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Abstract. We consider models for count variables with a GARCH-type structure.
Such a process consists of an integer-valued component and a volatility process. Us-
ing arguments for contractive Markov chains we prove that this bivariate process has
a unique stationary regime. Furthermore, we show absolute regularity (β-mixing)
with geometrically decaying coefficients for the count process. These probabilistic
results are complemented by a statistical analysis and a few simulations.

1. Introduction and notation

Models involving integer-valued random variables have attracted increasing at-
tention in the recent years. In most cases, the random variables are assumed to
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be non-negative, since they represent numbers of counts as e.g. the series of road
traffic accidents, the monthly or annual numbers of deaths due to accidents or dis-
eases, or more recently, the striking daily numbers of infected people and deaths
due the novel corona virus. Sometimes, it is however necessary to allow for both
non-negative and negative integer-valued random variables. A typical field of ap-
plication is the description of score differences in sports, e.g. the number of goals
of the home team minus that of the away team. Another common example is that
of price changes in finance, such as the tick by tick data in a Trade and Quote
database, that are often represented as a combination of positive and negative inte-
ger values. Furthermore, similar types of observations also appear in differentiated
series that are initially non-stationary. While in many applications a serial depen-
dence between the observations is not taken into account, we consider models which
allow to describe and exploit dependencies between consecutive variables. In view
of their popularity in financial time series analysis and because of their flexibility
we focus here on models with a GARCH-type structure. Adapting the structure of
the classical GARCH model by Bollerslev (1986), Fokianos and Tjøstheim (2011);
Fokianos and Tjø stheim (2012) considered such models for non-negative count
variables and investigated conditional maximum likelihood estimators of the corre-
sponding parameters. These authors assumed that the count variable Xt at time t
conditioned on the past has a Poisson distribution with an intensity λt which itself
is random and depends on lagged values of the count and intensity processes. Since
in case of a Poisson distribution the variance is equal to the mean, a GARCH-type
structure is imposed by the equation

λt = ω + α1Xt−1 + · · · + αpXt−p + β1λt−1 + · · · + βqλt−q (1.1)

or by nonlinear variants, λt = fθ
(
Xt−1, . . . , Xt−q, λt−1, . . . , λt−q

)
, where θ is a

suitable parameter.
In this paper, we consider once more processes with a GARCH-type structure. In

contrast to the papers mentioned above, we allow for integer-valued variables which
can attain both non-negative and negative values. The most prominent example
is the distribution introduced by Skellam (1946), which is the distribution of the
difference of two independent Poisson variates with respective parameters λ1 and
λ2, In the special case of λ1 = λ2 considered by Irwin (1937), the corresponding
distribution has zero mean. Therefore and in contrast to (1.1), the conditional
mean is no longer suitable to generate a GARCH-type structure. We will focus on
second moments and consider processes where the integer-valued variables Xt have
a conditional distribution Qvt where

∫
x2 dQv(x) = v and

vt = f
(
X2
t−1, . . . , X

2
t−p, vt−1, . . . , vt−q

)
. (1.2)

Alomani et al. (2018) considered such a Skellam-GARCH process of order p =
q = 1 and derived the estimating equations for a conditional maximum likelihood
estimator of the parameters. However, perhaps because of the absence of suitable
probabilistic tools for such models, they did not provide a further analysis of the
asymptotic properties of this estimator. These authors also provided an overview of
related results and applied the model to differences of non-negative data of counts
of monthly drug crimes.

In this contribution, we primarily focus on stochastic properties such as existence
and uniqueness of a stationary distribution and absolute regularity of integer-valued
GARCH processes. In the related case of Poisson-GARCH processes with linear or
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nonlinear specifications λt = f
(
Xt−1, . . . , Xt−p, λt−1, . . . , λt−q

)
, there are several

forerunners of the present work and it turns out that we can build on the methods
derived there. Mixing properties of such processes have been derived for a first time
in Neumann (2011), for INGARCH(1,1) processes under a contractive condition.
This has been generalized in Doukhan and Neumann (2019) for the INGARCH(p,q)
case and under a weaker semi-contractive condition which resulted in a somewhat
unusual subexponential decay of the mixing coefficients. Doukhan et al. (2020)
proved absolute regularity of the count process again in the INGARCH(1,1) case
but allowing a possibly non-stationary (explosive) behavior of the process. Finally,
Neumann (2020) proved absolute regularity with an exponential decay of the mixing
coefficients for INGARCH(p,q) processes under a fully contractive condition,∣∣f(x1, . . . , xp, λ1, . . . , λq) − f(x′1, . . . , x

′
p, λ
′
1, . . . , λ

′
q)
∣∣

≤
p∑
i=1

ci|xi − x′i| +

q∑
j=1

dj |λj − λ′j |,
(1.3)

where c1, . . . , cp, d1, . . . , dq are non-negative constants are such that
∑p
i=1 ci +∑q

j=1 dj < 1. We will also impose the contractive condition (1.3) on the volatility
function f , however, in contrast to the papers mentioned above, the arguments of
this function reflect second-order properties of the process (Xt)t. Note that (Yt)t
and (Zt)t with Yt =

(
Xt, . . . , Xt−p+1, vt, . . . , vt−q+1

)
and Zt =

(
X2
t , . . . , X

2
t−p+1,

vt, . . . , vt−q+1

)
are both (first-order) Markov chains. We show in Section 2 that

the contractive condition on f yields a contraction property for (Zt)t in terms of a
suitable Wasserstein metric. This implies by the Banach fixed point theorem that
(Zt)t possesses a unique stationary distribution, and a simple extra argument shows
that the same property holds true for the process (Yt)t which is of actual interest
here. Furthermore, we use the contraction property once more to prove almost
effortlessly absolute regularity (β-mixing) with exponentially decaying coefficients
of the count process (Xt)t.

We are convinced that these results can serve as a basis for further work with such
models without any hassle. As an example, population dynamics can be considered
after differentiation, in order to evaluate the speed (differentiated series) or the
acceleration (second order differentiated series) of the evolution of species under
consideration; indeed both characteristics may be either positive or negative. As an
illustration of their usefulness, we apply in Section 3 our results to prove asymptotic
normality of a least squares estimator of the parameters of a Skellam-ARCH model.
All proofs and a few auxiliary results are collected in a final Section 4.

2. Main results

2.1. Assumptions and a preview of the results. We consider a class of integer-valued
processes (Xt)t∈Z defined on some probability space (Ω,F ,P), where, for all t ∈ Z,

Xt | Ft−1 ∼ Qvt , (2.1a)
vt = f(X2

t−1, . . . , X
2
t−p, vt−1, . . . , vt−q), (2.1b)

and Fs = σ(Xs, vs, Xs−1, vs−1, . . .) denotes the σ-field generated by the random
variables up to time s. Assuming that f takes values in some set V ⊆ [0,∞), this
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function has to be defined on Np0 × V q. The parameter vt stands for the condi-
tional second moment of Xt, i.e. the family of distributions (Qv)v∈V on (Z,P(Z))
is parametrized such that ∫

x2 dQv(x) = v ∀v ∈ V. (2.1c)

A frequently considered special case is that of a linear model of order p, q, where

f(x1, . . . , xp, v1, . . . , vq) = ω +

p∑
i=1

αixi +

q∑
j=1

βjvj . (2.2)

It is clear that the processes Y = (Yt)t∈Z and Z = (Zt)t∈Z with
Yt = (Xt, . . . , Xt−p+1, vt, . . . , vt−q+1) and Zt = (X2

t , . . . , X
2
t−p+1, vt, . . . , vt−q+1)

are time-homogeneous Markov chains with state spaces S = Zp × V q and S≥ =
Np0 × V q, respectively. The following conditions ensure existence and uniqueness of
a stationary distribution of (Zt)t∈Z, and eventually of (Yt)t∈Z as well. Furthermore,
they also yield absolute regularity of the count process (Xt)t∈Z.

(A1) There exist non-negative constants c1, . . . , cp, d1, . . . , dq such that
p∑
i=1

ci +

q∑
j=1

dj < 1

and ∣∣f(x1, . . . , xp, v1, . . . , vq) − f(x′1, . . . , x
′
p, v
′
1, . . . , v

′
q)
∣∣

≤
p∑
i=1

ci |xi − x′i| +

q∑
j=1

dj |vj − v′j |

holds for all (x1, . . . , xp, v1, . . . , vq), (x′1, . . . , x
′
p, v
′
1, . . . , v

′
q) ∈ S≥.

(A2) The family of distributions (Qv)v∈V is increasing in the following sense:
If, v < v′, X ∼ Qv, and X ′ ∼ Qv′ , then |X| is stochastically not greater
than |X ′|, i.e.

P
(
|X| ≤ k

)
≥ P

(
|X ′| ≤ k

)
, ∀k ∈ N.

Remark. If (2.1b) is replaced by vt = f̃(|Xt−1|, . . . , |Xt−p|, vt−1, . . . , vt−q), then
remark that the function x 7→

√
x admits the derivative 1/(2

√
x) bounded above

by 1/2 if x ∈ N0, thus if∣∣∣f̃(x1, . . . , xp, v1, . . . , vq) − f̃(x′1, . . . , x
′
p, v
′
1, . . . , v

′
q)
∣∣∣

≤
p∑
i=1

c̃i |xi − x′i| +

q∑
j=1

dj |vj − v′j |

this model again writes as before in (2.1b) with an additional factor 1/2 in (A1),
cj = c̃j/2. The mixture of both situations may also be considered and the condition
and the current conditions appear in fact as more restrictive with squares that
without them. An interesting open question is to remove absolute values, it cannot
be considered as before.
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Examples
1) Symmetric Skellam distributions

Let, for v ∈ V , Qv = Skellam(v/2, v/2) be a Skellam distribution with
parameters v/2, v/2, i.e. Qv is the distribution of two independent Poisson
variates with parameter v/2 each. Suppose that X1, X2 ∼ Pois(v/2) are
independent. Then∫

x2 dQv(x) = var(X1 −X2) = var(X1) + var(X2) = v,

i.e. (2.1c) is satisfied. To prove that (A2) is fulfilled by the family (Qv)v∈V ,
suppose that v < v′. If Y ∼ Skellam(v/2, v/2) and Z ∼ Skellam((v′ −
v)/2, (v′ − v)/2) are independent, it follows from the properties of Poisson
distributions that Y +Z ∼ Skellam(v′/2, v′/2). Since the probability mass
function of Y is symmetric and unimodal (see e.g. Alzaid and Omair, 2010)
we have that

P (|Y | ≤ k) ≥ P (|Y + l| ≤ k), ∀(l, k) ∈ Z× N0,

which implies that

P (|Y | ≤ k) ≥
∑
l∈Z

P (|Y + l| ≤ k)P (Z = l) = P (|Y + Z| ≤ k), ∀k ∈ N0.

Hence, |Y | is stochastically not greater than |Y + Z|.
2) Mixtures of symmetric Skellam distributions

Let G be the distribution of a non-negative random variable with∫
[0,∞)

x dG(x) = µ ∈ (0,∞).
Then

Qv =

∫
[0,∞)

Skellam
(vx

2µ
,
vx

2µ

)
dG(x)

is a mixture of symmetric Skellam distributions. We have that∫
x2 dQv(x) =

∫
[0,∞)

∫
x2 dSkellam

(vx
2µ
,
vx

2µ

)
dG(x)

=

∫
[0,∞)

vx

µ
dG(x) = v,

and, for v < v′,

Qv
(
{−k, . . . , k}

)
=

∫
[0,∞)

Skellam
(vx

2µ
,
vx

2µ

)
({−k, . . . , k}) dG(x)

≥
∫
[0,∞)

Skellam
(v′x

2µ
,
v′x

2µ

)
({−k, . . . , k}) dG(x)

= Qv′
(
{−k, . . . , k}

)
,

i.e. (2.1c) and (A2) are satisfied.
A notable special case is that of a zero-inflated Skellam distribution,

where B ∼ G follows a Bernoulli distribution with parameter p ∈ (0, 1).
If B and X ∼ Skellam(v/(2p), v/(2p)) are independent, then BX has a
zero-inflated Skellam distribution. Such a distribution was used by Karlis
and Ntzoufras (2006) and Andersson and Karlis (2014) to account for an
excess of zero counts in certain medical data.
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3) Poisson distributions
If X ∼ Pois(λ), then EX2 = λ2+λ. This is equal to v > 0 if and only if λ =√
v + 1/4− 1/2. In order to obey (2.1c) we choose Qv = Pois(

√
v + 1/4−

1/2). For v < v′ we have that
√
v + 1/4 − 1/2 <

√
v′ + 1/4 − 1/2.

Since X ∼ Pois(
√
v + 1/4 − 1/2) is stochastically not greater than X ∼

Pois(
√
v′ + 1/4− 1/2) we see that condition (A2) is satisfied.

4) Mixtures of Poisson distributions
Let, as in Example 2, G be the distribution function of a non-negative
random variable with

∫∞
0
x dG(x) = µ ∈ (0,∞). Then

Qv =

∫ ∞
0

Pois
(√

vx/µ+ 1/4− 1/2
)
dG(x)

is a mixture of Poisson distributions. Then condition (A2) is obviously
fulfilled. Furthermore, since∫

x2 dQv(x) =

∫
[0,∞)

∫
x2 dPois

(√
vx/µ+ 1/4− 1/2

)
dG(x)

=

∫
[0,∞)

vx

µ
dG(x) = v

we see that (2.1c) is also satisfied. Poisson distributions can be used for
modeling data from various fields, e.g. the number of financial transactions
within a certain time period or the number of claims in an insurance context.
When dealing with a collection of individual transactions corresponding to
different trading strategies or with a collection of claim numbers from per-
sons with different features (age, health state,...) an appropriate mixture
of Poisson distributions seems to be more adequate. Notable special cases
are that of a zero-inflated Poisson distribution which appears in case of G
a Bernoulli distribution with parameter p ∈ (0, 1) or a negative binomial
distribution, if G has a Gamma distribution. A negative binomial distribu-
tion is often preferred to a Poisson distribution if data are overdispersed,
i.e. if their variance is greater than their mean (as this is the case for all
mixed Poison distributions).

5) Binomial distributions
A Bin(n, p) distribution (p ∈ (0, 1)) can be used for modeling underdis-
persed data since its variance np(1− p) is less than its mean np. To satisfy
(2.1c), we set

Qv = Bin
(
n, g(v)

)
,

where g : (0, n2)→ (0, 1) is a strictly monotonic function such that∫
x2 dBin(n, g(v)) = ng(v) + n(n− 1)

(
g(v)

)2
= v.

To see that (A2) is fulfilled, let U1, . . . , Un be independent and uniformly
distributed on [0, 1]. Let v, v′ ∈ (0, n2). Then X :=

∑n
i=1 1{Ui≤g(v)} ∼ Qv

and X ′ :=
∑n
i=1 1{Ui≤g(v′)} ∼ Qv′ . If v < v′, then it follows from the

construction that X ≤ X ′ with probability one which implies that X is
stochastically not greater than X ′.
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6) Some asymmetric distributions over Z
Let Qv ba any of the above distributions and let Y ∼ Qv and R be indepen-
dent, where P (R ∈ {−1, 1}) = 1. If P (R = 1) 6= 1, then the distributions
of the random variable X = RY is asymmetric over Z and obeys (2.1c).
The corresponding family of distributions satisfies A2) as soon as

(
Qv
)
v∈V

does.

In the following we derive a contraction property of (Zt)t in terms of a suitable
Wasserstein metric. As shown in Eberle (2019, Chapter 3) and Douc et al. (2018,
Theorem 20.3.4), this implies by the Banach fixed point theorem that (Zt)t pos-
sesses a unique stationary distribution. A simple extra argument shows that the
same property holds true for the process (Yt)t which is of actual interest here. Fur-
thermore, we use the contraction property once more to prove almost effortlessly
absolute regularity (β-mixing) with exponentially decaying coefficients of the count
process (Xt)t.

2.2. Contraction. First of all, we transfer the contraction condition (A1) for the
intensity process into a contraction property for the Zt.

We consider the following metric on S≥:

∆γ,δ

(
(x1, . . . , xp, v1, . . . , vq), (x

′
1, . . . , x

′
p, v
′
1, . . . , v

′
q)
)

=

p∑
i=1

γi |xi − x′i| +

q∑
j=1

δj |vj − v′j |,

where γ1, . . . , γp, δ1, . . . , δq are strictly positive constants. Let y = (x1, . . . , xp,
v1, . . . , vq), y′ = (x′1, . . . , x

′
p, v
′
1, . . . , v

′
q) ∈ S be arbitrary and, accordingly z =

(x21, . . . , x
2
p, v1, . . . , vq), z′ = (x′1

2
, . . . , x′p

2
, v′1, . . . , v

′
q) ∈ S≥. With an appropriate

choice of γ1, . . . , γp, δ1, . . . , δq, we can construct random vectors Y = (X,x1, . . . ,
xp−1, λ, λ1, . . . , λq−1) and Y ′ = (X ′, x′1, . . . , x

′
p−1, λ

′, λ′1, . . . , λ
′
q−1) on a suitable

probability space (Ω̃, F̃ , P̃ ) such that

P̃Y = PYt|Yt−1=y = PYt|Zt−1=z, P̃Y
′

= PYt|Yt−1=y
′

= PYt|Zt−1=z
′
, (2.3)

and, for Z = (X2, x1, . . . , xp−1, λ, λ1, . . . , λq−1) and Z ′ = (X ′
2
, x′1, . . . , x

′
p−1, λ

′,
λ′1, . . . , λ

′
q−1),

Ẽ∆γ,δ(Z,Z
′) ≤ κ ∆γ,δ(z, z

′) (2.4)
holds for some κ < 1. Actually, according to the model equation (2.1b), we have
to set v = f(x21, . . . , x

2
p, v1, . . . , vq) and v′ = f(x′1

2
, . . . , x′p

2
, v′1, . . . , v

′
q). Suppose

that (Ω̃, F̃ , P̃ ) admits the construction of independend random variables U and V ,
both following a uniform distribution on [0, 1]. Let Gv and Gv′ be the respective
distribution functions of PX2

t |vt=v and PX2
t |vt=v

′
. We define versions of X2 and

X ′
2 by W := G−1v (U) and W ′ := G−1v′ (U), where G−1 denotes the generalized

inverse of a generic distribution function G, G−1(t) = inf{x : G(x) ≥ t}. We still
have to determine the signs of X and X ′, taking into account that the values of
X2 = W and X ′

2
= W ′ are already determined. With a view to our proof of

absolute regularity, and since the probability P
(
|X| = |X ′|

)
is under control, we

will do this in such way that the probability P
(
|X| = |X ′|, X 6= X ′

)
is as small
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as possible. Let pl = P(Xt = l | vt = v) and p′l = P(Xt = l | vt = v′). If
(pk ∧ p′k) + (p−k ∧ p′−k) ≤ P

(
W = W ′ = k2

)
, then we can couple the signs of X

and X ′ such that

P
(
W = W ′ = k2, X = X ′ = k

)
= pk ∧ p′k, and

P
(
W = W ′ = k2, X = X ′ = −k

)
= p−k ∧ p′−k.

In this case,

P
(
|X| = |X ′| = |k|, X 6= X ′

)
= P

(
|X| = |X ′| = |k|

)
− pk∧p′k − p−k∧p′−k. (2.5a)

On the other hand, if (pk ∧ p′k) + (p−k ∧ p′−k) > P
(
W = W ′ = k2

)
, then we couple

X and X ′ such that

P
(
W = W ′ = k2, X = X ′ = ±k

)
= p±k ∧ p′±k

P
(
W = W ′ = k2

)
(pk ∧ p′k) + (p−k ∧ p′−k)

,

which leads to
P
(
|X| = |X ′| = |k|, X 6= X ′

)
= 0. (2.5b)

We denote the corresponding Markov kernels by πY,Y
′
and πZ,Z

′
, respectively. This

construction produces a pair (X,X ′) such that

P̃ (X = k) = P(Xt = k | Yt−1 = y),

and P̃ (X ′ = k) = P(Xt = k | Yt−1 = y′), ∀k ∈ Z,

which means that (2.3) is satisfied. Furthermore, it follows from (A2) that X2 is
stochastically not greater than X ′2 if v ≤ v and vice versa. Since the coupling of
these random variables is based on the quantile transform we obtain by (2.1c)

Ẽ
∣∣X2 −X ′2

∣∣ =
∣∣Ẽ[X2 −X ′2]

∣∣ = |v − v′|. (2.6)

Since P
(
|X| = |X ′| = |k|

)
≤ (pk + p−k)∧ (p′k ∨ p′−k) ≤ (pk + p′k + p−k + p′−k)/2 we

obtain from (2.5a) and (2.5b) that

P
(
|X| = |X ′|, X 6= X ′

)
=

∞∑
k=1

P
(
|X| = |X ′| = k,X 6= X ′

)
≤

∞∑
k=1

(pk + p′k + p−k + p′−k)/2 − pk ∧ p′k − p−k ∧ p′−k

≤
∞∑

k=−∞

pk + p′k
2

− pk ∧ p′k =
1

2

∞∑
k=−∞

∣∣pk − p′k
∣∣. (2.7)

It follows from (2.6) and by (A1) that

Ẽ∆γ,δ(Z,Z
′)

= (γ1 + δ1)
∣∣∣f(x21, . . . , x

2
p, v1, . . . , vq) − f(x′1

2
, . . . , x′p

2
, v′1, . . . , v

′
q)
∣∣∣

+

p∑
i=2

γi |x2i−1 − x′i−1
2|+

q∑
j=2

δj |vj−1 − v′j−1| (2.8)

≤ (γ1 + δ1)

 p∑
i=1

ci |x2i − x′i
2| +

q∑
j=1

dj |vj − v′j |
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+

p∑
i=2

γi |x2i−1 − x′i−1
2| +

q∑
j=2

δj |vj−1 − v′j−1|.

The desired relation of Ẽ∆(Z,Z ′) ≤ κ∆(z, z′) would be guaranteed to hold if we
find strictly positive γ1, . . . , γp, δ1, . . . , δp such that the right-hand side of (2.8) is
less than or equal to κ∆(z, z′) = κ

(∑p
i=1 γi|x2i − x′i

2| +
∑q
j=1 δj |vj − v′j |

)
, for

all (x21, . . . , x
2
p, v1, . . . , vq), (x′1

2
, . . . , x′p

2
, v′1, . . . , v

′
q) ∈ S≥. The following lemma

provides a bridge from the contraction property (A1) for the volatility function to
a contraction property for Zt.

Lemma 2.1. Let c1, . . . , cp, d1, . . . , dq be non-negative constants with
p∑
i=1

ci +

q∑
j=1

dj < 1.

Then there exist strictly positive constants γ1, . . . , γp, λ1, . . . , λq and some κ < 1
such that

(γ1 + δ1)
( p∑
i=1

ci yi +

q∑
j=1

dj zj

)
+

p∑
i=2

γi yi−1 +

q∑
j=2

δj zj−1

≤ κ
( p∑
i=1

γi yi +

q∑
j=1

δj zj

) (2.9)

holds for all y1, . . . , yp, z1, . . . , zq ≥ 0.

Let πY,Y
′
and πZ,Z

′
be the Markov kernels which provide the above coupling,

that is, for the above pairs of random variables (Y, Y ′) and (Z,Z ′) we have that
(Y, Y ′) ∼ πY,Y ′((y, y′), ·) and (Z,Z ′) ∼ πZ,Z′((z, z′), ·), respectively.

The following proposition provides the contraction property which will be instru-
mental for the proof of the existence and uniqueness of a stationary distribution as
well as for the derivation of absolute regularity of the count process.

Proposition 2.2. Suppose that conditions (A1) and (A2) are fulfilled.
Let γ1, . . . , γp, δ1, . . . , δp and κ < 1 be chosen as in Lemma 2.1. Then

(i) Let z, z′ ∈ S≥ be arbitrary. If (Z,Z ′) ∼ πZ,Z′((z, z′), ·), then

Z ∼ PZt|Zt−1=z and Z ′ ∼ PZt|Zt−1=z
′

and
Ẽ∆γ,δ(Z,Z

′) ≤ κ ∆γ,δ(z, z
′).

(ii) Let ((Z̃t, Z̃
′
t))t∈Z be a Markov chain on (Ω̃, F̃ , P̃ ) with transition kernel

πZ,Z
′
. Then

Ẽ∆γ,δ

(
Z̃t, Z̃

′
t

)
≤ κ Ẽ∆γ,δ

(
Z̃t−1, Z̃

′
t−1

)
.

In order to derive stationarity properties of the process (Zt)t∈Z, we further trans-
late the contraction result in Proposition 2.2 into a contraction property of the
corresponding distributions. For the metric ∆γ,δ on S≥, we define

P(S≥) =
{
Q : Q is a probability distribution on S≥ with

∫
∆γ,δ(z0, z)dQ(z)<∞

}
,
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where z0 ∈ S≥ is arbitrary. For two probability measures Q,Q′ ∈ P(S≥), we define
the Kantorovich distance based on the metric ∆γ,δ (also known as Wasserstein L1

distance) by

K(Q,Q′) := inf
Z∼Q,Z′∼Q′

Ẽ∆(Z,Z ′),

where the infimum is taken over all random variables Z and Z ′ defined on a com-
mon probability space (Ω̃, F̃ , P̃ ) with respective laws Q and Q′. We denote the
Markov kernel of the processes (Yt)t∈Z and (Zt)t∈Z by πY and πZ , respectively.
The following result follows immediately from Proposition 2.2.

Proposition 2.3. Suppose that conditions (A1) and (A2) are fulfilled. Let Q,Q′ ∈
P(S≥) be arbitrary distributions. Then, for κ < 1 given in Lemma 2.1,

K(QπZθ , Q
′πZθ ) ≤ κK(Q,Q′).

2.3. Existence and uniqueness of a stationary distribution. Proposition 2.3 shows
that the mapping πZ is contractive. Therefore, we can conclude by the Banach fixed
point theorem that the Markov process (Zt)t∈Z has a unique stationary distribution.
A simple extra argument shows that that the Markov process (Yt)t∈Z has this
property as well.

Theorem 2.4. Suppose that conditions (A1) and (A2) are fulfilled.

(i) The Markov process (Zt)t∈Z with transition kernel πZ has a unique sta-
tionary distribution QZ . For Z0 = (X2

0 , . . . , X
2
1−p, v0, . . . , v1−q), we have

that

E
[
X2

0 + v0
]
< ∞. (2.10)

(ii) The Markov process (Yt)t∈Z with transition kernel πY has a unique station-
ary distribution QY .

Remark 2.5. The reader might wonder why we don’t derive weak dependence prop-
erties introduced by Doukhan and Louhichi (1999). Indeed e.g. Doukhan and Neu-
mann (2008) describe statistical procedures where mixing can be replaced by weak
dependence conditions. If X ∼ Qv = Skellam(v/2, v/2) is symmetric, then EX = 0
and EX2 = v. Therefore it is natural to model the volatility process as in (2.1b),
where the volatilities appear linearly while the count variables are squared. The
properties of Skellam models make also natural the inhomogeneity of (2.1a) and
(2.1b) which include both linear and squared factors. In the simplest case of a
SkellamARCH(1)-process, with vt = f(X2

t−1), the function x 7→ f(x2) may not
be Lipschitz and thus contraction does not hold. Anyway, the process Yt = X2

t

is again contractive if Lip f < 1. Symmetry of the distribution Qv implies that
Xt = σt

√
Yt is a solution of (2.1a) and (2.1b) if (σt)t is an iid sequence of sym-

metric signs (P (σt = ±1) = 1/2). Then τ−dependence of the process (Yt) fol-
lows as in Doukhan and Wintenberger (2008). Now, since the 1-Lipschitz function
g(y) = y∧√y equals y 7→ √y on N0, then Xt = σtg(Yt); heredity properties of weak
dependence imply geometric τ−dependence of (Xt)t; see Dedecker et al. (2007). We
proved τ−dependence in this very special symmetric case; in order to work in a
more general setting we switch in Subsection 2.4 to the more standard β−mixing
condition to derive asymptotic theory for the statistical analysis.
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2.4. Absolute regularity. For the related case of Poisson count processes with a
GARCH-type structure, absolute regularity has been first proved for contractive IN-
GARCH(1,1) processes in Neumann (2011). This has been generalized in Doukhan
and Neumann (2019) to semi-contractive models and in Doukhan et al. (2020) to the
case of possibly non-stationary processes. In all of these papers, the mixing proper-
ties were derived by an explicit coupling of two versions of the processes which were
tailor-made for the respective properties of the processes. In the current work, our
approach is slightly different. We derive both stationarity and mixing properties
on the basis of a one-step contractivity property given in Proposition 2.2.

Let (Ω,A, P ) be a probability space and A1, A2 be two sub-σ-algebras of A.
Then the coefficient of absolute regularity is defined as

β(A1,A2) = E [sup {|P (B | A1) − P (B)| : B ∈ A2}] .

For a strictly stationary process Y = (Yt)t on (Ω,A, P ), the coefficients of absolute
regularity are defined as

βY (n) = β (σ(Y0, Y−1, . . .), σ(Yn, Yn+1, . . .)) .

For the count process (Xt)t on (Ω,F ,P), we obtain the following estimate of the
coefficients of absolute regularity.

βX(n)

= β
(
σ(X0, X−1, . . .), σ(Xn, Xn+1, . . .)

)
≤ β

(
F0, σ(Xn, Xn+1, . . .)

)
= β

(
σ(Y0), σ(Xn, Xn+1, . . .)

)
= E

[
sup

C∈σ(Z)

{∣∣∣Pθ((Xn, Xn+1, . . .)∈C | Zk
)
− Pθ

(
(Xn, Xn+1, . . .)∈C

)∣∣∣}], (2.11)

where Z = {A×Z×Z×· · · | A ⊆ Zm,m ∈ N} is the system of cylinder sets. At this
point we employ a coupling argument. Let ((Ỹt, Ỹ

′
t ))t∈N0

be a Markov chain on a
probability space (Ω̃, F̃ , P̃ ) with transition kernel πY,Y

′
and independent variables

Ỹ0, Ỹ
′
0 ∼ PZk

θ . Then

E

[
sup

C∈σ(Z)

{∣∣∣Pθ((Xk, Xn+1, . . .) ∈ C | Zk
)
− Pθ

(
(Xk, Xn+1, . . .) ∈ C

)∣∣∣}]
≤ Ẽ

[
sup

C∈σ(Z)

{∣∣P̃ ((X̃n, X̃n+1, . . .) ∈ C | Ỹ0
)
− P̃

(
(X̃ ′n, X̃

′
n+1, . . .) ∈ C | Ỹ ′0

) ∣∣}]
≤ P̃

(
X̃n+k 6= X̃ ′n+k for some k ≥ 0

)
≤
∞∑
k=0

P̃
(
X̃n+k 6= X̃ ′n+k

)
. (2.12)

At this point we will more closely examine the remaining part of our approach
to derive upper estimates for the mixing coefficients. If the count variables are
non-negative, then X̃n+k = X̃ ′n+k is equivalent to |X̃n+k| = |X̃ ′n+k|. Moreover, if
the probability mass functions of the Qv are symmetric about zero, then (2.5a) and
(2.5b) ensure that X̃n+k and X̃ ′n+k have always the same sign which means again
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that X̃n+k = X̃ ′n+k is equivalent to |X̃n+k| = |X̃ ′n+k|. In both cases, we conclude
from (2.11) and (2.12) that

βX(n) ≤
∞∑
k=0

P̃
(
X̃n+k 6= X̃ ′n+k

)
≤ 1

γ1

∞∑
k=0

Ẽ∆γ,δ(Z̃n+k, Z̃
′
n+k)

≤ 1

γ1

κn

1− κ
Ẽ∆γ,δ(Z̃0, Z̃

′
0). (2.13)

Otherwise, we assume that (Qv)v∈V is such that, for some K <∞,

1

2

∞∑
k=−∞

∣∣Qv({k}) − Qv′({k})
∣∣ ≤ K |v − v′| ∀v, v′ ∈ V. (2.14)

Then we obtain by (2.7) that

P̃
(
X̃n+k 6= X̃ ′n+k

)
= P̃

(
|X̃n+k| 6= |X̃ ′n+k|

)
+ P̃

(
|X̃n+k| = |X̃ ′n+k|, X̃n+k 6= X̃ ′n+k

)
≤ P̃

(
|X̃n+k| 6= |X̃ ′n+k|

)
+ K

∣∣vn+k − v′n+k
∣∣.

In this case, we obtain that

βX(n) ≤
(

1

γ1
+
K

δ1

) ∞∑
k=0

∆γ,δ(Z̃n+k, Z̃
′
n+k)

≤
(

1

γ1
+
K

δ1

)
κn

1− κ
Ẽ∆γ,δ(Z̃0, Z̃

′
0). (2.15)

Theorem 2.6. Suppose that conditions (A1) and (A2) are fulfilled and that the
process (Yt)t∈Z is stationary. Furthermore we assume that (Qv)v∈V satisfies one of
the following conditions.

a) Qv(N0) = 1 ∀v ∈ V ,
b) the probability mass functions of (Qv)v∈V are symmetric about zero,
c) (2.14) is fulfilled for some K <∞.

Then there exists some ρ < 1 such that

βX(n) = O (ρn) .

Remark 2.7. The results of our paper are heavily based on the (fully) contractive
condition (A1) on the volatility function f . In a related work, Doukhan and
Neumann (2019), a weaker so-called semi-contractive condition,∣∣f(x1, . . . , xp, λ1, . . . , λq) − f(x1, . . . , xp, λ

′
1, . . . , λ

′
q)
∣∣ ≤ q∑

j=1

dj |λj − λ′|,

for some non-negative d1, . . . , dq such that
∑q
j=1 dj < 1, was imposed which then

resulted a a slower subexponential decay of the coefficients of absolute regularity.
In our context, it seems also be possible to derive properties such as existence
and uniqueness of a stationary distribution and absolute regularity under a semi-
contractive condition if some appropriate drift condition is added. Without any
kind of contractivity condition, the approach used in this paper fails and there are
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counterexamples showing that then our results are non longer valid. Consider the
special case of the linear model (2.2), where ω > 0 and α1, . . . , αp, β1, . . . , βq are
non-negative with

∑p
i=1 αi +

∑q
j=1 βj ≥ 1. Then

Evt = ω +

p∑
i=1

αiEvt−i +

q∑
j=1

βjEvt−j ,

which shows that a stationary process ((Xt, vt))t∈Z satisfying (2.1a) to (2.1c) does
not exist.

3. Applications

We choose to develop the asymptotic theory for the OLSE of Skellam models
(3.1) as the most standard application of the above results. Much more may be
done including tests of goodness-of-fit as in Doukhan et al. (2020). Prediction or
model selection issues are also important and should be developed theoretically.
Additional research work will make use of the bound of absolute regularity for
many other questions such a more quantitative study of prediction, qualitative
tests of goodness-of-fit such as model choice problems, or more nonparametric based
statistics or resampling or subsampling procedures.

3.1. OLSE of a Skellam-ARCH model. We consider the special case of an Skellam-
ARCH(p) model, where (2.1b) reduces to

vt = ω +

p∑
i=1

αi X
2
t−i. (3.1)

We assume that ω > 0, and that α1, . . . , αp are non-negative with α =
∑p
i=1 αi <

1/
√

3. We further assume that the process ((Xt, vt))t∈Z is in its unique stationary
regime. On the basis of observations X1, . . . , Xn, we intend to estimate the vector
of unknown parameters θ = (ω, α1, . . . , αp)

T . We embed the observed random
variables into a linear regression model,

X2
t = ω +

p∑
i=1

X2
t−i αi + εt, t = p+ 1, . . . , n,

where εt = X2
t − vt satisfies E(εt | Ft−1) = 0 a.s. Then the ordinary least squares

estimator is given by

θ̂n ∈ arg min
θ

n∑
t=p+1

(
X2
t − (ω + α1 X

2
t−1 + · · · + αp X

2
t−p)

)2
= arg min

θ

∥∥Y(n) − X(n)θ
∥∥2 ,

where

Y(n) =

 X2
p+1
...
X2
n

 , X(n) =

 1 X2
p . . . X2

1
...

...
. . .

...
1 X2

n−1 . . . X2
n−p

 .
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If the matrix XT
(n)X(n) is regular, then θ̂n is uniquely defined and

θ̂n =
(
XT

(n)X(n)

)−1
XT

(n)Y(n), (3.2)

which implies that

√
n
(
θ̂n − θ

)
=

(
1

n
XT

(n)X(n)

)−1
1√
n
XT

(n)ε(n), (3.3)

where ε(n) = (εp+1, . . . , εn)T .
The condition

∑p
i=1 αi < 1/

√
3 ensures by Lemma 4.1 that EX4

0 < ∞. Hence,
we obtain from the ergodic theorem that

1

n
XT

(n)X(n)
a.s.−→ Σ =


1 EX2

1 . . . EX2
p

EX2
1 EX2

1X
2
1 . . . EX2

1X
2
p

...
...

. . .
...

EX2
p EX2

pX
2
1 . . . EX2

pX
2
p

 . (3.4)

Lemma 4.2 below shows that Σ is a regular matrix which means that equation (3.3)
holds true with a probability tending to 1. Furthermore, it follows from a central
limit theorem for sums of martingale differences (Corollary 3.1 in Hall and Heyde,
1980 page 58) and the Cramér-Wold device that

Wn :=
1√
n
XT

(n)ε(n)
d−→ Z0, (3.5)

where Z0 ∼ N (0p+1, η
2 Σ) and η2 = Eε2t .

From (3.3) to (3.5) we conclude that
√
n
(
θ̂n − θ

)
d−→ Z ∼ N (0p+1, η

2 Σ−1). (3.6)

3.2. Simulation study. We simulate a process ((Xt, vt))t, where vt obeys (3.1) and
Xt | Ft ∼ Qvt = Skellam(vt/2, vt/2). The parameters in (3.1) are chosen such
that ω > 0 and

∑
αi < 1/

√
3, which ensures finiteness of fourth moments of the

count variables; see Lemma 4.1 below. We assume a suitable set of values for the
different order p, α1 = 0.26, α2 = 0.16, α3 = 0.11, α4 = 0.02, for sample sizes
T = 30, 80, 100, 500, and 1000. 1000 replication are made for each sample size and
the simulated mean estimates and their corresponding standard errors as deduced
from the result (3.6).

The estimates reflect that for increased sample size, the values of the different
parameters become more consistent with the standard errors that are seen to be
constantly decreasing; see Table 3.1. It is worth reporting that for some simu-
lation processes, the standard OLS equation (3.3) does not yield relevant output
estimates since the constraints on the α̂i and ω̂ were not conformed. To overcome
this shortcomings, we apply the QP.solve routine with the appropriate constraint
matrix to obtain reliable results. Furthermore, for p = 4, some simulations initially
failed since the Hessian matrix was near to ill-conditioned and the evaluation of
the inverse was then suitably handled by the ginv function. Broadly, after ac-
commodating these computational amendments, the average number of convergent
simulations turn around 92 %, 87 %, 85 % and 75 % for p = 1, 2, 3, 4 respectively.
As noticed from these percentages, as we increase the order p, we expect some
number of failed simulations.
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p T ω = 1.50 α1 = 0.26 α2 = 0.16 α3 = 0.11 α4 = 0.02
1 30 1.251 (0.321) 0.178 (0.211)

80 1.355 (0.151) 0.225 (0.188)
100 1.751 (0.101) 0.231 (0.124)
500 1.442 (0.087) 0.244 (0.091)
1000 1.542 (0.075) 0.136 (0.088)

2 30 1.389 (0.278) 0.232 (0.209) 0.152 (0.327)
80 1.477 (0.150) 0.246 (0.123) 0.166 (0.111)
100 1.511 (0.081) 0.271 (0.099) 0.148 (0.098)
500 1.552 (0.032) 0.276 (0.042) 0.152 (0.038)
1000 1.467 (0.022) 0.255 (0.031) 0.169 (0.021)

3 30 1.481 (0.455) 0.244 (0.303) 0.152 (0.276) 0.104 (0.152)
80 1.551 (0.210) 0.232 (0.155) 0.166 (0.101) 0.119 (0.110)
100 1.462 (0.111) 0.255 (0.101) 0.147 (0.089) 0.114 (0.088)
500 1. 541 (0.088) 0.275 (0.076) 0.158 (0.042) 0.121 (0.034)
1000 1.4601 (0.061) 0.266 (0.045) 0.166 (0.034) 0.111 (0.026)

4 30 1.495 (0.323) 0.255 (0.212) 0.152 (0.318) 0.112 (0.176) 0.018 (0.272)
80 1.510 (0.188) 0.276 (0.124) 0.164 (0.232) 0.114 (0.123) 0.015 (0.103)
100 1.498 (0.092) 0.237 (0.110) 0.166 (0.101) 0.110 (0.075) 0.019 (0.064)
500 1.502 (0.088) 0.242 (0.064) 0.167 (0.054) 0.113 (0.033) 0.017 (0.042)
1000 1.489 (0.052) 0.262 (0.043) 0.159 (0.038) 0.109 (0.018) 0.018 (0.028)

Table 3.1. Simulated Mean estimates and standard errors/100
Simulations

4. Proofs and some auxiliary results

4.1. Proofs of the main results.

Proof of Lemma 2.1: A comparison of coefficients in (2.9) reveals that it suffices to
find strictly positive constants γ1, . . . , γp, δ1, . . . , δq such that the following inequal-
ities are satisfied. (

γ1 + δ1
)
c1 + γ2 ≤ κ γ1

...(
γ1 + δ1

)
cp−1 + γp ≤ κ γp−1(
γ1 + δ1

)
cp ≤ κ γp(

γ1 + δ1
)
d1 + δ2 ≤ κ δ1

...(
γ1 + δ1

)
dq−1 + δq ≤ κ δq−1(

γ1 + δ1
)
dq ≤ κ δq. (4.1)

We set, w.l.o.g., γ1 + δ1 = 1. Let ε = (1 − L)/(p + q). We consider the following
system of equations.

cp + ε = γp

cp−1 + γp + ε = γp−1
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...
c1 + γ2 + ε = γ1

dq + ε = δq

dq−1 + δq + ε = δq−1
...

d1 + δ2 + ε = δ1.

It is obvious that this system of equations has a unique solution with strictly positive
γ1, . . . , γp, δ1, . . . , δq. Moreover, it follows from

p∑
i=1

ci +

q∑
j=1

dj +

p∑
i=2

γi +

q∑
j=2

δj + (p+ q) ε =

p∑
i=1

γi +

q∑
j=1

δj

that γ1 + δ1 = 1, as required. Therefore, we see that, with such a choice of
γ1, . . . , γp, δ1, . . . , δq, the following strict inequalities are fulfilled.

c1 + γ2 < γ1
...

cp−1 + γp < γp−1

cp < γp

d1 + δ2 < δ1
...

dq−1 + δq < δq−1

dq < δq.

Choosing κ = max{(c1+γ2)/γ1, . . . , (cp−1+γp)/γp−1, cp/γp, (d1+δ2)/δ1, . . . , (dq−1+
δq)/δq−1, dq/δq} we obtain that the system of inequalities (4.1) is satisfied. �

Proof of Proposition 2.2: (i) follows from (2.8) and (2.9), and (ii) is an immediate
consequence of (i). �

Proof of Proposition 2.3: Let Q and Q′ be arbitrary probability measures sup-
ported in S≥ and let ξ be the optimal coupling of Q and Q′ w.r.t. the Kantorovich
distance, that is,

K(Q,Q′) =

∫
S≥×S≥

∆γ,δ(z, z
′) ξ(dz, dz′).

Then ξπZ,Z
′
is a coupling of QπZ and Q′πZ and it follows from Proposition 2.2(i)

that

K(Qπ,Q′π) ≤
∫

∆γ,δ(u, u
′) ξπZ,Z

′
(du, du′)

=

∫ [∫
∆γ,δ(u, u

′)πZ,Z
′
((z, z′), du du′)

]
ξ(dz, dz′)
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≤ κ

∫
∆γ,δ(z, z

′) ξ(dz, dz′) = κ K(Q,Q′).

�

Proof of Theorem 2.4: We consider first the Markov process (Zt)t∈Z. Let

P =

{
Q : Q is a probability distribution based in S≥,

∫
S

2p∑
i=1

|xi|Q(dx) <∞

}
.

It is well known that the space P equipped with the Kantorovich metric K is
complete. Since by Proposition 2.3 the mapping πZ is contractive it follows by
the Banach fixed point theorem that the Markov kernel πZ admits a unique fixed
point QZ , i.e. QZπZ = QZ . In other words, QZ is the unique stationary distribu-
tion of the process (Zt)t∈Z.

Now we consider the process (Yt)t∈Z. If the Xt are non-negative random vari-
ables, then we have a one-to-one relationship between Zt and Yt and, for

Z0 =
(
X2

0 , . . . , X
2
1−p, v0, . . . , v1−q

)
∼ QZ ,

the distribution of the vector Y0 =
(
X0, . . . , X1−p, v0, . . . , v1−q

)
is the unique sta-

tionary distribution of (Yt)t∈Z.
If Xt attains both positive and negative values, we need a simple extra argument.

Suppose that Z0 =
(
X2

0 , . . . , X
2
1−p, v0, . . . , v1−q

)
∼ QZ . Now we can recursively

generate suitable (v1, X1), . . . , (vp, Xp) as follows.
We set v1 = f

(
X2

0 , . . . , X
2
1−p, v0, . . . , v1−q

)
and generate X1 ∼ Qv1 . Then we set

v2 = f
(
X2

1 , . . . , X
2
−p, v1, . . . , v−q

)
and choose X1 ∼ Qv1 , and so on. After p such

steps we have collected enough Xts with suitable signs and the random vector
Yp :=

(
Xp, . . . , X1, vp, . . . , vp−q+1

)
has the unique stationary distribution, say QY ,

of (Yt)t∈Z. �

Proof of Theorem 2.6: Since by (2.10) Ẽ∆γ,δ(Z̃0, Z̃
′
0) <∞, this theorem is an im-

mediate consequence of (2.13) and (2.15). �

4.2. Some auxiliary results.

Lemma 4.1. Let ((Xt, vt))t∈Z be a stationary process satisfying (3.1), where ω,
α1, . . . , αp are non-negative constants and let Xt | Ft−1 ∼ Skellam(vt/2, vt/2).

(i) If α =

n∑
i=1

αi < 1, then EX2
0 < ∞.

(ii) If α =

n∑
i=1

αi <
1√
3
, then EX4

0 < ∞.

Proof of Lemma 4.1: Let ((X̃t, ṽt))t∈N be Skellam-ARCH process satisfying (3.1),
but with initial values X̃1 = · · · = X̃p =

√
ω. (The latter condition is imposed

to ensure that EX̃4
1 , . . . , EX̃

4
p are guaranteed to be finite.) Since X̃n

d−→ X0 it
follows from Theorem III.6.31 in Pollard (1984, page 58) that we can construct a
coupling of these random variables where we have almost sure convergence rather
than convergence in probability. Hence, we obtain by Fatou’s lemma that

EXk
0 ≤ lim inf

n→∞
EX̃k

n, for k = 2, 4. (4.2)
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(i) It follows from (3.1) that, for t > p,

EX̃2
t = ṽt ≤ ω + αmax{EX̃2

t−1, . . . , EX̃
2
t−p}.

Let Zt = max{EX̃2
t , . . . , EX̃

2
t−p+1}. We obtain from the previous display

the recursion
Zt ≤ max{ω + α Zt−1, Zt−1}.

Therefore,
EX̃2

t ≤
ω

1− α
,

which yields in conjunction with (4.2) that (i) holds true.
(ii) If X ∼ Skellam(v/2, v/2), then EX4 = v + 3v2. Hence, for t > p

EX̃4
t = ω +

p∑
i=1

αiEX̃
2
t−i + 3 E

[
(ω +

p∑
i=1

αiX̃
2
t−i)

2

]
≤ ω + 3 ω2 + (1 + 6ω) α max{EX̃2

t−1, . . . , EX̃
2
t−p}

+ 3 α2 max{EX̃4
t−1, . . . , EX̃

4
t−p}.

With Z̄t = max{EX̃4
t , . . . , EX̃

4
t−p+1} and ω̄ = ω+ 3ω2 + (1 + 6ω)α · ω

1− α
,

we obtain the recursion

Z̄t ≤ max{ω̄ + 3 α2 Z̄t−1, Z̄t−1},
which leads to

EX̃4
t ≤

ω̄

1 − 3 α2
.

(ii) follows now from (4.2).
�

Lemma 4.2. Let ((X̃t, λ̃t))t∈Z be a stationary Skellam-ARCH process satisfying
(2.1a) and (3.1) and with ω > 0. Then the matrix Σ defined in (3.4) is regular.

Proof of Lemma 4.2: We have that

Σ = E[ZZT ],

where Z = (1, X2
p , . . . , X

2
1 )T .

Assume that Σ is singular: then there exists some γ = (γ0, . . . , γp)
T 6= 0p+1 such

that
0 = γTΣγ = E[(ZT γ)2],

which implies that
P
(
ZT γ = 0

)
= 1.

This means that

γ0 +

p∑
i=1

X2
t−i+1γi = 0

holds with probability 1. Since γ1 = · · · = γp = 0 would then imply that γ = 0p+1,
there exists some i0 ≥ 1 such that γ1 = · · · = γi0−1 = 0 and γi0 6= 0. Then

X2
t−i0 =

1

γi0

{
γ0 +

p∑
i=i0+1

γiX
2
t−i+1

}
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that is, X2
t−i0 is fully determined by the past values of the count process. This,

however, leads to a contradiction since

Xt−i0 | Ft−i0−1 ∼ Skellam(vt−i0/2, vt−i0/2)

with vt−i0 ≥ ω > 0. Hence, Σ is a regular matrix. �
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