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Abstract. We study a class of models of i.i.d. random environments in general
dimensions d ≥ 2, where each site is equipped randomly with an environment,
and a parameter p governs the frequency of certain environments that can act as
a barrier. We show that many of these models (including some which are non-
monotone in p) exhibit a phase transition for the geometry of connected clusters as
p varies.

1. Introduction

Models of (i) random media, and (ii) random walks on them, are important
objects of study in modern discrete probability, with a vast literature.

For (i), typically one of the first tasks is to establish the existence of a phase
transition as some parameter of the model is varied. In standard percolation models
the phase transition often takes the form: there exists a non-trivial critical value
pc such that for p > pc there is an infinite connected cluster (and with positive
probability the connected cluster of the origin is infinite), while for p < pc there
is no infinite cluster. Subsequent analysis focuses e.g. on the size, shape, and finer
structure of finite clusters in the different regimes, with the behaviour of the model
at the critical point pc being of particular interest. See for example Grimmett
(1999).

One of the most fundamental examples of (ii) is the so-called random walk in
i.i.d. random environment in Zd, where each site has its own set of transition
probabilities for departures from that site, and these are chosen in an i.i.d. fashion
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between different sites. This has been studied for decades, but almost always under
the assumption that the environment is (uniformly) elliptic, which means that
step probabilities from sites to their nearest lattice neighbours are always strictly
positive (see e.g. Bolthausen and Sznitman, 2002; Hughes, 1996; Zeitouni, 2004).
By dropping this assumption, fundamental new questions arise, such as whether
there are sites that are unreachable by the walk, and whether or not the random
walker can (and will) get stuck in a finite region of the lattice (see e.g. Holmes
and Salisbury, 2014b, 2017 together with the references in the latter). Both of
these are in fact questions about models of random media called degenerate random
environments (Holmes and Salisbury, 2014a), which are essentially the random
directed graphs one gets from the random environment above by inserting an arrow
(directed edge) from a site x to its neighbour x + e if the non-elliptic random
environment has assigned positive probability for stepping in direction e from the
point x. Arguably the situation of most interest is when the random walker does
not get stuck on a finite set, and it turns out that there is a simple condition on the
degenerate random environment which is equivalent to the random walker almost
surely not getting stuck (Holmes and Salisbury, 2014b, Theorem 1.2).

In this paper we consider various degenerate random environments in general di-
mensions (that satisfy the simple condition mentioned above) that include a certain
parameter p that determines the relative frequency of one collection of environments
versus another collection. Relative frequencies within each of these two collections
are fixed. Canonical examples (such as Example 1.1 below) have just one member
in each collection, so the parameter p just determines the relative frequencies of the
two possible local environments.

Fix d ≥ 2, and set [d] = {1, 2, . . . , d}. Let E+= E+(d) = {ei}i∈[d] denote
the set of canonical basis vectors for Zd and let E−= E−(d) = {−ei}i∈[d] and
E= E(d) = E+(d) ∪ E−(d).

Example 1.1. The orthant model in dimension d ≥ 2 is the random directed graph
in which a vertex x ∈ Zd either connects (with probability p) to each x+ e, e ∈ E+,
or (with probability 1− p) to each x+ e, e ∈ E−.

The main contribution of this paper is demonstrating the existence of a non-
trivial phase transition for the forward cluster (the set of points Co reachable from
the origin o ∈ Zd by following arrows) for each model under consideration. Al-
though the proofs are not inherently difficult, they are not merely applications or
modifications of standard percolation arguments. Indeed, the nature of the phase
transitions herein is rather different from many other models of random media be-
cause in our context Co will always be infinite (in some cases our “phases” take
the form Co = Zd and Co 6= Zd). Moreover, many of the most interesting exam-
ples (including Example 1.1 above) have forward clusters that are non-monotone
in the parameter p. Results of this kind have been obtained previously for some
2-dimensional models (including the case d = 2 of Example 1.1), see Holmes and
Salisbury (2014a, 2016), by exploiting a duality with certain (monotone) oriented
percolation models. No such simple duality exists in higher dimensions. Never-
theless in this paper our first main result (Theorem 1.9) will relate the forward
clusters of non-monotone models with those of some monotone models in a particu-
lar way. Our second main result (Theorem 1.11) will exhibit a phase transition for
the monotone models, and the two theorems together reveal the existence of phase
transitions in our general setting. We then go on to prove related results for the
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backward cluster Bo, which is the set of points from which the origin can be reached
(by following arrows). Backward and forward clusters can be very different in our
setting, as can be seen in Example 1.1 where Bo can be finite or infinite for each
p ∈ (0, 1).

Roughly speaking, the phase Co 6= Zd corresponds to the setting in which we
think it is currently feasible to prove a.s. directional transience (hence also the
existence of a deterministic velocity) for random walks in corresponding non-elliptic
random environments (see for example Holmes and Salisbury, 2014b). Moreover,
we believe that in this phase there exist a deterministic strictly convex cone C, a
direction w, and a random variable N 1 with exponential tail, such that the forward
cluster is contained in C −Nw.2 This is the “main” condition used in Holmes and
Salisbury (2017) to prove an invariance principle and ballisticity for the random
walk in random environment.

One may also be interested in such phase transitions as part of the general
understanding of random media. In particular, degenerate random environments
have features in common with various percolation models such as site percolation,
oriented site percolation, first passage percolation etc. They are dual to kinds of
surface percolation models, which have been studied in various guises elsewhere
in the literature. In the phase Co 6= Zd one may ask for a shape theorem (of
oriented-percolation type) for e.g. the forward cluster or its boundary. This has
been achieved in a special case for large p (Holmes and Salisbury, 2021+), but we
expect similar results to hold more generally in this phase (note that our models
are only partially oriented, so this is highly non-trivial). One can obtain shape
theorems of first passage percolation type (consider the set of sites that can be
reached from the origin within n steps, and let n go to ∞) as well3. In the phase
Co = Zd this should hold in every direction, while in the phase Co 6= Zd in some
directions only finitely many vertices are reachable from the origin.

1.1. Models and main results. Let µ be a probability measure on the power set of
E . Let (Gx)x∈Zd be i.i.d. with law µ. This induces a random directed graph on Zd

- insert arrows from x to each of the vertices {x + e : e ∈ Gx}. As noted earlier,
these models are called degenerate random environments – see Holmes and Salisbury
(2014a, 2016), and their study lays the foundation for understanding random walks
in non-elliptic random environments. In this context the arrows from x represent
the possible steps that the walk can take from x. The settings that interest us
are those µ for which the random walk in i.i.d. random environment does not get
stuck on a finite set. According to Holmes and Salisbury (2014b, Theorem 1.2) the
random walker does not get stuck if and only if there exists a mutually orthogonal
set of directions V ⊂ E such that from every site, at least one of the steps in V is
available, i.e. µ({A ⊂ E : A ∩ V = ∅}) = 0.

Let Cx ⊂ Zd denote the set of vertices that can be reached from x ∈ Zd by
following arrows, as well as the sets Bx = {y ∈ Zd : x ∈ Cy} and Mx = Cx ∩ Bx.
The above condition on µ is in fact equivalent to the condition that Cx is infinite
for every x (see e.g. Holmes and Salisbury, 2014a, Lemma 2.2).

1With C, w, and the law of N all depending on the details of the model.
2Added in proof: A recent preprint by T. Beekenkamp proves some results in this direction.
3This is currently work in progress with a student.
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To state our main results we introduce an explicit probability space (with a
particular coupling structure) on which our models are defined. Let (Ω,F ,P) be a
probability space on which (Ux)x∈Zd , (U ′x)x∈Zd are i.i.d. standard uniform random
variables. Let k, ` ∈ N, E = (E1, . . . , Ek), F = (F1, . . . , F`) with each Ei, Fj ⊂ E .
Let Dk = {(r1, . . . , rk) : ri ≥ 0 for each i and

∑k
i=1 ri = 1}. For p ∈ [0, 1], r ∈ Dk,

q ∈ D` and x ∈ Zd, set

Gx =

{
Ei, if Ux < p and U ′x ∈ [

∑i−1
j=1 rj ,

∑i
j=1 rj)

Fi, if Ux ≥ p and U ′x ∈ [
∑i−1

j=1 qj ,
∑i

j=1 qj).
(1.1)

We denote the Cx for this model by Cx(E,F , r, q, p). If k = ` = 1 then r1 = q1 = 1
and we say that the model is 2-valued and we write Cx(E1, F1, p) for the forward
cluster. Sometimes, when there is no ambiguity about which sets E1 and F1 we are
referring to, we will simply write Cx(p).

Let E = ∩ki=1Ei and E = ∪ki=1Ei, and similarly F = ∩`i=1Fi and F = ∪`i=1Fi.
Let Ω+ = {x : Ux < p} (these are the sites that receive an E environment), and
Ω− = {x : Ux ≥ p}.

Remark 1.2. If E′i ⊂ Ei for each i ∈ [k] and F ′i ⊂ Fi for each i ∈ [`] then for each
r, q, and p, we have Co(E′,F ′, r, q, p) ⊂ Co(E,F , r, q, p).

Remark 1.3. The case k = ` = 1, E1 = E+ and F1 = E− is what we have referred
to above as the orthant model. The sets Cx(E+, E−, p) are non-monotone in p.

When d = 2, the orthant model was studied in Holmes and Salisbury (2014a)
and Holmes and Salisbury (2016). Figure 1.1a shows an example. We henceforth
assume the following, which clearly holds for the orthant model.

Condition 1.4. d ≥ 2, e1 ∈ E, E ⊂ E+, and F ⊃ E \ E.

Remark 1.2 then implies (assuming Condition 1.4), that

Cx(E, E \ E, p) ⊂ Cx(E,F , r, q, p) ⊂ Cx(E+, E , p). (1.2)

Under Condition 1.4, from any site at least one of the arrows in V = {e1,−e2}
is available (e1 is available if the local environment is Ei for some i, while −e2 is
available otherwise), so every Cx contains an infinite self-avoiding path.

Example 1.5. The case k = ` = 1, E1 = E+ and F1 = E will be referred to as
the half-orthant model. It is the “maximal” model satisfying Condition 1.4. Since
E1 ⊂ F1, Co(p) is monotone decreasing in p in this case. Obviously Co(0) = Zd

and Co(1) = (Z+)d. It will turn out that there is a non-trivial phase transition for
having Co(p) = Zd.

See Figure 1.1b for an illustration of the half-orthant model, when d = 2. Like-
wise we may compare the following two models, with Figure 1.2 showing part of a
realisation of the environment and the cluster Co(.5) for Examples 1.6 and 1.7 in
two dimensions.

Example 1.6. If k = ` = 1, E1 = {e1} and F1 = E \ {e1} then clearly Co(0) =
Z− × Zd−1 and Co(1) = Z+ × {0}d−1 so the sets Cx(p) are non-monotone in p.

Example 1.7. Take k = ` = 1, E1 = {e1} and F1 = E . The sets Cx(p) are monotone
in p.
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(a) Orthant

(b) Half-Orthant

Figure 1.1. Realisations of finite parts of the set Co for the or-
thant and half-orthant models (Examples 1.1 and 1.5) with p = 0.7
and d = 2, and with the origin in the centre. So k = ` = 1, and
E1 = {e1, e2} and F1 = {−e1,−e2} in (a), while E1 = {e1, e2} and
F1 = E(2) in (b). They are generated from the same U ’s. Note
that the boundaries of the two shaded clusters are the same (see
Theorem 1.9).
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(a) Example 1.6

(b) Example 1.7

Figure 1.2. Realisations of finite parts of the set Co( 1
2 ) for two

models with k = ` = 1 and d = 2, and with the origin in the
centre. In (a) we have E1 = {e1} and F1 = {−e1, e2,−e2} while in
(b) E1 = {e1} and F1 = E(2). They are generated from the same
environment. Note that the boundaries of the two shaded clusters
are the same (see Theorem 1.9).

For fixed F , let F ∗ denote the corresponding object with Fi replaced with E for
each i. Note that we obtain the same model if we take ` = 1 and F1 = E , so we
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will write Cx(E, r, p) for Cx(E,F ∗, r, q, p). Then, by Remark 1.2,

Cx(E,F , r, q, p) ⊂ Cx(E, r, p). (1.3)

For x ∈ Zd let Lx := inf{k ∈ Z : x+ ke1 ∈ Co}. It is immediate from (1.3) that
(writing Lx(E, r, p) for Lx(E,F ∗, r, q, p))

Lx(E,F , r, q, p) ≥ Lx(E, r, p). (1.4)

Remark 1.8. If x = y + ke1 for some k ∈ Z then x + je1 ∈ Co if and only if
y + (k + j)e1 ∈ Co, so Ly = Lx + k. It follows that for each y ∈ Zd, Ly+Lye1 = 0.

For z ∈ Zd we define z{1+} = {z + ke1 : k ∈ Z+}, and for A ⊂ Zd

A{1+} =
⋃
z∈A

z{1+}. (1.5)

Our first main result is the following. See Figures 1.1 and 1.2 for 2-valued illustra-
tions when d = 2. See Figure 1.3 for a simulation of a 3-dimensional model.

Theorem 1.9. Assume Condition 1.4. Then for each x ∈ Zd, and p ∈ (0, 1],

Lx(E,F , r, q, p) = Lx(E, r, p) ∈ [−∞,∞) a.s.

and
Co(E,F , r, q, p){1+} = Co(E, r, p) a.s.

Note that it is not true in general that Co(E,F , r, q, p) = Co(E, r, p). However,
roughly speaking Theorem 1.9 says that if you only care about the outer boundary
of Co then under Condition 1.4 you may as well set ` = 1 and F1 = E . Another way
of viewing this result is that Co(E, r, p) is Co(E,F , r, q, p) with its holes filled in.

The above results reveal that under Condition 1, a special role is played by the
case ` = 1, F1 = E(d). For this reason we will state some results in this special
case, i.e. assuming the following condition.

Condition 1.10. d ≥ 2, e1 ∈ E, E ⊂ E+, ` = 1, and F1 = E(d).

We now state our second main result which reveals a non-trivial phase transition
for the occurrence of the event {Co = Zd} under Condition 1.10.

Theorem 1.11. Assume Condition 1.10. Then there exists pc(E, d, r) ∈ (0, 1)
such that:

if p < pc then Co(E, r, p) = Zd almost surely, and
if p > pc then Lx(E, r, p) is finite for every x ∈ Zd almost surely (so
Co(E, r, p) 6= Zd).

We conjecture that Co = Zd in the case p = pc as well.
When d = 2, Theorem 1.11 follows from Holmes and Salisbury (2016, Proposi-

tions 2.3 and 2.4). Those results also imply a version (d = 2 only) of the Theorem
under Condition 1.4, where the conclusion Co = Z2 (when p < pc) is replaced with
C̄o = Z2 (when p < pc), where C̄o is Co with its finite “holes” filled in (and note
that all of the holes are finite in 2 dimensions). In general dimensions we do not
know whether all holes in Co are finite. Theorems 1.9 and 1.11 seem to be the most
natural way of describing the phase transition in general dimensions. The previous
versions of Theorems 1.9 and 1.11 in the case d = 2 made use of a dual percolation
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Figure 1.3. A simulation of part of the cluster Co(.9) for the
model with d = 3, k = ` = 1 and E1 = {e1} and F1 = E(3), viewed
from 3 different angles. The black/dark vertices are a cross-section
where the first coordinate is equal to 100.
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model. When d > 2 the corresponding “duality” is with a type of surface percola-
tion. See Grimmett and Holroyd (2010, 2012); Grimmett et al. (2014) for recent
work on other higher dimensional percolation structures.

It is natural to ask about asymptotic properties of the boundary of Co when
p > pc. To this end, let Pp denote the law of the model with fixed (E,F , r, q, p)
and let Z denote the discrete hyperplane {y ∈ Zd : y · e1 = 0}.

Open Problem 1.12. Fix d ≥ 2 and assume Condition 1.4. Prove that if p > pc
then for each v ∈ Z there exists a deterministic ζ(v) ∈ R depending on E, d, r, q, p
(but not F ) such that

n−1Lnv → ζ(v), Pp − almost surely as n→∞. (1.6)

In Holmes and Salisbury (2021+) a version of this result is proved for Exam-
ples 1.1 and 1.5 in general dimensions, though with the assumption that p is suffi-
ciently large.

All of the above results concern the forward cluster Co. A crucial difference
between forward and backward clusters is that Condition 1.4 does not ensure that
Bo is infinite. In the case of Example 1.1, if ei ∈ Ω+ and −ei ∈ Ω− for each i ∈ [d]
(this has positive probability for any p ∈ (0, 1)) then there are no arrows pointing
to the origin, so Bo = {o}. Under Condition 1.10 however, Bo will be infinite, since
it contains −Z+e1.

Another key difference between forward and backward clusters when d = 2 is
that under Condition 1.4, Bo is “simply connected” as a subset of Z2, while Co can
have holes. The former does not hold for d > 2 (see Example 3.1 in Section 3).
It seems that for d > 2 there is no simple geometric description of the possible
boundaries for finite Bo’s. Infinite Bo clusters appear to be more regular. It would
be interesting to characterize infinite clusters that can arise as Bo.

For x ∈ Zd, let Rx = Rx(E,F , r, q, p) = sup{k ∈ Z : x + ke1 ∈ Bo}. The
following result shows that under Condition 1.10, the backward and forward clusters
have a phase transition at the same point pc.

Theorem 1.13. Assume Condition 1.10 and let pc be as in Theorem 1.11. Then
if p < pc then Bo = Zd almost surely, and
if p > pc then Rx is finite for every x ∈ Zd.

We conjecture that Bo = Zd when p = pc as well. The following is an immediate
consequence of Theorems 1.11 and 1.13.

Corollary 1.14. Assume Condition 1.10 and let pc be as in Theorem 1.11. Then
if p < pc thenMo = Zd almost surely, and
if p > pc thenMo 6= Zd, almost surely.

Open Problem 1.15. Assume Condition 1.10 and let pc be as in Theorem 1.11.
Show that when p > pc,Mo is almost surely finite.

Although Bo need not be infinite under Condition 1.4, this condition is sufficient
to ensure that Bo is infinite with positive probability (for p ∈ (0, 1)), and therefore
there exist infinite Bx clusters almost surely. To see this, note that the model
contains the 2-dimensional model with µ({e1}) = p and µ({−e1,−e2}) = 1− p, for
which Holmes and Salisbury (2014a, Proposition 3.4) tells us that Bo is infinite with
positive probability. Then the natural analogue of Theorem 1.9 is the following.



716 M. Holmes and T. S. Salisbury

Open Problem 1.16. Assuming Condition 1.4 show that Rx(E,F , r, q, p) =
Rx(E, r, p) almost surely on the event {Bo(E,F , r, q, p) is infinite}.

We will prove a partial result in this direction. For i 6= 1 and z ∈ Zd, define a
family of planes Zi(z) = {x ∈ Zd : x[k] = z[k] for k 6= 1, i} and the corresponding 2-
dimensional slices of Bo as Bio(z) = Zi(z)∩Bo. Call Bo semi-finite if each connected
component of each Bio(z) is finite.

If Bo = Bo(E,F , r, q, p) corresponds to a model satisfying Condition 1.4, write
B∗o = Bo(E, r, p) for the corresponding model satisfying Condition 1.10. Note that
B∗o is infinite, since ke1 ∈ B∗o for every k ≤ 0.

Proposition 1.17. Assume Condition 1.4. Then either
(i) Bo is semi-finite, or
(ii) Bo = B∗o , or
(iii) Bo = (Bo){1+} 6= Zd but B∗o = Zd.

For comparison, in the case of the orthant model with d = 2, the corresponding
alternatives are respectively that Bo is finite; that Bo is either Z2 or the region
below a decreasing function; or that Bo is the region above a decreasing function.
See Proposition 3.8 of Holmes and Salisbury (2014a) for a more precise statement.

It is trivial that Bo is connected as a subset of the graph Zd. For the comple-
mentary cluster, we will show the following.

Proposition 1.18. Assume Condition 1.4. Then either Bco is empty or Bco is
infinite and connected as a subset of the graph Zd.

Section 3 contains further discussion of related questions. The remainder of this
paper is organised as follows. In Section 2 we prove Theorems 1.9 and 1.11. In
Section 3 we prove Theorem 1.13 and Propositions 1.17 and 1.18.

2. Forward Clusters: Proof of Theorems 1.9 and 1.11

Throughout this section d ≥ 2, E, F , r, and q as in Condition 1.4 are fixed.

Lemma 2.1. Assume Condition 1.4 and let p ∈ (0, 1). Then

Lx <∞ for every x ∈ Zd, a.s. (2.1)

Proof : Fix x ∈ Zd. We will construct a self-avoiding path P ⊂ Co from o to an x2
of the form x+ ke1 for some k ∈ Z. It follows that Lx <∞ (possibly Lx = −∞).

Let J ⊂ {2, . . . , d} denote the set of indices j ∈ {2, . . . , d} for which x · ej ≥ 0
and ej ∈ E, and let J ′ = {2, . . . , d} \ J . If J = ∅, take x1 = o. If not, suppose
that J = {j1, . . . , jk} for some k ≥ 1. Construct a path P1 ⊂ Co from o as follows:
whenever we are at an F site, take the step −e1; whenever we are at an E site take
the step ej1 , until the j1-st coordinate matches that of x, then continue with j2
etc. Repeat this until we exhaust the coordinates in J . Because all its coordinates
are monotonic, P1 is self-avoiding, so the environments we see are independent.
Therefore we do eventually exhaust the coordinates in J , and arrive at a point x1
whose J coordinates match those of x.

If J ′ is empty then all coordinates of x1 (except the first) match those of x, and
we are done (with x2 = x1). Otherwise from the point x1 construct a self-avoiding
path P2 ⊂ Co as follows: if at an E site, take the step e1. Otherwise, at an F site,
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take a step that moves some J ′ coordinate closer to the corresponding coordinate
of x. By definition of J ′, such a step is possible at every F site.

All coordinates of P2 are monotonic, so as before, this process eventually termi-
nates at some point point x2 ∈ Co, whose coordinates (other than the first) match
those of x. Thus Lx <∞ as claimed.

Note that P1 followed by P2 is indeed self-avoiding, despite the fact that the
first coordinate initially decreases and then increases, because the last step of P1 is
never in the direction −e1. �

Lemma 2.2. Assume Condition 1.4 and let p ∈ (0, 1). Let x ∈ Zd. Then almost
surely on {Lx = −∞}, we have Lu = −∞ for every u ∈ Zd.

Proof : Suppose Lx = −∞. Then x− ke1 ∈ Co for infinitely many k > 0. Suppose
x−ke1 ∈ Ω−∩Co. Then x−(k+1)e1 ∈ Co as well. If it ∈ Ω− then x−(k+2)e1 ∈ Co
as well. We may continue in this way till we find some x − (k + j)e1 ∈ Ω+ ∩ Co
(because p ∈ (0, 1) implies that the probability is zero that x− (k + j)e1 ∈ Ω− for
every j > 0). In other words, if x − ke1 ∈ Ω− ∩ Co for infinitely many k > 0 then
also x− ke1 ∈ Ω+ ∩ Co for infinitely many k > 0.

Similarly one can prove the converse. Thus, on the event that Lx = −∞, we
have that infinitely many of the points {x − ke1 : k < 0} are in Ω+ ∩ Co and
infinitely many are in Ω− ∩ Co. Using the former, we see that infinitely many of
{x + e − ke1 : k < 0} are in Co, whenever e ∈ E. Using the latter, we see that
infinitely many of {x + e − ke1 : k < 0} are in Co, whenever e ∈ E \ E. Thus
Lx+e = −∞ for any e ∈ E . Using this argument repeatedly proves that Lu = −∞
for every u ∈ Zd. �

Under Condition 1.4, this shows that {Lo is finite} = {Lx is finite for every x ∈
Zd} almost surely. But note that the zero-one law for these events won’t be estab-
lished till later in this section.

Lemma 2.2 can be upgraded slightly (though we will not actually make use of
this fact). For i ∈ [d] and x ∈ Zd, let L(i)

x = inf{k ∈ Z : x + kei ∈ Co}, and note
that L(1)

x = Lx by definition. Then we have the following.

Lemma 2.3. Assume Condition 1.4 and let p ∈ (0, 1). Take x ∈ Zd and i ∈ [d].
Then almost surely on {L(i)

x = −∞}, we have L(i)
u = −∞ for every u ∈ Zd.

Proof : Fix i ∈ [d], x ∈ Zd, and e ∈ E . For n ∈ Z+, let Mn = {x− kei : k > n}. Let
Co(m) denote the set of points z ∈ Co for which any shortest path in Co from o to z
is of length ≤ m. We explore the sets Co(m) sequentially, starting with m = 0, for
which Co(0) = {o}. Clearly Co(m + 1) consists of Co(m) together with the points
we can reach in one step from Co(m). So Co(m + 1) can be identified just using
knowledge of the environments at points in Co(m).

Given that Nr is finite, we define Nr+1 = inf{m : Co(m) ∩MNr
6= ∅}. If Nr+1

is finite then we may find some point yr ∈ MNr
∩ Co(Nr+1) \ Co(Nr+1 − 1), whose

environment has not been explored prior to the iteration Nr+1. Therefore that
environment is independent of what has come before, and we will have e ∈ Gyr with
probability at least p ∧ (1 − p) > 0. If every Nr is finite this gives infinitely many
independent opportunities to have e ∈ Gyr

.
It follows that almost surely, either:
• Nr is infinite for some r (in which case L(i)

x > −∞), or
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• L(i)
x = −∞ and e ∈ Gyr

for infinitely many points yr ∈M0 ∩ Co.
The latter case implies that yr + e ∈ Co for infinitely many r, so L(i)

x+e = −∞.
Repeating this argument proves the result. �

A function w : Zd → Z is called a side function if for each y ∈ Zd and k ∈ Z,

y + w(y)e1 = y + ke1 + w(y + ke1)e1. (2.2)

In other words, w picks out a single point on each line y + Ze1.

Definition 2.4 ((E,+)-Barrier). Let S ⊂ Zd be a set of points such that
(s1) there exists a side function w such that S = {y + w(y)e1 : y ∈ Zd},
(s2) S ⊂ Ω+,
(s3) for e ∈ E \ {±e1}, if w(y+ e) > w(y) then for each k ∈ [w(y), w(y+ e)), we

have y + ke1 ∈ Ω+ and e /∈ Gy+ke1 .
For each y ∈ Zd and e ∈ E \ (E ∪ {−e1}) define a set Sy,e as follows. If w(y + e) >
w(y) let Sy,e = {y + ke1 : k ∈ [w(y), w(y + e))}; otherwise let Sy,e = ∅. Define
S̄ = S ∪

⋃
y,e Sy,e. We call any set S̄ formed in this way an (E,+)-barrier (with

side function w).

Note that taking k = w(y) in (2.2) reveals that w(y + w(y)e1) = 0 for each
y ∈ Zd. Therefore (s1) above could be replaced by S = {x ∈ Zd : w(x) = 0}.

Remark 2.5. Note that whether or not a set of points T ⊂ Zd is an (E,+) barrier
can be determined by observing (Gz)z∈T . It also does not depend on F . Moreover,
if T is an (E,+) barrier, then by definition, T ⊂ Ω+.

On {Lx is finite for every x ∈ Zd}, define SL = {x + Lxe1 : x ∈ Zd}. By Re-
mark 1.8 we have SL = {x ∈ Zd : Lx = 0}.

Lemma 2.6. Assume Condition 1.4. On {Lx is finite for every x ∈ Zd}, S̄L is an
(E,+)-barrier with side function w(y) = Ly for each y ∈ Zd, and w(o) ≤ 0.

Proof : Remark 1.8 shows that x 7→ Lx is a side function. Thus (s1) holds. Now
let z ∈ SL. We must have z ∈ Ω+, since if not then z − e1 ∈ Co, which would
contradict the definition of Lz. This verifies (s2).

Turning to (s3), suppose that Ly+e > Ly and e 6= ±e1. Then e /∈ E (since if it
were, then y+Lye1 ∈ Co implies that y+ e+Lye1 ∈ Co, and therefore Ly ≤ Ly+e).
Suppose that y+ ke1 ∈ Ω− for some k ∈ [Ly, . . . , Ly+e), and let k̂ be the first such
k. Then y + k̂e1 ∈ Co, since y + Lye1 ∈ Co and e1 ∈ Gy+je1 for each j ∈ [Ly, k̂).
Therefore y+ k̂e1 + e ∈ Co (since e /∈ E), so Ly+e ≤ k̂ < Ly+e, which is impossible.
Therefore y + ke1 ∈ Ω+ for each k ∈ [Ly, . . . , Ly+e).

This also shows that y + ke1 ∈ Co for each such k, so in fact e /∈ Gy+ke1 for any
such k (otherwise y+ ke1 + e ∈ Co and hence Ly+e ≤ k, which is impossible). This
verifies (s3), confirming that S̄L is an (E,+) barrier.

Finally, we have w(o) ≤ 0 because o ∈ Co ⇒ Lo ≤ 0. �

Lemma 2.7. Assume Condition 1.10. Whenever S ⊂ Zd satisfies (s1)–(s3) of
Definition 2.4, with w(o) ≤ 0, it follows that Lx ≥ w(x) for every x ∈ Zd. Moreover
w(x) ≤ 0 for every x ∈ Co.

Proof : Suppose it isn’t true that all Lx ≥ w(x). Then there exists some x ∈ Zd

and a k < w(x) such that z := x + ke1 ∈ Co. Thus w(z) = w(x) − k > 0. There
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exists a self-avoiding path y0, y1, . . . , yN in Co from y0 = o to yN = z. Let z1 be
the first location y along this path at which w(y) > 0. Then z1 6= o since we’ve
assumed that w(o) ≤ 0. Let z2 denote the location immediately preceding z1 along
this path. Then w(z2) ≤ 0 and z1 = z2 + e for some e 6= e1.

We cannot have e = e1, since in that case w(z1) = w(z2)− 1 < 0 < w(z1), which
is impossible.

We cannot have e = −e1 either. If it were, then w(z2)− 1 = w(z1) < 0 ≤ w(z2),
so in fact w(z2) = 0. Thus z2 ∈ S, so by (s2) we have z2 ∈ Ω+. This implies that
−e1 /∈ Gz2 which is impossible, given the definition of z2.

Therefore e 6= ±e1. We know that w(z1) > 0 ≥ w(z2), or in other words,
0 ∈ [w(z2), w(z2 + e)). By (s3) it follows that z2 ∈ Ω+ and e /∈ Gz2 . This is
impossible, given the definition of z2, which establishes that all Lx ≥ w(x).

The final conclusion now holds, because if x ∈ Co then w(x) ≤ Lx ≤ 0. �

In the next argument, for simplicity, we will write Lx and L∗x respectively for the
objects Lx(E,F , r, q, p) and Lx(E, r, p) of Theorem 1.9. Recall that the former
corresponds to a model satisfying Condition 1.4, and the latter to a corresponding
model satisfying Condition 1.10. We will adopt the same shorthand for other quan-
tities obtained from these model so that, for example, Theorem 1.9 is the statement
that Lx = L∗x and (Co){1+} = C∗o .

Proof of Theorem 1.9: If p = 1 the claim is trivial, so assume p ∈ (0, 1). By (1.4),
L∗x ≤ Lx for every x ∈ Zd. Thus if Lx = −∞ for every x then there is nothing to
prove.

By Lemma 2.2 we may therefore assume that Lu > −∞ for every u ∈ Zd. By
Lemma 2.6, SL satisfies (s1)–(s3) and by definition, Lo ≤ 0. By Lemma 2.7 we
obtain that L∗x ≥ Lx for every x ∈ Zd.

Now consider the second assertion. In one direction, the fact that e1 ∈ G∗x for
every x implies that (Co){1+} ⊂ (C∗o ){1+} = C∗o . In the other direction, let x ∈ C∗o .
Then L∗x ≤ 0 so by the first part of the Theorem, also Lx ≤ 0. This implies that
x ∈ (Co){1+}, and we’re done. �

Note that probability enters the above arguments only via Lemmas 2.1 and 2.2.
Outside of those results, the proofs are purely graph-theoretic. We cannot entirely
eliminate probability however. For example, setting p = 0 in Example 1.1) gives
(Co){1+} = {(i, j) : j ≤ 0}, whereas C∗o = Z2 in this case.

Proof of Theorem 1.11: Assume Condition 1.10 and that p ∈ (0, 1). Consider the
following alternatives:

(i) Lx = −∞ for every x ∈ Zd;
(ii) Lx is finite for every x ∈ Zd.

Lemmas 2.1 and 2.2 show that the event that (i) or (ii) holds has probability one.
Lemma 2.6 shows that in case (ii) there exists an (E,+) barrier S̄L with w(o) ≤ 0.

On the other hand, if there is an (E,+) barrier S̄ with w(o) ≤ 0 then Lemma 2.7
shows that Lx ≥ w(x) for every x ∈ Zd. In other words, (ii) and the existence of
an (E,+) barrier with w(o) ≤ 0 are equivalent.

The event that there exists an (E,+) barrier (somewhere) is translation invari-
ant, and by ergodicity of the environment it follows that the probability that there
exists an (E,+) barrier is 0 or 1. If it is 1, then it follows that the probability
that there exists an (E,+) barrier with w(o) ≤ n increases to 1 as n → ∞. By
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Figure 3.4. A rotation of the irregular (finite) Bo in Example 3.1.
In this example neither Bo nor Bco are simply connected.

translation invariance, this probability does not actually depend on n, hence almost
surely there is such an (E,+) barrier with w(o) ≤ 0.

We have shown that for each p ∈ (0, 1), either (i) holds almost surely or (ii)
holds almost surely. In case (i), since e1 is always ∈ Gx we have Co(p) = Zd. In
case (ii), clearly Co(p) 6= Zd. Since Co(p) is monotone decreasing in p this proves
the existence of a pc below which Co(p) = Zd, and above which Co(p) 6= Zd.

It remains only to show that pc ∈ (0, 1). The fact that pc > 0 follows because this
model dominates d-dimensional site percolation (corresponding to setting Ei = ∅)
with parameter 1− p. For 1− p site percolation the connected cluster of the origin
contains infinitely many points of the form −ke1 for k ≥ 0 with positive probability
when 1−p is larger than the critical probability psite

c < 1 of the model. It is easy to
show that pc < 1, by counting self-avoiding walks as in e.g. Holmes and Salisbury
(2014a, proof of Theorem 4.2). �

3. Backward clusters. Proof of Theorem 1.13

It is trivial that Bo is connected as a subset of the graph Zd. In Holmes and
Salisbury (2014a, 2016) for the planar case d = 2 it is proved that under certain
general conditions (implied by Condition 1.4), Bo is simply connected (as a subset
of the graph Zd). This need not be the case (assuming only Condition 1.4) in higher
dimensions as per the following example.

Example 3.1. Consider Example 1.1 in 3 dimensions with p ∈ (0, 1). Then with pos-
itive probability neither Bo nor Bco is simply connected. To be precise, in this model,
with positive probability Bo is precisely the loop (0, 0, 0), (−1, 0, 0), (−2, 0, 0),
(−3, 0, 0), (−3, 0, 1), (−3,−1, 1), (−2,−1, 1), (−2,−2, 1), (−1,−2, 1), (−1,−3, 1),
(0,−3, 1), (0,−3, 0), (1,−3, 0), (2,−3, 0), (3,−3, 0), (3,−3,−1), (3,−2,−1),
(2,−2,−1), (2,−1,−1), (1,−1,−1), (1, 0,−1), (0, 0,−1) and back to (0, 0, 0). See
Figure 3.4.
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Here we specify whether various (finitely many) vertices (x, y, z) ∈ Z3 are in Ω+

or Ω− (if the environment isn’t specified, it isn’t relevant for the example, and ∗
indicates that the vertex is in Bo).

• The following vertices with z = 0 are in Ω−:

(0, 0, 0)∗, (−1, 0, 0)∗, (−2, 0, 0)∗, (3,−3, 0)∗,

(0,−1, 0), (−1,−1, 0), (−2,−1, 0), (−3,−1, 0), (−4, 0, 0), (−2,−2, 0),

(−1,−2, 0), (−1,−3, 0), (0,−4, 0), (1,−4, 0), (2,−4, 0), (3,−4, 0).

• The following vertices with z = 0 are in Ω+:

(−3, 0, 0), 0,−3, 0)∗, (1,−3, 0)∗, (2,−3, 0)∗,

(0, 1, 0), (1, 0, 0), (1,−1, 0), (2,−1, 0), (0,−2, 0), (1,−2, 0), (2,−2, 0),

(3,−2, 0), (4,−3, 0), (−1, 1, 0), (−2, 1, 0), (−3, 1, 0).

• The following vertices with z = −1 are in Ω−:

(1, 0,−1)∗, (2,−1,−1)∗, (3,−2,−1)∗

(−3, 0,−1), (−2, 0,−1), (−1, 0,−1), (0,−1,−1), (1,−2,−1),

(0,−3,−1), (1,−3,−1), (2,−3,−1), (3,−4,−1).

• The following vertices with z = −1 are in Ω+:

(0, 0,−1)∗, (1,−1,−1)∗, (2,−2,−1)∗, (3,−3,−1)∗

(0, 1,−1), (1, 1,−1), (2, 0,−1), (3,−1,−1),

(4,−2,−1), (4,−3,−1).

• The following vertices with z = 1 are in Ω−:

(−3, 0, 1)∗, (−2,−1, 1)∗, (−1,−2, 1)∗, (0,−3, 1)∗,

(−4, 0, 1), (−4,−1, 1), (−3,−2, 1), (−2,−3, 1), (−1,−4, 1), (0,−4, 1),

• The following vertices with z = 1 are in Ω+:

(−3,−1, 1)∗, (−2,−2, 1)∗, (−1,−3, 1)∗

(−3, 1, 1), (−2, 0, 1), (−1, 0, 1), (0, 0, 1), (−1,−1, 1),

(0,−2, 1), (1,−3, 1), (2,−3, 1), (3,−3, 1).

• For any vertex (x, y, 1)∗ appearing above, set (x, y, 2) ∈ Ω+, and for any
vertex (x, y,−1)∗ appearing above, set (x, y,−2) ∈ Ω−.

Recall (1.5) and define z{1−} = {z − ke1 : k ∈ Z+}, and for A ⊂ Zd

A{1−} =
⋃
z∈A

z{1−}. (3.1)

Proof of Theorem 1.13: By Condition 1.10, e1 ∈ Gz for every z. Thus z{1−} ⊂ Bz
for every z ∈ Zd. Hence if z ∈ Bo then z{1−} ⊂ Bo.

Suppose that z ∈ Bo and let e 6= ±e1. Since p ∈ (0, 1) we have that infinitely
many points in (z + e){1−} contain −e almost surely, and all of these points are
therefore in Bo as well. This proves that Rx > −∞ a.s. for every x ∈ Zd.

If Rx = ∞ for some x ∈ Zd then in fact x + Ze1 ⊂ Bo and therefore for each
e 6= ±e1 almost surely infinitely many points of the form x + e + ke1 with k ≥ 0
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are in Bo as well. Therefore Rx+e = ∞ a.s. on {Rx = ∞}. This proves that
{every Rx is finite} ∪ {every Rx =∞} has probability one.

If p > pc then with probability 1 there exists an (E,+) barrier with w(o) > 0.
Lemma 2.7 shows that if z ∈ Zd satisfies w(z) ≤ 0, then every x ∈ Cz will satisfy
w(x) ≤ 0. This implies that o /∈ Cz. Thus no such z can lie in Bo, and therefore
Rx < w(x). So Rx is finite for every x ∈ Zd.

On the other hand, suppose p < pc. If (Rx)x∈Zd are all finite then let S =
{x+(Rx+1)e1 : x ∈ Zd}. We claim that S̄ is an (E,+) barrier, with w(x) = Rx+1
and w(o) > 0. But that is a contradiction, since no such barrier exists when p < pc.
So in fact, all the Rx will be infinite. Therefore it only remains to prove that S̄ is
an (E,+) barrier.

To prove this, note first that for each y ∈ x+Ze1 and k ∈ Z we have by definition
that Ry+ke1 = Ry−k. Therefore w(x) := Rx+1 is side function, so (s1) is satisfied.
Next, S ⊂ Ω+ since for any z ∈ S, z−e1 ∈ Bo but z /∈ Bo so −e1 /∈ Gz. So (s2) holds.
Finally, suppose e 6= ±e1 and w(y+e) > w(y). We know that (y+e)+ke1 ∈ Bo for
every k < w(y + e), while y + ke1 /∈ Bo for k ≥ w(y). This implies that e /∈ Gy+ke1

for any k ∈ [w(y), w(y + e)). Therefore also y + ke1 ∈ Ω+ for such k, which shows
(s3). �

Before we prove Proposition 1.17 we will state and prove several Lemmas that
together will imply the proposition. For y ∈ Zd and k1, k2 ∈ Z with k1 < k2, let
y[k1, k2] = {y + ke1 : k ∈ [k1, k2]}.

Lemma 3.2. Suppose that for some y ∈ Zd, k1 < k2 ∈ Z and e ∈ E \ {±e1} we
have y[k1, k2] ⊂ Bo and {y+k1e1 +e, y+k2e1 +e} ⊂ Bo. Then (y+e)[k1, k2] ⊂ Bo.

Proof : Either −e ∈ E or −e ∈ F . In the first case we have that (y+e)[k1, k2]∩Ω+ ⊂
Bo, and since −e1 ∈ F it then follows that (y + e)[k1, k2] ⊂ Bo. In the second
case we have that (y + e)[k1, k2] ∩ Ω− ⊂ Bo, and since e1 ∈ Ω+ it follows that
(y + e)[k1, k2] ⊂ Bo. �

For y ∈ Zd, let y[Z] = y + Ze1, y[Z+] = y + Z+e1, and y[Z−] = y + Z−e1.

Lemma 3.3. Almost surely, if there exists y ∈ Zd such that y[Z] ⊂ Bo then Bo =
Zd.

Proof : Let e ∈ E \ {−e1, e1}. It suffices to show that (y + e)[Z] ⊂ Bo.
Either −e ∈ E or −e ∈ F . Since p ∈ (0, 1) we have that infinitely many points

z in (y + e)[Z+] have −e ∈ Gz and likewise, infinitely many points z in (y + e)[Z−]
have −e ∈ Gz. Each such point is therefore in Bo. It follows from Lemma 3.2 that
(y + e)[Z] ⊂ Bo as claimed. �

Lemma 3.4. Suppose that there exists y ∈ Zd such that y[Z−] ⊂ Bo, but y[Z] 6⊂ Bo.
Then almost surely for every x ∈ Zd there exists Kx ∈ Z such that Bo ∩ x[Z] =
(x+Kx)[Z−].

Proof : Let e ∈ E \ {±e1}. Since y[Z−] ⊂ Bo and −e ∈ E ∪ F we have that
infinitely many points in (y+ e)[Z−] are also in Bo. It follows from Lemma 3.2 that
(y + e+ ke1)[Z−] ⊂ Bo for some k ∈ Z. Repeating this argument as needed proves
that for every x ∈ Zd there exists kx ∈ Z such that (x + kxe1)[Z−] ⊂ Bo. Since
y[Z] 6⊂ Bo, Lemma 3.3 tells us that there is a largest such kx, which we denote
by Kx.



Phase transitions for degenerate random environments 723

If there was any k > Kx such that x + ke1 ∈ Bo then Lemma 3.2 would imply
that (x + ke1)[Z−] ⊂ Bo. This would contradict the definition of Kx, so in fact
Bo ∩ x[Z] = (x+Kx)[Z−].

�

The proof of the following is similar, and is left to the reader.

Lemma 3.5. Suppose that there exists y ∈ Zd such that y[Z+] ⊂ Bo but y[Z] 6⊂ Bo.
Then almost surely for every x ∈ Zd there exists K ′x ∈ Z such that Bo ∩ x[Z] =
(x+K ′x)[Z+].

Obviously, under the assumptions of Lemma 3.4 we have Kx+e1 = Kx−1, hence
w(x) := Kx + 1 satisfies (2.2). Similarly, in Lemma 3.5 we have K ′x+e1 = K ′x − 1.

Recall the notation Zi(z) and Bio(z) given prior to the statement of Proposi-
tion 1.17.

Lemma 3.6. Let i 6= 1 and z ∈ Zd. Then the set Zi(z) \ Bo is connected.
Suppose that B is an infinite connected component of Bio(z). Then for any z′ ∈

Zi(z) the set
I = I(z′) := z′[Z] \B, (3.2)

is a single interval (which is possibly empty or infinite, but not bi-infinite).

Proof : For y1, y2 ∈ Zi(z)\Bo, we can follows paths consistent with the environment
and consisting of only steps e1 (from Ω+ sites) and −ei (from Ω− sites) that eventu-
ally intersect (as in Proposition 3.8 of Holmes and Salisbury, 2014a). These paths
lie entirely in Zi(z) \Bo since only moves e1,−ei were used and y1, y2 ∈ Zi(z) \Bo.
This proves the first claim.

For the second claim, suppose that I is not an interval. Then there exist y1, y2 ∈ I
with y[1]

1 < y[1]

2 − 1 and such that v ∈ B for every v ∈ z′[Z] with y[1]

1 < v[1] < y[1]

2 .
Then y1, y2 /∈ Bo, since they neighbour B but are /∈ B. From y1 and y2 we may
follow paths consistent with the environment using only e1 and −ei moves from
Ω+ sites and Ω− sites respectively. These paths eventually meet (again, as in
Proposition 3.8 of Holmes and Salisbury, 2014a) and are contained in Zi(z) \ Bo.
Similarly, if ei ∈ E then from y1 and y2 we may follow paths consistent with the
environment using only −e1 and ei moves, from Ω− sites and Ω+ sites respectively.
If ei /∈ E then we may instead follow paths using only ei and e1 moves, from
Ω− sites and Ω+ sites respectively. In either case the two paths intersect and are
contained in Bco.

It follows that each v as above is enclosed by a circuit in Zi(z) \ Bo and hence v
is not in an infinite component of Bo ∩Zi(z), contradicting that v ∈ B. This shows
that I is indeed an interval.

It remains only to prove that I(z′) 6= z′[Z]. If Bo = Zd then this holds, since
I(z′) = ∅. So assume this is not the case. Since B is non-empty there is some
u ∈ Zd such that u[Z]∩B is non-empty, and since I(u) is an interval, u[Z]∩B must
contain a half line. Without loss of generality it is y[Z−] for some y ∈ u[Z]. Because
Bo 6= Zd, Lemma 3.3 implies that y[Z] 6⊂ Bo. So by Lemma 3.4, for every x ∈ Zi(z)
there is aKx ∈ Z such that Bo∩x[Z] = (x+Kxe1)[Z−]. But

⋃
x∈Zi(z)(x+Kxe1)[Z−]

is connected in Zi(z) and intersects B (just take x = u), so in fact it is equal to B.
Thus B intersects z′[Z], so I(z′) 6= z′[Z]. �

Proof of Proposition 1.17: If v[Z] ⊂ Bo for some v ∈ Zd then Bo = Zd by
Lemma 3.3, and we are in case (ii). So assume this is not the case.
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If all components of Bio(z) are finite for all i and z, then Bo is semi-finite, and
we are in case (i).

Otherwise, for some i 6= 1 and z ∈ Zd the set Bio(z) has an infinite component
B. Without loss of generality we assume i = 2. By Lemma 3.6, for each z′ ∈ Z2(z)
we have that I(z′) = z′[Z] \ B is an interval that is not bi-infinite, so there exists
z′′ ∈ Z(z′) such that either z′′[Z−] ⊂ B or z′′[Z+] ⊂ B.

In the second case, since z′′[Z+] ⊂ B ⊂ Bo but z′′[Z] 6⊂ Bo, by Lemma 3.5 we
have that each Bo ∩ x[Z] has the form (x + K ′x)[Z+] for some K ′x ∈ Z. It follows
that Bo = (Bo){1+} and B∗o = Zd, so case (iii) of the Proposition holds.

In the first case, Lemma 3.4 implies that for every x, Bo ∩ x[Z] has the form
(x + Kx)[Z−] for each some Kx ∈ Z. Let S = {x + (Kx + 1)e1 : x ∈ Zd}. Since
−e1 /∈ Gx+(Kx+1)e1 by definition of Kx we have that (s1) and (s2) of Definition 2.4
hold for S (with w(x) := Kx + 1). Suppose that w(y + e) > w(y), and let J =
[w(y), w(y + e)). Then e /∈ ∪j∈JGy+je1 , so either {y + je1 : j ∈ J} ⊂ Ω+ (if e /∈ E)
or {y + je1 : j ∈ J} ⊂ Ω− (if e ∈ E).

The second alternative cannot occur, since if it did then −e1 ∈ Gy+je1 for each
j ∈ J , so {y+ je1 : j ∈ J} ⊂ Bo which contradicts the definition of w(y). Therefore
{y + je1 : j ∈ J} ⊂ Ω+, so (s3) of Definition 2.4 holds, i.e. S̄ is an (E,+) barrier
with side function w. It remains an (E,+) barrier with side function w when we
change all Ω− sites to E , so this proves that Bo = B∗o in this case.

�

Proof of Proposition 1.18: If Bco is non-empty then there exists y ∈ Bco, and since
Cy ⊂ Bco we conclude that Bco is infinite.

To show connectedness, let y1, y2 ∈ Bco. We will construct self-avoiding paths
from each, consistent with the environment, that eventually meet. By definition,
both paths must lie in Bco, which will establish the result.

Without loss of generality, y[d]

1 ≤ y[d]

2 . Build a path from y2 by following e1
at sites in Ω+ and −ed at sites in Ω− till we reach a point y′2 ∈ Bco whose d’th
coordinate agrees with that of y1. Let y′1 = y1. Repeating the same argument,
now starting from y′1 and y′2, we will in turn reach points whose d’th and (d− 1)’st
coordinates agree. Continuing in this way, we’ll reach points x1, x2 ∈ Bco, all of
whose coordinates agree, other than the first two. In the notation from before
Proposition 1.17 we’ll have that x1, x2 belong to the plane Z2(x1).

But from x1 and x2 we may now apply the planar construction of Proposition 3.8
of Holmes and Salisbury (2014a) (also used above in the proof of Lemma 3.6) to
build paths in Z2(x1) ∩ Bco that eventually cross. Thus y1 and y2 both connect to
that crossing point. �

Acknowledgements. The authors thank an anonymous referee for several sugges-
tions which helped improve the paper.

References

Bolthausen, E. and Sznitman, A.-S. Ten lectures on random media, volume 32
of DMV Seminar. Birkhäuser Verlag, Basel (2002). ISBN 3-7643-6703-2.
MR1890289.

http://www.ams.org/mathscinet-getitem?mr=MR1890289


Phase transitions for degenerate random environments 725

Grimmett, G. Percolation, volume 321 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, second edition (1999). ISBN 3-540-64902-6. MR1707339.

Grimmett, G. R. and Holroyd, A. E. Plaquettes, spheres, and entanglement. Elec-
tron. J. Probab., 15, 1415–1428 (2010). MR2721052.

Grimmett, G. R. and Holroyd, A. E. Geometry of Lipschitz percolation. Ann. Inst.
Henri Poincaré Probab. Stat., 48 (2), 309–326 (2012). MR2954256.

Grimmett, G. R., Holroyd, A. E., and Kozma, G. Percolation of finite clusters and
infinite surfaces. Math. Proc. Cambridge Philos. Soc., 156 (2), 263–279 (2014).
MR3177869.

Holmes, M. and Salisbury, T. S. Degenerate random environments. Random Struc-
tures Algorithms, 45 (1), 111–137 (2014a). MR3231085.

Holmes, M. and Salisbury, T. S. Random walks in degenerate random environments.
Canad. J. Math., 66 (5), 1050–1077 (2014b). MR3251764.

Holmes, M. and Salisbury, T. S. Forward clusters for degenerate random environ-
ments. Combin. Probab. Comput., 25 (5), 744–765 (2016). MR3531440.

Holmes, M. and Salisbury, T. S. Conditions for ballisticity and invariance principle
for random walk in non-elliptic random environment. Electron. J. Probab., 22,
Paper No. 81, 18 (2017). MR3710801.

Holmes, M. and Salisbury, T. S. A shape theorem for the orthant model (2021+).
To appear in Ann. Probab.

Hughes, B. D. Random walks and random environments. Vol. 2, Random envi-
ronments. Oxford Science Publications. The Clarendon Press, Oxford University
Press, New York (1996). ISBN 0-19-853789-1. MR1420619.

Zeitouni, O. Random walks in random environment. In Lectures on probability the-
ory and statistics, volume 1837 of Lecture Notes in Math., pp. 189–312. Springer,
Berlin (2004). MR2071631.

http://www.ams.org/mathscinet-getitem?mr=MR1707339
http://www.ams.org/mathscinet-getitem?mr=MR2721052
http://www.ams.org/mathscinet-getitem?mr=MR2954256
http://www.ams.org/mathscinet-getitem?mr=MR3177869
http://www.ams.org/mathscinet-getitem?mr=MR3231085
http://www.ams.org/mathscinet-getitem?mr=MR3251764
http://www.ams.org/mathscinet-getitem?mr=MR3531440
http://www.ams.org/mathscinet-getitem?mr=MR3710801
http://www.ams.org/mathscinet-getitem?mr=MR1420619
http://www.ams.org/mathscinet-getitem?mr=MR2071631

	1. Introduction
	1.1. Models and main results

	2. Forward Clusters: Proof of Theorems 1.9 and 1.11
	3. Backward clusters. Proof of Theorem 1.13
	Acknowledgements

	References

