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Abstract. We show existence and uniqueness of solutions of stochastic path de-
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1. Introduction

Fix 7 > 0 and let (2, F, (Fi)i>0, P) be a normal filtered probability space, i.e. the
space is complete and satisfies the usual conditions. Consider the following stochas-
tic delay differential equation in R%:

dX(t) = f(t,w,Xt_T:t)dt+/Ug(t,w,Xt_T:t,g)M(dt,dg),
X(t) = 2(t), tel[-7.0],

(1.1)

where X;_,.¢(s) = X(t+s),s € [-7,0] and z € L?(Q, Fy, P; Cadlag([—7, 0], RY)).

We will state precise assumptions on the coefficients f and g and on the martin-
gale measure M in Section 3. For the moment, assume that U = U; U Us, where
U, is a finite or infinite subset of N and the integral over U; is a sum, where M, (i),
1 € Uy are independent Wiener processes and the remaining integral over U, is with
respect to compensated Poisson noise which is independent of the Wiener processes.
If Uy = (), then we speak of Wiener or diffusive noise, otherwise of jump diffusive
noise. In the diffusive case, several authors established existence and uniqueness
of solutions of (1.1) under various conditions on the coefficients (e.g. Mao, 2008,
Theorem 5.2.5 under local Lipschitz and linear growth assumptions on f and g and
von Renesse and Scheutzow, 2010 under a one-sided local Lipschitz and a suitable
growth condition). Under similar conditions, Fengying and Ke (2007) and Ren
et al. (2008) show existence and uniqueness even for equations with infinite delay
and Mohammed and Scheutzow (2003) (see also Chueshov and Scheutzow, 2013)
proved not only existence and uniqueness but also pathwise continuous dependence
of the solution on the initial condition in case g does not depend on the past (other-
wise it is known that pathwise continuous dependence on the initial condition does
not hold in general, see Mohammed and Scheutzow, 1997). Existence and unique-
ness results in the jump diffusive case under a local Lipschitz and linear growth
condition (even with additional Markovian switching) were obtained in Zhu (2017).

In both the existence and the uniqueness proof one typically encounters the
following inequality for some non-negative adapted process Z,

Z@gKﬁT@®+M@+mm (1.2)
0

where Z*(s) = sup,¢jo,5) Z(u), M is a local martingale (depending on the function
g in the equation), the process H(t),t > 0 is non-decreasing adapted, and K > 0 is
a constant. In order to apply Gronwall’s lemma, the expression inside the integral
should be the same as the expression on the left side of the inequality. Taking the
supremum on both sides of (1.2) and then taking expectations, an upper bound for
EM*(t) in terms of the process Z is required. Under a local one-sided Lipschitz
condition of the form

For all compact subset C C C([—7,0], R%) there exists Le > 0 and

7¢ € (—7,0] such that Vz,y € C with z(s) = y(s) Vs € [-7, —7¢] (1.3)
2(2(0) = y(0), f(x) = f(¥)) + lg(x) = 9(y)I” < Le Jw j2(s) = y(s)[*,

as in von Renesse and Scheutzow (2010), controls with respect to the supremum
norm on g are not separated from f and it therefore seems impossible to use the
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Burkholder-Davis-Gundy inequality to obtain an upper bound for EM*(¢) in this
case.

von Renesse and Scheutzow (2010) dealt with this problem by proving the fol-
lowing stochastic Gronwall’s inequality for the above mentioned process Z and for
pe (0,1) and o > }f—g:

E[(Z*(T))"] < c1eXT (E[H(T)*])"/*, VT > 0.

Here ¢; and ¢y are two constants that only depend on p and o and Z, H, and M
are assumed to have continuous paths (in addition to the properties stated above).

One can find another type of stochastic Gronwall lemma in the literature where
Z*(s)Kds in the assumption is replaced by Z(s~)dA(s) for an adapted nondecreas-
ing stochastic process A (see Scheutzow, 2013 for continuous processes, Zhang and
Zhao, 2018 for cadlag processes and Kruse and Scheutzow, 2018 for discrete time
processes).

Whenever the supremum norm in condition (1.3) is replaced by a real-valued
continuous linear operator, say A, on Cadlag([—7,0],R), then there is no problem
using the ordinary Gronwall’s lemma. In Mehri et al. (2020), we have stated the
well-posedness of equation (1.1) driven by jump diffusion under the local mono-
tonicity assumption,

VR >0, 3Lg € L},.(R>0,R>), Va,y € Cadlag([—,0],R?)

with  sup |z(s)|, sup |y(s)|<R:
s€[—7,0] s€[—7,0]

2 <$(07) - y(oi),f(t,w,l‘) - f(t7w7y)> + /U |g(t,w,x,§) - g(tvway7£)|2 Vt(dg)

< Le@®A (lo() = (1)
(1.4)
and coercivity assumption,

3K € Li,.(Rso, Rsq), Yz € Cadlag([—,0],R?) :

2(2(07), f(t,,2)) + /U l9(t,w, 2, &) (dg) < KA (1+[2()F)

without using a stochastic Gronwall lemma. We will provide a simple example of
an equation satisfying our assumptions but not those in previous work in Section 4.
In this paper, we study existence and uniqueness of equation

(1.5)

dX (1) = f(t,w, X)dt + / gt w0, X, )N (dt, d€),
U
X(t)==z(t), te][-1,0],

(1.6)

under weaker conditions than those stated above. In particular, M will be a rather
general martingale measure, and f and g satisfy weaker conditions than (1.4) and
(1.5), namely the right hand sides are replaced by the supremum norm. We will
state precise conditions later.

2. Stochastic Gronwall Lemma

Throughout this section, we will assume that (2, F,P) is a probability space
with normal filtration (F;);>o. We will prove the following theorem.
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Theorem 2.1 (Stochastic Gronwall lemma). Let Z(t), t > 0 be an (F;)i>o0-adapted
non-negative right-continuous process. Assume that A : [0,00) — [0,00) is a de-
terministic non-decreasing cadlag function with A(0) = 0 and let H(t),t > 0 be
a non-decreasing and cadlag adapted process starting from H(0) > 0. Further,
let M(t),t > 0 be an (Fi)i>o0- local martingale with M(0) = 0 and cadlag paths.
Assume that for all t > 0,

2() < /Ot Z*(u) dA(u) + M(t) + H(1), (2.1)

where Z*(u) = sup,¢p Z(r). Then the following estimates hold for p € (0,1)
and T > 0.

(a) IfE(H(T)P) < co and H is predictable, then

E [(z*(T))P ‘]-‘0} < %’E [(H(T))?| Fo) exp {c;,/PA(T)}. (2.2)
(b) IfE(H(T)P) < oo and M has no negative jumps, then
E[(z* () ‘]-'0] < CP; L [ ()| Fo] exp {G+)ram}. @3
(¢) If EH(T) < oo, then
E [(Z*(T))p fo} < %J (E [H(T)\fo])”exp{c;/PA(T)}. (2.4)

—_p"
Here ¢, = 7=

For the proof of Theorem 2.1, we will need the following lemma which is essen-
tially Lenglart (1977, Théoréme I & Corollaire IT) with a slightly better constant
¢p and slightly weaker assumptions. Note that Revuz and Yor (1999, Proposition
IV.4.7 & Exercise IV.4.30) states a similar result for the case of continuous G and
Ren and Shen (2012) for general G.

Lemma 2.2. Let Z be a non-negative adapted right-continuous process and let
G be a non-negative right-continuous non-decreasing predictable process such that
E[Z(1)|Fo]) < E[G(T)|Fo] < 0o for any bounded stopping time 7. Then

(i) Ve,d > 0,
P (supZ(t) >c ’.7—'0> < 1IE {Sup Gt)Nd ‘fo} +P (Squ(t) >d ‘.7:()) .
t>0 c t>0 t>0

(i) For allp € (0,1),

[ (s ze0)

—-P

7| <oE [(supa(t>)p

t>0

f0:|7

P
where ¢ 1= -

For the proof of this lemma, recall that a predictable stopping time is a map
7 : Q — [0,00] for which there exists an increasing sequence (7, )nen of stopping
times (called announcing sequence for T) with the properties
(a) limy,— oo Th(w) = 7(w),Vw € Q,
(b) Th(w) < T(w),Vw € {T > 0}
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(see Dellacherie, 1972, p56). For B C [0,00)x, let Tp(w) := inf{t > 0: (t,w) € B}
be the first hitting time of B. If B is predictable and {(t,w) : Tg(w) = t} C B,
then T's is a predictable stopping time (Dellacherie, 1972, p74).

Proof of Lemma 2.2, Part (i): This is essentially Theorem I in Lenglart (1977)
with two small modifications: both the assumption and the conclusion in Lenglart
(1977) are formulated for expected values rather than conditional expectations and
Lenglart (1977) assumes that G(0) = 0 almost surely which we do not assume. Both
generalizations are easy to see but for the convenience of the reader we provide a
proof.

Let 74 := inf{t > 0: G(t) > d} and 7. := inf{t > 0 : Z(¢) > c}. Since G is a
predictable process, 74 is the first hitting time of the predictable set B = {(t,w) :
G(t,w) > d} and hence is a predictable stopping time since {(t,w) : Tq(w) =t} C B.
Therefore, there exists a sequence of stopping times 7', n € N such that 7} 1 74 as
n1 oo and 77 < 74 for all n € N on {7; > 0} = {G(0) < d}. Then for T > 0,

t€[0,T]

IP’( sup Z(t) > c’f())

t€[0,T] te[0,T

—P ( sup Z(t) > ¢, G(T) < d ’]—"0> 4P ( sup Z(t) > ¢, G(T) > d ‘]-‘0>
<P ({I{G(O)<d}Z(T/\ Te) > C} N {7~'d > T} ‘]:0) +P(G(T) > d|Fo)
= lim P ({1{G(0)<d}Z(T/\ Tc) > C} N {ﬁ? > T} ’fo) +P(G(T) > d|f0)

n—oo

= lim P ({I{G(O)<d}Z(T/\7~'C? ATe) > C} N {7:(? > T} ‘]:0) +P(G(T) > d|Fo)

n—oo

IN

lim P ({1{G(0)<d}Z(T/\7:¢? /\TC> > C} ‘.7:0) +P(G<T) > dl]:o)

n—oo

IN

1
— lim E {1{@(0)<d}G(T/\7~'(? ATe)

C n—oo

Fo| +P(G(T) 2 d|Fo)
1
< EIE[G(T) ANd|Fo] +P(G(T) > d|Fo) -
Taking the limit T"— +oo the result follows. [

Proof of Lemma 2.2, Part (i): Using part (i), we have, for A > 0,

| Cap o) fo] = [ e

t>0
<[y G(t) A AP
=/, a/p sup G(t) ¢

t>0

.7‘—0) de

.7:0} +P (sup G(t) > AP

t>0

72) fae

(SUPtzo G(t)/\N)P +oo s G(t
/ e+ / uptZO()dc‘fo]

0 (supiso G&)/ NP 7P

(o) 7]

= (ﬁx“’ + /\*”) E KggG(t))p

The minimal value of (1—p)~'A1=P4+ X7 is equal to cp for the minimizer A =p. O

d
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Proof of Theorem 2.1: Note that the usual Gronwall lemma and (2.1) imply that
Z is almost surely locally bounded since this holds true for M and H (observe that
we did not assume that Z has left limits).

Part (a) Let 0,,, n € N be a localizing sequence of stopping times for the local
martingale M and define 7, :=inf {¢ > 0: X (¢) > n} A g,,. Then it holds that

Z(tAm) < /t Z5((s Ar) ") dA(s) + M(EA ) + H(D)
0

< /0 "2 (57 A AA(S) £ Mt A ) + H(), (2.5)
Z is a nonnegative right-continuous process and
Gn(t) := /Ot Z*(s7 A1) dA(s) + H(t)
is non-decreasing and predictable with the property that for every finite stopping

time 7, we have E [Z (7 A 7,,)|Fo] < E[G,(7)|Fo] < oo. Therefore, using Lemma 2.2
and Young’s inequality, we have, for A > 0 and ¢t > 0

E[(Z7(t A7) | Fo]

<oF < /O 25 A dA(s))p T (H @) fo]

c t*S_Tp sp*—Tp(l—p) P
< E ( [z nnyraa >) (25 A )P0 4 (H (D)

g

< o [prir /0 (Z°(s7 Aa))? dA(s) + (1= pIAP(Z7(E A 7))+ (H(D)) \fo}

It follows from the first inequality in (2.5) that E[(Z*(T A 7,,))?|Fo] < oo almost
surely. Hence, applying the usual Gronwall’s lemma to f(t) := E(Z*(t A Tn)p‘]:o),

we get for \ > cé/p(l —p)l/r,

B2 (T A )P i7a] < e cppX P A(T) ) SEUETIE)

1—c,(1=pAP) 1—cy(1—p)A=P’
so applying Fatou’s lemma, we get
E[(Z7(T))"|Fo] < liminf B [(Z™(T' A 72))"| Fo

PN TPA(T) 1\ E[(H(T))P|Fo)
= oxp <1 —cp(1 = p))\_p> 1—¢y(1— p))‘_op

which yields inequality (2.2) by taking A = 0117/ P
Part (b). Let 0,,, n € N be a localizing sequence of stopping times for the continuous
local martingale M and define 7,, :=inf {¢t > 0: Z(t) > n} A oy,. Then it holds that

Gn(t) := —sér[%)f’t]M(s ATp) < /0 Z*((s N1y)7)dA(s) + H(t), (2.6)

M(t A1) + Gp(t), t > 0 is a nonnegative continuous process and G, is non-
decreasing and predictable with the property that for every bounded stopping time
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T, E[M(7 A1) Fo] < ]E Gn(r )|.7-'0] Therefore using Lemma 2.2, we have

t P
< sup M(sAT, ) 0] < cE (/ Z*((s ANmn) 7 ) dA(s) —|—H(t)> ’]—"0] .
s€[0,t] 0
(2.7)
Using inequality (2.5), we get

(ZTZW@AﬂJ)dA®)+HGOPP4.

The rest of the proof is similar to the proof of part (a).
Part (c). Now we prove the inequality for general H. Defining the new local mar-
tingale

E

E[(Z*(t A7n))"|Fo] < (¢p + 1E

M(t) :== M(t) +E [H(T)|F] —E [H(T)|F]
(where we take a cadlag modification of ¢ — E [H(T)|7;]) and the predictable
process H(t) :=E [H(T)|Fo], we have

t
ﬂ@g/szmmm+M@+H@,

0
since E [H(T)|F;] > H(t). Thus the result follows from part (). O

Remark 2.3. Lemma 5.4 in von Renesse and Scheutzow (2010) states a stochastic
Gronwall inequality in the case of continuous M, Z, H which is less general than part
(b) in Theorem 2.1. In addition, the proof of von Renesse and Scheutzow (2010,
Lemma 5.4) contains a gap since the processes X; defined there can be negative
outside of €;.

Counterexample 2.4. Under the assumptions of Theorem 2.1, for p,a € (0,1), the
inequality

E[(2*(0)"|Fo] < crpa (B[(HT)*|F])""" exp{ezpaAlT)}

is generally not true with finite constants c¢; p o and cg, o for cadlag martingales
without assuming predictability of H. To see this, let ¢ € (0,1) and let S, be a
random variable such that

¢ (1- q)l_iq_l, with probability ¢;
e —(1- q)_é7 with probability 1 — q.

Consider M, o(t) == 1y, Oo)( )Sq.as Hya(t) = 1[1)00)(15)(5(1@)_ (with z_ := (—z) Vv
0,z € R)and Z, o(t) :== My o(t)+Hy o (t). Then there is no constant ¢, o, depending
only on p,a € ( 1) s Ch that the inequality

E [(Zg0(1)"] < cpa (E[(Hqa(1)*])"
holds for all ¢ € (0, 1) since
E [(Z;,a(l))p] =E [(Sq,u)g-] =(1- Q)p(lié)qlip —+ 00, asq—1,
while, on the other hand,
E [(Hq,a(l))a] = E((Sq,a)g) =1
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3. Well-posedness of Path-dependent SDEs

First, we recall the definition of an orthogonal martingale-valued measure ac-
cording to El Karoui and Méleard (1990); Walsh (1986). Let (U,U) be a Lusin
space, i.e. a measurable space homeomorphic to a Borel subset of R. Consider an
increasing sequence Uy,,n € N in U such that U = U,enU,, and define U, := U|y,
and A := Upenly,. A martingale measure is a set function M:RtxAxQ—>R
which satisfies the following (c.f. Applebaum, 2006; El Karoui and Méléard, 1990;
Walsh, 1986):

(a) M(0,A) = M(t,0) =0 (as.), for all A e A, t>0;

(b) M(t,AU B) = M(t,A) + M(t,B) (as.), for all t+ > 0 and all disjoint
A, Be A,

(c) For each non-increasing sequence (A;) of U,, converging to ), and for each

. 2
t>0,E [‘M(t, A;)| | tends to zero;

(d) sup {E ‘M(t,A)
(e) (M(t,A))s>o is a cadlag martingale for all A € A.

2
,Aelxln}<ooforalln€Nandt20;

Note that M is countably additive on U, as an L?-valued set function. In Walsh’s
terminology (Walsh, 1986), M is called “o-finite L2-valued martingale measure”.

A martingale measure M is called orthogonal if for all A, B € A with ANB = 0,
(M(A) - M;(B))¢>0 is a martingale. Note that in this case property (d) holds
automatically.

Throughout the paper, v : Rt xU/ — RU{+o00} denotes a deterministic function
such that for each t > 0, v(¢,-) is a o-finite measure and the map ¢ — v(t, A)
is measurable and locally integrable for each A € A. We assume that M is an

orthogonal martingale measure with intensity (vt):>0, i.e. <M (A),M.(B)> =
= ¢

fot vr(ANB)dr, which means (M (t, A)M(t, B) —fg v (ANB)dr)
for all A,B € A.

The stochastic integral with respect to M can be constructed in the same way
as the construction of Itd’s integral (see Walsh, 1986). In particular, the stochastic
integral h - M is defined for functions & in

10 182 martingale

174

2= {h LR x Q x U, P aU) —(R% BRY)):;
T
2
E/O /U|h(s,w,g)\ vg(d€)ds < 00, VT > 0},

where P denotes the predictable o-field on RT x Q. Further, h - M is itself an
orthogonal martingale measure and we have

<h-M.(A),h-M.(B)>t:/O h(s,w, €)]> vs(AN B)ds. (3.1)

Applying the usual localization procedure, the class of admissible integrands can
be further extended to the class of measurable functions h : (RT x Qx U, PQU) —
(R4, B(R)) for which fOT Jor |h(s,w, &) vs(d€)ds < oo, VT > 0, almost surely. In
this case, (3.1) still holds.
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Now we are ready to provide a general existence and uniqueness result on strong
solutions of functional stochastic differential equations with monotone coefficients
driven by (orthogonal) martingale noise as above.

Consider the following path-dependent stochastic differential equation

dX, = f(t,w, X)dt + / olt,w, X, €)M (dt, d¢),
U

Xt = Zt, te [*T, O],

(3.2)

where 7 > 0 and the random initial condition z belongs to Cadlag ([—T, 0]; R?) and
is Fp measurable. All spaces of cadlag functions are endowed with the supremum
norm. The coeflicient

£ ([0,00) x Q x Cadlag ([-7, 00); RY), BF @ B (Cadlag ([-7, 00); R%)))
- (R%, B(R))
is progressively measurable and
g: ([0,00) x Q x Cadlag ([—7,00); R?) x U, P ® B (Cadlag ([-7,); R?)) @ U)
- (R, B(R))
is predictable. Here BF is the o-field of progressively measurable sets on [0, 00) x £.
For every t € [0,00) and w € Q, f(t,w,x) depends only on the path of x on the
interval [—7,t] and for every t,w, €&, g(t,w,z,£) depends only on the path of z on

the interval [—,t).
The following monotonicity and growth conditions are assumed:

Hypothesis 3.1. There exist non-negative functions t — K(t) and, for all R > 0,
Lr(t) and Kg(t) in LL _([0,00),dt) such that for all z,y € Cadlag([—T,00), R?)
and allt > 0,

(C1) for supe(—rq [2(s)] ; supse(—r [y(s)| < R,
2 <Z‘(t_) - y(t_)7 f(t’w7x) - f(tvwvy)> + /U \g(t,w,x,{) - g(tvwvya§)|2 Vt(dg)
< La(t) sup [a(s) —y(s)*;

SE[—T,t]

(C2) 2<$(t_)7f(t,w’$)>+/U lg(t,w, @, &) ve(d€) < K (1) (1 + sup 1‘(8)2> ;

SE[—T,t]
(C3) x> f(t,w,z) as a function from Cadlag([—T,00); RY) to R? is continuous;
(04) f07’ SUPse[—7,t] |J"(S)| <R,

(w2 + /U gt ., €) 2 e(de) < Kr(t);

(C5) Esup,c_r 12(s)]° < .

Remark 3.2. Conditions (C1) and (C3) imply that = — ¢(t,w,x,-) as a function
from Cadlag ([—7,00); R?) to L?(U,U,v;) is continuous.

We are going to prove existence and uniqueness of a strong solution using the
Euler method. To this end let us introduce for n € N and k € Ny the Euler
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approximation

t
Xt(") = X(;) +/ ! (s,w,X_(:)ﬁ) ds
n k n

" 3.3
k k—i—l} (3:3)

(n)
+ OJX ds, d te
/(fl,t]xU (s k’g) (S 6) :|n’ n

to the solution of (3.2). Let x(n,t) := & for t € | £, 2] 'k > 0 and k(n, t) := t for

t € [-7,0]. The process X (™ can be constructed inductively as follows: Xt( "=z

for t € [—7,0], and given Xt(n) is defined for ¢ < £ we can extend Xt(n) for t €
]fl, kzl} using (3.3). Note that X(™) ¢ > —7 is cadlag, adapted, and that the

stochastic integrals are well-defined.

Theorem 3.3. Under Hypothesis 3.1, equation (3.2) has a unique strong solution
X, and X™ converges to X locally uniformly in probability, i.e. for all T > 0,

1imIP{5up ‘X Xt’>s}:O Ve>0.
o0 te[0,T
Proof: Let us define the remainder

p" =X = X, tel-1,00).

Then p(™ is adapted and p(™) ((k/n) ) = 0 for every k € Ny. Further,

t t
Xt(n):zo+/ f(‘SWX/\;Z(ns) ds+/ /g(s,w X(/(l’ln57§> M(ds, d¢§) .
0 o Ju
(3.4)
Fix T > 0 and define the stopping times

R
> 3} /\T)]-{R>3supSE olz(s)1}

7'}(%”) = (mf {t >0: ‘X n)

for given R > 0. Then
p(n)

t

2R n R n

For R > 3sup,¢(_, ¢ |2(s)| the above inequalities extend to all ¢t € [T, Tl(%n)) and

(n) > 0 due to the right continuity of X(n)
We will prove the following properties which complete the proof of existence on
[0,T], and hence on [0, 00), since T was arbitrary.

p1(l:n ) 5 0in probability as n —

(i) For every t > 0, 1(0’71?))(75) SUPye (s(n,t),¢]

0.
2p
< C(T, R,n,p), for some C(T, R,n,p) satisfying

(ii) IESUPue[O,T] Xum;")

lim C(T,R,n,p) = C(T,p) for all p € (0,1), R > 0.

n—oo
(i) limp oo limsup,, o Pl < T} =0.
(iv) Ve > 0,limy m—oo P {SUPte[o,T] ‘Xt - Xt(m)‘ > 5} =0.
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(v) 3X :Ve > 0,limy, oo P {SUPte[o,T] ’Xt(") - Xy > s} =0 and X is a strong
solution of equation (3.2) on [0,T].
Proof of (i): Fix ¢t > 0 and € > 0. Using (3.3) and Hypothesis 3.1 (C4), we have

(n)

Py’ | > 5,7'1({“) > t}

P sup
u€(k(n,t),t]
t
<P /
k(n,t)
+P sup / / (mg sz ms,g) M(ds, d§)
{ u€(r(n,t),t] (n,t) {S< } A )
gp{/ ()d82€/2}
r(n,t)

+ %E sup
€ ue(k(n,t)

fls,w X(/\n(n S))‘ ds > 5/2,7’1(?") > t}

> /2,75 > t}

2)
Using Burkholder-Davis-Gundy’s inequality, we continue as follows

[ mse e[ D)
< - Kr(s)ds+ <E 1 n s,w, X €) M(ds,d
r(n,t) a(e) e? K(n,t) JU {SSTI(E )}g( Ar(n,s) 5) ( Y t

Qtf(dC]Et 1 x™ ? u(de)d
g/r;(n,t) R(S) S+? n(n,t)/U {SSTi(%n)}‘g (S’OJ7 '/\'{(n’s),g)’ VS( g) 5

t t t
g/ KR(s)der%IE / Kgr(s)ds | = (g +%) / Kr(s)ds,
€ r(n,t) € r(n,t) g € r(n,t)

ver (n)}g 5w, X0 S),f) M(ds, d§)

r(n,t)

IN

IA

SO

P

limsupIP’{ sup > E,TI(:) > t} =0
(

n— 00 €(r(n,t),t]

which implies (i) since € > 0 was arbitrary.
Proof of (ii): Using It6’s formula, we obtain

t
| z0|? +/0 2<Xs(7i),f (s w X;\Lim S>)> ds

' 2
+//‘g (S’W’X-(fiws)f)‘ vo(d€) ds + M™ .
0 JU

2
e -

where

/ / X S‘“XM(“),S» M (ds, d¢)
{/ / (s’w XAn(n 5)75) M (ds, dﬁ)}
7/0 /U’g (5,0, X5 00 €) [ valg)ds
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and ( M™ " is a local martingale. Using (C2) and (C4), we have
t/\‘rl(2 ) >0

‘Xw

(n)
t/\TR"

2 t/\'rl(?n)
2 n n n
< |zl +/ 2(X0 = X0 f (550, X0 ) ) s
0

t/\Tl(?in)
+/ K(s)[1+ sup
0

u€[—T,s]

xM

2 (n)
ds+ M
t/\TI(%n)

t
< 2 " % (n)
< 20| +2/0 1{5‘6(0771(2 )]}KR(S) Dy ds
t 2
+ / K(s) |1+ sup |z.]*>+ sup xm | | ds+ M(")(n)
0 we[—7,0] uel0,s] | ¥NTR IATR
¢ 2
_ / K(s) sup (X0 1 ds+ HPE 4 M™
0 ue(o,s] u/\TR t/\TR

where

t
HP i el + [
0

K(s) <1 + sup |zu|2> +2- l{se(o,rg"’]}f{R(s) pi")” ds.

u€e[—7,0]
Using Theorem 2.1, we get for p € (0,1) that

2p p
x| <o) (BHET) = C(T, Bon,p)
R

]E[ sup

u€[0,T]

where, by (i) and the dominated convergence theorem,

T
| 20| +/ K(s) (1 + sup |zu|2> ds] .
0 u€[—T,0]

Hence lim,, oo C(T, R,n,p) =: C(T,p) exists and is independent of R > 0 and hence (ii)
holds.
Proof of (iii): We have, for p € (0, 1),

. n,R __
nh_,H;OEHT =E

R

lim sup lim sup P sup ‘Xt(n) > *;7'1({") <T
R— oo n—o0 tE[O,T(n)] 4
. . R
< limsup limsup P sup ‘Xt(n) 2
R—o0 mn—oo

tG[O,T/\T(Rn)]

4\ AN
< limsup (E) limsup C(T, R, n,p) < limsup (E) C(T,p) =0.

R—o00 n— oo R—oo

It follows that

2?;7}{” <T»=0

lim sup lim sup P {TI({L) < T} < limsuplimsup P sup ’Xt(m
]

R— o0 n—oo R— o0 n—oo tE[O’TI(_;L)

which completes the proof of (iii).
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Proof of (iv): Let 7j™ : 7'1({”) A 7' . Using It6’s formula, we have

2
E
t
= M +/ (X = X f (5,0, X000 0) = S (520, X T ) s
0

+ /Ot /U ‘g (5,0, X5 0002€) = 9 (500, X0 1) €) )2 ve(d€)ds

where (M:/\’"Z,m) is a local martingale starting from zero. Hypothesis (C1) implies
"R t>0

t/\'rR
: () _ xm) _ 5p(m)
< M&Tg»m + /0 (X - X - X)L+ X,

(s X0 0) = (50, X T ) s

2
XI(LTL) + 1(n(n,s),s] (u)psin) - X’L(Lm) - 1(H(m,s),s]pz(J,M)’ ds

n,m
R

tAT
+ / Lg(s) sup
0

u€[—T,s]

t
<M m +/0 Lio,pmy(s ){4KR ’p(’? +p{™

+3Lr(s)R sup  |p{M|+  sup pﬁm)‘ ds
u€(r(n,s),s] u€(r(m,s),s]
' (n) my |?
L X" =X d
+ /0 r(s) S0 X unrpm | ds
' (n) m) | R
< Mn’wﬁl.nl L X " n,m ~_ X m n,m d Hnym’
< M3, +/0 R(s)uil[lol?sl une unel s+ H{ ;

where

t
Hp R ::/ Lig,rnmy(s ){4KR ’p +p(m)
o ,

W]+ o
u€(r(m,s),s]

+3Lr(s)R sup
u€(r(n,s),s]

Py D }ds

] < C(T, R, p) (EH;*’”’R)’). (3.5)

Using Theorem 2.1, we have for p € (0,1) that

E[sup ‘XfAlnm—X< n,m

tA
te[0,7T) "R

Hence for a > 0,

IP’{ sup ‘Xf") —Xt(m)’ > a}

te[0,T)

<P{T>T](3n)}+IF’{T>Tg">}+P{ sup ]‘Xt(")—Xt(m)) >a}

n,m
tE[O,‘rR

IN

(n) (m) 1
P{T >} +P{T >} + —E

m
Sup ’X n m _Xt(/\ )n m

TR
t€[0,T]

.

<o {r ) e (o} oot (s
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(i) and dominated convergence now imply that

limsup EH ™" =0

n,Mm—00
and using (iii), we get
limsupP{ sup ‘an) - Xt(m)’ >a
n,m— oo te(0,T]

< lim limsup []P’ {T > 7'1%")} +P {T > Tgn)} + aiQpC(T7 R,p) (EH;YW’R)Z)] =0,

R—00 n m—oo

so (iv) is obtained.
Proof of (v): Since the space Cadlag ([—7, T],R?) is complete, via the Borel-Cantelli lemma,
(iv) yields that there exists an adapted cadlag process X such that

25}—0.

We have to show that, for a subsequence of n € N, all terms of equation (3.4) converge
almost surely to the corresponding terms of equation (3.2). We have

T
lim sup/ P<{ sup >epdt
n—oo Jo u€e(0,t]

T
< limsup/ ]P’{ sup ’Xi") - Xu’ > 5} dt+
0 ]

n—oo u€el0,T

lim IP’{ sup ’Xt(”) ~ X,

n=oo | 1ef0,1]

X(”l) Xu

uAk(n,t)

T
li 1 =0.
+ lmSup]E\/O {suPuE(rz(n,t),t]‘Xm(7l,t)7X’u|25}dt 0

n— oo

So we can find a subsequence, say {m}l€N7 such that as [ — oo,

X(’ﬂl) Xu

uAr(ng,t)

sup —0 dt®Pae. (t,w) € [0,T] x Q.

u€(0,t]

Now let us define

X("L)

uAk(ny,t)

S(T) :=sup sup sup
1eN te[0,T] uel0,¢]

’

then
S(T) < oo P-as.

Therefore, using (C3), (C4) and dominated convergence, we obtain that

t

t
ll—l>nolo | f (Sv‘*J”X»(/?\TL)(nl,s)) ds = /0 f(s,w,X)ds P-as.
Let 7(R) :=inf {t > 0: S(t) > R}AT. Fixt € [0,T]. By (C4), Remark 3.2, and dominated
convergence,

2
lim E

l—o0

L7 o (X000, 00€) — 0,00 s, 0)

’2 vs(d€)ds = 0,

l—o0

t
= lim IE/ / 1{5§T(R)} ‘g (va7X.<;L,i)(nl,s)7£) - g(s,w,X, 5)
o Ju
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so, for t € | OT]

Al
<]P’{ }
+P{t>7(R)

Fix some sufficiently large R such that the second term on the right hand side is less than
6 > 0, then taking the limit [ — oo implies

ll—iglop{ /Ot/U [g 5w X</\;l¢)nla5>’§) g(s,w, X, f)] M (ds, df)‘ }S(S

where § > 0 is arbitrary. Therefore

/ot/Ug 00 X €) (dsdf%// (5,0, X, €) M (ds, d€)

in probability and for some subsequence n;, the above convergence is IP-a.s. Therefore X
is a solution of equation (3.2) on [0,T].
Uniqueness: Let X and Y be two solutions of equation (3.2) and define

T(R) :=inf {t > 0;|X¢| > Ror |Y;| > R} .

s, w,X("l(nl §)7§> (s,w,X,g)} M(ds,df)' > 8}

e s w, X0 5) g (5,0, X 5)} M(ds, d€)| >

‘Ak(ng,s)?

Then

5 tAT(R)
Xt/\T(R) - KAT(R)‘ = / {2 <Xs* - Ys*7f(s7w7X) - f (s,w,Y))
0
+/ |g (57("}7X7§) _9(57W,Y7§)|2 VS(d'E)}dS—"_Mt/\T(R)
U

t
S/ 1{S§T(R)}LR(S) sup |Xu —Yu‘ZdS-i-Mt/\T(R)
0 u€(0,s]

t

2

S/ Lr(s) sup |Xunr(r) — Yunr(m)| ds + Minr(r)
0 u€(0,s]

where (Mt/\T(R'))t>O is a local martingale starting from zero. Using Theorem 2.1, for
€ (0,1) we have

E[ sup |Xonr(r) — YsAT(R)‘Qp <0.
s€[0,T]

Therefore X ar(r) — Ysar(r) = 0 a.s. and uniqueness is proved. O

4. An Example

We provide a simple example satisfying the assumptions of Theorem 3.3 which
does not seem to have been covered by previous results.

Ezxample 4.1. Let d =1, 7 = 1 and consider the equation
ax, = [-|x- [+ Cswp |, || ae+ [ x.- [ sw X awi+ang, (4.1)
—1<s<t —1<s<t
where W is standard Brownian motion and N is compensated standard Poisson
process.
It is straightforward to check that Hypothesis 3.1 is satisfied. Observe that the

function x — \a?|3/ 4 does not satisfy a local Lipschitz condition in any neighborhood
of 0. To prove uniqueness of the solution, assume that X and Y are two solutions
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with initial condition 0. Denoting their squared difference by Z, we arrive at an
inequality of the form

ZSSK/ Zydu+ Mg, s >0,
0

where the supremum in the integrand cannot be avoided. To apply the usual
Gronwall inequality, we need to take the expectation of the supremum on both
sides between 0 and t. Applying the Burkholder-Davis-Gundy inequality to estimate
EM; we thus arrive at an integral inequality for EZ; to which we cannot apply
the usual Gronwall lemma since, due to the lack of local Lipschitz continuity of the
function = +— |x|3/4, the right hand side is too large. Without the Poisson term N,
this equation is covered by the main result in von Renesse and Scheutzow (2010)
by applying a stochastic Gronwall lemma for continuous processes. Due to the
Poisson term N this version of the stochastic Gronwall lemma cannot be applied
to equation (4.1).
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