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Abstract. In this paper, we prove a phase transition in the connectivity of finitary
random interlacements FIu,T in Zd, with respect to the average stopping time T .
For each u > 0, with probability one FIu,T has no infinite connected component
for all sufficiently small T > 0, and a unique infinite connected component for all
sufficiently large T < ∞. This answers a question of Bowen (2019) in the special
case of Zd.

1. Introduction

The model of random interlacements (RI) was introduced by Sznitman (2010),
and finitary random interlacements (FRI) was recently introduced by Bowen (2019)
to solve the Gaboriau-Lyons problem in the case of arbitrary Bernoulli shifts over
a non-amenable group. The Gaboriau-Lyons problem (Gaboriau and Lyons, 2009)
asks whether every non-amenable measured equivalence relation contains a non-
amenable treeable subequivalence relation. Bowen (2019) gave a positive answer
for the special case by studying FRI. Informally speaking, FRI can be described
as a cloud of geometrically killed random walks on Zd. Similar to the convention
that the range of random interlacements (RI) at level u > 0 is denoted by Iu, the
range of FRI is denoted by FIu,T , where u > 0 is the multiplicative parameter
controlling the number of geometrically killed random walks, and the parameter
T > 0 is the expected length of a geometrically killed random walk.

In this paper, we are interested in the FRI in the lattice Zd, with d ≥ 3. Bowen
(2019) showed that FRI measure converges to RI measure in the weak* topology
as T goes to infinity. Thus it is natural to compare the geometry, especially the
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connectivity properties of the two systems. For any two vertices x, y ∈ FIu,T , x
and y are said to be connected if there exist vertices x0, x1, · · · , xn ∈ FIu,T such
that x = x0, y = xn, and (xi, xi+1) are edges in the graph FIu,T for all 0 ≤ i < n.

Sznitman (2010) proved that Iu is almost surely connected. In Procaccia and
Tykesson (2011) and Ráth and Sapozhnikov (2012), it is shown that for any two
vertices x, y ∈ Iu, there is a path between x and y via at most dd/2e random walk
trajectories, and this bound is sharp. This does not hold for FRI since for each site
x ∈ Zd there is always a positive probability that x is an isolated point in FIu,T .

Bowen (2019) proved the existence of infinite connected components within
FIu,T for large T in all non-amenable groups. He raised the question that, whether
there are infinite connected component(s) within FIu,T for each u > 0 and suffi-
ciently large T in any amenable group. See Question 2, Bowen (2019) for details.
In this paper, we give a partial affirmative answer to this question by showing
there exists a phase transition for the FRI in Zd. For any u > 0, there are
0 < T0(u, d) ≤ T1(u, d) < ∞. If T > T1, FIu,T has a unique infinite cluster
almost surely. If 0 < T < T0, FIu,T has no infinite cluster almost surely. To be
precise, we have

Theorem 1.1 (Supercritical Phase). For all u > 0, there is a 0 < T1(u, d) < ∞
such that for all T > T1, FIu,T has an unique infinite cluster almost surely.

Theorem 1.2 (Subcritical Phase). For all u > 0, there is a 0 < T0(u, d) <∞ such
that for all 0 < T < T0, FIu,T has no infinite cluster almost surely.

Remark 1.3. In this paper, we consider percolation of FIu,T as percolation for
the edges crossed by trajectories in the FRI process. The notion of connectivity is
defined in the second paragraph of this section. In literature, one usually consid-
ers percolation of interlacements as percolation for the vertices (sites) hit by the
random interlacements process. The proof of Theorem 1.2 relies on the kind of
percolation we choose, whereas the proof of Theorem 1.1 holds for both bond and
site percolation.

The proof of Theorem 1.1 relies on a renormalization/block construction argu-
ment along with coupling the FRI to RI. We define a good block event in Section 3,
and we prove that this good event occurs with high probability in Section 4. In
Section 5 we apply a standard renormalization/block construction argument to see
the spread of our “good blocks" dominates a supercritical percolation. The proof
of uniqueness is presented in Section 6. The proof of Theorem 1.2 is presented in
Section 7.

After the paper was posted on arXiv, we learned about works Erhard et al.
(2017); Erhard and Poisat (2016) considering a relevant continuum percolation
model. In this model, a Poisson cloud of Brownian motion paths (d = 2, 3), or
Wiener sausages with radius r (d ≥ 4), both truncated at some finite time t,
are sampled on Rd according to intensity measure λLeb(Zd), for some fixed λ > 0.
Erhard et al. (2017); Erhard and Poisat (2016) proved the existence of a percolation
phase transition with respect to t, and the asymptotic behavior of the critical value
in d ≥ 4 as r → 0.

The results we prove here for finitary interlacements may, at least superficially,
well resemble some discrete version of their problem. However, as pointed out in
Question (3) and (4), Erhard et al. (2017): the rigorous relations between their
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model and random interlacements or “the system of independent finite-time ran-
dom walks, which are initially homogeneously distributed on Zd" remain open prob-
lems. It was conjectured in Erhard et al. (2017); Erhard and Poisat (2016) that
the continuum model will bear more similarities to a continuous version of random
interlacements Sznitman (2013) when λ → 0, t → ∞, while λt remains a con-
stant. Heuristically, this also agrees with the setting in finitary interlacements, see
Definition 2.1 and 2.2 for details.

1.1. Open problems. The phase transition for FRI is not entirely understood. We
expect that there is a critical value 0 < Tc(u, d) < ∞ such that FIu,T has an
infinite cluster for all T > Tc and no infinite cluster for all T < Tc. Equivalently,
T1(u, d) = T0(u, d) in Theorems 1.1 and 1.2. We are unable to prove a sharp phase
transition in this paper. It is unclear that whether FIu,T is monotonic with respect
to T . By Definition 2.2, as T increases, the average number of geometrically killed
random walks that each vertex generated decreases, but the average length of each
geometrically killed random walks increases. Therefore, unlike other percolation
models, one cannot prove a sharp phase transition for FRI using monotonicity.

Given Theorem 1.1 it is natural to ask about the internal graph distance in
the unique infinite cluster. In the case of random interlacements it was proved
in Černý and Popov (2012); Drewitz et al. (2014b); Procaccia and Shellef (2014)
that the internal graph distance in RI is proportional to the Zd distance with high
probability. It would be interesting to show a similar result for the internal graph
distance in the unique infinite cluster of FIu,T , for large enough T > 0. Moreover
if we denote by dFIu,T (·, ·) and dIu(·, ·) the internal graph distances in FRI and
RI, one can conjecture that for every u > 0,

lim
T→∞

lim
‖x‖1→∞

dFIu,T ([0], [x])/‖x‖1 = lim
‖x‖1→∞

dIu([0], [x])/‖x‖1,

where [x] denotes the closest vertex in the appropriate infinite component to x ∈ Zd.
A relative question is the continuity of the function

u→ lim
‖x‖1→∞

dFIu,T ([0], [x])/‖x‖1

at all u > 0 for any large enough T > 0 (proved for the internal distance in Bernoulli
percolation in Garet et al. (2017)).

Another natural question is to prove that the infinite component in FIu,T has
good isoperimetric bounds (of the type proved in Procaccia et al., 2016 for RI).

2. Preliminaries on Finitary Random Interlacements

In this section, we collect some preliminary results on finitary random interlace-
ments. Most of these results first appear in Bowen (2019). We begin with recalling
the formal definition of FRI in Bowen (2019). Consider the lattice Zd, for d ≥ 3.
A finite walk on Zd is a nearest-neighbor path w : {0, 1, · · · , N} → Zd, for some
N ∈ Z+ ∪ {0}. N is called the length of the finite walk w. Let W[0,∞) be the set
of trajectories of all finite walks. And note that W[0,∞) is a countable set.

Throughout this paper, we will use P for probability and E for the corresponding
expectation. For x ∈ Zd and n ∈ N, let Pnx be the law of the simple random walk
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started at x and killed at time n. Define

P (T )
x =

(
1

T + 1

) ∞∑
n=0

(
T

T + 1

)n
Pnx .

I.e. P (T )
x is the law of a geometrically killed simple random walk started at x with

1/(T + 1) killing rate. The expected length is T . We sometimes call geometrically
killed random walk a killed random walk.

For 0 < T <∞, let v(T ) be the measure on W[0,∞) defined by

v(T ) =
∑
x∈Zd

2d

T + 1
P (T )
x .

Note that v(T ) is a σ-finite measure.

Definition 2.1. For 0 < u, T <∞, the finitary random interlacements (FRI) point
process µ is a Poisson point process (PPP) on W[0,∞) with intensity measure uv(T ).

Meanwhile, one may equivalently define FIu,T constructively as follows:

Definition 2.2. For each vertex x ∈ Zd, define an independent Poisson random
variable Nx with parameter 2du/(T + 1). We start independent Nx geometrically
killed random walks from x, and each of them has expected length T . The FRI can
be defined as the point measure on W[0,∞) composed of all the geometrically killed
random walk trajectories above from all vertices in Zd.

It is easy to see the two definitions above are equivalent:

Proposition 2.3. The random point measure defined in Definition 2.2 is identically
distributed as the Poisson point process defined in Definition 2.1.

Proof : The equivalence follows directly from the standard construction of Poisson
point process with a σ−finite intensity measure. See (4.2.1) of Drewitz et al. (2014a)
for example. �

Remark 2.4. The construction in Definition 2.2 was informally described in Sub-
section 1.3.2, Bowen (2019).

Remark 2.5. Without causing further confusion, we will use FIu,T to denote both
the Poisson point process on W [0,∞) and the random subgraph of Zd it induces,
which has the vertex set the set of vertices visited by FIu,T and the edge set the
set of edges crossed by trajectories in the process FIu,T .

The rest of this section mainly concerns the distribution of paths within FIu,T
traversing a certain finite subset of Zd. Let K ⊂ Zd be a finite subset. Let
WK ⊂ W[0,∞) be the set of all finite walks that visit K at least once. Define
the stopping times

HK(w) = inf{t ≥ 0 : w(t) ∈ K},
and

H̃K(w) = inf{t ≥ 1 : w(t) ∈ K}.
For a finite path w, we say HK(w) = ∞ if w vanishes before it hits the set K.
Similar for H̃K(w) =∞. Define

W (2) := {(a, b) ∈W[0,∞) ×W[0,∞) : a(0) = b(0)}.
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Let K ⊂ L ⊂ Zd be finite subsets. For x ∈ L \K, let ξ(T )
x be the measure on W (2)

given by

ξ(T )
x ({(a, b)}) = 2d · 1H̃L(a)=∞P

(T )
x ({a})1HK(b)=∞P

(T )
x ({b}).

Define a measure Q(T )
L,K on W (2) by

Q
(T )
L,K =

∑
x∈L\K

ξ(T )
x .

Define the concatenation map Con : W (2) →W[0,∞) by

Con(a, b) =
(
a(len(a)), a(len(a)− 1), · · · , a(0), b(1), · · · , b(len(b))

)
.

Proposition 2.6 (Proposition 4.1 in Bowen, 2019). For any 0 < u, T < ∞, let µ
be FRI with parameters u, T and K ⊂ L ⊂ Zd be finite subsets. Then 1WL\WK

µ is
a PPP with intensity measure u ·Con∗Q(T )

L,K = 1WL\WK
uv(T ), where Con∗Q

(T )
L,K =

Q
(T )
L,K ◦ Con−1 is the push-forward measure.

For a finite subset A ⊂ Zd and x ∈ Zd, we denote the equilibrium measure of A
by

eA(x) := Px(H̃A =∞) · 1x∈A.
Define the capacity of A by

cap(A) :=
∑
x∈Zd

eA(x).

One can define the random interlacements set Iu, u > 0 as a random vertex subset
of Zd such that for any finite subset K ⊂ Zd, we have P (Iu ∩K = ∅) = e−u·cap(K).
The existence of such random subset is guaranteed in Sznitman (2010). By Dynkin’s
π-λ lemma, there is a unique probability measure on {0, 1}Zd that samples such
random subsets. Random interlacements can also be defined as a Poisson point
process of bi-infinite nearest-neighbor trajectories on Zd. Readers are referred to
Drewitz et al. (2014a) for a thorough introduction of random interlacements.

Consider the space {0, 1}Zd with the canonical product σ-algebra. For u > 0,
let Pu be the unique probability measure on {0, 1}Zd such that for all finite subset
K ⊂ Zd,

Pu({w ∈ {0, 1}Z
d

: w(x) = 0, for all x ∈ K}) = e−u·cap(K),

i.e. Pu is the probability law for random interlacements at level u. For 0 < u, T <

∞, let Pu,T be the probability measure on {0, 1}Zd such that for all finite subset
K ⊂ Zd,

Pu,T ({w ∈ {0, 1}Z
d

: w(x) = 0, for all x ∈ K}) = e−2du·
∑
x∈K P (T )

x (H̃K=∞),

i.e. Pu,T is the law for FRI with parameters u, T . The following corollary connects
FRI and random interlacements.

Corollary 2.7 (Theorem A.2 of Bowen, 2019). Let u, T, µ be as in Proposition 2.6
and K ⊂ Zd be a finite subset. Then

(1)
uv(T )(WK) = 2d

∑
x∈K

P (T )
x (H̃K =∞);
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(2)
lim
T→∞

P
(
µ(WK) = 0

)
= e−2du·cap(K) = P

(
I2du ∩K = ∅

)
;

(3) Pu,T converges to P 2du in the weak* topology as T → ∞ in the space of
probability measures on {0, 1}Zd .

Proof : Parts (1) and (2) follow from Proposition 2.6 and the fact that

lim
T→∞

P (T )
x (H̃K =∞) = Px(H̃K =∞).

Part (3) also appears in Theorem A.2 of Bowen (2019). �

Let K ⊂ Zd be a finite subset. Define the killed equilibrium measure by

e
(T )
K (x) := (2d)P (T )

x (H̃K =∞)1x∈K .

Define the killed capacity by

cap(T )(K) :=
∑
x∈Zd

e
(T )
K (x).

Let

ẽ
(T )
K (x) :=

e
(T )
K (x)

cap(T )(K)

be the normalized equilibrium measure. Let W 0
K := {w ∈WK : w(0) ∈ K}. Define

a map
sK : WK 3 w 7→ w0 ∈W 0

K ,

where w0 = sK(w) is the unique element of W 0
K such that w0(i) = w(HK(w) + i)

for all i ≥ 0 and len(w0) = len(w)−HK(w). I.e. we keep the part of the trajectory
of w after hitting K, and index the trajectory in a way such that the hitting of K
occurs at time 0. If m(·) is a measure supported on K, then we define the measure

Pm :=
∑
x∈K

m(x)P (T )
x

on WK , for some T > 0.

Lemma 2.8. For 0 < u, T < ∞, let µ be FRI with parameters u, T and K ⊂ Zd
be a finite subset. Then µK = sK∗µ is a PPP on WK with intensity measure
u · cap(T )(K)P

ẽ
(T )
K

.

Proof : The proof follows from the Proposition 2.6 and properties of PPP (see
Exercise 4.6(c) in Drewitz et al., 2014a). �

As a consequence of Lemma 2.8, we have

K ∩

( ⋃
w∈Supp(µK)

range(w)

)
= K ∩

( ⋃
w∈Supp(µ)

range(w)

)
,

where K,µ, µK are the same as in Lemma 2.8.

Lemma 2.9. Let NK be a Poisson random variable with parameter u · cap(T )(K),
and {wj}j≥1 are i.i.d. killed random walks with distribution P

ẽ
(T )
K

and independent
from NK . Then the point measure

µ̃K =

NK∑
j=1

δwj
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is a PPP on WK with intensity measure u · cap(T )(K)P
ẽ
(T )
K

. In particular, µ̃K has
the same distribution as µK .

Proof : The proof follows from the construction of PPP (see section 4.2 in Drewitz
et al., 2014a) and the merging and thinning property of Poisson distribution. �

Remark 2.10. A similar result (Corollary 4.2) was proved in Bowen (2019). Here
the previous two lemmas are stated in the form better suitable for the later use in
this paper.

Remark 2.11. The capacity with truncation/killing measure was defined in a con-
tinuous sense in Sznitman (2012). It can also be discretized, which gives us the same
cap(T )(·) as defined in this paper. Thus, similar to Teixeira (2009), finitary random
interlacements may also be equivalently interpreted as random interlacements on a
weighted graph with killing measure. This explains why we have representation of
finitary random interlacements on compact sets in Lemmas 2.8 and 2.9.

3. Definition of Good Boxes

Recall the general outline of renormalization argument described in Section 1. In
this section we define the "good" block event in which there is a locally generated
large connected cluster in the corresponding “box". The viability of such event
will be proved in the Section 4. Parts of the definition below are inspired by Ráth
and Sapozhnikov (2011). This also enables us to apply their estimates for regular
interlacements in the next section.

Without loss of generality, we will always assume here the FRI’s are constructed
according to Definition 2.2. For any u, T > 0, the FRI FIu,T is identically dis-
tributed as the union of two independent copies of FRI with intensity level u/2 and
average stopping time T , i.e.

FIu,T = FIu/2,T1 ∪ FIu/2,T2 ,

where FIu/2,Ti is the i-th copy. For x ∈ Zd and R ∈ Z+, let B(x,R) := x+[−R,R]d

be a box of length R centered at x. We write B(R) = B(0, R). Let B̂(R) :=

[−64R2, 64R2]d be a box in the lattice Zd. We define some subboxes in B̂(R). For
0 ≤ i ≤ 8R and 1 ≤ j ≤ d, let

xi,j = (−32R2 + 8Ri)ej ,

where ej is the j-th unit vector in Zd. Let

bi,j(R) := xi,j + [−R,R]d ⊂ B̂(R),

and
b̂i,j(R) := xi,j + [−2R, 2R]d ⊂ B̂(R).

For any subset A ⊂ Zd, we define the internal vertex boundary of A by

∂inA := {x ∈ A : ∃y ∈ Zd \A such that |x− y|1 = 1},
and define the external vertex boundary by

∂outA := {x ∈ Zd \A : ∃y ∈ A such that |x− y|1 = 1}.
Recall the construction of FRI in Definition 2.2. Let Di be the random subgraph
in Zd consisting of all trajectories of killed random walks starting in B(0, 128R2) in
FRI FIu/2,Ti , for i = 1, 2, and D = D1 ∪D2. For any subsets A,B ⊂ Zd where A is
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connected, let C(A,B) be the connected component of A∪B containing A. Define
the random set

Ci,j(x) := C
(
x, b̂i,j(R) ∩ D1

)
.

For 1 ≤ j ≤ d, we define the “top" half of B̂(R) in the j-direction by

B̂+
j (R) =

{
x ∈ Rd : 0 < xj ≤ 64R2, and − 64R2 ≤ xi ≤ 64R2, if i 6= j

}
,

and define the “bottom" half of B̂(R) in the j-direction by

B̂−j (R) =
{
x ∈ Rd : −64R2 ≤ xj < 0, and − 64R2 ≤ xi ≤ 64R2, if i 6= j

}
.

Let

A+
j (R) =

{
x ∈ Rd : 96R2 ≤ xj ≤ 128R2, and − 128R2 ≤ xi ≤ 128R2, if i 6= j

}
,

and

A−j (R) =
{
x ∈ Rd : −128R2 ≤ xj ≤ −96R2, and −128R2 ≤ xi ≤ 128R2, if i 6= j

}
.

Definition 3.1. We say B̂(R) is good if the following conditions hold:
(1) For all 0 ≤ i ≤ 8R and 1 ≤ j ≤ d, let

Ei,j :=
{
x ∈ bi,j(R) ∩ D1 : cap

(
Ci,j(x)

)
≥ R2(d−2)/3

}
.

We have Ei,j 6= ∅ for all i, j.
(2) For all 0 ≤ i < 8R and 1 ≤ j ≤ d, and for all x ∈ Ei,j , and y ∈ Ei+1,j ,

Ci+1,j(y) ∩ C (Ci,j(x),D2) 6= ∅.
I.e., Ci,j(x) and Ci+1,j(y) are connected by D2.

(3) For all 1 ≤ j ≤ d, no geometrically killed random walks starting in A+
j (R)

intersect with B̂−j (R), and no geometrically killed random walks starting
in A−j (R) intersects with B̂+

j (R).

Remark 3.2. All conditions in Definition 3.1 are restrictions on the trajectories
of the killed random walks starting in B(0, 128R2). This fact is crucial in the
renormalization argument in Section 5.

Now we define the shift of the box B̂(R) in Zd. For x ∈ Zd, let

B̂x(R) = 32R2x+ B̂(R).

We say that B̂x(R) is good if B̂(R) is a good box in FIu,T − 32R2x.

Remark 3.3. Suppose x and y are two neighboring vertices in Zd, and both B̂x(R)

and B̂y(R) are good, then by condition (3) in Definition 3.1 the connectivity event
in B̂x(R) ∩ B̂y(R) can be generated only by the random walk paths starting in
B(x, 128R2)∩B(y, 128R2), so we have a large connected component crossing B̂x(R)

and B̂y(R).

Now we define a family {Yx : x ∈ Zd} of {0, 1}-valued random variables given by

Yx =

{
1, if B̂x(R) is good;

0, otherwise.
(3.1)

If there is an infinite open cluster in the lattice {Yx}x∈Zd , then by Remark 3.3 there
is an infinite open cluster in the underlying original lattice. When T = R3, we will
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show that B̂(R) is good with high probability for all sufficiently large R. Then
we will use a renormalization argument to show that there is an infinite cluster in
FIu,R

3

almost surely for large R.

Remark 3.4. For simplicity, we will assume R ∈ Z+ for the rest of this paper.
For R ∈ R+ \ Z+, one can replace R and R2 by bRc and bRc2 respectively in the
definition of good boxes, and all results will follow accordingly.

Throughout the rest of this paper, we denote positive constants by c, C, c1, c′, · · · ,
and their values can be different from place to place. All constants are dependent
on the dimension d by default.

4. B̂(R) is good with High Probability

In this section, we prove that B̂(R) is good with high probability. I.e.,

Theorem 4.1. Consider the FRI FIu,R
3

. For all u > 0, we have

lim
R→∞

P
(
Y0 = 1

)
= 1.

To show Theorem 4.1, we will consider the following weaker version of conditions
(1) and (2) in Definition 3.1:
(1*) For all 0 ≤ i ≤ 8R and 1 ≤ j ≤ d, let

C̃i,j(x) := C
(
x, b̂i,j(R) ∩ FIu,T1

)
.

and

Ẽi,j :=
{
x ∈ bi,j(R) ∩ FIu,T1 : cap

(
C̃i,j(x)

)
≥ R2(d−2)/3

}
.

We have Ẽi,j 6= ∅ for all i, j.
(2*) For all 0 ≤ i < 8R and 1 ≤ j ≤ d, and for all x ∈ Ẽi,j , and y ∈ Ẽi+1,j ,

C̃i+1,j(y) ∩ C
(
C̃i,j(x),FIu,T2

)
6= ∅.

We first prove that condition (1∗) and (2∗) occur with high probability. Then we
show that no killed random walk starting in Zd \ B(128R2) will reach B̂(R) with
high probability. Combining these we know condition (1) and (2) in Definition 3.1
occur with high probability. We will show condition (3) occurs with high probability
separately in Lemma 4.12.

We will often use the following large deviation bound for Poisson distributions.

Lemma 4.2 (Equation 2.11 in Ráth and Sapozhnikov, 2011). If X is a Poisson
distribution with parameter λ, then

P
(
λ/2 ≤ X ≤ 2λ) ≥ 1− 2e−λ/10.

4.1. Coupling of FRI and RI. In this subsection we introduce a coupling of FRI
and RI that is crucial in the proof of Lemma 4.7. Let K ⊂ Zd be a finite subset, and
let u, T > 0. For any points x ∈ K, let Nx,u be i.i.d. Poisson random variables with
parameter u. Let {Y (l,i)

x,T + 1}∞i=1 and {Y (r,i)
x,T + 1}∞i=1 be i.i.d. geometric random

variables with parameter 1/(T + 1). Moreover, for i ∈ Z+, let {S(l,i)
n,x }∞n=0 and

{S(r,i)
n,x }∞n=0 be independent copies of simple random walks starting at x. Now we
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can construct a random point measure IT (u,K) on W [0,∞) as follows: for each
x ∈ K and 1 ≤ i ≤ Nx,u, if

{S(l,i)
n,x }

Y
(l,i)
x,T

n=1 ∩K = ∅,
we add a delta measure on

{S(r,i)
n,x }

Y
(r,i)
x,T

n=0

in IT (u,K).
The following lemma is a consequence of Lemma 2.9. Let µK =

∑NK
j=1 δwj be

the restriction of FRI Poisson point measure on K, where NK is a Poisson random
variable with parameter u · cap(T )(K), and {wj}j≥1 are i.i.d. killed random walks
with distribution P

ẽ
(T )
K

and independent from NK .

Lemma 4.3. IT (u,K) is identically distributed as µK .

Proof : Notice that if we fix x ∈ K and 1 ≤ i ≤ Nx,u, then

P

(
{S(l,i)

n,x }
Y

(l,i)
x,T

n=1 ∩K = ∅
)

= P (T )
x (H̃K =∞) = e

(T )
K (x).

By Lemma 2.9, µK is a PPP with intensity measure u · cap(T )(K)P
ẽ
(T )
K

, and by
definition

e
(T )
K (x) = cap(T )(K)ẽ

(T )
K .

The result follows from the thinning property of Poisson distributions. �

Consider those trajectories in IT (u,K) with length larger or equal to a fixed
number T0 > 0. We define the random point measure ÎT,T0(u,K) as follows: for
each x ∈ K and 1 ≤ i ≤ Nx,u, if

Y
(r,i)
x,T ≥ T0,

and

{S(l,i)
n,x }

Y
(l,i)
x,T

n=1 ∩K = ∅,
we add a delta measure on

{S(r,i)
n,x }

Y
(r,i)
x,T

n=0

in ÎT,T0(u,K). Note that by definition ÎT,T0(u,K) ⊂ IT (u,K). Here we say
I1 ⊂ I2 if all edges open in the support of I1 is also open in support of I2.

Now we construct a third random point measure ĪT,T0(u,K) which is identically
distributed as the collection of all trajectories within a RI traversing K, and we
also define a ĨT,T0(u,K) ⊂ ĪT,T0(u,K) when all trajectories in ĪT,T0(u,K) are
truncated at a fixed time T0. For each x ∈ K and 1 ≤ i ≤ Nx,u, if

Y
(r,i)
x,T ≥ T0,

and
{S(l,i)

n,x }∞n=1 ∩K = ∅,
we add a delta measure on

{S(r,i)
n,x }∞n=0

in ĪT,T0(u,K) and we add a delta measure on

{S(r,i)
n,x }

T0
n=0
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in ĨT,T0(u,K). By definition ĨT,T0(u,K) ⊂ ĪT,T0(u,K) for any T, T0 > 0. If
T0 = 0, ĪT,0(u,K) is identically distributed as the set of all trajectories in Iu
traversing K but not including the backward parts before they enter K for the first
time. We write ĪT (u,K) := ĪT,0(u,K).

Lemma 4.4. Let Y + 1 be a geometric random variable with parameter 1/(T +
1) independent from everything else, and q = q(T, T0) := P (Y ≥ T0). Let µ̄K
be the restriction of PPP for random interlacements at level uq on the set K,
i.e. µ̄K =

∑N̄K
j=1 δw̄j is a random point measure, where N̄K is a Poisson random

variable with parameter uq · cap(K), and {w̄j}j≥1 are i.i.d. simple random walks
with distribution PeK and independent from N̄K . Then ĪT,T0(u,K) is identically
distributed as µ̄K =

∑N̄K
j=1 δw̄j .

Proof : This is similar to the proof of Lemma 4.3. For x ∈ ∂inK,

P

(
{S(l,i)

n,x }∞n=1 ∩K = ∅
)

= Px(H̃K =∞) = eK(x).

Note that for all x ∈ K \ ∂inK,

P

(
{S(l,i)

n,x }∞n=1 ∩K = ∅
)

= 0.

The result again follows from the thinning property of Poisson distributions. �

4.2. Facts about capacity. We often use the following facts about capacity (or killed
one) in our proof.

Lemma 4.5 (Proposition 6.5.2 in Lawler and Limic, 2010). There are constants
c1, c2 > 0 such that for all R > 0,

c1R
d−2 ≤ cap

(
B(R)

)
≤ c2Rd−2.

Lemma 4.6 (Monotonicity of Capacity; Exercise 1.15 in Drewitz et al., 2014a).
For any finite sets E1 ⊂ E2 ⊂ Zd,

cap(E1) ≤ cap(E2).

4.3. Condition (1∗). Similar to Ráth and Sapozhnikov (2011), we may write

FIu/2,T1 =

d−2⋃
k=1

FIu/(2d−4),T
1,k ,

where FIu/(2d−4),T
1,k are i.i.d. copies of finitary interlacements with intensity level

u/(2d−4) and average stopping time T . By translation invariance, one may without
loss of generality prove the desired result for i = 4R and j = 1. This case, we have
x4R,1 = 0, b4R,1(R) = B(R), and b̂4R,1(R) = B(2R).

To begin with, let us consider the following random variable

N
(1)
4R,1 :=

∣∣∣{x ∈ B(R), cap
(
C
(
x,FIu/(2d−4),R3

1,1 ∩B(R+R0.9)
))

> c0R
0.7
}∣∣∣

and event A(1)
4R,1 = {N (1)

4R,1 ≥ 1}, where c0 > 0 is the constant in Lemma 6, Ráth
and Sapozhnikov (2011), which is independent to R. We first prove that
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Lemma 4.7. There is a constant c = c(u) > 0 such that for all sufficiently large
R, P (A

(1)
4R,1) ≥ 1− exp(−cRd−2).

Proof : Note that N (1)
4R,1 is determined by trajectories within FIu/(2d−4),R3

1,1 travers-
ing B(R), which can be sampled according to Subsection 4.1. Recalling the nota-
tions used there, we have N (1)

4R,1 stochastically dominates the random variable N̂ (1)
4R,1

where

N̂
(1)
4R,1 =

∣∣∣{(x, i) ∈ ∂inB(R)× Z+, s.t. i ≤ Nx,u/(2d−4), {S(l,i)
n,x }∞n=1 ∩B(R) = ∅,

Y r,ix,R3 ≥ R1.6, {S(r,i)
n,x }R

1.6

n=1 ⊂ x+B(R0.9), cap
(
{S(r,i)

n,x }R
1.6

n=1

)
> c0R

0.7
}∣∣∣,

and c0 is the same constant in the definition of N (1)
4R,1. Note that for each (x, i), the

events

{i ≤ Nx,u/(2d−4)},{
{S(l,i)

n,x }∞n=1 ∩B(R) = ∅
}
,{

Y r,ix,R3 ≥ R1.6
}
,{

{S(r,i)
n,x }R

1.6

n=1 ⊂ x+B(R0.9), cap
(
{S(r,i)

n,x }R
1.6

n=1

)
> c0R

0.7
}

are independent to each other. At the same time

P
(
{S(l,i)

n,x }∞n=1 ∩B(R) = ∅
)

= eB(R)(x)

while

P
(
Y r,ix,R3 ≥ R1.6, {S(r,i)

n,x }R
1.6

n=1 ⊂ x+B(R0.9), cap
(
{S(r,i)

n,x }R
1.6

n=1

)
> c0R

0.7
)

= q1(R) > 1/2

for all sufficiently large R. The last inequality is derived from
(1) The PMF estimate of geometric random variable Y r,ix,R3 .
(2) Hoeffding’s inequality.
(3) Lemma 6, Ráth and Sapozhnikov (2011) with T1 = R1.6 and ε = 1/8.
Thus we have

N̂
(1)
4R,1 ∼ Poisson

(
q1(R)cap(B(R))u/(2d− 4)

)
and the desired result follows from Lemma 4.2 and Lemma 4.5.

�

Given the event A(1)
4R,1, one may sample a point uniformly at random from the

random subset

S4R,1 =
{
x ∈ B(R), cap

(
C
(
x,FIu/(2d−4),R3

1,1 ∩B(R+R0.9)
))

> c0R
0.7
}

and denote it by x(1)
4R,1. Moreover, for the random subset

Com
(1)
4R,1 = C

(
x

(1)
4R,1,FI

u/(2d−4),R3

1,1 ∩B(R+R0.9)
)

by definition we have
cap

(
Com

(1)
4R,1

)
> c0R

0.7.
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Now for any k = 2, 3, · · · , d− 2 may define

Com
(k)
4R,1 = C

(
Com

(k−1)
4R,1 ,FIu/(2d−4),R3

1,k ∩B(R+ kR0.9)
)

together with the event

A
(k)
4R,1 =

{
cap
(
Com

(k)
4R,1

)
> ck0R

0.7k
}
.

Note that for any k = 2, 3, · · · , d− 2, Com(k−1)
4R,1 is measurable with respect to

σk−1 = σ
(
FIu/(2d−4),R3

1,1 ,FIu/(2d−4),R3

1,2 , · · · ,FIu/(2d−4),R3

1,k−1

)
which is independent to FIu/(2d−4),R3

1,k . Let C(k−1)
0 be a connected component

within B(R+ (k − 1)R0.9) such that

cap(C(k−1)
0 ) > ck−1

0 R0.7(k−1).

Given Com(k−1)
4R,1 = C(k−1)

0 , the distribution of Com(k)
4R,1 is determined by the con-

figuration of trajectories in FIu/(2d−4),R3

1,k traversing C(k−1)
0 , which can again be

sampled according to Subsection 5.1:
• For each x ∈ C(k−1)

0 , let N (k)
x,u/(2d−4) be i.i.d. Poisson random variables

independent to σk−1 with intensity u/(2d− 4).
• For each x ∈ C(k−1)

0 , and positive integer i, let {S(l,i,k)
n,x }∞n=1 and {S

(r,i,k)
n,x }∞n=1

be independent simple random walks starting from x.
• For each x ∈ C(k−1)

0 , and positive integer i, let Y r,i,kx,R3 and Y l,i,kx,R3 be indepen-
dent geometric random variables with parameter p = 1/(1 +R3).

Recalling the construction in Subsection 4.1, one has

P
(
A

(k)
4R,1

∣∣Com(k−1)
4R,1 = C(k−1)

0

)
≥P

(
cap

( ⋃
(x,i)∈I(k−1)

4R,1

{S(r,i,k)
n,x }R

1.6

n=1

)
> ck0R

0.7k,

{S(r,i,k)
n,x }R

1.6

n=1 ⊂ x+B(R0.9), ∀(x, i) ∈ I(k−1)
4R,1

)
where

I
(k−1)
4R,1 =

{
(x, i) ∈ ∂inC(k−1)

0 × Z+, s.t. i ≤ N (k)
x,u/(2d−4) ,

{S(l,i,k)
n,x }∞n=1 ∩ C

(k−1)
0 = ∅ , Y r,i,kx,R3 ≥ R1.6

}
.

Note that the set I(k−1)
4R,1 has the same law as the set of trajectories in

ĪR
3,R1.6

(u/(2d− 4), C(k−1)
0 ),

By Lemma 4.4, for all sufficiently large R, I(k−1)
4R,1 has the same law as random

interlacements at level uq/(2d − 4) hitting C(k−1)
0 for some q > 1/2. Recall that

C(k−1)
0 is a fixed set. By Lemmas 7 and Lemma 8 (with s = 1 there) in Ráth and

Sapozhnikov (2011),

P
(
A

(k)
4R,1

∣∣Com(k−1)
4R,1 = C(k−1)

0

)
≥ 1− exp(−R1/17)
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for all sufficiently large R. Thus we have proved that

P (Ẽ4R,1 6= ∅) ≥ P

(
d−2⋂
k=1

A
(k)
4R,1

)
≥ 1− exp(−R1/18) (4.1)

for all sufficiently large R.

4.4. Condition (2∗). Again, Condition (2∗) can be without loss of generality checked
for b4R,1(R) and b4R+1,1(R). One may follow a similar argument as Subsection 4.3
to check Condition (2∗). To be precise, one can pick any two points x0, x1 from
Ẽ4R,1 and Ẽ4R+1,1. Then we can look at the paths in FIu/2,R

3

2 (which is inde-
pendent to FIu/2,R

3

1 ) traversing C̃4R,1(x0). We keep only those whose backward
part never returning to C̃4R,1(x0) while the forward part is not truncated until the
R2.5th step. Then one can apply Lemma 11 and 12 in Ráth and Sapozhnikov (2011)
for intensity u/4 to prove that with stretch exponentially high probability, at least
one of the paths we kept in the procedure above has to intersect with C̃4R+1,1(x1)
before they exit B(4Re1, CR), where C is the same constant as in Lemma 11 of
Ráth and Sapozhnikov (2011).

However, since for the finitary random interlacements, one can only guarantee
that the first R2.5 steps in the forward paths we keep are within FIu/2,R

3

2 . So the
only extra estimate needed is the following lower bound on the first exiting time of
B(CR).

Lemma 4.8. There is a c > 0 independent to R such that

P0(H∂outB(CR) > R2.5) < exp(−cR0.5).

Proof : By central limit theorem/invariance principle, there is a constant c > 0 such
that

sup
x∈B(CR)

Px(H∂outB(CR) > R2) ≤ P0(H∂outB(2CR) > R2) ≤ 1− c < 1. (4.2)

Then for each i = 1, 2, · · · , [R0.5], consider event

Esi = {H∂outB(CR) > i ∗R2}.

Then by (4.2) and Markov property we have

P0(Es1) ≤ 1− c,

and
P0(Esi+1|Esi) ≤ sup

x∈B(CR)

Px(H∂outB(CR) > R2) ≤ 1− c,

for all i ≥ 1. Thus

P0(H∂outB(CR) > R2.5) ≤ P0(EsbR0.5c) ≤ (1− c)bR
0.5c < exp(−cR0.5).

�

Remark 4.9. An alternative argument following (2.9) of Biskup and Procaccia
(2018) derives a slightly weaker result, but also suitable for the use here.
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Suppose U, V ⊂ B(CR). Taking q = 1/2 in Lemma 4.4, we know that for
all sufficiently large R, the set of trajectories in ĪR3,R2.5

(u/2, U) stochastically
dominates the ones in Iu/4 hitting U . Combining this fact with Lemma 4.8 and
Lemmas 11, 12 of Ráth and Sapozhnikov (2011), we have

P

(
U
ĨR

3,R2.5
(u/2,U)∩B(CR)←−−−−−−−−−−−−−−−→ V

)
≥ 1− c1e−c2 min{R0.5,R2−dcap(U)cap(V )}. (4.3)

Replacing U and V by C̃4R,1(x0) and C̃4R+1,1(x1) in (4.3), we prove Condition (2∗).

4.5. Condition (1) and (2). We recall the construction of FRI in Definition 2.2. We
first show that with high probability no killed random walks of FIu,R

3

starting in
Zd \B(128R2) intersect with B̂(R). Define the event

G(u,R) :=
{

No killed random walks of FIu,R
3

starting in Zd \B(128R2) reach B̂(R)
}
.

Lemma 4.10. For all u > 0, we have

lim
R→∞

P
(
G(u,R)

)
= 1.

Proof : We first fix u > 0 and R > 0. We define a sequence of subsets {A(m,R)}∞m=1

of Zd. Let
A(1, R) := B

(
(128 + 64)R2

)
\B(128R2),

and for all m > 1,

A(m,R) := B
(
(128 + 64m)R2

)
\B
(
(128 + 64(m− 1))R2

)
Note that {A(m,R)}∞m=1 are pairwise disjoint, and

Zd =

(
B̂(R) ∪

∞⋃
m=1

A(m,R)

)
.

Let x ∈ A(m,R) ∩ Zd for some m ≥ 1. Recall the construction of FRI in Defini-
tion 2.2. Let Nx be the number of killed random walks starting at x, so Nx is a
Poisson distribution with parameter 2du/(R3 + 1). By Markov inequality, for all
sufficiently large R,

P

(
Nx >

2dumR4

R3 + 1

)
≤ E[eNx ]e−2dumR4/(R3+1) ≤ c1e−c2mR,

for some constants c1(u), c2(u) > 0. We also need to estimate the probability that
a killed random walk escape from a big box. If Y is a geometric random variable
with parameter 1/(R3 + 1), then for all sufficiently large R and for all m,

P (Y > mR7/2) ≤ e−cmR
1/2

, (4.4)

for some c > 0 independent of R. By Azuma’s inequality and the tail estimate of
geometric distribution in (4.4), for all sufficiently large R and for all x ∈ A(m,R)∩
Zd,

P (R3)
x

(
HB̂(R) <∞

)
≤ e−c3mR

1/2

.
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Note that the number of vertices in A(m,R) is bounded above by c4m
dR2d, for

some c4 > 0. So by union bound,

P
(
G(u,R)c

)
≤
∞∑
m=1

(
c4m

dR2dc1e
−c2mR + c4m

dR2d 2dumR4

R3 + 1
e−c3mR

1/2

)
,

for all sufficiently large R. Let

S(R) :=

∞∑
m=1

(
c4m

dR2dc1e
−c2mR + c4m

dR2d 2dumR4

R3 + 1
e−c3mR

1/2

)
.

Note that the sum S(R) converges for all R > 0, and

S(R)
R→∞−−−−→ 0.

Therefore,
P
(
G(u,R)c

) R→∞−−−−→ 0.

�

Lemma 4.11. Let u > 0. Consider the FRI FIu,R
3

. Then

lim
R→∞

P
(
Conditions (1) and (2) are satisfied

)
= 1.

Proof : The result follows by the discussions in Subsections 4.3 and 4.4, and
Lemma 4.10. �

4.6. Condition (3). By translation invariance and symmetry, it suffices to show the
following lemma.

Lemma 4.12. Let u > 0, then there are constants c(u), C(u) > 0 such that for all
sufficiently large R > 0, we have

P
(
∃ a killed random walk starting in A+

1 (R) reach B̂−1 (R)
)
≤ cR2d+1e−CR

1/2

.

Proof : One can easily adapt the calculations in the proof of Lemma 4.10. The
result follows from Definition 2.2, and tail estimates of geometric and Poisson dis-
tributions, and Azuma’s inequality. �

5. Renormalization and proof of Theorem 1.1

Recall the family {Yx}x∈Zd of {0, 1}-valued random variables defined in (3.1).
In this section, we show that {Yx} stochastically dominates an i.i.d. supercritical
site percolation when R is sufficiently large and thus it has an infinite open cluster
almost surely.

Remark 5.1. Note that {Yx}x∈Zd themselves form a finitely dependent percolation,
and that the probability that each edge is open is high enough. An alternative
“block construction" approach according to Durrett and Griffeath (1983) can also
give us the desired result.

Lemma 5.2. For any u > 0 and for all R > 0 that is sufficiently large (depending
on u), the random field {Yx}x∈Zd generated by FIu,R

3

stochastically dominates an
i.i.d. site percolation {Zx}x∈Zd such that P (Z0 = 1) > pc(Zd), where pc(Zd) is the
critical probability of site percolation on Zd.
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Proof : By the definition of good boxes in Section 3 and Remark 3.2, the random
field {Yx}x∈Zd is 9-dependent. The stochastic domination over an i.i.d supercritical
site percolation follows from the domination by product measures result by Liggett,
Schonmann, and Stacey (Liggett et al., 1997) (or Theorem 7.65 in Grimmett, 1999)
and Theorem 4.1. �

Corollary 5.3. For any u > 0 and for all R > 0 that is sufficiently large (depending
on u), FIu,R

3

has an infinite cluster almost surely.

Proof : We can choose the same R as in Lemma 5.2. By the definition of good
boxes and Remark 3.3, FIu,R

3

has an infinite cluster if {Yx}x∈Zd has one. �

Now back to the proof of Theorem 1.1, for any u > 0 and sufficiently large T ,
one may let R = bT 1/3c and the proof is complete. �

6. Uniqueness of Infinite Cluster

We have shown that the FRI FIu,R
3

has an infinite cluster almost surely if
R > R0(u), for some R0(u) > 0. In this section, we show that the infinite cluster
of FIu,R

3

is unique almost surely. Let x ∈ Zd, we define the canonical lattice shift

Tx : {0, 1}Z
d

→ {0, 1}Z
d

by
(
Tx(ξ)

)
(y) = ξ(y + x), for any ξ ∈ {0, 1}Zd and y ∈ Zd. We will first show that

FRI is ergodic with respect to lattice shifts.

Lemma 6.1. Let Pu,T be the probability law for FIu,T defined in Section 2. For
any x ∈ Zd and any u, T > 0, the map Tx preserves Pu,T .

Proof : Fix x ∈ Zd. By Dynkin’s π-λ Lemma, it suffices to show that for any finite
subset K ⊂ Zd,

P
(
FIu,T ∩ (K − x) = ∅

)
= P

(
FIu,T ∩K = ∅

)
= e−u·cap

(T )(K).

Note that

P
(
FIu,T ∩ (K − x) = ∅

)
= e−u·cap

(T )(K−x) = e−u·cap
(T )(K).

The proof is complete. �

Let x ∈ Zd, define the evaluation map

Φx : {0, 1}Z
d

→ {0, 1}

by Φx(ξ) = ξ(x). We write σ(·) for the product σ-algebra generated by a set or
the σ-algebra generated by a set of functions. The following lemma is a classical
approximation result.

Lemma 6.2. Let
(
{0, 1}Zd , σ({0, 1}Zd), Q

)
be a probability space, and let B ∈

σ({0, 1}Zd), then for any ε > 0, there is a finite subset K ⊂ Zd and Bε ∈ σ(Φx :
x ∈ K) such that

Q
(
B4Bε

)
≤ ε.

We need one more auxiliary lemma.
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Lemma 6.3. Let K ⊂ Zd be a finite subset, and K1 ⊂ K, and K0 = K \K1. Then
for all u, T > 0,

P
(
FIu,T ∩K = K1

)
=

∑
K′⊂K1

(−1)|K
′|e−u·cap

(T )(K′∪K0).

Proof : This follows from inclusion-exclusion formula (see Equation 2.1.3 of Drewitz
et al., 2014a for a similar result in RI). �

Proposition 6.4. For any u, T > 0 and any 0 6= x ∈ Zd, the measure preserving
map Tx is ergodic with respect to Pu,T .

Proof : One can easily adapt the proof of ergodicity for random interlacements, e.g.
see Theorem 2.1 of Sznitman (2010).

�

Theorem 6.5. For any u > 0 and for all sufficiently large R > 0 (depending on
u), FIu,R

3

has a unique infinite open cluster almost surely.

Proof : We adapt the proof of uniqueness in percolation model by Burton and Keane
Burton and Keane (1989) (see Theorem 8.1 in Grimmett, 1999 and Theorem 12.2
in Häggström and Jonasson, 2006). Fix u > 0. Let N be the number of infinite
open clusters in FIu,R

3

. Since N is translation-invariant, N is constant almost
surely by Proposition 6.4. By Corollary 5.3, there is a R0(u) > 0 such that for
all R > R0, FIu,R

3

has an infinite open cluster almost surely. We fix R > R0, so
P (N = 0) = 0. Suppose P (N = k) = 1 for 2 ≤ k <∞. Let MB(n) be the number
of infinite open clusters in FIu,R

3

intersecting B(n). Noting that

P
(
MB(n) ≥ 2

) n→∞−−−−→ P (N ≥ 2) = 1,

there has to be a n such that

P
(
MB(n) ≥ 2

)
> 0.

Recall Definition 2.2. Let F1,0 be the subgraph in Zd generated by paths starting
from B(n−1), F1,1 be the subgraph in Zd generated by paths starting from ∂inB(n),
and F1 = F1,0 ∪ F1,1. Moreover, let F0 be the subgraph in Zd generated by paths
starting from Bc(n).

Note that F1,0 and F1,1 may only have countable many configurations, there has
to be a pair of (finite) configurations F1,0 and F1,1, and a j ≥ 2 such that

P
(
MB(n) = j, F1,0 = F1,0, F1,1 = F1,1

)
> 0,

which implies that

P
(
F0∪F1,0 ∪ F1,1 has k infinite components,

among which j components intersect B(n)
)
> 0.

We denote the last event by A0 and note that A0 is measurable with respect to F0

and thus independent to F1,0 and F1,1.
Now let F̂1,1 = F1,0 ∪ F1,1 \B(n− 1), and let

F̂1,0 = {x± ej , x ∈ B(n− 1), j = 1, 2, · · · , d}
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be the collection of all edges starting from B(n− 1) (or all the edges within B(n)).
One can immediately see that

P
(
A0, F1,0 = F̂1,0, F1,1 = F̂1,1

)
= P

(
A0

)
P
(
F1,0 = F̂1,0, F1,1 = F̂1,1

)
> 0.

However, given the event above, note that

F0 ∪ F1 = F0 ∪ F1,0 ∪ F1,1 ∪ F̂1,0.

Since F̂1,0 contains all the edges within B(n), all the j components in F0∪F1,0∪F1,1

intersecting B(n) merge to one, and the FRI with positive probability only has
k − j + 1 infinite components. This contradicts with P (N = k) = 1.

Now suppose P
(
N =∞

)
= 1. We say a point x ∈ Zd is a trifurcation if:

(1) x is in an infinite open cluster of FIu,R
3

;
(2) there exist exactly three open edges incident to x;
(3) removing the three open edges incident to x will split this infinite open

cluster of x into exactly three disjoint infinite open clusters.
Define the event Ax := {x is a trifurcation}. By translation invariance, P (Ax) is
constant for all x ∈ Zd. Therefore,

1

|B(n)|
E

[ ∑
x∈B(n)

1Ax

]
= P (A0).

Recall that MB(n) is the number of infinite open clusters in FIu,R
3

intersecting
B(n). Note that

P
(
MB(n) ≥ 3

) n→∞−−−−→ P (N ≥ 3) = 1.

Define the event

En :=
{
No killed random walks starting in Zd \B(2n) intersects B(n)

}
.

By Lemma 4.10, the probability of event Ecn decays stretch exponentially. We can
choose n large enough such that

P
(
MB(n) ≥ 3, En

)
> 1/2.

Similarly, let F1 and F2 be the random subgraphs in Zd generated by the trace of
all killed random walks starting in B(n) and B(2n) \B(n), respectively. Note that
F1 and F2 are independent. Since there are only countably many choices for F1

and F2, there exist two finite subgraphs F1 and F2 in Zd such that

P
(
MB(n) ≥ 3, En, F1 = F1, F2 = F2

)
> 0.

If ω ∈ {MB(n) ≥ 3, En, F1 = F1, F2 = F2}, then there exist x(ω), y(ω), z(ω) ∈
∂inB(n) lying in three distinct infinite open clusters in Zd \B(n). There are three
paths connecting the origin and x, y, z, respectively, in the following way:

(1) 0 is the unique common vertex in any two paths;
(2) each path touches exactly one vertex in ∂inB(n).

Let Dx,y,z,n be the event that:
(1) there are exactly three killed random walks starting at the origin;
(2) these three killed random walk paths end at x, y, z, respectively, and they

satisfy the conditions above;
(3) no killed random walks start at any vertices in B(n) \ {0}.
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It is easy to see that P (Dx,y,z,n) > 0 for all n > 0 and all distinct x, y, z ∈ ∂inB(n).
Since F1 and F2 are fixed and finite,

P
(
F2 = F1 ∪ F2 \B(n)

)
> 0.

For ω ∈ {MB(n) ≥ 3, En, F1 = F1, F2 = F2}, we can resample all Nx for x ∈ B(2n),
and then we resample all killed random walk paths starting in B(2n) accordingly.
Note that the resulting graph is still distributed as FRI FIu,R

3

. If the events
Dx,y,z,n and {F2 = F1∪F2 \B(n)} occur after the resample, then 0 is a trifucation.
Therefore,

P
(
A0

)
≥ P

(
Dx,y,z,n

)
P
(
F2 = F1∪F2\B(n)

)
P
(
MB(n) ≥ 3, En, F1 = F1, F2 = F2

)
> 0.

Now we can adapt the proof of Theorem 12.2 in Häggström and Jonasson (2006)
(or the proof of Burton and Keane, 1989 if one considers a site percolation on
FIu,R

3

). For each trifurcation t ∈ B(n), there is a one-to-one corresponding point
yt ∈ ∂inB(n). However, the number of trifurcation points grow in B(n) as nd, but
∂inB(n) grows as nd−1. We have a contradiction. �

7. Subcritical Phase

In this section we present the proof of Theorem 1.2.

Proof of Theorem 1.2: We use the Peierls argument (Peierls, 1936). Fix u > 0.
Let C be the connected component that contains the origin in the FRI, FIu,T . It
suffices to show that there is a constant T0(u) > 0 such that for all 0 < T < T0,

P
(
|C| =∞

)
= 0.

We say a path is self-avoiding if it does not visit the same edge twice. Note that
the number of self-avoiding paths in Zd which have length n and start at the origin
is bounded above by (2d)n. Let N(n) be the number of such paths which are open.
If the origin belongs to an infinite open cluster, then there are open self-avoiding
paths starting at the origin of all lengths. So for all n > 0,

P
(
|C| =∞

)
≤ P

(
N(n) ≥ 1

)
≤ E

[
N(n)

]
.

Let γ be a self-avoiding path that has length n and starts at the origin. We want
to estimate the probability that γ is open. Let Nγ be the number of killed random
walks that traverse γ. Recall that Nγ is a Poisson random variable with parameter
u · cap(T )(γ). Since the path γ has length n, it has n + 1 vertices. Note that the
killed equilibrium measure is always less than or equal to 2d, so

cap(T )(γ) ≤ 2d(n+ 1),
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for all T > 0. By exponential Markov inequality,

P
(
Nγ > eu(2d)(n+ 1) + (n+ 1) log(3d)

)
≤

E
[
eNγ

]
exp

(
eu(2d)(n+ 1) + (n+ 1) log(3d)

)
=

exp
(
u(e− 1) · cap(T )(γ)

)
exp

(
eu(2d)(n+ 1) + (n+ 1) log(3d)

)
≤ exp

(
eu(2d)(n+ 1)− eu(2d)(n+ 1)− (n+ 1) log(3d)

)
= (3d)−n−1.

(7.1)

If the path γ is open in FIu,T , then the Nγ killed random walks that traverse γ
must travel more than n steps in total after they first enter γ. Assume 0 < T < 1.
Note that the survival rate for killed random walks at each step is T/(T + 1),
which is smaller than T . Let Y1, Y2, · · · be i.i.d. geometric random variables with
parameter 1− T . Let

L := deu(2d)(n+ 1) + (n+ 1) log(3d)e.

Then,

P
(
γ is open

∣∣Nγ ≤ L) ≤ P( L∑
i=1

Yi ≥ L+ n

)
.

By Chernoff bound,

P

(
L∑
i=1

Yi ≥ L+ n

)
≤ e−t(L+n)

(
(1− T )et

1− Tet

)L
= e−tn

(
1− T

1− Tet

)L
,

for all t > 0 such that Tet < 1. Take t0 = log(6d). We choose 0 < T0(u) < 1 such
that

T0e
t0 = 6dT0 < 1,

and (
1− T0

1− T0et0

)deu(2d)+log(3d)e

≤ 2.

Then for all 0 < T < T0,

P
(
γ is open

∣∣Nγ ≤ L) ≤ e−t0n( 1− T
1− Tet0

)L
≤ (6d)−n2n+1 = 2(3d)−n.

So,

P
(
γ is open

)
≤ P

(
γ is open

∣∣Nγ ≤ L)+ P
(
Nγ > L

)
≤ 2(3d)−n + (3d)−n−1.

Since γ is arbitrary,

P
(
|C| =∞

)
≤ E

[
N(n)

]
≤ (2d)n

(
2(3d)−n + (3d)−n−1

)
n→∞−−−−→ 0.

The proof is complete. �
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