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Abstract. We consider a doubly reflected backward stochastic differential equa-
tions with jumps and two completely separated optional barriers in a general filtra-
tion that supports a one-dimensional Brownian motion and an independent Poisson
random measure. We suppose that the barriers have trajectories with left and right
finite limits. We provide the existence and uniqueness result when the coefficient
is stochastic Lipschitz by using a penalization method.

1. Introduction

Backward Stochastic Differential Equations (BSDEs in short) were introduced
(in the linear case) by Bismut (1973). The non-linear case was developed by Par-
doux and Peng (1990). These equations have attracted great interest due to their
connections with mathematical finance (e.g., El Karoui et al., 1997¢; El Karoui and
Quenez, 1997), stochastic control and stochastic games (e.g., Bismut, 1973) and
partial differential equations (e.g., Pardoux and Peng, 1992). Further, El Karoui
et al. (1997a) have introduced the notion of reflected BSDEs (RBSDEs in short),
which is a BSDE but the solution is forced to stay above a given process called
barrier (or obstacle). Once more under square integrability of the terminal con-
dition and the barrier and Lipschitz property on the coefficient, the authors have
proved the existence and uniqueness results in the case of a Brownian filtration
and a continuous barrier. Later, there have been several extensions of this work to
the case of a discontinuous barrier (see for example Hamadéne, 2002; Hamadéne
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and Ouknine, 2003, 2016; Essaky, 2008). In all the above-mentioned works on
RBSDEs, an assumption of right continuity of the barrier is made. Furthermore,
Grigorova et al. (2017) have presented a new extension of the theory of RBSDEs
to the case where the barrier is not necessarily right-continuous "just right upper-
semicontinuous (r.u.s.c in short)". In this work, the authors have studied the exis-
tence and uniqueness result under the Lipschitz assumption on the coefficient. On
the other hand, Baadi and Ouknine (2017, 2018) have considered the case of RBS-
DEs with r.u.s.c barrier in a general filtration. The more general case, when we do
not make any regularity assumptions on the barrier, has been studied by Grigorova
et al. (2020). Recently, Marzougue and El Otmani (2019) have discussed RBSDEs
with r.u.s.c barrier under the so-called stochastic Lipschitz coefficient introduced
by El Karoui and Huang (1997). On the other hand, Klimsiak et al. (2019) have
proved that the solution of RBSDEs with optional barrier may be approximate by
a modified penalization method. Very recently, Marzougue and El Otmani (2020a)
have discussed the case of RBSDEs with general filtration where the barrier is as-
sumed to be predictable and not necessarily right-continuous. Another interested
work of RBSDEs with optional semimartingale barrier has been studied by Akdim
et al. (2020). It is well known that RBSDEs have been proven to be powerful tools
in mathematical finance (e.g., El Karoui et al., 1997b), mixed game problems (e.g.,
Hamadéne and Lepeltier, 2000), providing a probabilistic formula for the viscosity
solution of an obstacle problem for a class of parabolic partial differential equations
(e.g., El Karoui et al., 1997a) and dynamic risk measures (e.g., Quenez and Sulem,
2014).

Doubly reflected BSDEs (DRBSDES in short) have been introduced by Cvitani¢
and Karatzas (1996) in the case of continuous barriers, a Brownian filtration and
a Lipschitz coefficient. The solutions of such equations are constrained to stay
the first component of solutions between the lower barrier £ and the upper barrier
(. Many efforts have been made to relax the assumptions on the coefficient and
barriers, namely Bahlali et al. (2005); Essaky et al. (2005); Hamadeéne and Has-
sani (2005, 2006); Li and Shi (2016); Marzougue and El Otmani (2017) and so on
and so forth. In the case of discontinuous barriers, Hamadeéne and Wang (2009)
have showed the existence and the uniqueness of a solution when the barriers and
their left limits are completely separated. Recently, Marzougue and El Otmani
(2020b) have established the existence and uniqueness of the solution to DRBSDEs
with jumps and right-continuous completely separated barriers under stochastic
Lipschitz coefficient. Later, Grigorova et al. (2018) have formulated a notion of
DRBSDEs where the barriers are not necessarily right-continuous. The authors
have showed the existence and uniqueness of the solution of these equations un-
der the so-called Mokobodski’s condition (assuming the existence of two strong
supermartingales whose difference is between ¢ and ¢) and a Lipschitz driver in a
general filtration. Recently, Marzougue and El Otmani (2018) have obtained the
corresponding existence and uniqueness results of DRBSDESs studied by Grigorova
et al. (2018) but under stochastic Lipschitz coeflicient. Very recently, Arharas et al.
(2021) have discussed the case of DRBSDEs with general filtration where the bar-
riers are assumed to be predictable and not necessarily right-continuous. On the
other hand, Klimsiak et al. (2020) have proved that the solution of DRBSDEs with
optional barriers may be approximate by a modified penalization method.
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As application, Grigorova et al. (2018) have proved that if £ and —( are r.u.s.c
then there exists a (common) value function for the corresponding £/-Dynkin game
problem, that is

J(1,v)]

‘r/\u[

V(0) = essinf esssup ngl,[](r, V)] = esssup essinf gg
veTlo. 1) 1€ To, 1) €T, r VETI0,11

where St{ +av|-] denotes the non-linear f-expectation at time ¢ where the terminal
time is 7 Av, J(7,v) is the terminal payoff of the game (at stopping time 7 Av) and
To, 1) is the collection of all stopping times 7 with values between § and 7' (T > 0
is a fixed horizon).

In the general case where the barriers do not satisfy any regularity assumptions,
the solution of the DRBSDE is related to the value of "an extension" of the previous
non-linear game problem over a larger set of "stopping strategies" than the set of
stopping times. In this context, Grigorova et al. (2018) introduced the notion
of stopping system which is an example of divided stopping time in the sense of
El Karoui (1981) and the recent work of Marzougue (2020). Briefly, we recall the
definition of stopping system: given 7 € 7o 7} be a stopping time and H be a set
of ., we say that p := (7, H) be a stopping system if H° N {7 =T} = () where H¢
denote the complement of H in 2. Now, let us have a look at the zero-sum game
problem where the set of "stopping strategies" of the agents is the set of stopping
systems. More precisely, for two stopping systems p := (7, H) and p’ := (v, H'), we
define the payoff J(p, p’) by

‘](pv pl) = fpu]l{‘rgz/} + Cé/]l{l/<7'}

with §) =& 1ny —i—éT]ch and Cé, = 1y +5DHH/C where f denote the right upper-
semicontinuous envelope of £ (i.e. ét = limsupg; ¢, &) and 5 denote the right
lower-semicontinuous envelope of ¢ (i.e. ét = liminfy); ¢5¢Cs). From Grigorova
et al. (2018), the payoff is assessed by an f-expectation, where f is a Lipschitz
driver, and the £/-Dynkin game (over the set of stopping systems) has a unique
(common) value function, that is

V(6) = essinfesssup &), [J(p, p')] = esssupessinf &, [J(p, p')]
P'€Se  pesy peSy P'ESe

where Sy is the set of all stopping systems p := (7, H) such that § < 7. An in-
teresting question is how to be the value function of the £/-Dynkin game when f
is given stochastic Lipschitz. To this aim, since the value of £/-Dynkin game is
interpreting by the solution of the DRBSDESs, we purpose to studying DRBSDEs
with jumps and two completely separated irregular barriers under a stochastic Lip-
schitz coefficient in a general filtration (not necessarily quasi left-continuous). We
show the existence and uniqueness of the solution by using a penalization method.
Moreover, we investigate a comparison theorem for the solutions.

The paper is organized as follows: In Section 2, we give some notations and
assumptions needed in this paper, and we define our DRBSDE. Section 3 is devoted
to solve our DRBSDEs under our assumptions supposed for the data. In Section
4, we give the comparison theorem for the solutions of DRBSDEs.
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2. Preliminaries

Let T strictly positive real number. Let (Q, F, (7)<, P) be a filtered probabil-
ity space. The filtration (F;)¢<r is assumed to be complete, right continuous and
generated by one-dimensional Brownian motion (B;):<r and an independent Pois-
son random measure pu(dt, de) with compensator A(de)dt. We denote by fi(dt, de)
the compensated process, i.e. fi(dt,de) := p(dt,de) — A(de)dt. Let (U,U) be a
measurable space equipped with a o-finite positive measure A\. We will denote by
|.| the Euclidian norm on RY.

Tj+,7) the set of stopping times 7 such that 7 € [t, .

P (resp. Prog) the predictable (resp. progressive) o-algebra on 2 x [0, T].

B(R) the Borelian o-algebra on R<.

L) the set of U® B(R)-measurable mapping V : U — R such that [|[V||3 =

L, 1V (e)PA(de) < +oc.

e B(L,) the Borelian o-algebra on L.

e M the set of cadlag local martingales orthogonal with respect to B and [,
ie. if M € M then (M,B) =0 and (M, [; [, Vs(e)ii(ds,de)). = 0 for all

Ve L.

Let’s introduce some spaces:
e M? is the subspace of M of all martingales (M;):<7 such that

1M = E(M)7 = E[M]r < +oc.

e 7?2 is the space of R-valued and predictable processes (Z¢)t<r such that

T
/ | Z;|?dt
0

e S? is the space of R-valued and optional processes (K;);<r such that

K5 =E lesssup K, *| < +o0.

7€T0,1)

e [? is the space of R-valued and (P ® U, B(R))-measurable processes V :
Q x [0,T] x U — R such that
T
[ vizar
0

Let 8 > 0 and (a;)i<7 be a nonnegative F;-adapted process. We define the increas-

V7. =E < +00.

ing continuous process A; := fg a?ds, for all t < T and we introduce the following
spaces :

. S% is the space of R-valued and optional processes (Y;);<7 such that

HYH?S/% =E lesssup PA Y| < 4oo.

TE [0,T]

° S§7A is the space of R-valued and optional processes (Y;)¢<r such that

T
||Y||§2=A =E / GﬁAtD/tlZdAt < +00.
5 0
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o 7-[% is the space of R-valued and predictable processes (Z;);<r such that

T
/ B4 7, 2t
0

e L3 is the space of R-valued and (P ® U, B(R))-measurable processes V' :
Q% [0,T] x U — R such that

||Z||§_[% =E < +00.

T
V]2, =E / B4 [V, |24t | < +oo.
0

° /\/1% is the subspace of M? of all cadlag martingales (M)¢<7 such that
T
||M\|f\4% = IE/ ePAd[M]); < +oo.
0

2 _ Q2 2,A
e B4 = Sﬁ ﬂSB .
A function f is said to be a stochastic Lipschitz driver if
(@) [ OX[0,T]xRXxRxX Ly —R, (w,t,y,z,0) = flw,t,y,z,v)is Prog®
B(R) ® B(L,)-measurable.

(#4) There exist three nonnegative F;-adapted processes (6;)i<r, ()<t and
(ne)t<T such that for all (¢,y,y',z,2',v,0") € [0,T] x R* x L x L

[F(ty,2,0) = f(,y' 200 < Oy — o' + elz = 2"+ mellv — o'l

(iii) For all t € [0, T] there exists € > 0 such that a? := 0; + 2 +n? > €.
(iv) One has

f(¢,0,0,0)

vt € [0,T], "
t

2
€ Hj.
A process Y : Q2 x [0,T] — R is said to be regulated process (or we say: Y has
regulated trajectories) if ) has a left limit in each point of |0, 7], and a right limit
in each point of [0, T[. For a process J with regulated trajectories, we denote

oY, = 11%3)5 the left-hand limit of Y at ¢t €]0,T], Qo— = o), V- =

(Vi—)i<r and AYy := Y, — Yy the size of the left jump of ) at ¢.
e V. = li{‘r}f Vs the right-hand limit of Y at ¢ € [0,T[, (Vr+ = V1), V4 =

Vit )i<r and ALYy := Yy — Yy the size of the right jump of Y at ¢.

e Forallt <T, YV =Y+ qu ALY, where Y* is the right-continuous part
of the process Y and }__, A, ), stands its purely jumping part consisting
of right jumps such that >° _, [A, V| < +o0 a.s.

Let £ = (&)< and ¢ = ({)i<r be two regulated process such that & < ¢, for
all t < T a.s. with & = (r a.s. We suppose that £ € 8226 and (T € Sgﬁ where

¢t =sup{¢,0} and ¢~ = sup{—¢,0}. A pair of process (&, () will be called a pair
of irregular barriers.

Definition 2.1. Let f be a stochastic Lipschitz driver and (£,¢) be a pair of
irregular barriers. A process (Y, Z,V, M, KT, K™) is said to be a solution to doubly
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reflected BSDE associated with parameters (f, ¢, () if
()Y, Z,V,M, KT, K~) € BE x Hj x L3 x Mj x §* x &7,

T
(i)Y; = §T+/ F(s,Ye, Zo,Va)ds + (K — K}P) — (K7 — K‘)f/ Z,dB,
t

// flds, de) /tTdMS,

T
( t——ftf)thJr’*"‘Z(Y; —&)ALKS =0as.,
(1v)Skorokhod conditions: OT t<T
(G-—Yi)dK; "+ (G - V)AL K =0as.
t<T

3. Existence and uniqueness of solution to DRBSDEs with irregular bar-
riers

The proof of existence and uniqueness result to DRBSDEs with two irregular
barriers (£, ) will be proved in two steps. Firstly, we consider the case where the
driver f does not depend on (y,z,v) and we prove the corresponding result by
means a modified penalization method. Secondly, by using fixed point theorem, we
prove the main result.

3.1. Penalization method for DRBSDEs with coefficient independent of the solution.
Let f(t,y, z,v) := g(t) with 9 € ’H%. In what follows, we assume that the irregular
a

barriers ¢ and ( are strictly separated processes, i.e.

& <Gy G- < G- and &y < (pqo

Remark 3.1. The strictly separated assumption on the barriers can be strengthen
by the existence of a semimartingale

t
R, = Ro+/ZdB +//V f(ds, de) + /d/\/ls—JtJr—l-J[,RT:fT,
with (Z,V, M) € H? x L2 x M? and J* (JF = 0) are two nondecreasing processes

satisfying E|J|? < +oo such that
S <R <G 0<t<T.

By inspiring on Klimsiak et al. (2020) (section 4.2), we consider approxima-
tion of the solution to DRBSDE associated with parameters (g, &, () by a modified
penalization scheme of the following version

T T T
" = &r +/ g(s)ds —/ Z'dBy —/ / V' (e)i(ds,de) — / dM?
t t t

T
+n/t (}/sn_gs)ids—i_ Z ( On,it gonl)

t<on,i<T

T
—n/t Yo —Cytds— S (0 =Gt (3.1)

t<pn,i<T
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where {0} and {p,;} are arrays of stopping times exhausting right-jumps of &
and ( respectively defined, for each n € N, inductively by:

On,0 = 07
01, = inf{t > 01,i—1 | ALé < —1} AT, i=1,...,k
Opiti = nf{t > ongrion | A < =g} AT, =100

with k1 € N and j, 41 is chosen so that P(o,,41 <T)—0asn— +oo and

WJn+1
Ontli = Ontljnis Y Onjijnirs t=Jpy1+ 1, kny1, kni1 = Jng1 +kn,
and
Pno =0,
p1i=1inf{t > p1,-1 | AL > 1FAT, i=1,..,k

Pn+1,i = inf{t > Pn+1,i—1 | A—i—(t > %-‘rl} A\ T, 1= 1, ...,jn+1

with k1 € N and j,41 is chosen so that P(p,41 <T)—0asn— +oo and

ajn+1
P41, = Prn+1,jns1 \ Prji—jnt1> 1= jn+1 +1,..., kn+17 kn+1 = jn+1 + kn.

We put, for each n € N

Un,o = 07
Vn,1 = On,1 A Pn,1,
Un,m = On,m N Pn,m, m=2,..,2k,
where
Gn.m = min{o,; such that o, ; > vpm-1; i =1, ko, } AT
and

Pn,m = min{p, ; such that p,; > vy m—1; i =1,.. .k, } AT.

Now, to solve the BSDE (3.1), we divide the interval [0, 7] into the finite number
of intervals [0, vy, 1], ...; [Vn 2k, =1, Vn.2k, | With vy 2, = T. More precisely, for m =
1,...,2ky, on each interval |ty 1—1, Vnm], the BSDE (3.1) becomes

Y = & VYR NG+ / " [9(s) + (Y — £ — n(Y? — C)*] ds
t
_/ 7 Z;Lst—/ 7 /Vs”(e)ﬂ(ds,de)—/ ’ dM?, t€vnm—1,Vnm)]
t t u t
(3.2)

with the convention Y' = {7 and Y§* = & V Y A (o. Let gn(t,y) := g(t) +n(y —
&)™ —n(y — ¢)T. It’s clear that g, is Lipschitz and

E/T oA gn(tvo)
0

Q¢
T
< 3]E/ eBA
0

9(t)
a
Then, from Theorem A.l (see Appendix), there exists a unique process
(Y, Zn, Vv M™) € %% X ’H% X E% X M% solution of the BSDE (3.2). By induction,

2
dt

S )
dt + E esssup e*?47|¢4 2 4 Eesssup e’ 472 ] .
€ 7€T0,1) T€T0,1)
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the BSDE (3.1) admits a unique solution (Y™, Z", V", M") € B x H3 x L3 x M3
and it can be rewritten as
T

T
yp o = gT+/ g(s)ds + Kf™ — K;F" — ;’”+K;’"—/ Z;dB;
t
T
/ /V” i(ds, de) — / dM?7,
t
where

Kfm = K™+ Y AKS" :n/( —&)ds+ > (Y o)

s<t 0<0,,i<t
and
Ko = K0 ALK = / = Ctds+ S VR~ G )t
s<t 0<pn,i <t
Proposition 3.2. Let (Y™, Z", V" M") € %% X ’H% X E% X ./\/1[23 for each n € N,
then

t
( / P {Y:_ Z"dB, + / nﬁnﬂ(e)ﬁ(ds,de)+yg’l_dMg}>
0 u t<T

is a martingale.
Proof: Let’s use the left continuity of trajectories of the process Y,* , we have
YLW)?< sup [V ¥(s,w)e[0,T]x Q.
t€[0,T]NQ

On the other hand, we have |Y;" |* < esssup |Y*|> which implies that
T€T 0,1

sup [V |? < esssup |V 2.
t€[0,T1NQ T€T0,1)

Then for all v <7< T

.
/e
v

IN

)
Yr 2|20 2 ds / e sup Y P|Z0Pds
0 te|

0,7]NQ

IA

-
/ e?PAs esssup [Y|?| 27 2 ds.
0 7€T0,1]

Further, we have

T T
/ P esssup |V Z7|2ds < esssup eﬁA*|YT"|2/ e "|2ds.
0 0

T€T0,1) T€T 0,1

T
ess sup efA- Y 7|2 / ebAs
T€T0,1) 0
2 2

< §||Y"||sg + §||Z"||Hg-
Then the term fVT ePAsyr ZndB, has zero expectation. Since
(fot eBASYS”ZS”dBS)KT is Fr-adapted process, then it is a martingale.

Hence

"2ds| <E

¢[2ds
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By the same arguments, (fot ePA{ [, Y VI (e)i(ds, de) + YS’LdMS”}> o is a
t<
martingale since

L
U

3.1.1. A priori estimates.

1 n 1 n
s <e>|2A<de>ds] < SIS + IV

and

n 1 n|2 1 ni2
[M ]51 < §HY ||sg+§|\M HM%'

Lemma 3.3. There exists a positive constant  independent of n such that for all
B8>1

+, -
Y735 + 1271 + V25 + M3 + EIKE"? + E| K" P

2
(]2
a 2
Proof: Consider the RBSDE with jumps associated with (g, &), that is
T
:£T+/ g(s)ds—l—FT—Ft—/ Z,dB, / / i(ds, de)
t t
T J—
- / dM, (3.3)
t

T
?t Z Et Vit S T and / (?t— - gt_)df;k + Z(?t - §t)A+Ft =0 a.s.
0 t<T

+||£+||§§B+C_‘293B+||Z|§-12+”V|2£2+||M||.%\AQ+E|J;|2+E|JT|2>'

From Theorem A.3 (see Appendix), there exists a unique process (Y, Z,V, M, K) €
B3 x H x LF x MF x §? solution of RBSDE (3.3). We consider the penalization
equation associated with the RBSDE (3.3), for n € N

T T
Yy, = §T+/t ()ds—|—n/( “ds+ Z Um+ —&oni)”

t<on,:<T

T
—/ Z"dB, / /V fi(ds, de) — / dM.
t t

The comparison theorem A.2 (see Appendix) implies that ?f < Y? < 7" and
Y < ?ZL for all ¢ < T'. Therefore, for all t < T, ?ZL NY,. Hence Y < Y,.
Similarly, from Corollary A.4 (see Appendix), there exists a unique process

w1th data (g7 (), that is

Yt=<T+/tTg(s)ds—(KT—Kt)—/t Z,dBs — / / fi(ds, de)
/tTdMs, (3.4)

T
XtSCt VtﬁTand/ (Ct—ift dK*+Z <t AJ,_K =0a.s.
0 t<T




770 M. Marzougue and M. El Otmani

By the penalization equation associated with the RBSDE (3.4)

T T
Yvio= Gt [ eds—n [ -Gt Y (0, 0= G
t

t<pn,i<T

T T
- / Z"dB, — / / V™ (e)ji(ds, de) — / aM"
t t

and the comparison theorem A.2 (see Appendix), we deduce that Y;* > Y, for all
t <T. Then from (A.3) and (A.8) (see Appendix), we can write

E esssup e#47 Y2 < max { Eesssup e’47|Y |2, Eesssup e’ 4 |Y_|?
7€T0,7] 7€Tj0.1) 7€Tj0,1)

T
<C <2E / eBAs
0

where C' is a positive constant. Now, we apply the Corollary A.6 (see Appendix)
to e?4¢|Y,* |2, we have

g(s)

Qs

2
ds + Eesssup e’ (|€F* + ¢ °) (3.5)
7€T0,1]

T T T
SANPP 5 [ SyPaA [z P+ [ e dr;
t t t

T T T
= PAT|¢ep)? +2/ ePAYg(s)ds — 2/ PAYrZndB, — 2/ ePAyr M
t

t t

T T
— 2/ / ePAY T VI (e)u(ds, de) +2/ Ay (dKH™ — dK ™)
u t

= D PRAYIP = Y SR(YLP - Y. (3.6)

t<s<T t<s<T

Observe that for each 8 > 1

T T
2/ ePAYg(s)ds < (B — 1)/ efA
t t

and

2

96 4 (3.7)

Qs

2aA, + —— / g
’ B-1J;

V22— Y02 = (ALY P42YT ALY = [ALYP 22V AL (K"~ K ™). (3.8)

Recall that u(.,de) does not have jumps in common with the processes K+ for
each n € N, since u(.,de) jumps only at totally inaccessible stopping times, then
we can note that

> havy)?

t<s<T

T
/ /eﬂAS“/Sn(e”z/J,(dS,de)—F Z GBAS(—AK:’n+AKs_’n+AM;l)2'
t u

t<s<T
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Then, one can derive that

[
e)*i(ds, de) — Y P (AKF — AK )

T
t Ju t<s<T

2 Y (AR - AKTMAMY
t<s<T

e

By adding the term ftT e T13ds + Dtes<T efA<(AM™)? on both sides of in-
equality (3.6), by taking in consideration (3.7) and (3.8) and by using the basic
equality [M™]s = (M™)$ + 3, - .«p(AMZ)?, we deduce

T
eﬁAtD/tn|2 + / eﬁA
t

T
< esssup 2P |eF? 4 /eﬁAs
TGTOT

MRds+ Y e AMr)? - Y0 P Ay

t<s<T t<s<T

IA

)P lds,de) =2 Y P (AKST — AKTTAMY.
t<s<T

T T
s |2dAs+/ P (12212 + [v213) ds+/ ePAsd[Mm),
t t

Ol

T
ds +2 /t PAY (dKF™ — dKT™)

o [ ez, [0 / B QY V) + VAP Al de)
t

_2/ Y AMY —2 3 P (AR — AK;)AMY. (3.9)
t t<s<T

Taking expectation on the both sides of the inequality (3.9) for ¢ = 0 and using the
Proposition 3.2, we get

T
]E/ eBA
0

T
< Eesssup P4~ |2 +IE/ ePAs
TG'T[UYT] 0

T T
PPAA B [ (2P VIR ds+ B [ e,

g(s)

Qs

2
ds

T
+ 2E / PAYP (K" —dK™) = 2E Y P (AKST - AKTMAMY
t t<s<T

Since M™ is a martingale then for each predictable stopping time 7 € T 1
E[AM"|F,_] = 0 a.s. Moreover, since the processes K" and K" are pre-
dictable then AK ™ — AK ™ is F,_-measurable (see the assertions (1.40)-(1.42),
Chapter I in Jacod, 1979). Therefore,

E[(AKH" — AK-™AM|F,_] = (AK" — AK; ™E[AM?|F,_] = 0.

Hence the term Y, ., e#4<(AKF" — AK")AM has a zero expectation. Now,
let us come back to the expression (3.2), for each t € [V m—1, Vn,m]| it holds true
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that
. t

[ = [ ervinoe - c)as
0 0

t t
= / ePAeg (Y — £,) ds — / P (V) — £,)7)2ds
0 0

t t
/ eﬂAsf;‘rn(Y'Sn _68)—d5 :/ €ﬁAS§:dK;_’n,

0 0

IN

¢ t
imi As - Ag = -

and similarly — / PAYIAR " < / ePA:¢-dK ;™. Consequently, for some

Qg > 0

0 0
T
IE/ ePAs
0

T
< EesssupezBA*|§j|2+E/ P4
TE'T[O’T] 0

T T
V' 2dA, +E/ e (127 + IVIIR) ds +1E/ P4 d[M™,
0 0

9(s)

Qs

2
ds

1 2 1 —n2
tasEesssup e (|¢F2 + ¢ 1?) + —E K72+ —E|K7 ", (3.10)
T€7—['0)T] (6%) (6%
2 2

To conclude, we now give an estimate of £ |K;§"| and E |KT’"| . Let us introduce
the following stopping times for each n € N*

Tn,0 = 07

Tnoit1 = Inf{t > 7,0, | V" =& AT, i>0

Tn,2i+2 = mf{t > Tn,2i+1 | )/fn = <t} AT, 1> 0.

Since £ < (, then 7, ; < 741 on the set {7, ;41 < T'}. In addition the sequence
(Tn,i)i>o0 is of stationary type (i.e. Yw € §, there exists ig(w) such that Vi > ig(w),
Tn,i(w) = Tnit1(w) = T). Indeed, let us set G = (\,5o{7n,i < T}, we show that
P(G) = 0. We assume that P(G) > 0, therefore for w € G, there exists two sequences
of real numbers (k, ;(w));>0 and (k;m(w))izo belongs to [7,i—1, Tn,i] such that

{ Ylg:“ = Ckn,i A Ckn,i_ = Ckn,i - (Ackn,i)—‘r’
Ykz,z‘ = Ckn,i A Ckn,r‘r = Ckn,i - (A+<k7l,i)_7
and

Vi =&k V&~ =&k — (Al )7,

Yk’fiz = gk;” v £k4”+ = gk;zz - (A+£k;1)+
Now as (kp,i)i>o and (k;m-)izo are not of stationary type since (7,;);>0 is non-
decreasing sequence then taking the limit as ¢ — 400 to obtain that Y* (w) =
£ (@) < G () = Y7 (@) and Y7 (w) = &4 (@) < Crp(w) = Y7 (w). Then
&r—(w) = G- (w) and &4 (w) = (4 (w), but this is contradiction since P-a.s.
YVt <T, & <(— and &4 < (. We deduce that P(G) = 0.

Next, let p > 1 be a real number, and ¢? = and ¢

P 4, be a stopping times
defined by:

CP

1
b 2v_inf{t>7'n72i | Yt"§§t+}/\T
n,2i p
and

i 1
Spaips = nf {t > Tpoitr | Y > G- p} AT.
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Then for all t € [7,,2:,6P , ], we have Y;” > & and for all ¢ € [1p, 2i41, gfn.ZiHL we
have Y;” < (;—. Consequently, it holds true that Y™ > & on [y, 24, Tn 2641 A S ]

and Y < on [Ty 2i41, Tn2i42 A S It follows the BSDE (3.1) becomes

Tn2+1]

Tn, 2z+1/\<Tﬂ 2 Tn,2i+1 /\ST" i
y! =Y" » / g(s)ds — / Z}dBg

Tn,2i Tn,2i4+1/A\S
m,2t Tn,24 Tn,2i

Tn, 21+1A§7—n 2 Tn 2L+1/\§.,.n 2

- f(ds, de) — dM7} (3.11)
Tn,2i M Tn,2i
Tn,2i4+1 /\CT 2 N N

-n ( s Ca) ds — (an,ri- - Cpn,i)

Tn,2i

Tn,2i <Pn,i <Tn,2i+1AS7, o

On the other hand, by Remark 3.1, we have Y” > Re,, on {10 < T} Y, =

Tn 2i
Tn 20 ST CT on {Tn,Qi = T}; ynr S RTn,,2i+1/\<7-nY2i + 1 on {Tn,21+1 A

Tn,27‘,+1/\§7n721- p
P n _ _ _ . p _
ST,z < T} and Y - R771,2i+1/\§£m2¢ =&r =(r on {Tn721+1 A STn2i = T}

From (3.11) and defimtlon of the process R we obtain

2i+1 /\g"n 2i

Tn, 21+1/\§Tn 2
n/ ( Sn - CS)+d8 + Z ( pn i+ Cpn L)

2
st Tn 2i<pn,i<7n,,2i+1/\§£,n 2i

Tn, 2L+1/\§.,.n 2 Tn, 21+1/\§7-n 2
Y, Yy / g(s)ds — / ZdB,
T,

Tn,21ﬂ+1/\§7—n1271 Tn,2i
n,24 Tn,2i

Tn,2i+l/\§£”,2i Tn 21+1/\§.,. 26
- / dM?} — / / V' (e)u(ds, de)
Tn,2i Tn,2i
1 Tn 27+1/\<,n 2 Tn,2i4+1 A<Tn i
n
< Rn,,m+1/\§fn_2i’ +-- RT’!L,2'£ + (S)|d8 - Zs dBS
' p Tn,2i Tn,2i

Tn, 2L+1A€T 2 . Tn, 21+1/\§T 2 N ~
- dM? — V' (e)i(ds, de)
Tn,2i Tn,2i u

1 Tn,2i+1/\§71—)n,2i 7"72”1/\(5”,21'
<= _|_/ g(s)|ds —|—/ (Zs — Z)dB;
p T, T

n,2i

Tn 21+1/\<Tn 2 Tn 21+1/\<T 26
+ aM, -+ [ [ e = vt de
T u

Tn,2i

n,2i

n,2i

+J

p - .
Tn,2i+1AS7 ), o; Tn,2i

Taking the limit as p — +oco, using the fact that YY" < ( on the interval
[Thn,2i41s Tr,2i42 N . 2i+1]’ summing in i and taking expectation in the both sides of
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above inequality, we obtain

2

T
E|n / Ve —Cytds+ Y (0 =Gt
t

t<pn,:<T
1 T
< 8 lg /
B Jo

T
+E/ eﬂAﬁ(
0

In the same way, we can obtain

T

2 T
2 s 4w [ 22+ WlRas+E [ aim,
0 0

Qs

T
Zm* + ||VS"||§)ds+1E/ eBAéd[M”]S+E|JT2> (3.12)
0

2

T
Bln [ (07 -e) s Y (06
t

tSU7117',<T
T
< 8 lIE/
B Jo

T
+E/ eﬁA""(
0

The desired result obtained by combining (3.12), (3.13) with (3.10) for as > 8¢,
and adding the estimate (3.5). O

2 T

T
9(5) ds+]E/ (|Zs|2+||vs||§)ds+]E/ M),
0 0

Qs

T
Z"M* + |\Vs"||§)ds+1E/ eﬁAsd[M"]s+E|J;|2> (3.13)
0

3.1.2. Euwistence of (limiting) solution to DRBSDEFs.

Lemma 3.4. There exists a quadruple of processes (Y, Z,V, M) such that

7 =Yl + 127 = 2l + IV = Viigy + IM" = Ml =20

n—-+oo

Proof: For each n > p > 0, we apply the Corollary A.6 (see Appendix) to get
T T
R Rl B AR A PR AR
t t

T
+/ ePAsd(M™ — MP)©
t
T

T
- / BAYD YPY(ZD — ZP)dB, — 2 / SRV —YP )d(MD — M)
t

tT
2 [0 ] e -2V - VI (e)a(ds, )
t u

T
bz [P Y2 [ - KPP = (= K]

t
— PN —YP)P = D P ([Yh = YE P — [V - YPP)(3.14)

t<s<T t<s<T
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By using the same computations as those used to get (3.9), and the fact that

Y7 = Y2 P =Y - Y

(AL (Y = YD) +2(Y) = YP)AL (Y] — YD)

AL = YI)P = 2(¥2 = YDA (K — KPP = (K = Ko7)
we can derive that

T T
B8 [Py - YPPaA, v B [ (20 -z |V - VEIR)ds
0 0

T
+E / ePAsd[M™ — MP],
0

IN

T
o / PV —YE ) (K™ = KF7) — (K7™ — Ko 7))
0

IN

2E [ sup e (YP — ft_)K;’"} +2E [ sup el (Y —ft_)K;’p]
0<t<T 0<t<T

+2FE [ sup e (vP — Ct)+K;F’n] +2E [ sup e’ (V) — Ct)+K:F’p} :
0<t<T 0<t<T

Then, for § > 1
n 2 n 2 n 2 n 2
[V = VP20 + 127 = 220 + V7 = VP + 1M~ M7

2)%

1

2
< 21E[sup ezﬁAwmp—&)-F] (BIK"

0<t<T

-

2
128 | sup e”“w(n”soﬁ] (E|KF7P)
lo<t<T

1
2

-

2
25 [ sup emwmp—gﬁﬁ] (ElK; )

lo<t<T

ol

-

1
2

2
+2E | sup ezﬁAt|(Yt”—§t)+|2} (E|K7P1%)2 . (3.15)
LO<t<T

It remains to prove that
E[ sup e A|(Vy" —&)72 + sup M|y _Ct)+2:| — 0. (3.16)
0<t<T 0<t<T n—+o0

Indeed, from Theorem A.l (see Appendix), there exists a unique process
(Y™, Z™ V™ M™) solution to the following BSDE

Vo=t / ' [9() + (e, = V1) ds - / " Zran, - / ' /M Vy'(€)ji(ds, de)

T —
—/ dM?.
t

Since (&5 — ?57) = (5/}5" —&) — (& - }A/S")_ then Theorem A.2 (see Appendix)

N

implies Y;* > Y for all t <T'. For any stopping time v < T we have

T T

Y =E |e T V¢p +/ e "5 g(s)ds + n/ en(Sy)fsds]:V] . (317

v
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But

T
esE ds —+> Ecr P — a.s. and in £2.
n—+00 -

e—n(T—V)£T+n/

v

Moreover, the conditional expectation converges also in £2. In addition, by Holder

inequality, we have
2 T 2 T
< </ eBAs dS) (/ e—2n(s—u)—ﬁAsdAs> )

T
/ e_”(s_”)g(s)ds

Thus E [fVT efn(sfy)g(s)dsu-"y] = 0 P — a.s. Now, we denote

g(s)

as

T
@?:::efnvffﬂgT-+n/’ =D (g(s) + nk,)ds
t

From (3.17), Jensen’s inequality and Doob’s maximal quadratic inequality (see
theorem 20, p. 11 in Protter, 2005), we have

E | sup eQﬁAt(ﬁ"—gt)F] = E[ sup 2P
0<t<T 0<t<T

2
i - &7 ||

< E [ sup |E [”% (g7 — &)™ | F] ‘2]
0<t<T

IN

4E [|65A" (' — ft)_ﬂ
< 4]E{ sup 2P | &){2] .
0<t<T

On the other hand, the sequence define as

T
(X )n>1 = {e”(Tt)fT + n/ e*”(sft)fsds - ft}
t

n>1

is uniform converge in ¢ and also for (e#4¢(X[)7),>1. Lebesgue’s dominated con-
vergence theorem implies that

li E 2BA¢ | (o —12
Jm [OzttlgTe (@ — &)
2

< 2 lim E| sup e?PA|XI7 12+ sup 24
n—r+0o0 0<t<T 0<t<T

T
/ e "5y (s)ds| | =0.

t

Since Y, > ¥ Vt < T, we deduce E [ sup e (v — 5t)_|2] —0.
0<t<T n—-+o00

Similarly we can obtain E [ sup 24|y — Ct)+|2] — 0.
0<t<T n—+4o0o

Now, passing to the limit in (3.15), we obtain

Y™ = Y2120 + 127 = 273 + V" = VI3 + | M = M7 |3 —— 0
B

n,p—-+o0o



DRBSDEs with irregular barriers in a general filtration T

which implies that (Y™, Z", V™, M™),>¢ is a Cauchy sequence in SE’A X 7—[% X E% X
M% So there exists a quadruple (Y, Z,V, M) € SE’A X H% X E% X M% such that

1Y =Y Ran + 127 = Z3 + V" = VI + M = M35 ——0.

On the other hand, from Remark A.1 in Grigorova et al. (2017), ess SUp, e, o X7 =
sup;<r X for all cadlag process X, then by Burkholder-Davis-Gundy’s inequality,
there exists a universal positive constant ¢ such that

2E ess sup / ePA (Y — YP)(ZD — ZP)d B,
7'67_[0,'1"] 0
T
< 2%E / 2BAL YR _ YP|2|Zn — ZP|2ds
0
) T
< ZEesssup P47 |Y — VP2 + 4C2E/ P 27 — ZPPds
TE'T[OYT] 0
1, . n
A L I Py AT
2 ess sup / / ePA (Y —YE )V (e) — VP (e))fi(ds, de)
T€7—[0,T] 0 u

T
2cE / / e2B4s
0o Ju

< YL =Y PV (e) = Vi (e) Pulds, de)
1 BA n 2 2 r BA n 2
< —Eesssupe’ |V — YP|* + 4c°E e’ |\Vi'(e) — VP(e)|"u(ds, de)
TE’T[(),T] 0 u
1 n n
= IV YPIE av — v
and

2[E ess sup
TE'T[(),T]

T
2cE / e2B4s
0

1 T
“Eesssup P47 [y — VP2 +402E/ ePAsdIM™ — MP),
TE'T[O,T] 0

/ SRV —YP )d(MD — M)
0

IN

Y2 — Y2 [2d[Mn — M),

IN

1 2 2 2
= LIV = VP + 4P — M.
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Consequently, by taking the essential supremum over 7 € 7jg 7] and then the ex-
pectation on both sides of inequality (3.14) we get

Y™ = Y75
< 4 (402HZ" = 2P|l + AV = V|7 + 4| M = MP|[e

+2E[ sup P (VP — &))" K;n] +2E[ sup e (Y —&)” K;:’p}
0<t<T 0<t<T

+2FE [ sup efA (Yp — Ct_)+K:F’n} +2E [ sup e’ (Y — Ct—)+K;’p}>
0<t<T 0<t<T

—F > 0.

n,p—-+o0o

Then, [[Y" -Y|%, ——0and Y € Sg. O
B n—+oo

Lemma 3.5. There exists two optional processes K+t and K~ with left and right
finite limits such that

e Eesssup |[K}" — K2 + Eesssup |K-" — K |2 —— 0
TG'T[OYT] T€7—[01T] n—+oo

o Forallt<T, K} =K +%,_; A K[ with

T
[ e =it + 3 (- @A KS =0 as,
0 t<T
o Forallt <T,K; =K, "+, + AL K; with
T
| (G = Y (G- VALK =0 0,
0 t<T

Proof: For each n € N, we consider the modified penalization BSDE (3.1) which
be can take the following form

T T
Y= +/ gn (s, Y)ds + K5 — K" —/ Z"dB, — / /V" fi(ds, de)
t t
T
t
Yr>& VLT,

T
/(Yt’ifft AR+ () = )ALK " =0 as.
0

t<T

where g,,(t,y) = g(t) — n(y — ()" — Ztgpm<T(ypn,i+ - Cpn,¢)+~ Since gn41(t,y)
< gn(t,y), then from Remark 4.3, K> < K™™' for all t < T. Therefore,
there exists an optional process Kt such that Kt" ~ KT. Using the fact that
essSUP e, K" = sup,cp K7™ (see Remark A.1 in Grigorova et al., 2017), it
follows, by a generalized Dini’s lemma, that

E |esssup |[K" — K|?| ——— 0. (3.18)

TGT[(),T] n—-+oo
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On the other hand we have

t t t ¢
K, "= Yt"—YO"—i—/ g(s)ds+Kf’+—/ Z?dBS—/ / VS"(e)/l(ds,de)—/ dM?.
0 0 0o Ju 0

Then, from Burkholder-Davis-Gundy’s inequality there exists a universal constant
¢ such that, for each n >p >0

Eesssup |K_" — K_P|?
T€T0,1)

TG’T[()YT] 767—[0‘7‘]
T
+cIE/ ePAs |
0

T
+cIE/ ePAsdIM™ — M”]S> —0.
0

n,p—+o0

< 6 <IE esssup |V — YP|2 + E|Y] — YP|? + Eesssup |[K" — KFP|?

Zy = ZEP + |V = VPR Yds

Consequently, there exists an optional process K~ such that

E

esssup |[K; " — K || ——— 0.
T T
7.67—[017‘] n——+o00

In what follows, we are going to show that the Skorokhod condition for the optional
processes Kt and K~ is satisfied. We know that

T
| G = Y S G = VALK =0 as
0 t<T

Notice that dK, ™ ~ dK, in the total variation norm (to be precise Ay K, ™ ~
ALK, and dK; ™" S dK,; " in the total variation norm). Since 0 < ¢;— — Y;* <

¢i— — Y. By using the Lebesgue dominated convergence theorem we get
T
| G = Vi) 3 (G - Y)ALKT =0 as, (3.19)
0 t<T

Further, by the integrability properties of Y and K, the process (Y; + fot g(s)ds+

K )i<r is a supermartingale which dominates the process (§; —I—fot g(s)ds+K; )i<r.
Hence

Y; > esssupE [ft +/ g(s)ds — K- + Kt|]-'t} )
7€T0,1) t

On the other hand, choosing an optimal stopping time in order to get the reversed

inequality, let §; = inf{t < s <T, Y, =&} with 07 = T1{y~¢). Then

Y, = esssup E

3¢
fét]l(;,éTJr/ g(S)dst(i +Kt_|]:t
6t€7-[O,T] t

The Skorokhod condition (3.19) implies that K; — K; = 0. Then, Y is the
Snell envelope of the optional process . The process K, obtained in (3.18),
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coincides with the increasing process from Mertens decomposition of Y, therefore,
from Corollary 3.11 in Klimsiak et al. (2019) we can write

T
| e =il + 3 (- @A KS =0 as,
0 t<T

O

Theorem 3.6. The limit (Y,Z,V,M, KT K~) of (Y™, Z", V" M" K" K—m")
is the unique solution of the DRBSDE associated with parameters (g,&, ).

Proof: By combining the lemmas 3.4 and 3.5, passing to limit as n — 400 in

T T
o= &r +/ g(s)ds + (K" — K") — (Kp" — K, ") — / ZdB
t t

_/tT/MVS"(e)ﬂ(ds,de)—/tTde

T T
Y, = §T+/ g(s)ds+(K$—Ki)—(K;—K;)—/ Z,dB,
t t

-/ ' | vi@itas.de) - [ S,

with the Skorokhod’s conditions for K and K~ are satisfied. Moreover, since the
sequence (Y™, Z™ V" M"™ K+t™ K~") is belong to the Banach space %% X 7—[% X
/J% X M% x 8% x 82, then the limit (Y, Z,V, M, KT, K~) stay in same space. To
conclude, from (3.16) we get & <Y; < (; for all t <T as. O

to obtain

3.2. The solution of DRBSDFEs with general coefficient.

Theorem 3.7. Let f be a stochastic Lipschitz driver and (€, ) be a pair of irregular
barriers. The DRBSDE with jumps associated with parameters (f,€,() has a unique
solution (Y, Z,V, M, K™, K™) which belongs to SB% X 7-[?3 X £% X MQB x 8% x 8? for
each B > 4.

Proof: Let Dg = S?}’A X ’H% X xﬁ%. We define a mapping ® from Dg into itself as
follows: Given (y, z,v) € Dg and obviously that

T
E/ eBAs
0

Then from Theorem 3.6, there exists a unique (Y, Z,V, Kt , K~) solution of the
DRBSDE associated with parameters (f(.,y,z,v),&,(), then we put ®(y,z,v) =
(Y, Z,V). Let us show that ® is a contraction and hence admits a unique fixed
point (Y, Z, V') € Dg, which corresponds to the unique solution of DRBSDE associ-
ated with parameters (f, &, (). Let (¢, 2’,v’) be another element of Dg and define
D(y',2',v") = (Y, Z', V') where the process (Y', Z' V', M', K't, K'™) is the unique
solution of the DRBSDE associated with parameters (f(.,y, 2',v'),€,(). Set R =
R—R for R € {Y, Z,V, M, K*,y, 2,0}, and we put f; = f(t, vz, 2, v¢)—f(, 9}, 21, v})

f(S’ yS7ZS7US)
as

2
ds < +o0.
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for allt < T. Using Corollary A.G (see Appendix) and some standard computations,
we get

T T T
6 [ TP E [ (2P ITR) ds+ B [ etaln, i,
t t t

T T
< QE/ Y, fods + 21E/ Y, (KT —dK[")
t t

+2]E Z 6BASZ(A+RJ—A+K;)
t<s<T

Thanks to the Skorokhod conditions on K+ and K, we have ftT Y, (dKFH*—
dK;*) <0 and

S (ALK - ALK

t<s<T
= Y PRV ALK - Y P - 6)A K]
t<s<T t<s<T
+ Y PN EIALKT = Y P - E)AKY
t<s<T t<s<T
= > PNV — ALK + Y (Y G)ALKS
t<s<T t<s<T
=Y PRV QAT+ Y (Y - ALK
t<s<T tSs<T
< 0.

Moreover, by using the stochastic Lipschitz condition on f, we get for any g > 4
T - T - - T o
E/ eﬁAs|y;\2dAs+1E/ P4 (1Z:)2 + | VsI13) ds+E/ ePA=d[M, M),
t t t

3 T BAL |~ |2 4 BAs = |2 T BAs |5 (12
< 71 E e’ |ys|°dAs + E | e77¢|zZs|°ds + E e’ ||vs]|3ds | -
- t t t

Then the mapping ® is a contraction and then has a unique fixed point (Y, Z,V)
which actually belongs to Dg. Moreover, there exists (M, KT, K™) € M% x 82 x 82

(K = 0) such that (Y,Z,V,M, Kt K~) is a unique solution of the DRBSDE
associated with (f,¢, (). O

4. Comparison theorem

The comparison theorem is one of the principal tools in the theories of the
BSDEs. But it does not hold in general for solutions of BSDEs with jumps (see the
counter example in Barles et al., 1997). However, it’s shown in special cases (see
for example Royer, 2006; Yin and Mao, 2008).

In order to obtain the comparison theorem, we will discus the following generator:

FH sty 2,0) = F(w,ty,2) + / 71(w, €)u(e) A(de)
u

where



782 M. Marzougue and M. El Otmani

e m:QX[0,T] xU — [-1,+00] is a P ® U-measurable mapping such that
Jy Ime(w, e)|?A(de) < +o0.
e One has Z(:00 ¢ H3 and Y(y,y/, z,2) € R*

a

‘F(w7tayaz) - F(w7t7y/azl)| < 9t|y - y/‘ +’7t|z - Zl|'

Let (Y7, 27, VI M’ K+J K~J) be the unique solution of the DRBSDE associated
with data (f7,&7,¢7), for j = 1,2. Then we have the following result:

Theorem 4.1. Assume that f1(.,Y?,Z22,V?) < f2(.,Y2,22,V?) a.s., & < €2 a.s.
and (' <% a.s. ThenY! <Y? q.s.

Proof: Let us put R =R —R2 for R € {Y, Z,V, M, K+, K~,¢,¢}. Then
T
Y, = & +/ <905Ys + Y7, +/ 7 (w, e)Vi(e)A(de) + QSS) ds + (K} — K;)
t

~(Ky ~K7) - / ' zsstu / ' /M Vi (e)iu(ds, de) — / Carn @)

t

where
® Yy = (:t)_lll{ﬁio}(F(thtlﬁztl) - F(t’Y;‘/ZaZtl));
® Yy = ( t)_l]]'{Zt;éO}(F(t7}/it2aztl) - F(tqut2th2>);
o ¢ = fl(t7Yt27 Zt2>V;52) - fQ(t>Y;527Zt2ﬂ V?)

Set

N T T 1
@ = |eod [Cvas- [ Jwpasy T1 (1 + m<w7e>u<{t},de>) x
0 0 0<t<T u

exp{— /0 ' /u m(w,e))\(de)dtH dP.

Then by Girsanov transformation theorem, there exists a probability measure P de-
fined on the standard measurable space (£, F) such that where B; = B; — fot qsds
is a Brownian motion under probability measure P and fi(dt,de) = fi(dt,de) —
71 (w, e)A(de)dt is a P-martingale measure. Then the DRBSDE (4.1) can be rewrit-
ten as

T T
Y, = gT +/ (stYs + ¢s) ds + (Ki—t - K;_) - (KZI_” - Kt_) - / stBs
t t

-/ : | ve@ntas.de) - [ "ait.,

From Proposition A.7, there exists a nondecreasing process (-’th)tST with regulated
trajectories such that

t t t
V= P2 [V eV ko ds—2 [ VRS 42 [ Vrak;
0 0 0

t t t
+2 / Y+ Z,dB, + 2 / / YV, (e)ii(ds, de) + 2 / v ait, + A,
0 0 u 0
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By applying the Corollary A.6 (see Appendix), we get

T T T
SR [T Paa [ Zpas [ e tan;
t t t

T T
— eﬁAT‘g}-F + 2/ eﬁASY:r (SﬁsYs + ‘bs) ds + 2/ eBASYSt (df{j,* . df(;’*)
t

t

T T T
i / P4+ 7 B, - 2 / / ePAT T (e)ilds, de) — 2 / ePAT I,
t t u t
A Al (V7 v T A g
- ¢ —VE - D0 S(mmz—mﬂQ)—/ e dA,.
t

t<s<T t<s<T

Taking the P-expectation on the both sides, taking into consideration the assump-
tions of theorem and using the facts that ¢, < a? and VI (dK} — dK;) < 0, we
deduce for all 5 > 2

Ele” 4V ] <0

It follows that ¥;* = 0, i.e. ¥;' < Y2 for all t < T P-a.s. and so P-a.s. O

Remark 4.2. o If £ = —oo0 then dK 7 =0 for j = 1,2 and the comparison
theorem holds also for the upper-barrier reflected BSDEs.
o If ( = +oco then dK 7 =0 for j = 1,2 and the comparison theorem holds
also for the lower-barrier reflected BSDEs.
e If £ = —o0 and { = 400 then the comparison theorem holds also for the
standard BSDEs.

Remark 4.3. If we consider the penalized equations relative to the RBSDE with
data (¢7,¢7) for j = 1,2 and n € N, as follows

. - T - T Y
Ytn’JiijﬂL/ g](s)dsfn/ (¥ = G) s — Z (pn,+ Comi) ¥
t

t<pn,:<T

+K;f’"’j—Kt+’"’j—/ Z™dB, — //V’” fi(ds, de) /dM”J
t

v/ > vt<T,
T

/ (Y7 — &l YK+ § (Y7 —eHALK™ =0 a.s.
0

t<T

Then, if ¢! < £2 and g* < g2, we have Kj’"’l > Kj""’Q. Actually, From Remark 4.2,
we have V;"! < Y;"? fort < T. Since K;"™*7 = nfOt(YS”] —&)~ds for j = 1,2, we
deduce that K;~™*' > K;"™*? for t < T. Similarly, we have 3 _, Ay K™ >
Yt ALK ™2 as.

s<t

Appendix A.

A.1. Special BSDEs in a general filtration. In this section we give a special case of
existence and uniqueness result of BSDEs with jumps in a general filtration when
the coefficient depends only on y. Consider the following BSDE

:§+/t h(sY)ds—/t Z,dB, - // fi(ds, de) — /tTdMS (A1)
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where E [e#47 [¢[?] < +o0, h(.0) ¢ H3 and h is Lipschitz i.e. there exists a positive

a
constant « such that for all (t,y,y") € [0,7] x R?, |h(t,y) — h(t,y')| < kly — ¥/
Theorem A.1. The BSDE (A.1) admits a unique solution (Y,Z,V,M) € SB% X
HE x L3 x M3,

Proof: Remark that the condition EfOT |h(t,0)|?dt < +o0 is not satisfied in our
framework, then we can not apply the existence result of Kruse and Popier (2016).
So, since

2 2

2 [T h(t
< 2RePAT ¢ + BE/ e | ME:0)
0 at

E dt,

T
£+ /0 h(t,0)dt

then from the martingale representation Theorem (see Lemma 4.24, Chapter III in
Jacod and Shiryaev, 2003), there exists a triplet of processes (Z,V, M) € H? x £? x

M?2 such that
t t t
Jr/ ZSdBS+/ /Vs(e)ﬂ(ds,de)qL/ dM;
0 o Ju 0

T
Y;=E §+/ h(s,0)ds
¢
where YV; = E [{ + ftT h(s,O)ds|]—'t} . Moreover, we have

h(s,0)

As

1 T
NP < 2B | Mg+ 5 [ e
0

By Doob’s maximal quadratic inequality, we deduce that

2

E |esssup e’ 47|V, |?

T€7-[0YT]

= E[ sup eﬁA‘|Yt|2}
0<t<T

h(s,0)

Qg

IN

2E

1 /7 2
eﬂAT|§|2+7/ P s ds| .
B Jo

On the other hand, by applying It6’s formula, we can find a positive constant C
such that

T T T
IE/ eBAs Ys|2dAS+IE/ N (VAR ||VS\|§)ds+E/ ePAsd[ M),
t t t

T 2
< C (]EeBAT|g|2+1E/ ePAs ds>.
0

Next, define the sequence (Y™, 2" V") as follows: (Y° Z° V%) = (0,0,0) and
(yntl zntl yntl) is solution of the BSDE

T T T T
Yt :g+/ h(s,YS”)ds—/ Z;’“dBS—/ /v;"“(e),z(ds,de)—/ dMITL
t t t u t

For n > p > 0, let us put ™7 = R* —R? for R € {Y, Z,V}. By using [to’s formula,
we obtain

[P 2y o 2 B [V, e

2
.2/\/[2) .
B

h(s,0)

as

K

S B

n,p||2 n,p||2 n,p |2 n,p
(7210 12771+ 17712, + 0
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Choosing # > 0 such that g > '%2 + 1, then (Y™, Z", V"™ M"™) is a Cauchy se-

quence for the Banach space SE’A X 7-[% X E% X M% Then, there exists a unique
(Y, Z,V,M) € S3" x H3 x L2 x M? solution of BSDE (A.1). O
In the following, a special comparison theorem for BSDE (A.1) that is a partic-

ular case of the Proposition 4 in Kruse and Popier (2016):

Theorem A.2. Let (Y, Z!, Vi M%) be a solution to BSDE (A.1) associated with
parameters (€4, h?) fori=1,2. If &1 < €% and h' < h? then Y <Y? a.s.

A.2. Special RBSDEs in a general filtration. In the following, we prove the exis-
tence and uniqueness of solution to one lower barrier reflected BSDE with jumps
and regulated trajectories which take the form:

T T T
Y, = &r +/ h(s)ds + Kr — K, —/ 7.dB, —/ / Va(e)ji(ds, de)
t t t u

T
*/ dM@v
t

T
K Z Et Vit S T and / (K_ — ft_)dK;k + Z(Yt - ft)A.;,_Kt =0a.s.
0 t<T

(A.2)
where £ € S35 and 2 € H3.

Theorem A.3. The RBSDE (A.2) admits a unique solution (Y,Z,V,M,K) €
EB% X ’H% X CQB X MQB x S2 and there exists a positive constant C such that

T
EesssupeﬂA*|YT|2+IE/ P4
¢

T
Y,[2dA, + E / P (12,2 + ||V, 3) ds
T€T0,1] t

T
—HE/ P Ad M), + E|Kr|?
t

T 2
< c<1E +E / P s ds>. (A.3)
0

Proof: Here, we can not apply the existence result of Baadi and Ouknine (2017)

h{s)

esssup 2047 |¢F? .
S

€T, 1)

since E fOT |h(t)|* dt < +o0 is not satisfy in general. So, for each n € N, we consider
the following penalized version of BSDE

T T
O / h(s)ds +n / Vo —g)ds+ S (VP L - )

tSUn,i<T

-/ " man, - / : | veeitas.ao - | "y (A.4)

where {0, ;} is arrays of stopping times exhausting right-jumps of £ defined, for all
n € N, inductively by:

On,0 = 07
01, = inf{t > 01,i—1 | A+ft < —1} AT, i=1,...,k
On+1,i = inf{t > On+tl,i—1 | A+£t < _%4-1} A T, 1= 1, ~-~7,jn+1
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with k1 € N and j,, 4, is chosen so that P(oy41,5,,, <7T) — 0 as n — +o00 and

Ontli = Ontljnis VY Onjijnirs = Jnt1+ 1, knga, knt1 = Jnt1 + kn.

Let h™(t,y) = h(t) + n(y — &)~ . Remark that h™ is n-Lipschitz and
e[ o 20
0

5
Then, from Theorem A.l, on each interval o, i—1,0n4], ¢ = 1,...,k, + 1 with
On.k,+1 = T, there exists a unique process (Y™, Z", V", M") € B3 x Hj x L3 x M3
solution of the BSDE which take the form

Y = &, VYD +Jr/ "h(s)ds+n/ "(Y;l—gs)—ds—/ ~ Z"dB,
t t

/ /v" fi(ds, de) — /’dMS", t €]oni1,0n.]
t

with the convention Y = &7 and Y* = & V Y. On the other hand, the BSDE
(A.4) can be written as

T T
Y :§T+/ h(s)ds+K§37K{‘7/ Z"dB, / /v” ji(ds, de) — / dM"
t t t

(A.5)

h(t,0) ? 2

2n2T
dt + 2 I ess sup 2747 €12,
at

€ TE’T[(),T]

T
dt < 2F / eBA
0

where

t
K= G AR = (07 =) ds 3D 07—

s<t 0<0,,; <t

By applying Corollary A.6 and Burkholder-Davis-Gundy’s inequality, we find that
the sequence of processes (Y, Z™, V™ M"™, K™),>o satisfies the uniform estimate

T
E ess sup e?47 |y |? —I-IE/ eP AV 2d A, -HE/ e (12217 + |VIIR) ds
0

TET()T

+E/ P d[M™)° + EKD
0

T
< C(E +E/ eBAs
0

where C is a positive constant independent of n.

Now, we establish the convergence of sequence (Y™, Z™, V" M™ K™). Obviously
that h"(.,y) < h"H1(.,y) for each n € N, it follows from the comparison theorem A.2
that Y™ < Y™+, Hence there exists a process Y such that ;" /Y, Vt < T a.s.
and thanks to the monotonic limit theorem for regulated processes (see for instance
Theorem 2.10 in Klimsiak et al., 2019) the limit process Y has regulated trajectories.
Moreover, From the uniform estimate (A.6) and Fatou’s lemma, we have

h(s)

as

esssup e2947 ¢ 1|2

T€T0,1]

i ds) (A.6)

E | esssup e’ 47|V, |2
T€T0, 1)

< liminfE [ess sup e’47 Y2

n—+o0 TETO T)
T
+ ]E/ efAs
0

0<E

h(s)

Qs

IN

esssup 2047 |¢F?

TE€T 0,1

2
ds) .
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On the other hand, for all n > p > 0, Corollary A.6 implies
T T
AP - YPP g [ PrYE - vIRdA+ [z -z
t t

T
+/ A d(M™ — MP)¢
t

T T
= 2 [ oy - 2B -2 [P vz )dO - )
t t
T
2 [ ] e v - VE(e)a(ds )
t u
T
+2 / PA (Y — VP )d(KD* — KP)

t
A

AYP =Y = > P (lYn = YR P =Y - YPPP).

t<s<T t<s<T

By using the same computations as those used to get (3.9), and the fact that

Y2 = YR =YD =YPP = ALY = YD)+ 20 — YD) AL (Y — YD)
= ALY =YP)P —2Y - YP)AL (K] — K?)
we obtain
T T
SE / A YR _ YPPPdA, +E / BA(|Z0 — ZP2 + ||V — VP|2)ds
0 0

T
+E / ePAsd[M™ — MP],
0

T
< 9B [ SN YK - KD -E YD ALy - Y2
0

0<s<T
< 2FE sup (VP — & ) KP+2E sup (Y — &) KE.
0<t<T 0<t<T
By using the fact that
E sup M|V — &) P ———0 (A7)
0<t<T n—-+4o0o

we can conclude that

Y7 =Y n + 127 = 27 + V" = VP + 1M = Mgy

n,p——+00

Then (Y™, Z", V", M"),>¢ is a Cauchy sequence in Sg’A x Hj x L3 x M3. So,
there exists a quadruple (Y, Z,V, M) € SE’A X H% X /.Z% X M% such that

Y™ = ¥I2an + 127 = ZI + IV = VIZ3 + M7 = M3 ——>0.

n—-+oo

On the other hand, by Burkholder-Davis-Gundy’s inequality, we have

E [esssup e’ 47|V — YP|2| ——— 0
T€T(0,] n,p—+00
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Then, E [ess SUD €77, 1y ePAr |y — YT|2} — 0 with Y € Sg. Further, from the

equation (A.5), we have also

E |esssup |[K" — KP|?

7_67-[0,T] ] n,p—4o0o

Consequently, there exists a optional process K limit of K™ as n — +oo. It
remains to check the Skorokhod condition. We have just seen that the sequence
(Y™ K™) tends to (Y, K) uniformly in ¢ in probability with K = K* + A K with
ALKy = (Yip — &) 1iy,—¢,}). Then the measure dK™* tends to dK* weakly in
probability, hence

T T
/ (Y — &R — / (Vi — &)dK.
0 n—-+oo 0

We deduce from the equation (A.7) that fOT(Y;” — &)dK["" < 0, n € N, which
implies that fOT(Yt — &)dKy < 0. On the other hand, since Y; > &, we have
fOT(Y}—ft)th* > 0. Hence foT(Yt—&)th* = 0. Finally, by applying Corollary A.6,
one can derive that

T
IE/ eBAs
0

T
h
< C (EesssupezﬁA*fj_'F—l—]E/ efAs | 2222
0

T T
Y.[?dA, +E / M (1ZP + |[Vil3) ds + E / P4 d[M], + E|Kr|?
0 0

T€T0,1)

where C' is a positive constant. The proof is complete. [

Corollary A.4. The RBSDE with one upper reflecting barrier (, that is

T T T
Y; =(r —|—/ h(s)ds — Kr + Ky — / Z.dBs — / / Vi(e)i(ds, de)
t t t Ju

T
—/ dMs,
t

T
Y, < ¢ Vthamﬂ/(g,—n,mK:+§:@=4@A+Kf=ow&
0 t<T

admits a unique solution (Y,Z,V,M,K) € ‘B% X "H% X ﬁ% X ./\/l% x 8% and there
erists a positive constant C' such that

E less sup €47 |y, |2

T T
+E / P4 |V, |2dA, + E / e (1Z,2 + |[Va|13) ds
T€To,1) t t

i ds) . (A.8)

T
t

T
< C<E +E/ eBAs
0

h(s)

esssup e2P47 ¢ 2
as

T€7_[0,T]
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A.3. Ité’s formula for irreqular processes.

Theorem A.5. LetY be an adapted process with requlated trajectories such that

Yi=Y +> ALY, Vt<T,

s<t

where Y* is the cadlag part of the process Y and ), _, |A Y | < +00 a.s. Let F' be
a twice continuously differentiable function on R™. Then, almost surely, for each
ne€Nand allt >0,

F(Y3)

n t
= F(YO)+Z/ DFYF(Y,_)dY;* + =
k=170

2.

0<s<t

Z/DkDF [y R yehe

kl 1
+ Y [F(Yey) = F(YJ)],

0<s<t

F(Y)— F(Y, )~ 3 DAR(Y, )AY}
k=1

where D* denotes the differentiation operator with respect to the k-th coordinate,
and [.,.]¢ denotes the continuous part of the quadratic variation of corresponding
process.

Corollary A.6. LetY be an adapted process with regqulated trajectories and X be
a continuous process of finite variation. Then, almost surely, for allt > 0,

t t
F(X,,Y:) = F(Xo, Yo) + / Ox F(X.,Yy)ds + / Oy F(X,, Y, )dY?
0 0

1 t
+§/ OFF(Xo, Yo )d(Y*)o + Y [F(X,,Ys) = F(X,,Yeo) = Oy F(X,, Yoo )AY]
0

0<s<t

+ Y [F(X.,Yey) = P(X,, Y5)

0<s<t
where Oy is the partial derivative operator with respect to Y.

In what follows, we give a version of Tanaka’s formula of a strong optional
semimartingales which can be seen as an extension of theorem 66 page 210 in
Protter (2005)

Proposition A.7 (Tanaka’s formula). Let Y be an adapted process with requlated
trajectories and F : R — R be a convex function. Then, f(Y) is a strong optional
semimartingale. Moreover, denoting by F' the left-hand derivative of the convex
function F. Then, almost surely, for each n € N and all t > 0,

F(Y;) = F(Yp) /F’ )Y + A,

where A is a nondecreasing adapted process with requlated trajectories such that
Ad; = F(Y;) = F(Yio) = F'(Yi_)AY; and AvA; = F(Yiy) - F(Y).

Proof: See the proof of Lemma 9.1 in Grigorova et al. (2020). |
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