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Abstract. We prove Moderate Deviation estimates for nodal lengths of random
spherical harmonics both on the whole sphere and on shrinking spherical domains.
Central Limit Theorems for the latter were recently established in Marinucci et al.
(2020) and Todino (2020), respectively. Our proofs are based on the combination
of a Moderate Deviation Principle by Schulte and Thäle (2016) for sequences of
random variables living in a fixed Wiener chaos with a well-known result based on
the concept of exponential equivalence
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1. Introduction: background and motivations

1.1. Random spherical harmonics. Let S2 denote the two-dimensional unit sphere
with the round metric and ∆ the spherical Laplacian. In standard spherical co-
ordinates (θ, ϕ) ∈ [0, π] × [0, 2π), where θ is the colatitude, the metric takes the
form

dx2 = dθ2 + sin2 θdϕ2. (1.1)

It is well-known that the spectrum of ∆ is purely discrete, its eigenvalues are of the
form −`(` + 1) where ` ∈ N and, for each `, the family of the so-called spherical
harmonics of degree ` {Y`,m,m = 1, . . . , 2` + 1} is a real orthonormal basis of the
`-th eigenspace (Marinucci and Peccati, 2011, §3.4).

Definition 1.1. For ` ∈ N, the `-th random spherical harmonic T` is a centered
Gaussian field on S2 whose covariance kernel is given by

Cov(T`(x), T`(y)) = P`(cos d(x, y)), x, y ∈ S2, (1.2)

where P` denotes the Legendre polynomial (Marinucci and Peccati, 2011, §13.1.2)
of degree ` and d(x, y) the spherical geodesic distance (see (1.1)) between x and y.

Equivalently, one can define T` as follows

T`(x) :=

√
4π

2`+ 1

2`+1∑
m=1

a`,mY`,m(x), x ∈ S2, (1.3)

where {a`,m,m = 1, . . . , 2` + 1} are standard Gaussian and independent random
variables, defined on a probability space (Ω,F ,P). Actually, from the addition
formula (Marinucci and Peccati, 2011, (3.42)) for random spherical harmonics the
covariance kernel of T` in (1.3) is given by (1.2). It is immediate that T` is isotropic,
and that it is P−a.s. an eigenfunction of the spherical Laplacian with eigenvalue
−`(` + 1). We can assume {T`, ` ∈ N} to be independent random fields, indeed
they are the Fourier components of isotropic Gaussian fields on the sphere, see e.g.
Baldi et al. (2007) and Marinucci and Peccati (2011, §5, §6).

Now we recall the Hilb’s asymptotic formula: let ε > 0, uniformly for θ ∈ [0, π−ε]
and ` ∈ N≥1

P`(cos θ) =

√
θ

sin θ
J0 ((`+ 1/2) θ) +O

(
`−3/2

)
, (1.4)

where J0 is the Bessel function Szegő (1975, §1.71) of the first kind of order zero,
see the conventions below for the meaning of the O−notation. The scaling limit,
as ` → +∞, of T` is the so-called Berry’s Random Wave model which, according
to Berry’s conjecture (Berry, 1977), should model the local behavior of high-energy
deterministic eigenfunctions on “generic chaotic” surfaces.
Conventions. Given two sequences of positive real numbers {xn, n ∈ N} and
{yn, n ∈ N} we will write xn = O(yn) if the ratio xn/yn is asymptotically bounded,
and xn = o(yn) if limn→+∞ xn/yn = 0. Moreover, we will write xn ≈ yn if both
xn = O(yn) and yn = O(xn) hold.

1.2. Nodal lengths: asymptotic distribution. Let us consider the nodal set T−1
` (0) :=

{x ∈ S2 : T`(x) = 0}. It is well-known that T−1
` (0) is an P−a.s. smooth curve whose

connected components are homeomorphic to the circle. We are interested in the
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high-energy geometry of the nodal set, in particular in the asymptotic behavior, as
`→ +∞, of the nodal length

L` := length(T−1
` (0)). (1.5)

The latter received great attention also in view of Yau’s conjecture on nodal volumes
of deterministic eigenfunctions on compact smooth Riemannian manifolds (Yau,
1982). We collect the main known results on the distribution of L` in a single
theorem (Theorem 1.2 below): the expected length was studied in Bérard (1985),
the asymptotic variance in Wigman (2010) and the second order fluctuations of L`
in Marinucci et al. (2020). In order to state them, let us recall that, for integrable
real random variables X,Y , the Wasserstein distance between X and Y is defined
as dW (X,Y ) := suph |E[h(X)]−E[h(Y )]|, where the supremum is taken over the set
of Lipschitz functions whose Lipschitz constant is ≤ 1. From now on, Z ∼ N (0, 1)
will denote a standard Gaussian random variable.

Theorem 1.2. For every ` ∈ N

E[L`] =
4π

2
√

2

√
`(`+ 1). (1.6)

As `→ +∞, we have

Var(L`) =
1

32
log ` (1 + o(1)). (1.7)

Moreover, denoting

L̃` :=
L` − E[L`]√

Var(L`)
,

a quantitative CLT in Wasserstein distance holds, i.e., as `→ +∞

dW

(
L̃`, Z

)
= O

(
(log `)−1/2

)
. (1.8)

Note that, from (1.6) and (1.7) we have L`/
√
`(`+ 1) → 4π/(2

√
2) P−a.s. as

` → +∞, consistently with Yau’s conjecture Yau (1982). From (1.8) we conclude
in particular that the asymptotic distribution of the nodal length is Gaussian.
Moreover, from (1.8) and Nourdin and Peccati (2012, (C.2.6))

dKol

(
L̃`, Z

)
= O

(
(log `)−1/4

)
, (1.9)

where for arbitrary real random variables X,Y , the Kolmogorov distance between
X and Y is defined as dKol(X,Y ) := supx∈R |P(X ≤ x)− P(Y ≤ x)|.

1.2.1. Shrinking spherical domains. In Todino (2020) the asymptotic behavior of
the nodal length in shrinking spherical domains was investigated. Fixed a point
x0 ∈ S2, let Br denote the spherical cap of radius r > 0 centered at x0 and consider
the length of nodal lines in Br

L`,Br := length(T−1
` (0) ∩Br).

We recall that the area of Br is equal to 2π(1−cos r). We have the following results
summarized in the next theorem.

Theorem 1.3. For any r > 0

E[L`,Br ] =
2π(1− cos r)

2
√

2

√
`(`+ 1). (1.10)
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For a sequence of radii {r`, ` ∈ N} converging to zero not too rapidly (r`` → +∞)
we have, as `→ +∞,

Var(L`,Br`
) =

1

256
r2
` log(r``) +O(r2

` ). (1.11)

Moreover, denoting

L̃`,Br`
:=
L`,Br`

− E[L`,Br`
]√

Var(L`,Br`
)

we have a quantitative CLT in Wasserstein distance as `→ +∞

dW

(
L̃`,Br`

, Z
)

= O
(

(log r``)
−1/2

)
. (1.12)

Indeed (1.12) follows from the proof of Theorem 2.2 in Todino (2020) (at the end
of §5.2.3) where in particular it is proved that the distribution of the nodal length
in shrinking domains is asymptotically Gaussian. As in the previous case, we can
also deduce that, as `→ +∞,

dKol

(
L̃`,Br`

, Z
)

= O
(

(log r``)
−1/4

)
. (1.13)

In this paper we are interested in refinements of Central Limit Theorems stated
above (Theorems 1.2 and 1.3).

1.3. Moderate Deviation Principles. The theory of Large Deviations allows an as-
ymptotic computation of small probabilities at exponential scales. Here we start
by recalling a basic definition. From now on let (Ω,F ,P) be a complete probability
space, and {Xn, n ∈ N} a sequence of real-valued random variables: for each n the
map

Xn : Ω→ R
is measurable with respect to F and B(R) (the Borel σ-field of R) on Ω and R
respectively.

Definition 1.4. We say that {Xn, n ∈ N} satisfies the Large Deviation Principle
(LDP) with speed 0 ≤ sn ↗ +∞ and good rate function1 I if for every α ≥ 0 the
level set {x : I(x) ≤ α} is compact and for all B ∈ B(R) we have

− inf
x∈B̊
I(x) ≤ lim inf

n→+∞

1

sn
logP(Xn ∈ B)

≤ lim sup
n→+∞

1

sn
logP(Xn ∈ B) ≤ − inf

x∈B̄
I(x),

where B̊ (resp. B̄) denotes the interior (resp. the closure) of B.

Let us now recall the notion of exponential equivalence (Dembo and Zeitouni,
1998, Definition 4.2.10) related to the question whether the LDP for {Yn, n ∈ N}
can be deduced from the LDP for {Xn, n ∈ N}, {Yn, n ∈ N} being another sequence
of real-valued random variables.

Definition 1.5. We say that {Xn, n ∈ N} and {Yn, n ∈ N} are exponentially
equivalent at speed 0 ≤ sn ↗ +∞ if, for every δ > 0,

lim sup
n→+∞

1

sn
logP(|Xn − Yn| > δ) = −∞. (1.14)

1See §1.2 in Dembo and Zeitouni (1998) for details.
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As far as the LDP is concerned, exponentially equivalent sequences of random
variables are indistinguishable (Dembo and Zeitouni, 1998, Theorem 4.2.13).

Lemma 1.6. Assume that {Xn, n ∈ N} satisfies the LDP with speed sn and good
rate function I. Then, if {Xn, n ∈ N} and {Yn, n ∈ N} are exponentially equivalent
at speed sn, the same LDP holds for {Yn, n ∈ N}.

A Moderate Deviation Principle (MDP) is a class of LDPs for families of random
variables depending on the choice of certain scalings in a suitable class. Moreover,
all these LDPs (whose speed function depends on the scaling) are ruled by the
same quadratic rate function vanishing at zero (actually, usually one deals with
families of centered random variables, or asymptotically centered). In several cases
the choice of the scaling parameters allows to fill the gap between the convergence
in probability to a constant and the convergence in law to a centered Gaussian
random variable.

Example 1.7. Let {Zn, n ∈ N} be a sequence of i.i.d. real-valued random variables
such that the moment-generating function

R 3 λ 7→ logE
[
eλZ1

]
is finite in some ball around the origin, E[Z1] = 0 and Var(Z1) = 1. Let us define
for each n the random variable

Xn :=

n∑
i=1

Zi/
√
n.

For any sequence of positive numbers {an, n ∈ N} such that

an → +∞, an/
√
n→ 0,

a MDP with speed a2
n and rate function I(x) := x2/2, x ∈ R, holds for {Xn, n ∈ N},

namely for every Borel set B ⊂ R

− inf
x∈B̊
I(x) ≤ lim inf

n→+∞

1

a2
n

logP(Xn/an ∈ B)

≤ lim sup
n→+∞

1

a2
n

logP(Xn/an ∈ B) ≤ − inf
x∈B̄
I(x),

where B̊ (resp. B̄) denotes the interior (resp. the closure) of B.

The classical example Dembo and Zeitouni (1998, Theorem 3.7.1) recalled just
above concerns the empirical means of i.i.d. random variables; indeed, if these
random variables have finite moment generating function in a neighborhood of the
origin, a class of LDPs holds filling the gap between the asymptotic regimes of the
Law of Large Numbers (LLN) and the Central Limit Theorem (CLT): indeed, using
the same notation as in Example 1.7, as n→ +∞ we have

Xn/
√
n→ 0 P− a.s., Xn

d→Z ∼ N (0, 1),

where →d denotes convergence in distribution.
Furthermore, for completeness, we recall that a LDP linked to a LLN is provided

by the celebrated Cramér Theorem (Dembo and Zeitouni, 1998, Theorem 2.2.3).
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2. Main results and outline of the paper

2.1. Statement of main results. Our main results concern MDPs which refine The-
orems 1.2 and 1.3, namely a class of LDPs for nodal lengths of random spherical
harmonics for certain scalings {a`, ` ∈ N} that tend to infinity slowly (see condi-
tions (2.1) and (2.2) in Theorems 2.1 and 2.2 below), with speed a2

` , and common
quadratic rate function I(x) = x2/2, x ∈ R. Moreover, for a` = 1 (and in such
a case the condition a` → +∞ in (2.1) and (2.2) fails) we have the convergence
in law to the standard Normal distribution (Theorem 1.2 and Theorem 1.3). Re-
call the preliminaries in Section 1.3 and the discussion just after the statement of
Lemma 1.6.

Theorem 2.1. Let {a`, ` ∈ N} be any sequence of positive numbers such that, as
`→ +∞,

a` → +∞, a`/
√

log log `→ 0. (2.1)
The sequence of random variables{

L̃`/a`, ` ∈ N
}

satisfies a MDP with speed a2
` and rate function I(x) = x2/2, x ∈ R.

From now on, {r`, ` ∈ N} is a sequence of radii such that (see Theorem 1.3)

r``→ +∞.

Theorem 2.2. Let {a`, ` ∈ N} be any sequence of positive numbers such that, as
`→ +∞,

a` → +∞, a`/
√

log log r``→ 0. (2.2)
The sequence of random variables{

L̃`,Br`
/a`, ` ∈ N

}
satisfies a MDP with speed a2

` and rate function I(x) = x2/2, x ∈ R.

To the best of our knowledge, Theorem 2.1 and Theorem 2.2 are the first MD
estimates for Lipschitz-Killing curvatures of excursion sets of Laplacian Gaussian
eigenfunctions on manifolds and on shrinking domains on manifolds, respectively.

Remark 2.3 (Lipschitz-Killing curvatures). The conditions a`/
√

log log ` → 0 in
(2.1) and a`/

√
log log r``→ 0 in (2.2) are plausibly not optimal; this is a drawback

of the proof technique we decided to adopt. Our choice was based on the fact that
we do not have any information on the moment-generating function of the nodal
length and, more importantly, on the shortness of our argument as well as on its
flexibility. Indeed, our strategy can be immediately adapted to prove MD esti-
mates for the other Lipschitz-Killing (LK) curvatures of excursion sets at any level
of random spherical harmonics such as the length of level curves, the excursion
area and the Euler-Poincaré characteristic (see e.g. Cammarota and Marinucci,
2018; Marinucci and Wigman, 2014; Todino, 2019 and the references therein). Ac-
tually, our approach works well independently of the underlying manifold as long as
the random model is Gaussian and long-memory, for instance in the case of arith-
metic random waves, see Benatar et al. (2020); Cammarota (2019); Marinucci et al.
(2016); Nourdin et al. (2019); Peccati and Rossi (2018) and the references therein.
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2.2. On the proofs of the main results. The nodal length L` in (1.5) is a finite-
variance functional of the Gaussian field T` (Definition 1.1) hence it can be written
as an orthogonal series, the so-called Wiener-Îto chaos expansion, converging in
L2(P) of the form

L` = E[L`] +

+∞∑
q=1

L`[q], (2.3)

where L`[q] is the orthogonal projection of L` onto the so-called Wiener chaos
of order q. The expansion in (2.3) relies on the fact that the family of suitably
normalized Hermite polynomials {Hq, q ∈ N} is an orthonormal basis for the space
of square integrable functions on the real line with respect to the Gaussian density.
Recall that H0 ≡ 1 and

Hq(t) := (−1)qφ−1(t)
dq

dtq
φ(t), t ∈ R, q ∈ N≥1, (2.4)

where φ denotes the standard Gaussian density. In particular H1(t) = 1, H2(t) =
t2 − 1, H3(t) = t3 − 3t and H4(t) = 3t4 − 6t2 + 3. It turns out that L` − E[L`]
is asymptotically equivalent, in the L2(P)-sense, to its fourth chaotic component
L`[4] which is moreover fully correlated, as `→ +∞, to the sample trispectrum of
T`. More precisely let us define, for ` ∈ N,

M` := −1

4

√
`(`+ 1)

2

1

4!

∫
S2
H4(T`(x)) dx; (2.5)

Theorem 1.2 in Marinucci et al. (2020) states that, as `→ +∞,

E
[∣∣∣L̃` − M̃`

∣∣∣2] = O
(
(log `)−1

)
, (2.6)

where
M̃` :=

M`√
Var(M`)

.

Now recall that the sequence of random variables {M̃`, ` ∈ N} lives in the fourth
Wiener chaos. On that space, convergence in law to a standard Gaussian random
variable can be proved Nualart and Peccati (2005); Nourdin and Peccati (2009)
showing that its fourth cumulant goes to zero, hence

Cum4(M̃`)→ 0. (2.7)

Theorem 1 in Schulte and Thäle (2016) ensures that under (2.7) a MDP holds for
the normalized sample trispectrum. See also Döring and Eichelsbacher (2013) for
MDP via cumulants and Ledoux (1990) for LDP for Wiener chaos.

In this paper, as a preliminary result (Lemma 4.1), firstly we will establish a
MDP for {M̃`/a`, ` ∈ N} with the rate function I in Theorem 1.2 and speed a2

` ,
whenever as `→ +∞

a` → +∞, a`/(log `)1/7 → 0.

Then, in order to deduce a MDP for the whole series on the right hand side of (2.3),
i.e. to establish Theorem 2.1, we will prove that {M̃`/a`, ` ∈ N} and {L̃`/a`, ` ∈ N}
are exponentially equivalent (Definition 1.5) at speed a2

` provided that a` goes to
infinity sufficiently slowly (see (2.1)) according to (2.6). Finally Lemma 1.6 will
allow to conclude.
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The proof of Theorem 2.2 relies on the same ideas as those developed just before
for the proof of Theorem 2.1.

2.3. Plan of the paper. In §3 we recall both the notion of Wiener chaos and the
chaotic expansion (2.3) for the nodal length of random spherical harmonics. In
particular, in §3.3 we recall the reduction principle for nodal lengths on the sphere
and on shrinking domains leading in particular to (2.6). Finally in §4 we give the
proofs of our main results.

3. Nodal lengths and Wiener chaos

3.1. Wiener chaos. It is well-known (Nourdin and Peccati, 2012, Proposition 1.4.2)
that the family {Hq/

√
q!, q ∈ N} of suitably normalized Hermite polynomails (2.4)

is a complete orthonormal system in the space of square integrable real functions
L2(φ) with respect to the standard Gaussian measure on the real line.

Random spherical harmonics (1.3) are linear combinations of i.i.d. standard
Gaussian random variables {a`,m : ` = 1, 2, . . . ,m = 1, . . . , 2` + 1}; we define
accordingly the space X to be the closure in L2(P) of lin{a`,m : ` = 1, 2, . . . ,m =
1, . . . , 2`+ 1}, thus X is a real centered Gaussian Hilbert subspace of L2(P). Now
let q ∈ N; the q-th Wiener chaos Cq associated with X is defined as the closure in
L2(P) of all real finite linear combinations of random variables of the form

Hp1(x1)Hp2(x2) · · ·Hpk(xk)

for k ∈ N≥1, where p1, . . . , pk ∈ N satisfy p1 + · · ·+ pk = q, and (x1, x2, . . . , xk) is a
standard Gaussian vector extracted from X (plainly, C0 = R and C1 = X). Note
that (from (1.3)) for every ` the random fields T` and ∇T` viewed as collections of
Gaussian random variables indexed by x ∈ S2 are all lying in X.

Taking into account the orthonormality and completeness of {Hq/
√
q!, q ∈ N}

in L2(φ), together with a monotone class argument (see e.g. Nourdin and Peccati,
2012, Theorem 2.2.4), one can prove that Cq ⊥Cq′ in L2(P) whenever q 6= q′, and
moreover

L2
X(P) =

∞⊕
q=0

Cq,

where L2
X(P) := L2(Ω, σ(X),P), that is, every finite-variance real-valued functional

F of X admits a unique representation as a series, converging in L2
X(P), of the form

F =

∞∑
q=0

F [q], (3.1)

F [q] := proj(F |Cq) being the orthogonal projection of F onto Cq (in particular,
F [0] = E[F ]). For a complete discussion on Wiener chaos see Nourdin and Peccati
(2012, §2.2) and the references therein.

3.2. Nodal length: chaos expansion. Let B ⊆ S2 be a “nice” subset of the sphere.
For our purpose it suffices to take B as the whole sphere or a spherical cap. The
nodal length L`,B := length(T−1

` (0) ∩ B) in B at frequency ` (plainly, L`,S2 ≡ L`)
can be formally written as

L`,B =

∫
B

δ0(T`(x))‖∇T`(x)‖ dx, (3.2)
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where δ0 stands for the Dirac mass in 0, ∇T` is the gradient field and ‖ · ‖ denotes
the Euclidean norm in R2. Indeed, let us consider the ε-approximating random
variable

Lε`,B :=
1

2ε

∫
B

χ[−ε,ε](T`(x)) ‖∇T`(x)‖ dx,

where 0 < ε < 1 and χ[−ε,ε] denotes the indicator function of the interval [−ε, ε]. It
is possible to prove that

lim
ε→0
Lε`,B = length(T−1

` (0) ∩B)

both P−a.s. and in L2(P), see Marinucci et al. (2020); Nourdin et al. (2019), thus
justifying (3.2). In particular, L`,B ∈ L2

X(P). The integral representation (3.2) can
be equivalently written as

L`,B =

√
`(`+ 1)

2

∫
B

δ0(T`(x))‖∇̃T`(x)‖ dx, (3.3)

where ∇̃ is the normalized gradient, i.e. ∇̃ := ∇/
√

2
`(`+1) (thus pointwise the

components of the normalized gradient have unit variance, see §3.2.1 in Marinucci
et al., 2020 for details). Let us now recall the chaotic expansion (3.1) for L`,B

L`,B =

+∞∑
q=0

L`,B [2q], (3.4)

where L`,B [2q] denotes the orthogonal projection of L`,B onto C2q. (Note that
projections on odd chaoses vanish since the integrand functions in (3.3) are both
even.) In Marinucci et al. (2020, §2) the terms of the series on the right hand
side of (3.4) are explicitly given (see also Marinucci et al., 2016). Let us introduce
the two sequences of real numbers {β2k}+∞k=0 and {α2n,2m}+∞n,m=0 corresponding to
the (formal) chaotic coefficients of the Dirac mass at 0 and the Euclidean norm
respectively: for k, n,m ∈ N

β2k :=
1√
2π
H2k(0), α2n,2m :=

√
π

2

(2n)!(2m)!

n!m!

1

2n+m
pn+m

(
1

4

)
,

where pN is the swinging factorial coefficient

pN (x) :=

N∑
j=0

(−1)N+j

(
N
j

)
(2j + 1)!

(j!)2
xj

for x ∈ R. The 2q-th chaotic projection of the nodal length restricted to B is

L`,B [2q] =

√
`(`+ 1)

2

q∑
u=0

u∑
k=0

α2k,2u−2kβ2q−2u

(2k)!(2u− 2k)!(2q − 2u)!

×
∫
B

H2q−2u(T`(x))H2k(∂̃1;xT`(x))H2u−2k(∂̃2;xT`(x)) dx,

(3.5)

where we use spherical coordinates (colatitude θ, longitude ϕ) and for x = (θx, ϕx)
we are using the notation

∂̃1;x = (`(`+ 1)/2)−1/2 · ∂
∂θ

∣∣∣∣
θ=θx

, ∂̃2;x = (`(`+ 1)/2)−1/2 · 1

sin θ

∂

∂ϕ

∣∣∣∣
θ=θx,ϕ=ϕx

.

Obviously L`,B [0] = area(B)

2
√

2

√
`(`+ 1) = E[L`,B ].
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3.3. Nodal lengths: reduction principles.

3.3.1. On the sphere. From (3.5) for q = 1, an application of Green’s formula yields
(see Marinucci and Rossi, 2020 and the references therein)

L`[2] = 0. (3.6)

Let us consider, as in (2.5), the sample trispectrum

M` := −1

4

√
`(`+ 1)

2

1

4!

∫
S2
H4(T`(x)) dx;

from the properties of Hermite polynomials recalled in §3.1 and by (1.4) we have

E[M`] = 0, Var(M`) =
1

32
log `+O(1), as `→ +∞ (3.7)

(see Marinucci and Wigman, 2014, Lemma 3.2), cf. (1.7). Moreover, in Marinucci
et al. (2020) it has been shown that the fourth chaotic projection L`[4] (see (3.5)
for q = 2) is asymptotically (as ` → +∞) equivalent, in the L2(P)-sense, to M`,
and that the tail

∑
q≥3 L`[2q] of the chaotic series (3.4) is negligible. To be more

precise,

E
[∣∣∣L̃` − M̃`

∣∣∣2] = O
(
(log `)−1

)
, as `→ +∞, (3.8)

which is (2.6). An application of the Fourth Moment Theorem (Nualart and Peccati,
2005; Nourdin and Peccati, 2009) gives (Marinucci and Wigman, 2014)

dW

(
M̃`, Z

)
≤
√

Cum4(M̃`) = O
(
(log `)−1

)
, as `→ +∞,

that together with the estimate (3.8) proves (1.8).

3.3.2. On shrinking spherical domains. Let us define the local sample trispectrum
as

M`,Br`
:= −1

4

√
`(`+ 1)

2

1

4!

∫
Br`

H4(T`(x)) dx. (3.9)

It has zero mean and variance (recall that r``→ +∞) given by

Var(M`,Br`
) =

1

256
r2
` log r``+O(r2

` ) (3.10)

(see Todino, 2020, Proposition 3.4). In Todino (2020, Proposition 3.3) the asymp-
totic full correlation between the local nodal length L`,Br`

and the local sample
trispectrum has been established and, in view of the orthogonality of the projec-
tions, this entails thatM`,Br`

is the leading term of the chaos expansion of L`,Br`
in

(3.5). Indeed, all the other projections are proved to be O(r2
` ) in the L2−sense (see

the supplement article to Todino (2020), Appendix C) and hence we can conclude
that

E
[∣∣∣L̃`,Br`

− M̃`,Br`

∣∣∣2] = O
(
(log r``)

−1
)
. (3.11)

Hence the Fourth Moment Theorem (Nualart and Peccati, 2005; Nourdin and Pec-
cati, 2009) gives (Todino, 2020, Lemma 5.4)

dW

(
M̃`,Br`

, Z
)
≤
√

Cum4(M̃`,Br`
) = O

(
(log r``)

−1/2
)

that together with the estimate (3.11) proves (1.12).
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4. Proofs of the main results

4.1. Proof of Theorem 2.1. Bearing in mind §3.3.1 we start with an auxiliary lemma
of independent interest which provides the MDP for the sample trispectrum on the
sphere.

Lemma 4.1. Let {a`, ` ∈ N} be any sequence of positive numbers such that, as
`→ +∞,

a` → +∞, a`/(log `)1/7 → 0. (4.1)

Then the sequence of random variables {M̃`/a`, ` ∈ N} satisfies a MDP with speed
a2
` and rate function I(x) = x2/2, x ∈ R.

Proof : The random variable M` belongs to the fourth Wiener chaos C4 for each
` ∈ N. Recalling (3.7), from Marinucci and Wigman (2014, Lemma 3.3), we have
that, as `→ +∞, Cum4(M`) ≈ 1. Hence we have, as `→ +∞,

Cum4(M̃`) =
Cum4(M`)

Var(M`)2
≈ 1

log2 `
. (4.2)

Now let {a`, ` ∈ N} be a positive sequence such that, as `→ +∞,

a` → +∞, a`/(∆`)
1/3 → 0, (4.3)

where

∆` :=

(√
Cum4(M̃`)

)−3/7

≈ (log `)3/7. (4.4)

Note that (4.3) is equivalent to (4.1). Corollary 2 in Schulte and Thäle (2016)
ensures that the sequence M̃`/a` satisfies a MDP with speed a2

` and rate function
I(x) = x2/2, x ∈ R.

�

Remark 4.2. Our argument leads to further results, namely expansions à la Cramér-
Petrov (Rudzkis et al., 1978) for the sample trispectrum. We state here the result
in a simplified form taken from Theorem 5 (i) in Schulte and Thäle (2016): there
exist universal constants c0, c1, c2 > 0 such that for ∆` ≥ c0, 0 ≤ x ≤ c1∆

1/3
` (∆`

is defined as in (4.4)) it holds that∣∣∣∣∣log
P(M̃` ≥ x)

1− Φ(x)

∣∣∣∣∣ ≤ c2 1 + x3

∆
1/3
`

,

∣∣∣∣∣log
P(M̃` ≤ −x)

Φ(−x)

∣∣∣∣∣ ≤ c2 1 + x3

∆
1/3
`

,

where Φ denotes the standard Gaussian cumulative distribution function. An
anonymous referee raised the interesting question whether expansions à la Cramér-
Petrov hold for nodal lengths on the sphere and on shrinking spherical domains.
We leave this as a topic for future research.

Proof of Theorem 2.1: We want to combine Lemma 1.6 and Lemma 4.1 for every
speed a` satisfying (2.1); note that a`/

√
log log `→ 0 implies a`/(log `)1/7 → 0 (see

(4.1)). In order to do so, we have to check that for every δ > 0

lim sup
`→+∞

1

a2
`

logP(a−1
` |L̃` − M̃`| > δ) = −∞, (4.5)
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i.e., that the sequences of random variables {L̃`/a`, ` ∈ N} and {M̃`/a`, ` ∈ N} are
exponentially equivalent (Definition 1.5) at speed a2

` . Thanks to Markov inequality
we have

P(a−1
` |L̃` − M̃`| > δ) ≤

a−2
` E[|L̃` − M̃`|2]

δ2

so that

lim sup
`→+∞

a−2
` logP(a−1

` |L̃` − M̃`| > δ) ≤ lim sup
`→+∞

a−2
` log

a−2
` E[|L̃` − M̃`|2]

δ2

= lim sup
`→+∞

a−2
` logE[|L̃` − M̃`|2].

(4.6)

Plugging (2.6) into (4.6) we get (4.5) whenever a` = o(
√

log log `) as in (2.1).
�

4.2. Proof of Theorem 2.2. Here we refer to §3.3.2 and we follow the same lines of
the proof of Theorem 2.1. We first prove the following lemma which is of indepen-
dent interest.

Lemma 4.3. Let {a`, ` ∈ N} be any sequence of positive numbers such that, as
`→ +∞,

a` → +∞, a`/(log r``)
1/14 → 0. (4.7)

Then the sequence of random variables {M̃`,Br`
/a`, ` ∈ N} satisfies a MDP with

speed a2
` and rate function I(x) = x2/2, x ∈ R.

Proof : The random variableM`,Br`
in (3.9) belongs to the fourth Wiener chaos for

each ` ∈ N. Recalling (3.10) and that from Todino (2020, Lemma 5.4), as `→ +∞,
Cum4(M`,Br`

) = O(r4
` log r``), we have

Cum4(M̃`,Br`
) =

Cum4(M`,Br`
)

Var(M`,Br`
)2

= O

(
1

log r``

)
. (4.8)

Now let {a`, ` ∈ N} be a positive sequence such that, as `→ +∞,

a` → +∞, a`/(∆`,r`)
1/3 → 0, (4.9)

where

∆−1
`,r`

:=

(√
Cum4(M̃`,Br`

)

)3/7

= O
(

(log r``)
−3/14

)
, as `→ +∞.

Note that (4.7) implies (4.9). It follows that, as in the proof of Lemma 4.1, Corol-
lary 2 in Schulte and Thäle (2016) ensures that the sequence {M̃`,Br`

/a`, ` ∈ N}
satisfies a MDP with speed a2

` and rate function I(x) = x2/2.
�

Analogous results as those in Remark 4.2 hold for the sample trispectrum re-
stricted to a shrinking ball.

Proof of Theorem 2.2: Along the same lines of the proof of Theorem 2.1 we want
to combine Lemma 1.6 and Lemma 4.3 for every speed a` satisfying (2.2); note that
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a`/
√

log log r`` → 0 implies a`/(log r``)
1/14 → 0 (see (4.7)). To this aim, we have

to check that for every δ > 0

lim sup
`→+∞

1

a2
`

logP(a−1
` |L̃`,Br`

− M̃`,Br`
| > δ) = −∞. (4.10)

Applying Markov inequality we have

P(a−1
` |L̃`,Br`

− M̃`,Br`
| > δ) ≤

a−2
` E[|L̃`,Br`

− M̃`,Br`
|2]

δ2

and hence

lim sup
`→+∞

a−2
` logP(a−1

` |L̃`,Br`
− M̃`,Br`

| > δ)

≤ lim sup
`→+∞

a−2
` log

a−2
` E[|L̃`,Br`

− M̃`,Br`
|2]

δ2

= lim sup
`→+∞

a−2
` logE[|L̃`,Br`

− M̃`,Br`
|2].

(4.11)

Using (3.11) in (4.11) and taking a` = o(
√

log log r``), (4.10) holds.
�
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