

∑
i6∈R

E[ζ
[n]
i1,i2

(t) | QεR,T,n]

n
e−t/ndt =

∞∫
T

1

n
e−t/ndt+ E (4.10)



Cross-multiplicative coalescent processes and applications 99

where
∞∫
T

1
ne
−t/ndt is due to the event QεR,T,n which guarantees the existence of at

least one component from C in the R-gel for all t ∈ [T,∞) and the second term E
is responsible for all the times t ≥ T when the number of clusters in the R-gel is
greater than one. The term E is bounded as follows

E ≤
∞∫
T

E

[ ∑
i: i 6=i∗

1Ji(t)
∣∣ QεR,T,n

]
n

e−t/ndt.

Now, each cluster Ci is gravitating towards the rest of the R-gel with the rate of at
least K1β+K2α

8 . Thus, for each i 6= i∗,
∞∫
T

E
[
1Ji(t) | QεR,T,n

]
n

e−t/ndt ≤
E[|Ji| | QεR,T,n]

n
e−

T
n ≤ 8

n(K1β +K2α)
.

Hence, since the cardinality of set C is M < α[n]/K1 + β[n]/K2,

E < (α[n]/K1 + β[n]/K2) · 8

n(K1β +K2α)
=

8(α/K1 + β/K2)

K1β +K2α
+ o(1),

and from (4.10), we obtain
∞∫
T

∑
i6∈R

E[ζ
[n]
i1,i2

(t)|QεR,T,n]

n
e−t/ndt =1+O(K−21 )+O(K−22 )+O

(
T

n

)
+o(1) as n→∞.

Term V. Here

qεR,T (n)

∞∫
T

∑
i1,i2

E[ζ
[n]
i1,i2

(t) | QεR,T,n ]

n
e−t/ndt ≤ qεR,T (n)

∞∫
T

α[n] + β[n]

n
e−t/ndt

≤ (α[n] + β[n])qεR,T (n) = O(n−1)

as qεR,T (n) = O(n−2).

Finally, by putting together the analysis in Terms I-V in the equation (4.8),
we obtain for a given fixed ε ∈ (0, 1/4), sufficiently large fixed T � Tgel satisfying
(4.6), and arbitrarily large K1 and K2,
∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

∑
i∈R(K1,K2)

T∫
0

ζi1,i2(t)dt+ 1 +O

(
T

K1

)
+O

(
T

K2

)

+O(K−21 ) +O(K−22 ) +O(ε) +O

(
T

n

)
+O(n−1),

(4.11)

which when we increase n to infinity will yield

lim
n→∞

∞∫
0

∑
i1,i2

E[ζ
[n]
i1,i2

(t)]

n
e−t/ndt =

∑
i1,i2

∞∫
0

ζi1,i2(t)dt+ 1.

�
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5. Hydrodynamic limits for Marcus-Lushnikov processes

In Kurtz (1981) and Ethier and Kurtz (1986), a certain class of Markov pro-
cesses, called density dependent population processes, was considered. These are
jump Markov processes which depend on a certain parameter n which can be inter-
preted depending on the context of a model. Usually it represents the population
size. Many coalescent processes can be restated as a case of density dependent
population processes if all cluster weights are integers. There, the total mass n is
the parameter representing the population size. Specifically, we may assume that
the coalescent process starts with n clusters of unit mass each (aka singletons). In
Kurtz (1981) and in Chapter 11 of Ethier and Kurtz (1986), the law of large num-
bers and the central limit theorems were established for such density dependent
population processes as n→∞. In this section we will adopt these weak limit laws
for the cross-multiplicative coalescent process.

5.1. Density dependent population processes. We first formulate the framework for
the convergence result of Kurtz as stated in Theorem 2.1 in Chapter 11 of Ethier
and Kurtz (1986), and earlier, in Theorem 8.1 of Kurtz (1981). There, the density
dependent population processes are defined as continuous time Markov processes
with state spaces in Zd, and transition intensities represented as follows

q(n)(k, k + `) = n

[
β`

(
k

n

)
+O

(
1

n

)]
, (5.1)

where `, k ∈ Zd, and β` is a given collection of rate functions.
In Section 5.1 of Aldous (1999), Aldous observes that the results from Chapter 11

of Ethier and Kurtz (1986) can be used to prove the weak convergence of a Marcus-
Lushnikov process to the solutions of Smoluchowski system of equations in the
case when the Marcus-Lushnikov process can be formulated as a finite dimensional
density dependent population process. Specifically, the Marcus-Lushnikov processes
corresponding to the multiplicative and Kingman coalescent with the monodisperse
initial conditions (n singletons) can be represented as finite dimensional density
dependent population processes defined above.

Define F (x) =
∑̀
`β`(x). Then, Theorem 2.1 in Chapter 11 of Ethier and Kurtz

(1986), same as Theorem 8.1 in Kurtz (1981), states the following law of large
numbers. Let X̂n(t) be the Markov process with the intensities q(n)(k, k+ `) given
in (5.1), and let Xn(t) = n−1X̂n(t). Finally, let |x| =

√∑
x2i denote the Euclidean

norm in Rd.

Theorem 5.1. Suppose for all compact K ⊂ Rd,∑
`

|`| sup
x∈K

β`(x̄) <∞,

and there exists MK > 0 such that

|F (x)− F (y)| ≤MK|x− y|, for all x, y ∈ K. (5.2)

Suppose lim
n→∞

Xn(0) = x0, and X(t) satisfies

X(t) = X(0) +

∫ t

0

F (X(s))ds, (5.3)
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for all T ≥ 0. Then

lim
n→∞

sup
s∈[0,T ]

|Xn(s)−X(s)| = 0 a.s. (5.4)

5.2. Hydordynamic limit for cross-multiplicative coalescent processes. Fix integers
K1 > 0 and K2 > 0, and let R := R(K1,K2) = {1, 2, . . . ,K1} × {1, 2, . . . ,K2}.

Let ei be the standard basis vectors in RK1K2 , enumerated by i =

[
i1
i2

]
∈ R.

Consider a restriction to
[
i1
i2

]
∈ R of a Marcus-Lushnikov process ζi1,i2(t) with the

cross-multiplicative kernel. Let

X̂n(t) =
{
ζ
[n]
i1,i2

(t)
}
i∈R

with the initial conditions X̂n(0) = α[n]e0′+β[n]e0′′ , where 0′=

[
1
0

]
and 0′′=

[
0
1

]
.

We observe the following transition rates of X̂n(t) stated as in (5.1). Let x =∑
i∈R

xiei. Then, for any i and j in R, the change vector ` = −ei − ej + 1{i+j∈R}ei+j

corresponding to a merger of clusters of respective weights i and j is assigned the
rate

q(n)(x, x+ `) =
1

n
(i1j2 + i2j1)xixj = nβ`(x),

where β`(x) = (i1j2 + i2j1)xixj.
For a given i ∈ R, the change vector ` = −ei corresponding to the merger of

clusters whose weight vector is i with clusters whose weight vectors are not in R is
assigned the rate

q(n)(x, x+ `) =
1

n

i1xi
β[n]−

∑
j∈R

j2xj

+ i2xi

α[n]−
∑
j∈R

j1xj


= n

[
β`(x) +O

(
1

n

)]
,

where β`(x) = i1xi

(
β −

∑
j∈R j2xj

)
+ i2xi

(
α−

∑
j∈R j1xj

)
.

Thus, by Theorem 5.1, Xn(t) converges to X(t) as in (5.4), where X(t) satisfies
(5.3) with

F (x) :=
∑
`

`β`(x) =
1

2

∑
i,j∈R

[
−ei − ej + 1{i+j∈R}ei+j

]
(i1j2 + i2j1)xixj

−
∑
i∈R

eii1xi

β −∑
j∈R

j2xj

−∑
i∈R

eii2xi

α−∑
j∈R

j1xj


=
∑
i∈R

ei

−(βi1 + αi2)xi +
1

2

∑
`,k: `+k=i

(`1k2 + `2k1)x`xk


(5.5)

for a fixed T > 0. The system of equations (5.3) with F (x) given in (5.5) will yield
the reduced system of Smoluckowski coagulation equations (3.5). So, for a fixed a
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pair of positive integers K1 and K2, and a fixed real number T > 0,

lim
n→∞

sup
s∈[0,T ]

∣∣∣n−1ζ [n]i1,i2
(s)− ζi1,i2(s)

∣∣∣ = 0 a.s. (5.6)

for all
[
i1
i2

]
∈ R. Consequently,

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣∣∣∣n
−1

∑
1≤i1≤K1
1≤i2≤K2

ζ
[n]
i1,i2

(s) −
∑

1≤i1≤K1
1≤i2≤K2

ζi1,i2(s)

∣∣∣∣∣∣∣∣ = 0 a.s. (5.7)

5.3. Central Limit Theorem and related results. The usefulness of the framework set
in Kurtz (1981) and Ethier and Kurtz (1986) for proving weak convergence is that
the law of large numbers Theorem 5.1 is enhanced with the corresponding central
limit theorem (see Theorem 5.2 below) and the large deviation theory in Feng and
Kurtz (2006). The following central limit theorem is established in Theorem 8.2 of
Kurtz (1981) and Theorem 2.3 in Chapter 11 of Ethier and Kurtz (1986).

Theorem 5.2. Suppose for all compact K ⊂ Rd,∑
`

|`|2 sup
x∈K

β`(x) <∞ (5.8)

and that the β` and ∂F are continuous. Suppose Xn and X are as in Theorem 5.1,
and suppose Vn =

√
n(Xn −X) is such that limn→∞ Vn(0) = V (0), where V (0) is

a constant. Then Vn converges in distribution to V , which is the solution of

V (t) = V (0) + U(t) +

∫ t

0

∂F (X(s))V (s)ds, (5.9)

where U(t) is a Gaussian process and ∂F (X(s)) = (∂jFi(X(s)))i,j.

The proof of Theorem 5.2 is based on representing Vn(t) as follows. Let Y` be
independent Poisson processes with rate one. Then,

Vn(t) = Vn(0) + Un(t) +

∫ t

0

√
n
(
F (Xn(s))− F (X(s))

)
ds, (5.10)

where

Un(t) =
∑
`

`W
(n)
`

(∫ t

0

β`(Xn(s))ds
)
,

W
(n)
` (u) = n−1/2Ŷ`(nu), and Ŷ`(u) := Y`(u)−u are centralized Poisson processes.
Next, we will use formula (5.10) in order to derive an upper bound (5.11) on

probability P (|Xn(T ) − X(T )| ≥ δ). Let us consider a simple case of a density
dependent population process on Rd for which the following three conditions are
satisfied.

i: Vn =
√
n(Xn −X) is such that limn→∞ Vn(0) = V (0).

ii: Both Xn(t) and X(t) live on a compact set K.
iii: There are finitely many vectors ` ∈ Rd such that β`(x) > 0 for some
x ∈ K.
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Notice that the above conditions are satisfied for the Marcus-Lushnikov processes
with the cross-multiplicative kernel as in Subsection 5.2. Specifically, for a given
m > 0, let

Km =
{
x ∈ Rd+ :

∑
i

xi ≤ m
}
.

Then, in Subsection 5.2, we have Xn(t), X(t) ∈ Km for m > α+ β.

Proposition 5.3. Assuming the above conditions i-iii are satisfied together with
the Lipschitz continuity conditions (5.2), we have

P (|Xn(T )−X(T )| ≥ δ) = O(n−2). (5.11)

Proof : Here,
√
n
∣∣F (Xn(s))− F (X(s))

∣∣ ≤ √nMK|Xn(s)−X(s)| = MK|Vn(s)|

and for a fixed T > 0 and any t ≤ T ,

|Vn(0)+Un(t)| ≤ εn(T ) := |Vn(0)|+
∑
`

|`| max
{ ∣∣∣W (n)

` (s)
∣∣∣ : s ∈

[
0, T sup

x∈K
β`(x)

]}
.

Hence, for a fixed T > 0, equation (5.10) implies the following inequality,

|Vn(t)| ≤ εn(T ) +MK

∫ t

0

|Vn(s)|ds for all t ∈ [0, T ].

Then, by Grönwall’s inequality (see Appendix 5 in Ethier and Kurtz, 1986),

|Vn(t)| ≤ εn(T )eMKt. (5.12)

In particular, we use equation (5.12) together with Markov inequality to obtain the
following simple bound for any δ > 0,

P (|Xn(T )−X(T )| ≥ δ) ≤ V 4
n (T )

n2δ4
≤ E[ε4n(T )]e4MKT

n2δ4
. (5.13)

Here, for any fixed real S > 0, integer r > 0, and any real λ > 0, we have by Doob’s
martingale inequality,

P

(
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣r ≥ λ) = P

(
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣ ≥ λ1/r) ≤ E

[(
W

(n)
` (S)

)2+2r
]

λ2+2/r

as
∣∣∣W (n)

` (s)
∣∣∣ is a non-negative sub-martingale. Therefore,

E

[
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣r] ≤ 1 +

∞∫
1

P

(
max
s∈[0,S]

∣∣∣W (n)
` (s)

∣∣∣r ≥ λ) dλ
≤ 1 + (1 + 2/r)E

[(
W

(n)
` (S)

)2+2r
]
,

where by the classical central limit theorem,

lim
n→∞

E

[(
W

(n)
` (S)

)2+2r
]

= S1+rE[Z2+2r], Z - standard normal r.v.

Thus, E[ε4n(T )] = O(1), and (5.11) follows from (5.13). �
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6. Discussion: generalizations and open problems.

In this paper we considered an important example of coagulation ODEs obtained
as a hydrodynamic limit of a Marcus-Lushnikov process that tracks the merger his-
tory of a coalescent process with two dimensional weight vectors. The coagulation
equations and gelation in the Marcus-Lushnikov dynamics for other coalescent pro-
cesses with multidimensional weight vectors is on its own an interesting object of
studies. As a natural next step, one may consider a generalization of the existing
results Aldous (1998); Jeon (1998, 1999); Norris (1999); Escobedo et al. (2002);
Fournier and Giet (2004); Fournier and Laurençot (2009) on gelation phenomenon
for vector weighted processes.

An extension of the application to minimal spanning trees may come from an
observation that the convergence rates in the hydrodynamic limit yield the central
limit theorem for Ln on Kα[n],β[n] similar to the central limit theorem for Ln on
Kn proved in Janson (1995). Specifically, we hope to apply Theorem 5.2 in the
analysis. Moreover, similarly to Cooper et al. (2016), it is possible to examine the
second and third order terms in Ln.
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