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Abstract. In this paper, we investigate the fluctuations of a unit eigenvector asso-
ciated to an outlier in the spectrum of a spiked N ×N complex Deformed Wigner
matrix MN . MN is defined as follows: MN = WN/

√
N + AN where WN is an

N ×N Hermitian Wigner matrix whose entries have a law µ satisfying a Poincaré
inequality and the matrix AN is a block diagonal matrix, with an eigenvalue θ of
multiplicity one, generating an outlier in the spectrum of MN . We prove that the
fluctuations of the norm of the projection of a unit eigenvector corresponding to
the outlier of MN onto a unit eigenvector corresponding to θ are not universal.
Indeed, we take away a fit approximation of its limit from this norm and prove the
convergence to zero as N goes to ∞ of the Lévy–Prohorov distance between this
rescaled quantity and the convolution of µ and a centered Gaussian distribution
(whose variance may depend depend upon N and may not converge).

1. Introduction

To begin with, we introduce some notations.
• MN (C) is the set of N × N matrices with complex entries, Msa

N (C) the
subset of self-adjoint elements of MN (C) and IN the identity matrix.

• TrN denotes the trace and trN = 1
N TrN the normalized trace on MN (C).
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• ‖.‖ denotes the operator norm on MN (C).
• For any X ∈ Msa

N (C), (λ1(X), . . . , λN (X)) denote the eigenvalues of X
ranked in decreasing order and the empirical spectral measure of X is de-
fined by

µX :=
1

N

N∑
i=1

δλi(X).

• For a probability measure τ on R, supp(τ) denotes the support of τ and
gτ : z ∈ C \ supp(τ) 7→

∫
1

z−xdτ(x) is the Stieltjes transform of τ .
• dLP denotes the Lévy-Prohorov distance, which is a metric for the topology

of the convergence in distribution.

1.1. Wigner matrices. Wigner matrices are complex Hermitian random matrices
whose entries are independent (up to the symmetry condition). They were intro-
duced by Wigner in the fifties, in connection with nuclear physics. Here, we will
consider Hermitian Wigner matrices of the following form :

XN =
1√
N
WN

where WN is an Hermitian matrix, {Wii,
√

2RWij ,
√

2IWij}1≤i<j are independent
identically distributed random variables with law µ, with mean zero and variance
σ2. If the entries are independent Gaussian variables, XN =: XG

N is a matrix from
the Gaussian Unitary Ensemble (G.U.E.).

There is currently a quite precise knowledge of the asymptotic spectral proper-
ties (i.e. when the dimension of the matrix tends to infinity) of Wigner matrices.
This understanding covers both the so-called global regime (asymptotic behavior
of the spectral measure) and the local regime (asymptotic behavior of the extreme
eigenvalues and eigenvectors, spacings...). Wigner proved that a precise description
of the limiting spectrum of these matrices can be achieved.

Theorem 1.1. Wigner (1955, 1958)

µXN
w−→ µsc a.s. when N → +∞

where
dµsc
dx

(x) =
1

2πσ2

√
4σ2 − x2 1[−2σ,2σ](x) (1.1)

is the so-called semi-circular distribution.

A priori, the convergence of the spectral measure does not prevent an asymptot-
ically negligeable fraction of eigenvalues from going away from the limiting support
(called outliers in the following). Actually, it turns out that Wigner matrices do
not exhibit outliers.

Theorem 1.2. Bai and Yin (1988) Assume that the entries ofWN has finite fourth
moment, then almost surely,

λ1(XN )→ 2σ and λN (XN )→ −2σ when N → +∞.

In Tracy and Widom (1994), Tracy and Widom derived the limiting distribution
(called the Tracy-Widom law) of the largest eigenvalue of a G.U.E. matrix.
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Theorem 1.3. Let q : R→ R be the unique solution of the differential equation

q′′(x) = xq(x) + 2q(x)3

such that q(x) ∼x→+∞ Ai(x) where Ai is the Airy function, unique solution on R of
the differential equation f ′′(x) = xf(x) satisfying f(x) ∼ (4π

√
x)1/2 exp(−2/3x3/2)

at +∞. Then

lim
N→+∞

P
(
N2/3

σ

(
λ1(XG

N )√
N

− 2σ

)
≤ s
)

= F2(s),

where F2(s) = exp
(
−
∫ +∞
s

(x− s)q2(x)dx
)
.

The first main step to prove the universality conjecture for fluctuations of the
largest eigenvalue of Wigner matrices has been achieved by Soshnikov (1999); in
Lee and Yin (2014), a necessary and sufficient condition on off-diagonal entries of
the Wigner matrix is established for the distribution of the largest eigenvalue to
weakly converge to the Tracy-Widom distribution. We also refer to these papers
for references on investigations on edge universality.

In regards to eigenvectors, it is well known that the matrix whose columns are
the eigenvectors of a G.U.E. matrix can be chosen to be distributed according to the
Haar measure on the unitary group. In the non-Gaussian case, the exact distribu-
tion of the eigenvectors cannot be computed. However, the eigenvectors of general
Wigner matrices have been the object of a growing interest and in several papers,
a delocalization and universality property were shown for the eigenvectors of these
standard models (see among others Bloemendal et al., 2014; Erdős et al., 2009a,b;
Knowles and Yin, 2013; Tao and Vu, 2012 and references therein). Heuristically,
delocalization for a random matrix means that its normalized eigenvectors look like
the vectors uniformly distributed over the unit sphere. Let us state for instance the
following sample result.

Theorem 1.4. (Isotropic delocalization, Theorem 2.16 from Bloemendal et al.,
2014). Let XN be a N ×N Wigner matrix satisfying some technical assumptions.
Let v(1), . . . , v(N) denote the normalized eigenvectors of XN . Then, for any C1 > 0
and 0 < ε < 1/2, there exists C2 > 0 such that

sup
1≤i≤N

|〈v(i), u〉| ≤ N ε

√
N
,

for any fixed unit vector u ∈ CN , with probability at least 1− C2N
−C1 .

1.2. Deformed Wigner matrices. Practical problems (in the theory of statistical
learning, signal detection etc.) naturally lead to wonder about the spectrum reac-
tion of a given random matrix after a deterministic perturbation. In those applica-
tions, the random matrix is the noise and the perturbed matrix is a noisy version
of the information; the question is to know whether the observation of the spec-
tral properties of the perturbed matrix can give access to significant parameters on
the information. Theoretical results on these deformed random models may allow
to establish statistical tests on these parameters. A typical illustration is the so-
called BBP phenomenon (after Baik, Ben Arous, Péché) which put forward outliers
(eigenvalues that move away from the rest of the spectrum) and their Gaussian
fluctuations for spiked covariance matrices in Baik et al. (2005) and for low rank
deformations of G.U.E. in Péché (2006).
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In this paper, we consider additive perturbations of Wigner matrices. The pio-
nner works on additive deformations go back to Pastur (1972) for the behavior of
the limiting spectral distribution and to Füredi and Komlós (1981) for the behavior
of the largest eigenvalue.

We refer to Capitaine and Donati-Martin (2017) and the references therein for
a survey on spectral properties of deformed random matrices.

The model studied is as follows:

MN :=
WN√
N

+AN , (1.2)

where

(W) WN is a complex Wigner matrix, that is a N ×N random Hermitian matrix
such that {Wii,

√
2RWij ,

√
2IWij}1≤i<j are independent identically distributed

random variables with law µ. We assume that µ is a distribution with mean zero,
variance σ2, and satisfies a Poincaré inequality (see Appendix). Note that this con-
dition implies that µ has moments of any order (see Corollary 3.2 and Proposition
1.10 in Ledoux, 2001).

(A) AN is a N ×N deterministic Hermitian matrix, whose spectral measure µAN
converges to a compactly supported probability measure ν. We assume that AN
has a fixed number q of eigenvalues, not depending on N , outside the support of
ν called spikes, whereas the distance of the other eigenvalues to the support of ν
goes to 0.

The empirical spectral distribution µMN
converges a.s. towards the probability

measure λ := µsc � ν where µsc is the semicircular distribution with variance σ2

and � denotes the free convolution, see Pastur (1972) (in this paper, the limiting
distribution is given via a functional equation for its Stieltjes transform), Anderson
et al. (2010, Theorem 5.4.5). We refer to Voiculescu et al. (1992); Mingo and
Speicher (2017) for an introduction to free probability theory.

Concerning extremal eigenvalues, Capitaine et al. (2011) proved that the spikes
of AN can generate outliers for the limiting spectrum ofMN , i.e. eigenvalues outside
the support of the limiting distribution λ. More precisely, Capitaine et al. (2011)
proved the following (see Capitaine et al., 2011, Theorem 8.1 for a more general
statement).

Proposition 1.5. Capitaine et al. (2011) Assume that a spike θ with a fixed mul-
tiplicity k0 in the spectrum of AN satisfies :

θ ∈ Θσ,ν := {u ∈ R\supp(ν),

∫
R

dν(x)

(u− x)2
<

1

σ2
}. (1.3)

Denote by n0 + 1, . . . , n0 + k0 the descending ranks of θ among the eigenvalues of
AN . Then the k0 eigenvalues (λn0+i(MN ), 1 ≤ i ≤ k0) converge almost surely
outside the support of λ towards ρθ := θ + σ2gν(θ). Moreover, these eigenvalues
asymptotically separate from the rest of the spectrum since (with the conventions
that λ0(MN ) = +∞ and λN+1(MN ) = −∞) there exists 0 < δ0 such that almost
surely for all large N,

λn0(MN ) > ρθ + δ0 and λn0+k0+1(MN ) < ρθ − δ0. (1.4)
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Note that Capitaine et al. (2011) assumes that the distribution µ is symmetric
but this assumption can be removed. Indeed, this assumption is used for establish-
ing Theorem 5.1 in Capitaine et al. (2011) that is now generalized by Theorem 1.1
in Belinschi and Capitaine (2017). Note also that Capitaine et al. (2011) assumes
moreover that the support of ν has a finite number of connected components in or-
der to prove Theorem 6.1 in Capitaine et al. (2011) but this assumption is removed
in Theorem 2.3 in Capitaine and Péché (2016).

Remark 1.6. Note that

{u ∈ R\supp(ν),

∫
R

dν(x)

(u− x)2
<

1

σ2
} = {u ∈ R\supp(ν), H ′(u) > 0}

and for any θ in this set, ρθ = θ + σ2gν(θ) = H(θ), where H is defined by (2.14)
(see Section 2.4 below).

It turns out that we can also describe the angle between the eigenvector asso-
ciated to the outlier of MN and the corresponding eigenvector associated to the
spike θ. Capitaine (2013) (see also Capitaine and Donati-Martin, 2017) proved

Proposition 1.7. Capitaine (2013) We keep the notation and hypothesis of Propo-
sition 1.5. Let ξ be a unit eigenvector associated to one of the eigenvalues
(λn0+i(MN ), 1 ≤ i ≤ k0). Then, a.s.

‖PKer(AN−θI)(ξ)‖
2 −→N→+∞ τ(θ) := 1− σ2

∫
1

(θ − x)2
dν(x), (1.5)

where PE denotes the orthogonal projection onto any subspace E.

Note that fluctuations of outliers for deformed non-Gaussian Wigner matrices
have been more extensively studied in the case of perturbations AN of fixed rank r.
We emphasize that the limiting distribution in the CLT for outliers depends on the
localisation/delocalisation of the eigenvector of the spike. Roughly speaking, in the
delocalized case, the limiting distribution of the fluctuations of the correponding
outliers is Gaussian. In the localized case, the limiting distribution depends on the
distribution µ of the entries and thus, this uncovers a non universality phenomenon.
We refer to Capitaine et al. (2012) for these results.

We first recall the fluctuations of the largest eigenvalue λ1(MN ) when the matrix
AN is a diagonal matrix of rank 1 in the localized case.

Proposition 1.8. Capitaine et al. (2009) Assume that AN = diag(θ, 0, . . . , 0) with
θ > σ. The fluctuations of λ1(MN ) around ρθ = θ + σ2

θ are given by

cθ
√
N(λ1(MN )− ρθ)

(law)−→
N→∞

µ ? N(0, v2
θ)

where cθ = (1− σ2

θ2 )−1, v2
θ = 1

2
m4−3σ4

θ2 + σ4

θ2−σ2 and m4 denotes the fourth moment
of µ.

Capitaine and Péché (2016) proved a fluctuation result for any outlier of a full
rank deformation of a G.U.E. matrix. Their result yields the following

Proposition 1.9. Capitaine and Péché (2016) Assume thatWN is a G.U.E. matrix
(that is µ = N (0, σ2)) and that AN is a diagonal matrix with a spike λi0(AN ) =
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θ ∈ Θσ,ν of multiplicity one and limiting spectral distribution ν. The fluctuations
of λi0(MN ) around

ρ
(N)
θ = θ + σ2 1

N − 1

∑
λj(AN )6=θ

1

θ − λj(AN )

are given by1:

cθ,ν
√
N(λ1(MN )− ρ(N)

θ )
(law)−→
N→∞

N(0, σ2
θ,ν)

where cθ,ν =
(

1− σ2
∫

1
(θ−x)2 dν(x)

)−1

and

σ2
θ,ν = σ2

(
1− σ2

∫
1

(θ − x)2
dν(x)

)−1

.

1.3. Main results. In the following, we consider block diagonal perturbations. We
focus on spikes of the perturbation with multiplicity one generating an outlier in the
spectrum of the deformed Wigner model. Therefore, we shall consider the following
assumption on AN throughout the paper:

(A’) AN satisfies (A) and

AN = diag(Ap, AN−p),

with AN−p a (N − p) × (N − p) Hermitian matrix for some fixed integer p, Ap =
PDP ∗ is a fixed matrix (independent of N) where P a p× p unitary matrix and D
is a diagonal matrix.

Assume that AN has a spike of multiplicity one, which is an eigenvalue of Ap,
θ = λi0(AN ) for some i0, satisfying (1.3). Without loss of generality, we can
assume that θ = D11.

We set

WN =

(
Wp Y ∗

Y WN−p

)
,

where Wp ∈Mp(C), Y ∈M(N−p)×p(C) and WN−p ∈MN−p(C).

The main results of this paper are the following Theorems 1.11 and 1.12 on
non universality of fluctuations of an eigenvector associated with such an outlier.
But, sticking to the approach of Capitaine (2020), we first establish Theorem 1.10
below, which is an extension in the non-Gaussian case of Proposition 1.8 and Propo-
sition 1.9, in the block diagonal case.

LetMN be defined by (1.2) with assumptions (W) and (A’). By Proposition 1.5,

λi0(MN )→N→+∞ ρθ a.s.. (1.6)

Define
ρN = θ + σ2gµAN−p (θ). (1.7)

Note that
ρN →N→+∞ ρθ. (1.8)

1They consider fluctuations around this point depending on N in order to not prescribe speed
of convergence of µAN to ν.
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Theorem 1.10. Let MN be defined by (1.2) with assumptions (W) and (A’).
Define

Cp =

{
tcom(θIp −Ap), if θIp −Ap 6= 0
Ip else , (1.9)

where com(B) denotes the comatrix of a matrix B, and

c(1)
ρ =

(
1 + σ2

∫
dλ(x)

(ρθ − x)
2

)
Trp(Cp).

Then
dLP (c(1)

ρ

√
N(λi0(MN )− ρN ),ΦN ) −→

N→∞
0 (1.10)

where ΦN = Trp(CpWp) + ZN , Wp is the p × p upper left corner of the Wigner
matrix WN , ZN is a Gaussian random variable, independent from Wp, with mean
0 and variance vρ(N), with

vρ(N) = Trp(C
2
p)σ

4

∫
dλ(x)

(ρθ − x)
2 +

1

2
(m4 − 3σ4)κN

p∑
i=1

((Cp)ii)
2
,

λ = µsc � ν, κN = 1
N−p

∑N−p
i=1 (((θIN−p −AN−p)−1)ii)

2.

In particular, if AN−p is diagonal, c
(1)
ρ

√
N(λi0(MN )−ρN ) converges in distribution

to Trp(CpWp) +Z where Z is a Gaussian random variable, independent from Wp,
with mean 0 and variance vρ, with

vρ = Trp(C
2
p)σ

4

∫
dλ(x)

(ρθ − x)
2 +

1

2
(m4 − 3σ4)

∫
dν(x)

(θ − x)
2

p∑
i=1

((Cp)ii)
2
.

The aim of Theorems 1.11 and 1.12 below is to study the fluctuations associated
to the a.s. convergence given in Proposition 1.7 above, for block diagonal perturba-
tions. We first state an approximation result in distribution, in the spirit of Najim
and Yao (2016) for perturbations AN satisfying (A’).

Theorem 1.11. Let MN be defined by (1.2) with assumptions (W) and (A’). Let
ui0 , resp. vi0 be a unit eigenvector associated to the spike θ of AN , resp. the outlier
λi0(MN ). Define τN (θ) an approximation of τ(θ) by

τN (θ) = 1− σ2

∫
1

(θ − x)2
dµAN−p(x). (1.11)

Then
dLP (

√
N(|〈ui0 , vi0〉|2 − τN (θ)),ΨN ) −→

N→∞
0

where the r.v. ΨN is given by

ΨN = (P ∗(cθ,σWp + Zp,N )P )11,

where
cθ,σ = σ2g′′ν (θ), (1.12)

Wp is the p × p upper left corner of the Wigner matrix WN , Zp,N is a centered
Gaussian Hermitian matrix of size p, independent from Wp, with independent en-
tries (modulo the symmetry conditions). The diagonal coefficients are i.i.d. with
variance

σ4Bθ,ν +
1

2
(m4 − 3σ4)Aθ,ν,N (1.13)
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where

Bθ,ν = −1

6
g′′′ν (θ)− σ2

2
(g′′ν (θ))2 1 + 2σ2g′ν(θ)

1 + σ2g′ν(θ)
, (1.14)

Aθ,ν,N =

1

N − p

N−p∑
i=1

(
σ2g′′ν (θ)[(θIN−p −AN−p)−1]ii − (1 + σ2g′ν(θ))[(θIN−p −AN−p)−2]ii

)2
,

(1.15)
m4 is the fourth moment of µ, gν is the Stieltjes transform of ν. The off diagonal
elements Zp,N (i, j), i < j are iid complex Gaussian with distribution Z such that
E(Z2) = 0 and E(|Z|2) = σ4Bθ,ν .

In the case where the matrix AN−p is a diagonal matrix, the sequence (Aθ,ν,N )N
defined in (1.15) converges as N tends to infinity. This leads to the following
fluctuations result:

Theorem 1.12. Let MN be defined by (1.2) with assumptions (W), (A’) and
AN−p diagonal.

Let ui0 , resp. vi0 be a unit eigenvector associated to the spike θ of AN , resp. to
the outlier λi0(MN ). Then,

√
N(|〈ui0 , vi0〉|2 − τN (θ))

(law)−→
N→∞

(P ∗(cθ,σWp + Zp)P )11 (1.16)

where τN (θ) is defined by (1.11). Wp is the p × p upper left corner of the Wigner
matrix WN , Zp is a centered Gaussian Hermitian matrix of size p, independent
from Wp, with independent entries (modulo the symmetry condition). The diagonal
coefficients are i.i.d. with variance

1

2
(m4 − 3σ4)Aθ,ν + σ4Bθ,ν (1.17)

and the off diagonal elements are iid complex Gaussian with distribution Z such
that E(Z2) = 0 and E(|Z|2) = σ4Bθ,ν where

cθ,ν = σ2g′′ν (θ),

Aθ,ν = −1

6
g′′′ν (θ)(1 + σ2g′ν(θ))2 − 2σ4(g

′′

ν (θ))2g′ν(θ)− σ2(g
′′

ν (θ))2,

Bθ,ν = −1

6
g′′′ν (θ)− σ2

2
(g′′ν (θ))2 1 + 2σ2g′ν(θ)

1 + σ2g′ν(θ)
,

(1.18)

m4 is the fourth moment of µ and gν is the Stieltjes transform of ν.

In particular, we readily deduce the following corollary.

Corollary 1.13. Let MN be defined by (1.2) with assumptions (W) and (A’).
Assume moreover that AN is a diagonal matrix (p = 1). Let ui0 , resp. vi0 be a
unit eigenvector associated to the spike θ of AN , resp. the outlier λi0(MN ). Then,

√
N(|〈ui0 , vi0〉|2 − τN (θ))

(law)−→
N→∞

cθ,νW11 + Z (1.19)

where Z is a centered Gaussian variable, independent from W11, with variance :
1

2
(m4 − 3σ4)Aθ,ν + σ4Bθ,ν . (1.20)

See Eq.(1.18) for the definitions of cθ,σ, Aθ,ν , Bθ,ν .
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Note that when the Wigner matrix is Gaussian, the choice of a diagonal matrix
for AN is not a restriction, due to the unitary invariance of the G.U.E..

The proof of Theorem 1.11 relies upon a representation, through Helffer-
Sjöstrand formula, of the variable |〈ui0 , vi0〉|2 in terms of the p × p-matrix val-
ued process {Gp(z), z ∈ C\R} where Gp(z) denotes the principal submatrix of size
p of the resolvant matrix G(z) = (zIN −MN )−1. Then, the fluctuations of the
process {Gp(z), z ∈ C\R} are analysed using Schur’s formula which enables to
express {Gp(z), z ∈ C\R} in terms of random sesquilinear forms. This approach
is described in Section 4 where we also prove Theorem 1.12. Section 2 gathers
preliminary results used in the proof of the main results. Therein, first we recall
classical algebraic identities, Helffer-Sjöstrand’s calculus, tightness criterion for ran-
dom analytic process and some basic facts on free convolution with a semicircular
distribution; later we establish some extension of central limit theorem for random
quadratic forms and recall or deduce some results on deformed Wigner matrices
from Belinschi and Capitaine (2017); Capitaine (2020). In Section 3, we first estab-
lish Theorem 1.10, sticking to the approach of Capitaine (2020). The last Section
is an appendix reminding the reader about Poincaré inequality and concentration
phenomenon.

For any integer number k, we will say that a matrix-valued function fN on C\R
is O

(
1
Nk

)
if there exists a polynomial Q with nonnegative coefficients and an integer

number d such that for all large N, for any z in C \ R,

‖fN (z)‖ ≤ Q(|=z|−1)(|z|+ 1)d

Nk
.

For a family of functions f (i)
N , i ∈ {1, . . . , N}2, we will set f (i)

N = O(u)
(

1
Nk

)
if for

each i, f (i)
N = O

(
1
Nk

)
and moreover one can find a bound of the norm of each f (i)

N

as above involving a common polynomial Q and a common d, that is not depending
on i.
For two sequences (XN )N and (YN )N of random variables, XN = YN +oP(1) means
that XN − YN −→N→∞ 0 in probability.

2. Preliminaries

2.1. Basic identities and inequalities. For a matrix A ∈ MN (C) and I and J non
empty subsets of {1, . . . , N}, we denote by AI×J the submatrix of A obtained by
keeping the rows with indices i ∈ I and columns with indices j ∈ J . We set
AI := AI×I .

Proposition 2.1 (Schur inversion formula). Let I be a non-empty subset of
{1, . . . , N} and A ∈ MN (C) such that AI is invertible, then A is invertible if and
only if AIc − AIc×IA−1

I AI×Ic is invertible, in which case the following formulas
hold:

(A−1)I = (AI)
−1 + (AI)

−1AI×Ic(AIc −AIc×IA−1
I AI×Ic)

−1AIc×I(AI)
−1,

(A−1)I×Ic = −(AI)
−1AI×Ic(AIc −AIc×IA−1

I AI×Ic)
−1,

(A−1)Ic×I = −(AIc −AIc×IA−1
I AI×Ic)

−1AIc×I(AI)
−1,

(A−1)Ic = (AIc −AIc×IA−1
I AI×Ic)

−1.
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Lemma 2.2. For any matrix B ∈MN (C) and for any fixed k, we have

N∑
l=1

|Blk|2 ≤ ‖B‖2 (2.1)

(or equivalently
N∑
l=1

|Bkl|2 ≤ ‖B‖2.) (2.2)

Therefore, we have

1

N

N∑
k,l=1

|Bkl|2 ≤ ‖B‖2. (2.3)

Proof : Note that

N∑
l=1

|Blk|2 = TrN (BEkkB
∗)

= TrN (B∗BEkk)

≤ ‖B‖2 TrN (Ekk) = ‖B‖2.

Now, since

N∑
l=1

|Bkl|2 =

N∑
l=1

|Bkl|2 =

N∑
l=1

|(B∗)lk|2 and ‖B∗‖ = ‖B‖,

(2.1) and (2.2) can be deduced from each other thanks to conjugate transposition.
Finally (2.2) readily yields (2.3). �

Lemma 2.3 (Lemma A2 of Capitaine, 2020). Let A and H be m × m matrices
such that, for some K > 0,

‖A‖ ≤ K, ‖H‖ ≤ K. (2.4)

Then
det(A+H) = det(A) + Trm

(
tcom(A)H

)
+ ε,

where com(A) denotes the comatrix of A, and there exists a constant Cm,K > 0,
only depending on m and K, such that |ε| ≤ Cm,K ‖H‖2 .

We will often use the following obvious facts that for any z ∈ C \ R, for any
N ×N Hermitian matrix H,

‖ (zIN −H)
−1 ‖ ≤ |=z|−1 (2.5)

and for any probability measure ν on R, the Stieltjes transform gν satisfies for any
z ∈ C \ R, =z=gν(z) < 0, |gν(z)| ≤ |=z|−1, and for any α ≥ 0, any x ∈ R,

1

|z − αgν(z)− x|
≤ |=z|−1. (2.6)
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2.2. Helffer-Sjöstrand’s calculus.

2.2.1. Helffer-Sjöstrand’s representation formula. We recall Helffer-Sjöstrand’s rep-
resentation formula (see Benaych-Georges and Knowles, 2017, Proposition C.1): let
f ∈ Ck+1(R) with compact support and M be a Hermitian matrix; we have

f(M) =
1

π

∫
C
∂̄Fk(f)(z) (M − z)−1d2z (2.7)

where d2z denotes the Lebesgue measure on C,

Fk(f)(x+ iy) =

k∑
l=0

(iy)l

l!
f (l)(x)χ(y) (2.8)

where χ : R→ R+ is a smooth compactly supported function such that χ ≡ 1 in a
neighborhood of 0, and ∂̄ = 1

2 (∂x + i∂y).
The function Fk(f) coincides with f on the real axis and is an extension to the

complex plane.
Moreover

∂̄Fk(f)(x+ iy) =
1

2

(iy)k

k!
f (k+1)(x)χ(y) +

i

2

k∑
l=0

(iy)l

l!
f (l)(x)χ

′
(y). (2.9)

Thus, since χ ≡ 1 in a neighborhood of 0, we have that, in a neighborhood of the
real axis,

∂̄Fk(f)(x+ iy) =
1

2

(iy)k

k!
f (k+1)(x) = O(|y|k) as y → 0. (2.10)

2.2.2. Computation of Helffer-Sjöstrand’s integral.

Proposition 2.4. Let h be a smooth function with compact support in (ρθ−2δ, ρθ+
2δ) and satisfying h ≡ 1 on [ρθ− δ, ρθ + δ]. Let χ be a compactly supported function
on (−L,L), and χ = 1 around 0. We denote by D = (ρθ − 2δ, ρθ + 2δ)× (−L,L).
Let φ be a meromorphic function in D, with a pole in ρθ. Then,

I(φ) :=
1

π

∫
C
∂̄Fk(h)(z) φ(z)d2z = −Res(φ, ρθ) (2.11)

where Fk(h) is defined in (2.8). Res(φ, ρθ) denotes the residue of the function φ at
the point ρθ.

Proof : Let ε small enough such that Fk(h)(z) = 1 for z ∈ B(ρθ, ε). Set Dε =
D\B(ρθ, ε). φ is holomorphic on Dε. Since Fk(h) has compact support in D, we
have,

0 =

∫
∂D

Fk(h)(z) φ(z)dz =

∫
∂Dε

Fk(h)(z)φ(z)dz +

∫
∂B(ρθ,ε)

Fk(h)(z) φ(z)dz

= 2i

∫
Dε

∂̄Fk(h)(z) φ(z)d2z +

∫
∂B(ρθ,ε)

φ(z)dz

where the first term is obtained by Green’s formula using that ∂̄φ(z) = 0 on Dε.∫
Dε

∂̄Fk(h)(z) φ(z)d2z−→
ε→0

πI(φ)
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and ∫
∂B(ρθ,ε)

Fk(h)(z) φ(z)dz = 2iπRes(φ, ρθ).

�

2.3. Tightness criterion for a sequence of random analytic processes. We recall here
some results from Shirai (2012). Let D ⊂ C be an open set in the complex plane.
Denote by H(D) the space of complex analytic functions in D, endowed with the
uniform topology on compact set. For f ∈ H(D) and K a compact set of D, we
denote ‖f‖K = supz∈K |f(z)|. The space H(D) is equipped with the (topological)
Borel σ-field B(H(D)) and the set of probability measures on (H(D);B(H(D))) is
denoted by P(H(D)). By a random analytic function on D we mean an H(D)-
valued random variable on a probability space. The probability law of a random
analytic function is uniquely determined by its finite dimensional distributions.

Proposition 2.5 (Proposition 2.5. in Shirai, 2012). Let fn be a sequence of random
analytic functions in D. If ‖fn‖K is tight for any compact set K, then L(fn) is
tight in P(H(D)).

Using that, by Markov’s inequality, for any C > 0 and any r > 0,

P (‖fn‖K > C) ≤ 1

Cr
E (‖fn‖rK) , (2.12)

the following lemma turns out to be useful to prove tightness results.

Lemma 2.6 (lemma 2.6 of Shirai, 2012). For any compact set K in D, there exists
δ > 0 such that

‖f‖rK ≤ (πδ2)−1

∫
Kδ

|f(z)|rm(dz), f ∈ H(D),

for any r > 0, where Kδ ⊂ D is the closure of the δ-neighborhood of K and m
denotes the Lebesgue measure.

2.4. Free convolution with a semicircular distribution. Let τ be a probability mea-
sure on R. Its Stieltjes transform gτ : z 7→

∫
R

1
z−xdτ(x) is analytic on the complex

upper half-plane C+. There exists a domain

Dα,β = {u+ iv ∈ C, |u| < αv, v > β}
on which gτ is univalent. Let Kτ be its inverse function, defined on gτ (Dα,β), and

Rτ (z) = Kτ (z)− 1

z
.

Given two probability measures τ and ν, there exists a unique probability measure
λ such that

Rλ = Rτ +Rν

on a domain where these functions are defined. The probability measure λ is called
the free convolution of τ and ν and denoted by τ � ν.

The free convolution of probability measures has an important property, called
subordination, which can be stated as follows: let τ and ν be two probability
measures on R; there exists an analytic map ωτ,ν : C+ → C+ such that

∀z ∈ C+, gτ�ν(z) = gν(ωτ,ν(z)).
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This phenomenon was first observed by D. Voiculescu under a genericity assumption
in Voiculescu (1993), and then proved in generality in Biane (1998) Theorem 3.1.
Later, a new proof of this result was given in Belinschi and Bercovici (2007), using
a fixed point theorem for analytic self-maps of the upper half-plane.

In Biane (1997), P. Biane provides a deep study of the free convolution by a
semicircular distribution. We first recall here some of his results that will be useful
in our approach. Let ν be a probability measure on R and µsc the semicircular
distribution defined by (1.1). For any z ∈ C \ supp(µsc � ν), the subordination
function ωµsc,ν is given by

ωµsc,ν(z) = z − σ2gµσ�ν(z). (2.13)

In the following, we will denote ωµsc,ν by ω. For any x ∈ C \ supp(ν), define

H(x) = x+ σ2gν(x). (2.14)

We have for any x ∈ C \ supp(µsc � ν),

H(ω(x)) = x. (2.15)

More precisely, the following one to one correspondance holds:

R \ supp(µsc � ν)

ω−→
←−
H

{u ∈ R \ supp ν,

∫
1

(u− x)2
dν(x) <

1

σ2
}. (2.16)

Assume that AN satisfies (A). Let {θj , 1 ≤ j ≤ q} be the spiked eigenvalue of AN
outside supp(ν). Furthermore, for all θj ∈ Θσ,ν , where Θσ,ν is defined by (1.3), we
set

ρθj := H(θj) = θj + σ2gν(θj) (2.17)

which is outside the support of µsc � ν according to (2.16), and we define

Kσ,ν(θ1, . . . , θq) := supp(µsc � ν)
⋃{

ρθj , θj ∈ Θσ,ν

}
.

An important consequence of (2.16) is the following

Proposition 2.7 (Theorem 2.3 in Capitaine and Péché, 2016). For any δ > 0,

supp(µsc � µAN ) ⊂ Kσ,ν(θ1, . . . , θq) + (−δ, δ),
when N is large enough.

2.5. Central limit theorem for processes of matrix valued random quadratic forms.

Lemma 2.8 (Lemma 2.7 in Bai and Silverstein, 1998). There exists C > 0 such
that for any N × N deterministic matrix B = (bij)1≤i,j≤N , any random vectors

Y =

 y1

...
yN

 in CN with i.i.d. standardized entries ( E(yi) = 0, E(|yi|2) = 1,

E(y2
i ) = 0) such that E(|yi|4) < κ and any independent copy X of Y , one has

E(|Y ∗BY − TrN (B)|2) ≤ CκTrN (B∗B),

E(|Y ∗BX|2) ≤ CκTrN (B∗B).

In Najim and Yao (2016), the authors establish the following variation around
the central limit theorem for martingales.
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Lemma 2.9 (Lemma 5.6 in Najim and Yao, 2016). Suppose that for each n
(Ynj ; 1 ≤ j ≤ rn) is a Cd-valued martingale difference sequence with respect to
the increasing σ-field {Gn,j ; 1 ≤ j ≤ rn} having second moments. Write

Y Tnj = (Y 1
nj , . . . , Y

d
nj).

Assume moreover that (Θn(k, l))n and (Θ̃n(k, l))n are uniformly bounded sequences
of complex numbers, for 1 ≤ k, l ≤ d. If

rn∑
j=1

E
(
Y knj Ȳ

l
nj | Gn,j−1

)
−Θn(k, l)

P−→
n→+∞

0, (2.18)

rn∑
j=1

E
(
Y knjY

l
nj | Gn,j−1

)
− Θ̃n(k, l)

P−→
n→+∞

0, (2.19)

and for each ε > 0,
∑rn
j=1 E

(
‖Ynj‖21I‖Ynj‖>ε

)
→n→+∞ 0, then, for every bounded

continuous function f : Cd → R,

Ef(

rn∑
j=1

Ynj)− Ef(Zn) −→
n→+∞

0, (2.20)

where Zn is a Cd-valued centered Gaussian random vector with parameters

E(ZnZ
∗
n) = (Θn(k, l))k,l and E(ZnZ

T
n ) = (Θ̃n(k, l))k,l.

Following the lines of the proof of the central limit theorem for quadratic forms by
Baik and Silverstein in the appendix of Capitaine et al. (2009) and using Lemma 2.9,
we will establish the following extension.

Proposition 2.10. Let (z1, . . . , zq) be in Iq, where I is a subset of C such that
∀z ∈ I, z̄ ∈ I. For any z in {z1, . . . , zq}, let B(z) = (bij(z)) be a N × N matrix
such that (B(z))∗ = B(z̄) and there exists a constant a > 0 (not depending on N)
such that for any z in {z1, . . . , zq}, ‖B(z)‖ ≤ a. Let p be a fixed integer number and
YN = (yij)1≤i≤N,1≤j≤p be a N×p matrix which contains i.i.d. complex standardized
entries with bounded fourth moment and such that E(y2

11) = 0. Set

VN =
(

(1/
√
N)(Y ∗NB(z1)YN − TrN(B(z1))Ip), . . . ,

(1/
√
N)(Y ∗NB(zq)YN − TrN(B(zq))Ip)

)
.

If there exists uniformly bounded sequences (fN )N and (gN )N of functions on I2

such that for any zl, zk,

1

N

N∑
i=1

(B(zl))ii(B(zk))ii = fN (zl, zk) + o(1),

and
trN (B(zl)B(zk)) = gN (zl, zk) + o(1),

then dLP (VN ,VN )→ 0 where VN = (GN (z1), . . . ,GN (zq)), GN is a centered Gauss-
ian matrix valued process whose distribution is given as follows:

1) the processes ((GN (z))ij)z for 1 ≤ i ≤ j ≤ p are independent, and (GN (z))ji =

(GN (z̄))ij.
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2) For i ≤ p,
E((GN (zl))ii(GN (zk))ii) = (E(|y11|4 − 2) (fN (zl, zk))

+gN (zl, zk)

and
E((GN (zl))ii(GN (zk))ii) = E((GN (z1))ii(GN (z̄2))ii) (2.21)

3) For 1 ≤ i 6= j ≤ p,
E((GN (zl))ij(GN (zk))ij) = 0

and
E((GN (zl))ij(GN (zk))ij) = gN (zl, z̄k). (2.22)

Proof : First, for any B in {B(z), z = z1, . . . , zq} and any 1 ≤ s, t ≤ p, one can
write (1/

√
N)
(
Y ∗NBYN − Tr(B)Ip

)
st

as a sum of martingale differences:

(1/
√
N)(Y ∗NBYN − Tr(B)Ip)st

= (1/
√
N)

N∑
i=1

(
(ȳisyit − δst)bii + ȳis

∑
j<i

yjtbij + ȳis
∑
j>i

yjtbij

)

= (1/
√
N)

N∑
i=1

(
(ȳisyit − δst)bii + ȳis

∑
j<i

yjtbij + yit
∑
j<i

ȳjsbji

)

=

N∑
i=1

(Zi(B))st

where

(Zi(B))st = (1/
√
N)

(
(ȳisyit − δst)bii + ȳis

∑
j<i

yjtbij + yit
∑
j<i

ȳjsbji

)
.

Let FN,i be the σ-field generated by {y1s, . . . , yis, 1 ≤ s ≤ p}. Let also Ei(·) de-
note conditional expectation with respect to FN,i. It is clear that for any B in
{B(z), z ∈ I}, Zi(B) ∈Mp(C) ' Cp2 is measurable with respect to FN,i and satis-
fies Ei−1(Zi(B)) = 0.

We will show that the conditions of Lemma 2.9 are met for the Cqp2 -valued
martingale difference sequence Y TNi = (Zi(B(z1)), . . . , Zi(B(zq))).

Write (Zi(B))st = Xi
1 +Xi

2, with Xi
1 = (1/

√
N)(ȳisyit − δst)bii. Then for ε > 0,

N∑
i=1

E(|Xi
1|2 1(|Xi1|≥ε)) ≤ a

2E(|ȳ1sy1t − δst|2 1{|ȳ1sy1t−δst|2≥
√
Nε/a})→ 0 (2.23)

as N →∞, by dominated convergence theorem.
We have

E|
∑
j<i

yjtbij |4

= E(|y1t|4
∑
j<i

|bij |4) + 2E(
∑
∗
|bij1 |2|bij2 |2) + E(|y2

1t|2
∑
∗
|bij1 |2|bij2 |2)

≤ E|y1t|4E[(max
i,j
|bij |)2 max

i
(BB∗)ii] + (2 + E|y2

1t|2)E[(BB∗)2
ii]

≤ a4
[
E|y1t|4 + 2 + E|y2

1t|2
]
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where the sum
∑
∗

is over {j1 < i, j2 < i, j1 6= j2}. Therefore E|Xi
2|4 = o(N−1) so

that for any ε > 0,

N∑
i=1

E(|Xi
2|2 1(|Xi2|≥ε)) ≤ (1/ε2)

N∑
i=1

E|Xi
2|4 → 0 as N →∞. (2.24)

Thus, by (2.23), (2.24) and (A.4) in Capitaine et al. (2009), {Zi(B)} satisfies the
Lindeberg condition of Lemma 2.9.

Now, we shall verify condition (2.19) of Lemma 2.9. We have for any B and C
in {B(z), z ∈ I}, for any 1 ≤ s, t, s′, t′ ≤ p,

N∑
i=1

Ei−1(Zi(B))stZi(C)s′t′) (2.25)

= (1/N)

N∑
i=1

{
(E|y11|4 − 1)δstδss′δs′t′ + δst′δs′t(1− δss′))biicii (2.26)

+E(|y11|2ȳ11)

δstδss′∑
j<i

yjt′cijbii + δs′t′δss′
∑
j<i

yjtbijcii


+E(|y11|2y11)

δstδtt′∑
j<i

ȳjs′cjibii + δs′t′δtt′
∑
j<i

ȳjsbjicii

 (2.27)

+δs′t
∑
j<i

ȳjsbji
∑
j<i

yjt′cij + δst′
∑
j<i

ȳjs′cji
∑
j<i

yjtbij

}
.

Let BL (resp. BU denote the strictly lower (resp. upper) triangular part of B. We
have, using Cauchy-Schwarz’s inequality, that

E|(1/N)

N∑
i=1

cii
∑
j<i

yjtbij |2 = E|(1/N)

N−1∑
j=1

yjt
∑
i>j

ciibij |2

= (1/N2)E(

N−1∑
j=1

∑
i>j

ciibij
∑
i>j

c̄i ibij)

= (1/N2)E(
∑
ii

ciic̄i i(BLB
∗
L)ii)

≤ E
[
(max

i
|cii|)2(1/N)(

∑
ii

|(BLB∗L)ii|2)1/2
]

= E
[
(max

i
|cii|)2(1/N)Tr((BLB

∗
L)2)1/2

]
≤ E

[
(max

i
|cii|)2(1/

√
N)‖BL‖2

]
.

We apply the following bound (due to R. Mathias, see Mathias, 1993): ‖BL‖ ≤
γN‖B‖ where γN = O(lnN), and the bounds ‖B‖ ≤ a, ‖C‖ ≤ a, to conclude that

(1/N)

N∑
i=1

cii
∑
j<i

yjtbij
P−→

N→+∞
0.
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Thus,
N∑
i=1

Ei−1(Zi(B))stZi(C)s′t′)

= (1/N)

N∑
i=1

{[
(E|y11|4 − 1)δstδss′δs′t′ + δst′δs′t(1− δss′)

]
biicii

+δs′t
∑
j<i

ȳjsbji
∑
j<i

yjt′cij + δst′
∑
j<i

ȳjs′cji
∑
j<i

yjtbij

}
+ oP(1)

=
[
(E|y11|4 − 1)δstδss′δs′t′ + δst′δs′t(1− δss′)

] 1

N

N∑
i=1

biicii

+δs′t(1/N)(YN )∗sBUCL(YN )t′ + δst′(1/N)(YN )∗s′CUBL(YN )t + oP(1)

Besides, from Lemma 2.8 we have

E
∣∣∣(1/N)((YN )∗sBUCL(YN )t′ − δst′Tr(BUCL))

∣∣∣2 ≤ (1/N2)E(Tr(C∗LB
∗
UBUCL)

≤ KE‖B‖2‖C‖2 ln4N

N
→N→∞ 0.

Hence,
N∑
i=1

Ei−1(Zi(B))st(Zi(C))s′t′

=
[
(E|y11|4 − 1)δstδss′δs′t′ + δst′δs′t(1− δss′)

] 1

N

N∑
i=1

biicii

+δst′δs′t
1

N

∑
j<i

bijcji + δs′tδst′
1

N

∑
j<i

bjicij + oP(1)

=
[
(E|y11|4 − 1)δstδss′δs′t′ + δst′δs′t(1− δss′)

] 1

N

N∑
i=1

biicii

+δst′δs′t
1

N
Tr(BC)− δs′tδst′

1

N

∑
i

biicii + oP(1)

=
[
(E|y11|4 − 1)δstδss′δs′t′ − δst′δs′tδss′)

] 1

N

N∑
i=1

biicii

+δst′δs′t trN (BC) + oP(1).

Proposition 2.10 readily follows. �

2.6. Preliminary results on deformed Wigner matrices.

2.6.1. Preliminary results from Belinschi and Capitaine (2017). Note that, in Sec-
tion 5 in Belinschi and Capitaine (2017), the authors consider for any fixed integer
numbers m, r, t and any fixed m ×m Hermitian matrices γ, α1, . . . , αr, β1, . . . , βt,

the matrix model in Mm(C)⊗MN (C), γ⊗ IN +
∑r
v=1 αv⊗

W
(v)
N√
N

+
∑t
u=1 βu⊗A

(u)
N

where the W (v)
N ’s are independent more general Wigner matrices than ours and
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the A(u)
N ’s are deterministic matrices such that supN ‖A

(u)
N ‖ < ∞. Therefore, the

results therein apply to our model by choosing m = 1, r = t = 1 and α1 = 1 = β1.

For any z ∈ C\R, G(z) = [Gij(z)]1≤i,j≤N = (zIN−MN )−1 denotes the resolvant
of MN . Note that by (2.5),

‖G(z)‖ ≤ |=z|−1. (2.28)
For any z ∈ C \ R, define gN (z) = E(trN G(z)) and denote by g̃N (z) the Stieltjes
transform of µsc � µAN .

Lemma 2.11. For any (i, j) ∈ {1, . . . , N}2,

E (Gij(z)) =
[(

(z − σ2g̃N (z))IN −AN
)−1
]
ij

+O(u)

(
1√
N

)
.

Proof : According to Corollary 5.5 in Belinschi and Capitaine (2017), for any (i, j) ∈
{1, . . . , N}2,

E (Gij(z)) = (YN (z))ij +
(1−

√
−1)κ3

2
√

2N
√
N

N∑
s,l=1

(YN (z))il (YN (z))ss (YN (z))ll E (Gsj(z))

+O
(u)
ij (

1

N
)

where
YN (z) = ((z − gN (z))IN −AN )

−1

and κ3 is the third classical cumulant of µ. Note that |=(z−gN (z))| ≥ |=z| so that,
by (2.5)

‖YN (z)‖ ≤ 1

|=z|
. (2.29)

Now, ∣∣∣∣∣∣
N∑

s,l=1

(YN (z))il (YN (z))ss (YN (z))ll E (Gsj(z))

∣∣∣∣∣∣
≤

N∑
s,l=1

|(YN (z))il| |(YN (z))ss| |(YN (z))ll| |E (Gsj(z))|

≤ |=z|−2N

(
N∑
s=1

|E (Gsj(z))|2
)1/2( N∑

l=1

|(YN (z))il|
2

)1/2

≤ N |=z|−4

where we used Lemma 2.2, (2.29) and (2.28). Therefore

E (Gij(z)) = (YN (z))ij +O
(u)
ij (

1√
N

).

Now, according to (5.56) in Belinschi and Capitaine (2017),∥∥∥YN (z)− ỸN (z)
∥∥∥ = O

(
1√
N

)
where

ỸN (z) = ((z − g̃N (z))IN −AN )
−1
. (2.30)

Lemma 2.11 readily follows. �
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Lemma 2.12. We have

∀z ∈ C \ R, gN (z) = g̃N (z) +O(
1

N
).

Proof : According to Proposition 5.8 in Belinschi and Capitaine (2017), we have

gN (z)− g̃N (z) =
(

1− g̃
′

N (z)
)
L̃N (z) +O(

1

N
√
N

)

where

L̃N (z) =
κ4

2N3

N∑
i,l=1

(
ỸN (z)2

)
ll

[(
ỸN (z)

)
ii

]2 (
ỸN (z)

)
ll

+
κ3(1 +

√
−1)

2
√

2N2
√
N

N∑
i,l=1

(
ỸN (z)2

)
ll

(
ỸN (z)

)
ii

(
ỸN (z)

)
li

+
κ3(1−

√
−1)

2
√

2N2
√
N

N∑
i,l=1

(
ỸN (z)2

)
il

(
ỸN (z)

)
ii

(
ỸN (z)

)
ll

+
κ3(1−

√
−1)

2
√

2N2
√
N

N∑
i,l=1

(
ỸN (z)2

)
ll

(
ỸN (z)

)
il

(
ỸN (z)

)
ii
,

and ỸN is defined by (2.30). (Note that in Proposition 5.8 in Belinschi and Capi-
taine, 2017, in full generality the

(
ỸN (z)

)
il
’s are m×m matrices which a priori do

not commute and G̃N (zIm) is a m×m matrix too. But in the present paper, since
m = 1,

(
ỸN (z)

)
il
’s are scalar and obviously commute and G̃N (zIm) = g̃N (z).)

Note that, |=(z − g̃N (z))| ≥ |=z| so that, by (2.5),

‖ỸN (z)‖ ≤ |=z|−1.

Lemma 2.12 readily follows by using Cauchy-Schwarz’s inequality and (2.3). �

Lemma 8.7 in Belinschi and Capitaine (2017) implies in particular the following
variance estimates.

Lemma 2.13.

Var(Gij(z)) = O(u)(1/N).

Lemma 2.14.

Var(trN G(z)) = O(1/N2)

The following result is a corollary of Theorem 1.1 in Belinschi and Capitaine
(2017).

Proposition 2.15 (Theorem 1.1 in Belinschi and Capitaine, 2017). Let [b; c] be a
real interval such that there exists δ > 0 such that, for any large N , [b + δ; c + δ]
lies outside the support of µsc�µAN . Then, almost surely, for all large N , there is
no eigenvalue of MN in [b; c].



148 M. Capitaine and C. Donati-Martin

2.6.2. Quantitative asymptotic freeness. Let ε0 > 0 be fixed such that
d(ρθ, supp(µsc � ν) ∪ {ρθj , θj 6= θ}) > ε0 and d(θ, supp(ν) ∪ {θj , θj 6= θ}) > ε0. Let
ΩN be the event on which there is no eigenvalue of WN−p√

N
+AN−p in ]ρθ−ε0; ρθ+ε0[,

λi0(MN ) is the unique eigenvalue of MN in ]ρθ − ε0/2; ρθ + ε0/2[ and
∥∥∥WN√

N

∥∥∥ ≤ 3.
Propositions 2.7, 2.15 applied to MN−p, Proposition 1.5 and Bai-Yin’s theorem
lead that

lim
N→+∞

1IΩN = 1, a.s. (2.31)

Denoting by ĜN−p the resolvent of the lower right submatrix of size N − p of
MN and ρN being defined by (1.7), we have the following

Proposition 2.16.
√
N

{
trN−p ĜN−p(ρN )1IΩN −

∫
dµsc � µAN−p(x)

(ρN − x)

}
goes to zero in probability.

Proof : We stick to the proof of Proposition 5.5 in Capitaine (2020). Using Propo-
sition 2.7, for N large enough,

d(ρN , supp(µsc � µAN−p)) > ε0/2 (2.32)

and on ΩN , d
(
{ρN , λi0(MN )}, spect

(
WN−p√

N
+AN−p

))
> ε0/2, so that∥∥∥ĜN−p(ρN )

∥∥∥ ≤ 2

ε0
,
∥∥∥ĜN−p(λi0(MN ))

∥∥∥ ≤ 2

ε0
. (2.33)

Moreover, there exists K > 0 such that for any x ∈ supp(µsc � µAN−p),

|ρN − x| ≤ K and on ΩN ,

∥∥∥∥(ρNIN−p −
WN−p√

N
−AN−p

∥∥∥∥ ≤ K.
Let g : R→ R be a C∞ function with support in {ε0/4 ≤ |x| ≤ 2K} and such that
g ≡ 1 on {ε0/2 ≤ |x| ≤ K}. f : x 7→ g(x)

x is a C∞ function with compact support.
Note that ∫

dµsc � µAN−p(x)

(ρN − x)
=

∫
f (ρN − x) dµsc � µAN−p(x) (2.34)

and on ΩN , ĜN−p(ρN ) = f

(
ρNIN−p −

WN−p√
N
−AN−p

)
. (2.35)

According to Lemma 2.12, for any z ∈ C \ R,
√
N trN−p E

[
ĜN−p(ρN − z)

]
=
√
N
dµsc � µAN−p(x)

(ρN − z − x)
+ o(z)(1), (2.36)

where there exist polynomials Q1 and Q2 with non negative coefficients and (d, k) ∈
N2 such that

‖o(z)(1)‖ ≤ Q1(|=z|−1)(|z|+ 1)d√
N

≤ 1√
N

Q2(|=z|)(|z|+ 1)d

|=z|k
. (2.37)

Therefore, by Helffer-Sjöstrand functional calculus (see Section 2.2),
√
N trN−p E

(
f

(
ρNIN−p −

WN−p√
N
−AN−p

))
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=
1

π

∫
C\R

∂̄Fk(f)(z)
√
N trN−p E

[
ĜN−p(ρN − z)

]
d2z

and
√
N

∫
f ((ρN − x) dµsc � µAN−p(x) =

1

π

∫
C\R

∂̄Fk(f)(z)
√
N
dµsc � µAN−p(x)

(ρN − z − x)
d2z.

Hence, using (2.36) and (2.34), we can deduce that
√
N trN−p E

(
f

(
ρNIN−p −

WN−p√
N
−AN−p

))
=
√
N

∫
dµsc � µAN−p(x)

(ρN − x)
+

1

π

∫
z∈C\R

∂Fk(f)(z)o(z)(1)d2z.

Note that since f and χ are compactly supported, the last integral is an integral
on a bounded set of C and according to (2.37) and (2.10),∥∥∥∥∥ 1

π

∫
C\R

∂Fk(f)(z)o(z)(1)d2z

∥∥∥∥∥ ≤ C√
N
.

Thus,
√
N
{
E trN−p

(
f
(
ρNIN−p −

WN−p√
N
−AN−p

))
−
∫
dµsc � µAN−p(x)(

ρN − x
) }

→N→+∞ 0.

(2.38)
Define k : Msa

N−p(C)→ C by

k(X) = trN−p [f (ρNIN−p −X −AN−p)] .

Applying Poincaré inequality, we get that

E

(∣∣∣∣k(
WN−p√

N
)− E(k(

WN−p√
N

))

∣∣∣∣2
)
≤ C

N
E

(∥∥∥∥gradk(WN−p√
N

)∥∥∥∥2

e

)
,

with

‖gradk(X)‖2e = sup
w∈S1(Msa

N−p(C))

∣∣∣∣ ddtk(X + tw)|t=0

∣∣∣∣2 .
Since f is a Lipschitz function on R with Lipschitz constant CL, its extension on Her-
mitian matrices is CL-Lipschitz with respect to the norm ‖M‖e = (TrN−pM

2)1/2.
Therefore,

sup
w∈S1(Msa

N−p(C))

∣∣∣∣ ddtk(X + tw)|t=0

∣∣∣∣2 ≤ C

N
,

and then

E

(∣∣∣∣√N {k(WN−p√
N

)
− E

(
k

(
WN−p√

N

))}∣∣∣∣2
)
≤ C

N
.

It readily follows that
√
N trN−p

{
f(ρNIN−p −

WN−p√
N
−AN−p)− E

(
f(ρNIN−p −

WN−p√
N
−AN−p)

)}
= oP(1) (2.39)

Proposition 2.16 follows from (2.35), (2.38), (2.39) and (2.31). �
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3. Proof of Theorem 1.10

The approach to prove (1.10) is the one of Capitaine (2020). On ΩN , defined at
the beginning of Section 2.6.2, we have by Proposition 2.1,

det (Xp(N)) = 0, (3.1)

where
Xp(N) = λi0(MN )Ip −

Wp√
N
−Ap −

1

N
Y ∗ĜN−p(λi0(MN ))Y,

and ĜN−p is the resolvent of WN−p√
N

+AN−p. Let ρN be as defined by (1.7). Using
the identity

ĜN−p(ρN )− ĜN−p(λi0(MN )) = (λi0(MN )− ρN )ĜN−p(ρN )ĜN−p(λi0(MN )),

we have
Xp(N) = Hp(N) +X(0)

p ,

where
X(0)
p = θIp −Ap,

Hp(N) = (λi0(MN )− ρN )Ip −∆1(N)−∆2(N)

+(λi0(MN )− ρN )r1(N)− Wp√
N
− (λi0(MN )− ρN )2r2(N)

with
r1(N) =

1

N
Y ∗ĜN−p(ρN )21IΩNY,

r2(N) =
1

N
Y ∗ĜN−p(ρN )2ĜN−p(λi0(MN ))1IΩNY,

∆1(N) =
1

N
Y ∗ĜN−p(ρN )1IΩNY −

σ2

N
TrN−p

(
ĜN−p(ρN )1IΩN

)
,

∆2(N) =
1

N
TrN−p

(
ĜN−p(ρN )1IΩN

)
−
∫
dµsc � µAN−p(x)

(ρN − x)
.

First, by Lemma 2.8 we have that,

r1(N)− σ2 1

N
TrN−p(ĜN−p(ρN )2)1IΩN Ip = oP(1).

By (2.31), (2.35), (1.8), (2.32) and asymptotic freeness of WN−p√
N

and AN−p (see
Theorem 5.4.5 Anderson et al., 2010),

1

N
TrN−p(ĜN−p(ρN )2)1IΩN −→

N→∞

∫
dλ(x)

(ρθ − x)
2 almost surely. (3.2)

Therefore,

r1(N)
P−→

N→∞
σ2

∫
dλ(x)

(ρθ − x)2
Ip. (3.3)

Now on ΩN , using (2.33),

‖r2(N)‖ ≤
∥∥∥ĜN−p(ρN )1IΩN

∥∥∥2 ∥∥∥ĜN−p(λi0(MN ))1IΩN

∥∥∥ ‖Y ‖2
N
≤ 9

(
2

ε0

)2

. (3.4)

By Lemma 2.8,
∆1(N) = oP(1). (3.5)
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Lemma 3.1.

1

N − p

N−p∑
j=1

[
ĜN−p(ρN )jj

]2
1IΩN =

1

N − p

N−p∑
j=1

[
[(θ −AN−p)−1]jj

]2
+ oP(1).

Proof : By (4.29) which will be proved below, for any r > 0,

1

N − p

N−p∑
j=1

[
ĜN−p(ρθ +

i

r
)jj

]2

1IΩN

=
1

N − p

N−p∑
j=1

[
[(ω(ρθ +

i

r
)−AN−p)−1]jj

]2

+ oP(1),

with ω defined by (2.13). Now, using resolvent identity, one can easily obtain that
there exists some constant C(ε0) such that for any r > 0 and any N ,∣∣∣∣∣∣ 1

N − p

N−p∑
j=1

[
ĜN−p(ρN )jj

]2
1IΩN −

1

N − p

N−p∑
j=1

[
ĜN−p(ρθ +

i

r
)jj

]2

1IΩN

∣∣∣∣∣∣
≤ C(ε0)

(
1

r
+ ρN − ρ

)
.

Moreover, ω(ρθ) = θ so that for all large N , d(ω(ρθ) , supp(µAN−p) > ε0/2.
Now, choose r0 large enough such that for all large N , ∀r ≥ r0,
d(ω(ρθ + i

r ), supp(µAN−p) > ε0/4. Using resolvent identity, one can easily obtain
that there exists some constant C(ε0) such that for all large N , ∀r ≥ r0,∣∣∣∣∣∣ 1

N − p

N−p∑
j=1

[
[(ω(ρθ +

i

r
)−AN−p)−1]jj

]2

− 1

N − p

N−p∑
j=1

[
[(ω(ρθ)−AN−p)−1]jj

]2∣∣∣∣∣∣
≤ C(ε0)/r.

Lemma 3.1 follows by letting N go to infinity and then r go to infinity. �

(3.2), Lemma 3.1 and Proposition 2.10 yield that
√
N∆1(N)2 = oP(1), (3.6)

Now, one can prove that by Proposition 2.16, we have
√
N∆2(N) = oP(1). (3.7)

Thus (1.6), (1.8), (3.3), (3.4), (3.5) and (3.7) yield that

Hp(N) = oP(1). (3.8)

Therefore, according to Lemma 2.3 (using (3.8)) and (3.1), with a probability going
to one as N goes to infinity,

0 = detXp(N)

= det(X(0)
p +Hp(N))

= det(X(0)
p ) + Trp

[
B
X

(0)
p
Hp(N)

]
+ εN

= Trp

[
B
X

(0)
p
Hp(N)

]
+ εN ,
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where
B
X

(0)
p

=t com(X(0)
p ),

εN = O(‖Hp(N)‖2).

Thus, using (1.6), (1.8), (3.3), (3.4), (3.7) and (3.6),
√
NεN = oP(

√
N(λi0(MN )− ρN )) + oP(1).

Hence, with a probability going to one as N goes to infinity,
√
N(λi0(MN )− ρN )

[
TrpBX(0)

p
(Ip + r1(N)) + oP(1)

]
= Trp

[
B
X

(0)
p

(√
N∆1(N) +Wp

)]
+ oP(1).

(1.10) readily follows from (3.2), Lemma 3.1, Proposition 2.10, the independence of
∆1(N) and Wp. When AN−p is diagonal, the result follows using (4.29).

4. Proofs of Theorems 1.11 and 1.12

Let MN be defined by (1.2) with assumptions (W) and (A’). We denote by
λi(AN ), resp. λi(MN ), the eigenvalues of AN , resp. MN and ui, resp. vi the
normalized associated eigenvectors. According to assumption (A), there exists
δ > 0 such that for all large N , the distance from θ to the rest of the spectrum
(that is the other eigenvalues of AN except θ) is greater than δ. Moreover, from
Proposition 1.5, we know that a.s.

λi0(MN ) −→N→+∞ ρθ = θ + σ2gν(θ). (4.1)

and there exists δ0 > 0 such that almost surely for all large N , the distance from ρθ
to the rest of the spectrum (that is the other eigenvalues of MN except λi0(MN ))
is greater than δ0.

Throughout this section, h is a smooth function with support in ]ρθ − δ0/2; ρθ +
δ0/2[ which is equal to 1 near ρθ.

4.1. Representation in terms of resolvent. The aim of this section is to be brought
back to the study of the fluctuations of the p×p-matrix valued process {Gp(z), z ∈
C\R} where Gp(z) denotes the principal submatrix of size p of the resolvant matrix
G(z) = (zIN −MN )−1.

Proposition 4.1. Almost surely, for all large N ,
√
N(|〈ui0 , vi0〉|2 − τN (θ))

= − 1

π

∫
C
∂̄Fk(h)(z)

(
P ∗
√
N (Gp(z)− Λp(z))P

)
11
d2z,

where τN (θ) is defined by (1.11),

Λp(z) = (zIp −Ap − σ2g̃N−p(z)Ip)
−1 (4.2)

and g̃N−p(z) is the Stieltjes transform of µsc � µAN−p .

Proposition 4.1 readily follows from the two preliminaries Lemmas 4.2 and 4.3.
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Lemma 4.2. Almost surely, for all large N , for any integer number k,

|〈ui0 , vi0〉|2 = − 1

π

∫
C
∂̄Fk(h)(z) (P ∗Gp(z)P )11 d

2z, (4.3)

where Fk(h) is defined by (2.8).

Proof : Let f be any smooth function with support in ]θ − δ/2; θ + δ/2[ which is
equal to 1 near θ. From the formula

TrN (h(MN )f(AN )) =

N∑
i,j=1

h(λi(MN ))f(λj(AN ))|〈uj , vi〉|2, (4.4)

we easily deduce that, almost surely, for all large N ,

|〈ui0 , vi0〉|2 =

p∑
i,j=1

(P ∗)1ih(MN )ijPj1. (4.5)

By Helffer-Sjöstrand’s representation formula (2.7), we can write h(MN )ij as

h(MN )ij = − 1

π

∫
C
∂̄Fk(h)(z) Gij(z)d

2z,

so that
p∑

i,j=p

(P ∗)1ih(MN )ijPj1 = − 1

π

∫
C
∂̄Fk(h)(z) (P ∗Gp(z)P )11 d

2z. (4.6)

Lemma 4.2 follows from (4.5) and (4.6). �

Lemma 4.3. For N large enough,

τN (θ) = 1− σ2

∫
1

(θ − x)2
dµAN−p(x)

= − 1

π

∫
C
∂̄Fk(h)(z)

(
P ∗(zIp −Ap − σ2g̃N−p(z)Ip)

−1P
)

11
d2z

where g̃N−p(z) is the Stieltjes transform of µsc � µAN−p .

Proof : Note that(
P ∗(zIp −Ap − σ2g̃N−p(z)Ip)

−1P
)

11
=

1

z − σ2g̃N−p(z)− θ
.

Let us define for any z ∈ C \ supp(µAN−p),

HN−p(z) = z + σ2gµAN−p (z) (4.7)

and for any z ∈ C \ supp(µsc � µAN−p),

ωN−p(z) = z − σ2gµsc�µAN−p (z) = z − σ2g̃N−p(z). (4.8)

Note that, for any z ∈ C\R, |=ωN−p(z)| ≥ |=z| > 0.Moreover, according to (2.16),
the following one to one correspondance holds:

R\supp(µsc�µAN−p)

ωN−p−→
←−

HN−p
{u ∈ R\supp (µAN−p),

∫
1

(u− x)2
dµAN−p(x) <

1

σ2
}
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and for any x ∈ C \ supp(µsc � µAN−p), HN−p(ωN−p(x)) = x. Hence ρN =

HN−p(θ) = θ + σ2gµAN−p (θ) is the single pole of 1
z−σ2g̃N−p(z)−θ in C. Therefore,

(1.8) and Proposition 2.4 (used with φ(z) = 1
ωN−p(z)−θ) ) imply that

− 1

π

∫
C
∂̄Fk(h)(z)

1

z − σ2g̃N−p(z)− θ
d2z =

1

ω
′
N−p(ρN )

= H
′

N−p(θ) = τN (θ). (4.9)

�

We now consider the process

ξN (z) =
(
P ∗
√
N (Gp(z)− Λp(z))P

)
11
. (4.10)

where Λp is defined by (4.2).

4.2. Tightness of the sequence of processes {ξN}N .

Proposition 4.4. ξN is tight on H(C \ R).

Proof : ξN : z 7→
(
P ∗
√
N (Gp(z)− Λp(z))P

)
11

is analytic on C \ R. Let K be
a compact set in C \ R. According to Lemma 2.6, there exists δ > 0 such that
Kδ ⊂ C \ R and for any r > 0,

‖ξN‖rK ≤ (πδ2)−1

∫
Kδ

|ξN (z)|rm(dz).

Therefore

E (‖ξN‖rK) ≤ (πδ2)−1

∫
Kδ

E (|ξN (z)|r)m(dz) (4.11)

≤ (πδ2)−1 sup
z∈Kδ

E (|ξN (z)|r)m(Kδ). (4.12)

In order to prove the tightness of ξN , using (2.12) and (4.12), we are going to
show that, for any compact set K ⊂ C\R, there exists a constant C ′ > 0 such that
for all large N,

sup
z∈K

E
(
|ξN (z)|2

)
< C ′. (4.13)

We have for any z1 and z2 in C \ R,

E (ξN (z1)ξN (z2))

= N

p∑
i,j,u,v=1

P ∗1iPj1P
∗
1uPv1E ((Gij(z1)− (Λp(z1))ij) (Guv(z2)− (Λp(z2))uv)) ,

and

E ((Gij(z1)− (Λp(z1))ij) (Guv(z2)− (Λp(z2))uv))

= E ((Gij(z1)− E (Gij(z1))) (Guv(z2)− E (Guv(z2))))

+ [E (Gij(z1))− (Λp(z1))ij ] [E (Guv(z2))− (Λp(z2))uv] .

According to Lemma 2.11 and the block diagonal structure of AN , we have for any
l = 1, 2,

E (Gp(zl)) =
(
(zl − σ2g̃N (zl))Ip −Ap

)−1
+O(1/

√
N), (4.14)
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where g̃N is the Stieltjes transform of µAN � µsc. First set

ǦN−p(w) =

(
zIN−p −

WN−p√
N − p

−AN−p
)−1

.

By (2.5), we have

‖ǦN−p(z)‖ ≤ |=z|−1. (4.15)

Note that

ĜN−p(z) = ǦN−p(z)

+
p

√
N − p(

√
N +

√
N − p)

×
(
IN−p − ĜN−p(z) (zIN−p −AN−p)

)
ǦN−p(z).

(4.16)

Now, Lemma 2.12 yields that

g̃N (z) = E (trN G(z)) +O(1/N)

and

g̃N−p(z) = E
(
trN−p ǦN−p(z)

)
+O(1/N),

and then, using (4.16), that

g̃N−p(z) = E
(

trN−p ĜN−p(z)
)

+O(1/N). (4.17)

Since by (A.1.12) in Bai and Silverstein (2010), we have:

E (trN G(z)) = E
(

trN−p ĜN−p(z)
)

+O(1/N),

we can deduce that g̃N (z) = g̃N−p(z)+O(1/N), and thus that, for any 1 ≤ i, j ≤ p,

E (Gij(zl)) = (Λp(zl))ij +O(1/
√
N).

Moreover, by Lemma 2.13,

Var(Gij(zl)) = O(1/N).

It readily follows that there exist polynomials P1 and P2 with nonnegative coeffi-
cients such that

E (ξN (z1)ξN (z2)) ≤ P1

(
|=z1|−1

)
P2

(
|=z2|−1

)
and then there exists some polynomial P3 with nonnegative coefficients such that
for all large N and all z ∈ C \ R,

E
(
|ξN (z)|2

)
≤ P3

(
|=z|−1

)
. (4.18)

This implies (4.13). Therefore, for any compact subset K in C \ R, there exists a
constant C > 0 such that for all large N, E

(
‖ξN (z)‖2K

)
< C and the tightness of

ξN in H(C \ R) follows from (2.12) and Proposition 2.5. �
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4.3. Finite dimensional distributions of ξN . Set

∇N (z) =
√
N (Gp(z)− Λp(z)) .

We use Proposition 2.1 for the inversion of

zIN −MN =

(
zIp − 1√

N
Wp −Ap − 1√

N
Y ∗

− 1√
N
Y zIN−p −MN−p

)
where MN−p is the lower right submatrix of size N − p of MN , leading to:

Gp(z) = (zIp −
1√
N
Wp −Ap −

1

N
Y ∗ĜN−p(z)Y )−1 (4.19)

where ĜN−p is the resolvent of MN−p. Thus,

∇N (z) = Gp(z)(Wp +
√
N(

1

N
Y ∗ĜN−p(z)Y − σ2g̃N−p(z)Ip))Λp(z). (4.20)

Lemma 4.5. Define for z ∈ C\R,

∇̃N (z) = (zIp −Ap − σ2g(z)Ip)
−1(Wp +QN (z))(zIp −Ap − σ2g(z)Ip)

−1, (4.21)

where QN (z) is the following matrix of size p :

QN (z) =
1√
N

(Y ∗ĜN−p(z)Y − σ2 TrN−p(ĜN−p(z))Ip), z ∈ C \ R (4.22)

For any z ∈ C \ R,
∇N (z)− ∇̃N (z)

P−→
N→∞

0.

Proof : Obviously, we have

Λp(z) −→
N→∞

(zIp −Ap − σ2g(z)Ip)
−1, (4.23)

and (4.14) and Lemma 2.13 yield that

Gp(z)
P−→

N→∞
(zIp −Ap − σ2g(z)Ip)

−1. (4.24)

We write
√
N( 1

N Y
∗ĜN−p(z)Y − σ2g̃N−p(z)Ip)

=
1√
N

(Y ∗ĜN−p(z)Y − σ2 TrN−p(ĜN−p(z))Ip)

+
√
Nσ2(trN−p(ĜN−p(z))Ip − g̃N−p(z)Ip). (4.25)

(4.17) and Lemma 2.14 yield that
√
Nσ2(trN−p(ĜN−p(z))Ip − g̃N−p(z)Ip)

P−→
N→∞

0. (4.26)

Lemma 4.5 readily follows from (4.20), (4.25), (4.23), (4.24), (4.26) and the tightness
of QN (z) (which readily follows from Lemma 2.8), by using Slutsky’s theorem and
classical operations on convergence in probability. �

We now state an approximation result in distribution for the finite dimensional
distributions of the process {QN (z), z ∈ C\R}.



Non universality of fluctuations of outlier eigenvectors 157

Lemma 4.6. Let (z1, . . . , zq) be in (C \ R)q. Set VN = (QN (z1), . . . , QN (zq)).
Then, under the assumptions of Theorem 1.11

dLP (VN , (GN (z1), . . . ,GN (zq)))→ 0

where GN is a a centered matrix valued Gaussian process whose distribution is given
as follows :
1) the processes ((GN )ij(z))z for 1 ≤ i ≤ j ≤ p are independent, and (GN )ji(z) =

(GN )ij(z̄).
2) For i ≤ p,

E((GN )ii(zk)(GN )ii(zl)) (4.27)

=
(m4 − 3σ4)

2(N − p)

N−p∑
i=1

((zk − σ2g(zk)−AN−p)−1)ii((zl − σ2g(zl)−AN−p)−1)ii

+σ4

∫
1

(zk − x)(zl − x)
dλ(x) (4.28)

3) For 1 ≤ i 6= j ≤ p,
E((GN )ij(zk)(GN )ij(zl)) = 0

and

E((GN )ij(zk)(GN )ij(zl)) = σ4

∫
1

(zk − x)(z̄l − x)
dλ(x).

Proof : We apply Proposition 2.10 to the matrices B(z) = ĜN−p(z), z ∈ C \ R.
Note that these matrices are random but they are independent of the N ×p matrix
Y .
In order to conclude, we need to show that

IN :=
1

N − p

N−p∑
i=1

((ĜN−p(z1))ii(ĜN−p(z2))ii) = fN (z1, z2) + o(1) (4.29)

with

fN (z1, z2) =
1

N − p

N−p∑
i=1

((zk − σ2g(zk)−AN−p)−1)ii((zl − σ2g(zl)−AN−p)−1)ii

and

JN := trN−p(ĜN−p(z1)ĜN−p(z2))
P−→

N→∞

∫
1

(z1 − x)(z2 − x)
dλ(x).

The second convergence follows from the convergence of µMN−p towards λ.
For the first one, Lemma 2.11 and (4.16) yield that, for k ≤ N − p,

E
(

(ĜN−p(z))kk

)
=

[(
(z − σ2g̃N−p(z))IN −AN−p

)−1
]
kk

+O

(
1√
N

)
=

[(
(z − σ2g(z))IN −AN−p

)−1
]
kk

+ o(u)(1).

Thus, using Lemma 2.13, we can deduce that

E((ĜN−p(z1))kk(ĜN−p(z2))kk)

=
[
(z1 − σ2g(z1)−AN−p)−1

]
kk

[
(z2 − σ2g(z2)−AN−p)−1

]
kk

+ o(u)(1) (4.30)
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From Lemma 5.1 in the Appendix, using that fN (W ) = 1
N−p

∑N−p
i=1 [(z1 − W −

AN−p)
−1]ii[(z2 −W − AN−p)−1]ii is Lipschitz with constant |=(z1)|−2|=(z2)|−1 +

|=(z1)|−1|=(z2)|−2, we can deduce that

1

N − p

N−p∑
i=1

(ĜN−p(z1))ii(ĜN−p(z2))ii

=
1

N − p

N−p∑
i=1

E
(

(ĜN−p(z1))ii(ĜN−p(z2))ii

)
+ oP(1).

We also use to obtain (4.28) from Proposition 2.10 that for σ2 = 1,

E(|y11|4)− 2 =
1

2
(m4 − 3),

where we recall that µ is the distribution of
√

2<y11 and
√

2=y11. �

Corollary 4.7. Under the assumptions of Theorem 1.11, for any (z1, . . . , zq) be in
(C \ R)q,

dLP ((ξN (z1), . . . , ξN (zq)), (TN (z1), . . . , TN (zq)))→ 0

where ξN is the process defined by (4.10) and

TN (z) = (z − θ − σ2g(z))−2 (P ∗(Wp + GN (z))P )11 (4.31)

GN being a centered Gaussian matrix valued process independent from Wp whose
distribution is described in Lemma 4.6.

4.4. Fluctuations of the eigenvector. Recall from Proposition 4.1 that, for any k ∈
N∗, ΦN defined as √

N(|〈ui0 , vi0〉|2 − τN (θ))

has the representation

ΦN = − 1

π

∫
C
∂̄Fk(h)(z)ξN (z)d2z. (4.32)

We follow the proof of Lemma 6.3 in Najim and Yao (2016) based upon the following
estimates, from (4.18) :

sup
N

E(|ξN (z)|) ≤ P3(|=(z)|−1), (4.33)

and from Lemma 4.6 and (2.6), (TN being defined by (4.31))

sup
N

E(|TN (z)|) ≤ P5(|=(z)|−1), (4.34)

where P3, P4 and P5 are some polynomial with nonnegative coefficients. Hence in
the following, in (4.32), we choose k greater than the degrees of P3, P4 and P5.

Proposition 4.8. Under the assumptions of Theorem 1.11, dLP (ΦN , Φ̃N ) → 0

where Φ̃N is given by

Φ̃N = (P ∗(cθ,νWp + Zp,N )P )11,

where Wp is a Wigner matrix of size p, Zp,N is a centered Gaussian Hermitian
matrix of size p with independent entries (modulo the symmetry condition); the
diagonal coefficients are iid with variance

1

2
(m4 − 3σ4)Aθ,ν,N + σ4Bθ,ν (4.35)
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and the off diagonal elements are i.i.d. complex Gaussian with distribution Z such
that E(Z2) = 0 and E(|Z|2) = σ4Bθ,ν .

See Eq.(1.18) for the definitions of cθ,σ, Bθ,ν and (1.15) for the definition of
Aθ,ν,N .

Proof : For the reader’s convenience, we repeat here the strategy of Lemma 6.3 in
Najim and Yao (2016). For any 0 < ε < 1 small enough such that χ ≡ 1 on ]− ε; ε[,
define

Dε = {z ∈ C, |=(z)| ≥ ε}.
Set

UN =

∫
C
∂̄Fk(h)(z)ξN (z)d2z, U εN =

∫
Dε

∂̄Fk(h)(z)ξN (z)d2z

and

VN =

∫
C
∂̄Fk(h)(z)TN (z)d2z, V εN =

∫
Dε

∂̄Fk(h)(z)TN (z)d2z,

where TN is defined by (4.31). Let f be a bounded continuous complex function
on C.

We have

|E (f(UN ))− E (f(VN ))| ≤ |E (f(UN ))− E (f(U εN ))|
+ |E (f(U εN ))− E (f(V εN ))|
+ |E (f(V εN ))− E (f(VN ))|

Let δ > 0.

i) For any η > 0 and K > 0, we have

|E (f(UN ))− E (f(U εN ))|

≤
∣∣∣E (f(UN )− f(U εN )) 1I|UN−UεN |>η

∣∣∣ (4.36)

+
∣∣∣E (f(UN )− f(U εN )) 1I|UN−UεN |≤η,|UN |∨|UεN |>K

∣∣∣ (4.37)

+
∣∣∣E (f(UN )− f(U εN )) 1I|UN−UεN |≤η,|UN |∨|UεN |≤K

∣∣∣ (4.38)

In the following, the constant C > 0 may vary from line to line. By (2.10), for any
z = x+ iy in a neighborhood of the real axis,

|∂̄Fk(h)(z)| ≤ C|y|k. (4.39)

(2.9), (4.33) and (4.39) readily yield that for any ε > 0, for any N ,

E (|UN |) ∨ E (|U εN |) ≤
∫
C
|∂̄Fk(h)(z)|E|ξN (z)|d2z ≤ C,

and therefore

P (|UN | ∨ |U εN | > K) ≤ P (|UN | > K) + P (|U εN | > K)

≤ 2

K
E (|UN |) ∨ E (|U εN |) ≤

C

K
.

Thus, we can choose K such that, for any ε > 0, any η > 0 and any N , the RHS in
(4.37) is smaller than δ. Now, since f is uniformly continuous on {z ∈ C \ R, |z| ≤
K}, one can choose η small enough such that, for any ε > 0 and any N , (4.38)
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are smaller that δ. Finally, by using (4.33) and (4.39), for any ε small enough, for
any N ,

E |UN − U εN | = E

∣∣∣∣∣
∫
{z,|=(z)|<ε}

∂̄Fk(h)(z)ξN (z)d2z

∣∣∣∣∣ ≤ Cε, (4.40)

and then

P (|UN − U εN | > η) ≤ C

η
ε.

The term |E (f(V εN ))− E (f(VN )) | is treated in the same way, using (4.34).
ii) Note that since h and χ are compactly supported,

∫
Dε
∂̄Fk(h)(z)ξN (z)d2z may be

seen as an integral on a fixed compact set Kε ⊂ Dε. Proposition 4.4 readily yields
that ξN is tight on the set C(Kε) of complex continuous functions on Kε. Thus,
using Corollary 4.7 , since f 7→

∫
Dε
∂̄Fk(h)(z)f(z)d2z is continuous on C(Kε), it

remains to prove the tightness of the process {TN (.)} on any compact set K in
{z, |=z| ≥ ε} to deduce from Lemma 5.7 in Najim and Yao (2016) that:

|E (f(U εN ))− E (f(V εN )) | →N→+∞ 0.

We postpone the proof of the tightness of the process {TN (.)} (see Lemma 4.9 below)
Thus, up to the proof of Lemma 4.9, the convergence to 0 of
dLP (Φn,− 1

π

∫
C ∂̄Fk(h)(z)TN (z)d2z) follows.

It remains to compute cθ,ν , Bθ,ν , Aθ,ν,N . The computation of cθ,ν follows from
Proposition 2.4:

cθ,ν = − 1

π

∫
C
∂̄Fk(h)(z)

1

(z − σ2g(z)− θ)2
dz = Res(

1

(z − σ2g(z)− θ)2
, ρθ).

A straightforward computation gives

Res(
1

(z − σ2g(z)− θ)2
, ρθ) = − ω′′(ρθ)

(ω′(ρθ))3
= H ′′(θ)

where ω(z) = z − σ2g(z) (g := gλ) and H(z) = z + σ2gν(z).
From Lemma 4.6 and using Fubini theorem, the diagonal entries of ZN have

variance equal to
1

2
(m4 − 3σ4)Aθ,ν,N + σ4Bθ,ν

and the off diagonal entries of ZN have variance equal to σ4Bθ,ν where

Aθ,ν,N =
1

N − p

N−p∑
i=1

(
1

π

∫
C
∂̄Fk(h)(z)

[(z − σ2g(z)−AN−p)−1]ii
(z − σ2g(z)− θ)2

d2z

)2

dν(x)

Bθ,ν =

∫
R

(
1

π

∫
C
∂̄Fk(h)(z)

1

(z − σ2g(z)− θ)2(z − x)
d2z

)2

dλ(x).

The functions φi(z) =
[(z−σ2g(z)−AN−p)−1]ii

(z−σ2g(z)−θ)2 for i ≤ N − p and φx(z) =
1

(z−σ2g(z)−θ)2(z−x) for x ∈ supp(λ) satisfy the hypothesis of Proposition 2.4.
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Straightforward computations lead to:

Aθ,ν,N =
1

N − p

N−p∑
i=1

(Res(
[(z − σ2g(z)−AN−p)−1]ii

(z − σ2g(z)− θ)2
, ρθ))

2

=
1

N − p

N−p∑
i=1

(
H ′′(θ)[(θIN−p −AN−p)−1]ii −H ′(θ)[(θIN−p −AN−p)−2]ii

)2
=

1

N − p

N−p∑
i=1

(
σ2g′′ν (θ)[(θIN−p−AN−p)−1]ii−(1+σ2g′ν(θ))[(θIN−p−AN−p)−2]ii

)2
and

Bθ,ν =

∫
R

(Res(
1

(z − σ2g(z)− θ)2(z − x)
, ρθ))

2dλ(x)

= −1

6
g′′′ν (θ)− σ2

2
(g′′ν (θ))2 1 + 2σ2g′ν(θ)

1 + σ2g′ν(θ)
.

�

We now prove the following Lemma, used in the proof of the above Proposition.

Lemma 4.9. Let K be a compact subset in {z, |=z| ≥ ε}, for some ε > 0. The
process {TN (.)} defined in (4.31) is a tight sequence on K, more precisely,

sup
z1,z2∈K,n∈N

E(|TN (z1)− TN (z2)|2)

|z1 − z2|2
<∞. (4.41)

Proof : From Lemma 4.6,

E(|(GN )ij(z1)− (GN )ij(z2)|2) = δij
1

2
(m4 − 3σ4)×

1

N − p

N−p∑
i=1

(|((z1 − σ2g(z1)−AN−p)−1)ii − ((z2 − σ2g(z2)−AN−p)−1)ii|2)

+σ4

∫
| 1

z1 − x
− 1

z2 − x
|2dλ(x).

From the resolvent identity,

(z1 − σ2g(z1)−AN−p)−1 − (z2 − σ2g(z2)−AN−p)−1

= (z2−z1−σ2(g(z2)−g(z1)))(z1−σ2g(z1)−AN−p)−1(z2−σ2g(z2)−AN−p)−1,

thus,

|((z1 − σ2g(z1)−AN−p)−1)ii − ((z2 − σ2g(z2)−AN−p)−1)ii|

≤ 1

ε2
(1 +

σ2

ε2
)|z1 − z2|

and thus,

1

N − p

N−p∑
i=1

(|((z1 − σ2g(z1)−AN−p)−1)ii − ((z2 − σ2g(z2)−AN−p)−1)ii|2)

≤ 1

ε4
(1 +

σ2

ε2
)2|z1 − z2|2.
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Since moreover∫
| 1

z1 − x
− 1

z2 − x
|2dλ(x) ≤ |=z1|2|z2|2|z1 − z2|2 ≤

1

ε4
|z1 − z2|2

(4.41) readily follows. The tightness follows from Kolmogorov’s criterion (see
Billingsley, 1999). �

Proposition 4.8 and Proposition 4.1 readily yield Theorem 1.11.

4.5. Proof of Theorem 1.12. Theorem 1.12 follows from Theorem 1.11 once we
proved that Aθ,ν,N converge to Aθ,ν .

Lemma 4.10. Assume that the matrix AN satisfies (A’) with AN−p diagonal.
Then, the sequence (Aθ,ν,N )N defined by (1.15) converges to Aθ,ν defined by (1.18).

Proof : Denote by di the eigenvalues of AN−p.

Aθ,ν,N =
1

N − p

N−p∑
i=1

(
H ′′(θ)(θ − di)−1 −H ′(θ)(θ − di)−2

)2
−→N→∞ (H ′′(θ))2

∫
1

(θ − x)2
dν(x)− 2H ′(θ)H ′′(θ)

∫
1

(θ − x)3
dν(x)

+(H ′(θ))2

∫
1

(θ − x)4
dν(x)

= −(H ′′(θ))2g′ν(θ)−H ′(θ)H ′′(θ)g′′ν (θ)− 1

6
(H ′(θ))2g′′′ν (θ)

Using, H ′(θ) = 1 + σ2g′ν(θ) and H ′′(θ) = σ2g′′ν (θ), we obtain the formula for Aθ,ν
given in (1.18). �

5. Appendix: Poincaré inequality and concentration phenomenon

A probabilty µ satisfies a Poincaré inequality if for any C1 function
f : R→ C such that f and f ′ are in L2(µ),

V(f) ≤ CPI
∫
|f ′|2dµ,

with V(f) =
∫
|f −

∫
fdµ|2dµ.

If the law of a random variable X satisfies the Poincaré inequality with constant
CPI then, for any fixed α 6= 0, the law of αX satisfies the Poincaré inequality with
constant α2CPI .
Assume that probability measures µ1, . . . , µM on R satisfy the Poincaré inequal-
ity with constant CPI(1), . . . , CPI(M) respectively. Then the product measure µ1⊗
· · · ⊗ µM on RM satisfies the Poincaré inequality with constant C∗PI =

max
i∈{1,...,M}

CPI(i) in the sense that for any differentiable function f such that f

and its gradient gradf are in L2(µ1 ⊗ · · · ⊗ µM ),

V(f) ≤ C∗PI
∫
‖gradf‖22dµ1 ⊗ · · · ⊗ µM

with V(f) =
∫
|f −

∫
fdµ1 ⊗ · · · ⊗ µM |2dµ1 ⊗ · · · ⊗ µM .
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Lemma 5.1 (Lemma 4.4.3 and Exercise 4.4.5 in Anderson et al., 2010 or Chapter 3
in Ledoux, 2001). Let P be a probability measure on RM which satisfies a Poincaré
inequality with constant CPI . Then there exists K1 > 0 and K2 > 0 such that, for
any Lipschitz function F on RM with Lipschitz constant |F |Lip,

∀ε > 0, P (|F − EP(F )| > ε) ≤ K1 exp

(
− ε

K2

√
CPI |F |Lip

)
.
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