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Abstract. We consider a generic modified logarithmic Sobolev inequality (mLSI)
of the form Entµ(ef ) ≤ ρ

2 Eµ efΓ(f)2 for some difference operator Γ, and show how
it implies two-level concentration inequalities akin to the Hanson–Wright or Bern-
stein inequality. This can be applied to the continuous (e. g. the sphere or bounded
perturbations of product measures) as well as discrete setting (the symmetric group,
finite measures satisfying an approximate tensorization property, . . . ).

Moreover, we use modified logarithmic Sobolev inequalities on the symmetric
group Sn and for slices of the hypercube to prove Talagrand’s convex distance
inequality, and provide concentration inequalities for locally Lipschitz functions on
Sn. Some examples of known statistics are worked out, for which we obtain the
correct order of fluctuations, which is consistent with central limit theorems.

1. Introduction

Concentration and one-sided deviation inequalities have become an indispensable
tool of probability theory and its applications. A question that arises frequently
is to bound the fluctuations of a function f = f(X1, . . . , Xn) of many random
variables (or, equivalently, a function on a product space) around its mean, and
often times it is possible to prove sub-Gaussian tail decay of the form

P
(
f(X)− E f(X) ≥ t

)
≤ C exp

(
− t2

2K2

)
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for some C ≥ 1, K2 > 0 and all t ≥ 0. There are various ways to establish
sub-Gaussian estimates, such as the martingale method, the entropy method an
information-theoretic approach as well as Stein’s method, and we refer to the mono-
graph Boucheron et al. (2013) for further details.

On the other hand, in some situations it is not possible to prove sub-Gaussian
tails, and a suitable replacement might be Bernstein-type

P
(
f(X)− E f(X) ≥ t

)
≤ C exp

(
− t2

2(a+ bt)

)
or Hanson–Wright-type inequalities

P
(
f(X)− E f(X) ≥ t

)
≤ C exp

(
−min

( t2
a
,
t

b

))
.

As both inequalities show two different levels of tail decay (the Gaussian one for
t ≤ ab−1 and an exponential one for t > ab−1), we use the terminology of Adamczak
et al. (2017, 2019) and call inequalities of these type two-level deviation inequalities.
If a similar estimate holds for −f(X) as well, we refer to these as two-level con-
centration inequalities. For another approach to two-level concentration involving
Bernstein–Orlicz norms, see van de Geer and Lederer (2013).

The purpose of this note is to give a unified treatment of some of the existing
literature on two-level deviation and concentration inequalities by showing that
these are implied by a modified logarithmic Sobolev inequality (mLSI for short). We
prove a general theorem providing two-level deviation and concentration inequalities
in various frameworks. In particular, in Section 2, we get back and partially improve
a number of earlier results like Bobkov et al. (2017) and Götze and Sambale (2020).

We work in a general framework which was introduced in Bobkov and Götze
(1999). Consider a probability space (Ω,F , µ) and let Eµ f denote the expectation
of a random variable f with respect to µ. An operator Γ on a class A of bounded,
measurable functions is called a difference operator, if

(1) for all f ∈ A, Γ(f) is a non-negative measurable function,
(2) for all f ∈ A and a ≥ 0, b ∈ R we have af + b ∈ A and Γ(af + b) = aΓ(f).

At first reading, one can think of Γ(f) = |∇f | in the setting Ω = Rn. However, we
want to stress that we do not require Γ to satisfy a chain rule, and Γ does not need
to be an operator in the language of functional analysis.

We say that µ satisfies a Γ−mLSI(ρ) for some ρ > 0, if for all f ∈ A we have

Entµ(ef ) ≤ ρ

2
Eµ Γ(f)2ef , (1.1)

where Entµ(f) = Eµ f log f−Eµ f log(Eµ f) (f ≥ 0) is the entropy functional. This
functional inequality is well-known in the theory of concentration of measure and
has been used in various works, see Bobkov and Götze (1999) and the references
therein. It is well-known that if µ satisfies a Γ−mLSI(ρ), we have for any function
f ∈ A such that Γ(f) ≤ 1,

µ(f − Eµ f ≥ t) ≤ exp
(
− t2

2ρ

)
, (1.2)

which is a classical first order concentration of measure result yielding subgaussian
concentration (cf. (3.5)). It is not hard to see that the same holds for −f if
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Γ(af) = |a|Γ(f) for all a ∈ R. Furthermore, it is well-known that (1.1) implies a
Poincaré inequality

Varµ(f) ≤ ρEµ Γ(f)2,

which in particular yields variance bounds for any f ∈ A.
Our first goal is to establish second order analogues of (1.2).

1.1. Two-level concentration inequalities. Our first set of results are two-level devi-
ation inequalities for probability measures satisfying a modified logarithmic Sobolev
inequality.

Theorem 1.1. Assume that µ satisfies a Γ−mLSI(ρ) for some difference operator
Γ and ρ > 0. Let f, g : Ω→ R be two measurable functions such that Γ(f) ≤ g and
g is sub-Gaussian, i. e. for some c > 0, C ≥ 1, K > 0 and for all t ≥ 0

µ(g ≥ c+ t) ≤ C exp
(
− t2

2K2

)
. (1.3)

Then for all t ≥ 0 it holds

µ
(
f − Eµ f ≥ t

)
≤ 4C

3
exp

(
− 1

8
min

( t2
ρc2

,
t
√
ρK

))
. (1.4)

If moreover Γ(af) = |a|Γ(f) for all a ∈ R, we have

µ
(
|f − Eµ f | ≥ t

)
≤ 2C exp

(
− 1

12
min

( t2
ρc2

,
t
√
ρK

))
. (1.5)

By elementary means (cf. (3.1)), the constant 4C/3 can be replaced by any
C ′ > 1 (at the cost of worsening the constant in the exponential). It is also
possible to modify our proofs in order to apply Klochkov and Zhivotovskiy (2020,
Lemma 1.3), which leads to an inequality of the form

µ
(
f − Eµ f ≥ t

)
≤ exp

(
− cmin

( t2

ρ(Eµ g)2 + 2b2ρ2
,

t√
2ρb

))
for some absolute constant c (the same one as in Klochkov and Zhivotovskiy, 2020).
However, this is at the cost of a weaker denominator in the Gaussian term as
compared to (1.4), and so we choose to present it in the form of Theorem 1.1.

One possible way to show sub-Gaussian concentration for g in presence of a
Γ−mLSI(ρ) is by the Herbst argument. This leads to the following corollary.

Corollary 1.2. Assume that µ satisfies a Γ−mLSI(ρ) for some difference operator
Γ and ρ > 0. Let f, g be two measurable functions such that Γ(f) ≤ g and Γ(g) ≤ b.
Then for all t ≥ 0 we have

µ
(
f − Eµ f ≥ t

)
≤ 4

3
exp

(
− 1

8ρ
min

( t2

(Eµ g)2
,
t

b

))
.

If, again, Γ(af) = |a|Γ(f) for all a ∈ R, then the same bound holds for −f .

If the difference operator Γ satisfies a chain rule-type condition, we obtain the
following result, especially improving some of the constants above:
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Proposition 1.3. Assume that µ satisfies a Γ−mLSI(ρ) for some ρ > 0 and some
difference operator Γ which satisfies Γ(g2) ≤ 2gΓ(g) for all positive functions g. Let
f ∈ A be such that Γ(f) ≤ g and Γ(g) ≤ b. For any t ≥ 0 it holds

µ(f − Eµ f ≥ t) ≤ exp
(
− 1

4ρ
min

( t2

2Eµ g2
,
t

b

))
.

If Γ satisfies Γ(g2) ≤ 2|g|Γ(g) for any g ∈ A, the same bound holds for −f .

We will see a number of examples of such difference operators all along this paper.
Obviously, one example is the usual gradient, but also many difference operators
involving a positive part satisfy the property in question.

In all the above results, a possible choice of g is usually given by g = Γ(f),
resulting in Eµ Γ(f) in the denominator of the Gaussian term. In this case, the
second condition reads as Γ(Γ(f)) ≤ b, which can be understood as a condition on
an iterated (and thus second order) difference of f .

In fact, Theorem 1.1 can be understood as a Bernstein-type concentration in-
equality. Indeed, it is easy to see that for all a, b > 0 and t ≥ 0 we have

t2

a2 + bt
≤ min

( t2
a2
,
t

b

)
≤ 2t2

a2 + bt
.

In particular, in the situation of Theorem 1.1, for all t ≥ 0 we have

µ
(
f − Eµ f ≥ t

)
≤ 4C

3
exp

(
− t2

8(ρc2 +
√
ρKt)

)
.

If Γ(af) = |a|Γ(f) for all a ∈ R, the same bound holds with f replaced by −f .
Let us remark that the use of modified LSIs allows us to prove results for some

classes of measures we could not address in previous work (e. g. Götze et al., 2020),
e. g. weakly dependent measures which might not have a finite number of atoms.
Note also that whenever we have a concentration bound like (1.5), it is possible to
derive variance estimates by using that Varµ(f) =

∫∞
0
µ(|f − Eµ(f)| ≥

√
t)dt.

Next, we show similar deviation inequalities for an important class of functions,
namely self-bounded functions. In our framework, for a difference operator Γ we
say that f ≥ 0 is a Γ− (a, b)−self-bounded function, if

Γ(f)2 ≤ af + b

for some constants a, b ≥ 0. For a product measure µ, there are various sources
that provide deviation or concentration inequalities for self-bounded functions, see
e. g. Boucheron et al. (2000, Theorem 2.1), Rio (2001, Théorème 3.1), Boucheron
et al. (2003, Theorem 5), Boucheron et al. (2005, Corollary 1), Chatterjee (2005,
Theorem 3.9), McDiarmid and Reed (2006, Theorem 1) and Boucheron et al. (2009,
Theorem 1). As many of the proofs rely on the entropy method, it is not hard to
adapt them to obtain Bernstein-type deviation inequalities only requiring an mLSI,
which includes many more types of measures also allowing for dependencies:

Proposition 1.4. Assume that µ satisfies a Γ−mLSI(ρ) and let f ≥ 0 be a Γ −
(a, b)−self-bounded function. Then for all t ≥ 0 we have

µ
(
f − Eµ f ≥ t

)
≤ exp

(
− t2

2ρ(2aEµ f + 2b+ 1
3at)

)
.
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If, additionally, Γ(λf) = |λ|Γ(f) for all λ ∈ R, then for all t ∈ [0,Eµ f ] it holds

µ
(
Eµ f − f ≥ t

)
≤ exp

(
− t2

2ρ(2aEµ f + 2b+ 1
3at)

)
.

As we show in Proposition 2.18, product measures always satisfy an mLSI with
respect to a certain L2-type difference operator, which was also used in the works
mentioned above. This is a well-known fact and was first proven in Massart (2000).

1.2. The symmetric group. One example we especially discuss in this note is the
symmetric group Sn equipped with the uniform measure. To this end, we need
some notations. We write the group operation on Sn as τσ for τ, σ ∈ Sn, and
denote by τij the transposition of i and j. We define two difference operators (on
A = L∞(πn) = RSn) via

Γ(f)(σ)2 =
1

n

n∑
i,j=1

(f(σ)− f(στij))
2,

Γ+(f)(σ)2 =
1

n

n∑
i,j=1

(f(σ)− f(στij))
2
+.

For our results, we will need that the symmetric group satisfies modified log-
arithmic Sobolev inequalities with respect to the two difference operators defined
above:

Proposition 1.5. Let (Sn, πn) be the symmetric group equipped with the uniform
measure. Then a Γ−mLSI(1) and a Γ+−mLSI(2) hold.

To formulate our next result, let us recall the notion of observable diameter. In
the context of Sn equipped with any metric d, we define it by

ObsDiam(Sn, d) := max
σ∈Sn

n−1
∑
i,j

d(σ, στij)
2.

For some metrics, this expression can be simplified. We say that a metric is right
invariant, if for any π, σ, τ ∈ Sn we have d(π, σ) = d(πτ, στ), and left invariant if
d(π, σ) = d(τπ, τσ). It is bi-invariant, if it is right and left invariant. Assuming
that d is left (or right) invariant, we have

ObsDiam(Sn, d) = n−1
∑
i,j

d(id, τij)
2.

We call a function f : Sn → R locally Lipschitz with respect to d, if for all σ ∈ Sn
and i, j ∈ {1, . . . , n} we have |f(σ)− f(στij)| ≤ d(σ, στij).

Theorem 1.6. Let (Sn, d) be the symmetric group equipped with a metric d and
πn be the uniform distribution on Sn. Assume that f : Sn → R is locally Lipschitz
with respect to d. For all t ≥ 0 it holds

πn(|f − Eπn f | ≥ t) ≤ 2 exp
(
− t2

2ObsDiam(Sn, d)

)
. (1.6)

As a consequence, we have

Varπn(f) ≤ 4ObsDiam(Sn, d).
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For example, Theorem 1.6 can easily recover concentration inequalities for locally
Lipschitz functions with respect to the normalized Hamming distance dH(σ, π) =
n−1

∑n
i=1 1σ(i)6=π(i). In this case, ObsDiam(Sn, dH) ≤ 4. We work out further

examples in Subsection 2.1.
Finally, we give a proof of Talagrand’s famous concentration inequality for the

convex distance for random permutations by similar means as used in the proofs
of the upper results. To this end, recall that for any measurable space Ω and any
ω = (ω1, . . . , ωn) ∈ Ωn, we may define the convex distance of ω to some measurable
set A ⊂ Ωn by

dT (ω,A) := sup
α∈Rn:|α|2=1

dα(ω,A),

where

dα(ω,A) := inf
ω′∈A

dα(ω, ω′) := inf
ω′∈A

n∑
i=1

|αi|1ωi 6=ω′i .

Proposition 1.7. For any A ⊆ Sn it holds

πn(A)Eπn exp
(dT (·, A)2

144

)
≤ 1. (1.7)

As compared to Talagrand’s original formulation (see Talagrand, 1995, Theorem
5.1), (1.7) has a weaker absolute constant 144 instead of 16. It is possible to improve
our own constant a bit by invoking slightly more subtle estimates but we do not
seem to arrive at 16. For product measures, an inequality similar to (1.7) was
deduced in Talagrand (1995), a form of which with a weaker constant was proven
in Boucheron et al. (2009) with the help of the entropy method. This was extended
to weakly dependent random variables in Paulin (2014). However, it does not seem
possible to adjust the method therein to the case of the symmetric group, and so
we are not aware of any proof of either of the inequalities for the symmetric group
using the entropy method. In Samson (2017) the author has proven the convex
distance inequality for the symmetric group using weak transport inequalities.

It is possible to prove a weaker version of (1.7) with a somewhat better constant:

Proposition 1.8. Let Sn be the symmetric group and πn be the uniform distribu-
tion on Sn. For any set A ⊆ Sn with πn(A) ≥ 1/2 and all t ≥ 0 we have

πn(dT (·, A) ≥ t) ≤ 2 exp
(
− t2

64

)
. (1.8)

In fact, (1.7) implies (1.8) with a constant of 144 instead of 64.

1.3. Slices of the hypercube. Finally, let us discuss another model for which we
are able to prove a convex distance inequality similar to (1.7). Given two natural
numbers n, r such that r ≤ n, consider the corresponding slice of the hypercube
Cn,r := {η ∈ {0, 1}n :

∑
i ηi = r}, and denote by µn,r the uniform measure on Cn,r.

On Cn,r, we define the difference operators

Γ(f)(η)2 =
2

n

∑
i<j

(f(η)− f(τijη))2 =
2

n

n∑
i,j=1

ηi(1− ηj)(f(η)− f(τijη))2,

Γ+(f)(σ)2 =
2

n

∑
i<j

(f(η)− f(τijη))2
+ =

2

n

n∑
i,j=1

ηi(1− ηj)(f(η)− f(τijη))2
+.
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Here, τijη switches the i-th and the j-th coordinate of the configuration η. Up to
the scaling of 2/n, Γ(f)2 is the generator of the so-called Bernoulli–Laplace model.

As in the previous section, a modified logarithmic Sobolev inequality holds:

Proposition 1.9. For (Cn,r, µn,r) as above, a Γ−mLSI(1) and a Γ+−mLSI(2)
hold.

Using this, we may establish a convex distance inequality by means of the entropy
method again:

Proposition 1.10. For any A ⊆ Cn,r it holds

µn,r(A)Eµn,r exp
(dT (·, A)2

544

)
≤ 1.

1.4. Outline. In Section 2 we provide various applications and concentration in-
equalities. This includes examples of functions on the symmetric group (Sec-
tion 2.1), concentration inequalities for multilinear polynomials in [0, 1]-valued
random variables (Section 2.2), as well as consequences of Theorem 1.1 for the
Euclidean sphere and measures on Rn satisfying a logarithmic Sobolev inequality
(Section 2.3) and for probability measures (on general spaces) satisfying an mLSI
with respect to some “L2 difference operator” (see Section 2.4). Moreover, in Sec-
tion 2.5 we recover and extend the classical Bernstein inequality for independent
random variables (up to constants).

Section 3 contains all the proofs, both of the results mentioned in this section as
well as in Section 2.

2. Applications

Let us now describe various situations which give rise to mLSIs with respect to
“natural” difference operators, and show some consequences of the main results.

2.1. Symmetric group. The aim of this subsection is to show how the results from
Section 1 can be used to easily obtain concentration inequalities for functions on
the symmetric group. In particular, we calculate many examples of statistics for
which central limit theorems were proven, and show that the variance proxy of the
sub-Gaussian estimate and the true variance agree (up to a constant independent
of the dimension). This provides non-asymptotic concentration results, which are
consistent with the limit theorems.

First, let us introduce the following natural metrics on Sn:

H(π, σ) =

n∑
i=1

1π(i) 6=σ(i)

D(π, σ) =

n∑
i=1

|π(i)− σ(i)|

S(π, σ) =
( n∑
i=1

|π(i)− σ(i)|2
)1/2

I(π, σ) = min{k ≥ 0 : ∃k adjacent transpositions from σ−1 to π−1}.

Table 2.1 collects some basic properties of H, D, S2 and I.
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function d invariance mean E d(id, ·) Var(d(id, ·)) limit theorem

H bi-invariant n− 1 1 n−H ⇒ Poi(1)

D right invariant n2−1
3

(n+1)(2n2+7)
45 CLT

S2 right invariant n(n2−1)
6

n2(n−1)(n+1)2

36 CLT

I right invariant n(n−1)
4

n(n−1)(2n+5)
72 CLT

Table 2.1. Invariance and probabilistic properties of the four
functions H (Hamming distance), D (Spearman’s footrule), S2

(Spearman’s rank correlation) and I (Kendall’s τ). This table has
been extracted from information in Diaconis (1988, Chapter 6).

Example 2.1. In this example, we calculate the observable diameters of the metrics
on the symmetric group introduced above. By Theorem 1.6, this yields concentra-
tion properties for (locally) Lipschitz functions.

(1) For the Hamming distance H it is clear that H(σ, στij) = 2, which implies
ObsDiam(Sn, H) = 4(n − 1). So, Theorem 1.6 recovers a concentration
result from Maurey (1979).

The resulting variance estimate is not always sharp; for example, if we
consider the function H(·, id), the variance is 1 and not of order n. On the
other hand, the function G = n − H(id, ·) is a locally Lipschitz function
with respect to H, which converges weakly to a Poisson random variable.
As a consequence, there cannot be an n-independent sub-Gaussian estimate
in the class of all locally Lipschitz functions.

(2) If we define for p ∈ [1,∞) a distance dp on Sn by the induced `p norm

dp(σ, π) =
( n∑
k=1

|σ(k)− π(k)|p
) 1
p

,

this yields dp(σ, στij) = 21/p|σ(i)− σ(j)|. Consequently, recalling that∑
i 6=j

(σ(i)− σ(j))2 =
n2(n2 − 1)

6

for any σ ∈ Sn, we have

ObsDiam(Sn, dp) =
22/p

6
n(n2 − 1).

The case p = 1 gives Spearman’s footrule and p = 2 Spearman’s rank
correlation.

(3) Considering Kendall’s τ , we can readily see that for two indices i, j and any
σ ∈ Sn it holds I(σ, στij) ≤ 2|σ(i) − σ(j)|, since τijσ−1 can be brought to
σ−1 by first taking σ−1(i) to its place, and then σ−1(j). So, as above, this
leads to

ObsDiam(Sn, I) ≤ 2

3
n(n2 − 1).

(4) In a more general setting, let ρ : Sn → GL(V ) be a faithful, unitary repre-
sentation of Sn and let ‖·‖ be a unitarily invariant norm on GL(V ). Then
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dρ(σ, τ) := ‖ρ(σ) − ρ(τ)‖ defines a bi-invariant metric on Sn, and in this
case we have

ObsDiam(Sn, dρ) = n−1
∑
i,j

‖Id− ρ(τij)‖.

Example 2.2. Define the random variable f(σ) = S2(σ, id) =
∑n
i=1(σ(i)− i)2. We

have

Γ(f)2(σ) = n−1
n∑

i,j=1

(f(σ)− f(στij))
2 = 4n−1

n∑
i,j=1

(σ(i)− σ(j))2(i− j)2.

If we define the matrix A(σ) = (aij(σ))i,j via aij(σ) = (σ(i) − σ(j))(i − j), then
the right hand side is (up to the factor 4n−1) the squared Hilbert–Schmidt norm of
A(σ). It is clear that |A(σ)|HS = |A(σ−1)|HS, and one can also easily see that it is
invariant under right multiplication with any transposition τkl. As any permutation
can be written as a product of transpositions, we can evaluate it at the identity
element. Consequently,

Γ(f)2(σ) = 4n−1
n∑

i,j=1

(i− j)4 ≤ 4

15
n5.

Using (1.2), this leads to the concentration inequality

πn(|f − Eπn f | ≥ t) ≤ 2 exp
(
− 15t2

8n5

)
.

Actually, the term n5 is natural, as the variance of f is of order n5 (see the table
above). Incorporating the variance of f into the inequality above leads to

πn(|f − Eπn f | ≥ Var(f)1/2t) ≤ 2 exp
(
− t2

19.2

)
,

which yields the correct tail behavior.

Example 2.3. Let us consider the 1-Lipschitz function f(σ) = I(σ, id). For any
t ≥ 0 we have by (1.6), Varπn(f) = n(n− 1)(2n+ 5)/72 and Example 2.1 (3)

πn(|f − Eπn f | ≥ Varπn(f)1/2t) ≤ 2 exp
(
− t2

48

)
,

which is consistent with the central limit theorem for f .

Example 2.4. We define the number of ascents f(σ) =
∑n−1
j=1 1σ(j+1)>σ(j). It can

be easily shown that for any i 6= j the number of ascents is not sensitive to
transpositions in the sense that |f(σ) − f(στij)| ≤ 2. Consequently, this leads
to Γ(f)2 ≤ 4(n− 1), implying the concentration inequality

πn(|f − Eπn f | ≥ t) ≤ 2 exp
(
− t2

8(n− 1)

)
,

again using (1.2). Alternatively, this also follows from Example 2.1 (1). Again,
the variance term of order

√
n is of the right order, as in Carlitz et al. (1972)

the authors have shown a central limit theorem for the number of ascents. More
precisely, the sequence gn = (f − Eπn f)/(

√
(n+ 1)/12) converges to a standard

normal distribution. The above calculations lead to

πn(|gn| ≥ t) ≤ 2 exp
(
− t2

96

)
.
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Example 2.5. A closely related statistic is given by the sum of the ascents defined
as f(σ) =

∑n−1
j=1 (σi+1 − σi)+. A short calculation shows

Γ(f)2 = n−1
∑
i 6=j

(f(σ)− f(στij))
2 ≤ 4(n− 1)2n−1

∑
i 6=j

= 4(n− 1)3.

Indeed, if we let ∆i,j := (σ(i)− σ(j))+, then

(f(σ)− f(στij))
2

= (∆i,i−1 + ∆i+1,i + ∆j,j−1 + ∆j+1,j −∆j,i−1 −∆i+1,j −∆i,j−1 −∆j+1,i)
2

≤ max
(

∆i,i−1 + ∆i+1,i + ∆j,j−1 + ∆j+1,j ,∆j,i−1 + ∆i+1,j + ∆i,j−1 + ∆j+1,i

)2

.

Now each of the terms ∆i,i+1 + ∆i+1,i, ∆j,j−1 + ∆j+1,j is less than (n − 1), and
the same holds true for the two other sums. Therefore this yields

πn(|f − Eπn f | ≥ t) ≤ 2 exp
(
− t2

8(n− 1)3

)
.

Clark (2009) has calculated the variance of the sum of ascents, and it is of order
n3, which is in good accordance with the concentration inequality (again, up to the
factor).

Example 2.6. Given a matrix a = (aij) of real numbers satisfying aij ∈ [0, 1],
define f(σ) =

∑n
i=1 ai,σ(i). By elementary computations one can show Γ(f)2 ≤

4f + 4Eπn f , i. e. f is self-bounding. As a consequence, Proposition 1.4 leads to

πn
(
|f − Eπn f | ≥ t

)
≤ 2 exp

(
− t2

32Eπn f + 8t/3

)
.

Concentration inequalities for f have been proven using the exchangeable pair
approach in Chatterjee (2005, Proposition 3.10) (see also Chatterjee, 2007, Theo-
rem 1.1), with the denominator being 4Eπn f + 2t.

For example, if a is the identity matrix, f is the number of fixed points of a
random permutation, which satisfies Eπn f = 1 for all n ∈ N. In this case, f
converges to a Poisson distribution with mean 1 as n → ∞ (see e. g. Diaconis,
1988).

Example 2.7. Finally, consider the random variable f(σ) = g(σ) + g(σ−1), where
g(σ) =

∑n−1
i=1 1σ(i+1)>σ(i) is the number of descents. In Chatterjee and Diaconis

(2017) the authors calculated the expectation and variance of f and proved a central
limit theorem. As in the above example one can easily see that Γ(g)2 ≤ 4(n − 1),
as well as Γ(g ◦ inv)2 ≤ 4(n − 1), where inv : Sn → Sn denotes the inverse map.
Since Γ(h1 + h2)2 ≤ 2Γ(h1)2 + 2Γ(h2)2 holds true for any functions h1, h2, we also
have Γ(f)2 ≤ 16(n− 1), implying for any t ≥ 0

πn(|f − E f | ≥ t) ≤ 2 exp
(
− t2

32(n− 1)

)
.

Again, the variance is of order
√
n, so that it is consistent with the CLT.
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2.2. Multilinear polynomials in [0, 1]-random variables. The aim of this section is
to show Bernstein-type concentration inequalities for a class of polynomials in in-
dependent random variables with values in [0, 1]. The functions we consider are
constructed as follows: Let H = (V,E, (we)e∈E) be a weighted hypergraph, such
that every e ∈ E consists of at most k vertices, assume that (Xv)v∈V are indepen-
dent, [0, 1]-valued random variables, and set

f(X) = f((Xv)v∈V ) =
∑
e∈E

we
∏
v∈e

Xv =
∑
e∈E

weXe. (2.1)

Define the maximum first order partial derivative ML(f) as

ML(f) := sup
v∈V

sup
x∈[0,1]V

∂vf(x). (2.2)

Proposition 2.8. Let (Xv)v∈V be independent, [0, 1]-valued random variables and
f : [0, 1]V → R given as in (2.1). Assume that we ≥ 0 and |e| ≤ k for all e ∈ E.
We have for any t ≥ 0

P(f(X)− E f(X) ≥ t) ≤ exp
(
− t2

2kML(f)(E f(X) + t/2)

)
. (2.3)

Furthermore, for t ∈ [0,E f ] it holds

P(E f(X)− f(X) ≥ t) ≤ exp
(
− t2

2kML(f)

)
.

A slight modification of the proof of Proposition 2.8 also allows to prove deviation
inequalities for suprema of such homogeneous polynomials. For example, this can
be used to prove the following concentration inequalities for maxima or lp norms
of linear forms.

Proposition 2.9. Let (Xv)v∈V be independent, [0, 1]-valued random variables, F ⊂
{a ∈ RV : ai ∈ [0, 1]n} and define fF (X) := supa∈F

∑
i∈V aiXi. For any t ≥ 0 we

have

P(fF (X)− E fF (X) ≥ t) ≤ exp
(
− t2

2 supa∈F‖a‖∞(E fF (X) + t/2)

)
.

In particular, for any p ∈ [1,∞] it holds

P(‖X‖p − E‖X‖p ≥ t) ≤ exp
(
− t2

2(E‖X‖p + t/2)

)
. (2.4)

Note that we may also derive inequalities similar to (2.4) by convex concentration
as first established in Talagrand (1988). Indeed, it is easy to see that the function
x 7→ ‖x‖p has Lipschitz seminorm max(1, |V |1/p−1/2) (for p < 2, this follows from
Hölder’s inequality for the uniform measure on V , while the case p ≥ 2 is trivial).
Therefore, applying Ledoux (1995/97, Corollary 1.3), we arrive at the bound

P(‖X‖p − E‖X‖p ≥ t) ≤ exp
(
− t2

2 max(1, |V |2/p−1)

)
,

which is weaker than (2.4) if 0 ≤ t ≤ 2(max(1, |V |2/p−1)− E‖X‖p).
One possible application of Proposition 2.8 is to understand the finite n concen-

tration properties of the so-called d-runs on the line.
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Proposition 2.10. Let d ∈ N, n > d, (Xi)i=1,...,n be independent, identically dis-
tributed random variables with values in [0, 1] and mean η := EX1 > 0. Define the
random variable fd(X) :=

∑n
i=1Xi · · ·Xi+d−1, where the indices are to be under-

stood modulo n. For any t ≥ 0 it holds

P
(
fd(X)− E fd(X) ≥

√
nηdt

)
≤ 2 exp

(
− t2

2d2(1 + t/
√
nηd)

)
. (2.5)

In Reinert and Röllin (2009, Theorem 4.1), the authors prove a CLT for the
d-runs on the line for Bernoulli random variables Xi with success probability p,
by normalizing f by n−1/2p−d/2. This is also the reason for the choice n1/2ηd/2t
in inequality (2.5). In other words, under the assumption nηd → ∞ as n →
∞, Proposition 2.10 yields sub-Gaussian tails for n−1/2η−d/2f . This is in good
accordance with the aforementioned CLT.

Moreover, note that in this example, our methodology leads to better results
than the usual bounded difference inequality. Indeed, the latter only yields

P(|fd(X)− E fd(X)| ≥ t) ≤ 2 exp
(
− 2t2

nd2

)
,

suggesting an (inaccurate) normalization of f(X) by n−1/2.

Example 2.11. If (Xv)v∈E(Kn) is the Erdös–Rényi model with parameter p, for any
fixed graph H with |V | vertices and |E| edges, the subgraph counting statistic TH
can be written in the form (2.1) with we = 1, and k = |E|. Furthermore, it is easy
to see that ML(f) ≤ n∆−1 for the maximum degree ∆, so that Proposition 2.8
yields

P(TH(X)− ETH(X) ≥ εETH(X)) ≤ exp
(
− Ck,εn|V |−∆+1p|E|

)
.

For example, this gives nontrivial bounds in the triangle case whenever n2p3 →∞
as n→∞. This bound is suboptimal, as the optimal decay is known to be np→∞,
see Chatterjee (2012); DeMarco and Kahn (2012). However, it is better than the
bound obtained by the bounded differences inequality. In general, if we consider
subgraph counting statistics for some subgraph H with v vertices and e edges on
an Erdös–Rényi model (Xv)v∈E(Kn), the bounded difference inequality yields the
estimate

P(f(X)− E f(X) ≥ εE f(X)) ≤ exp
(
− Cε,H

n2|V |p2|E|

n2n2∆−2

)
.

Thus, to obtain non-trivial estimates in the limit n → ∞, one has to assume that
n|V |−∆p|E| → ∞. With the above inequality, this can be weakened to
n|V |−∆+1p|E| →∞.

2.3. Derivations. If Γ satisfies the chain rule, i. e. for all differentiable u : R → R
and f ∈ A such that u ◦ f ∈ A we have Γ(u ◦ f) = |u′ ◦ f |Γ(f), then (1.1) is
equivalent to the usual logarithmic Sobolev inequality (in short: Γ−LSI(ρ))

Entµ(f2) ≤ 2ρEµ Γ(f)2.

Using this, one can derive second order concentration inequalities similar to the ones
given in Bobkov et al. (2017) from Proposition 1.3. Let Sn−1 := {x ∈ Rn : |x| = 1}



Modified log-Sobolev inequalities and two-level concentration 867

be the unit sphere equipped with the uniform measure σn−1. It is known that for
ρn := (n− 1)−1

Entσn−1
(ef ) ≤ ρn

2
Eσn−1

|∇Sf |2ef (2.6)

holds for all Lipschitz functions f and the spherical gradient ∇Sf (see Bobkov
et al. (2017, Formula (3.1)) for the logarithmic Sobolev inequality, from which the
modified one follows as above). To state our next result, we introduce the following
notation (which we will stick to for the rest of this paper): if A is an n× n matrix,
we denote by ‖A‖HS its Hilbert–Schmidt and by ‖A‖op its operator norm.

Proposition 2.12. Consider Sn−1 equipped with the uniform measure σn−1 and
let f : Sn−1 → R be a C2 function satisfying supθ∈Sn−1‖f ′′S (θ)‖op ≤ 1. For any
t ≥ 0

σn−1

(
|f − Eσn−1

f | ≥ t
)
≤ 2 exp

(
− 1

4ρn
min

( t2

2Eσn−1
|∇Sf |2

, t
))
.

This follows immediately from Proposition 1.3 and the inequality |∇S |∇Sf || ≤
‖f ′′S‖op proven in Bobkov et al. (2017, Lemma 3.1). Now, if f is C2 and orthogonal
to all affine functions (in L2(σn−1)), Bobkov et al. (2017, Proposition 5.1) shows
Eσn−1

|∇Sf |2 ≤ ρn Eσn−1
‖f ′′S‖2HS. So, if we additionally have Eσn−1

‖f ′′‖2HS ≤ b2, the
estimate

σn−1

(
(n− 1)|f − Eσn−1 f | ≥ t

)
≤ 2 exp

(
− 1

4
min

( t2
2b2

, t
))

(2.7)

follows.
In a similar manner, one may address open subsets of Rn equipped with some

probability measure µ satisfying a logarithmic Sobolev inequality (with respect to
the usual gradient ∇). This situation has been sketched in Bobkov et al. (2017,
Remark 5.3) and was discussed in more detail in Götze and Sambale (2020). Here
we easily obtain the following result:

Proposition 2.13. Let G ⊆ Rn be an open set, equipped with a probability measure
µ which satisfies a ∇−LSI(ρ), and let f : G → R be a C2 function satisfying
supx∈G‖f ′′(x)‖op ≤ 1. For any t ≥ 0

µ
(
|f − Eµ f | ≥ t

)
≤ 2 exp

(
− 1

4ρ
min

( t2

2Eµ|∇f |2
, t
))
.

For the proof it only remains to note that |∇|∇f || ≤ ‖f ′′‖op, cf. Götze and
Sambale (2020, Lemma 7.2). As above, if we require the first order partial deriva-
tives ∂if to be centered (which translates into orthogonality to linear functions
if µ is the standard Gaussian measure, for instance), a simple application of the
Poincaré inequality yields Eµ|∇f |2 ≤ ρEµ‖f ′′‖2HS. In particular, we have the fol-
lowing corollary which immediately follows from Proposition 1.3 and the Poincaré
inequality.

Corollary 2.14. Let G ⊆ Rn be an open set, equipped with a probability measure
µ satisfying a ∇−LSI(ρ), and f : G→ R be a C2 function with

sup
x∈supp(µ)

‖f ′′(x)‖op ≤ b and
∫
‖f ′′(x)‖2HSdµ(x) ≤ a2.
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For any t ≥ 0 we have

µ
(
|f(x)− Eµ f(x)− 〈x− Eµ(x),Eµ∇f(x)〉| ≥ t

)
≤ 2 exp

(
− 1

4
min

( t2

2ρ2a2
,
t

ρb

))
.

Thus, if we recenter a function and its derivatives, the two conditions on the
Hessian ensure two-level concentration inequalities. For functions f(X,Y ) of inde-
pendent Gaussian vectors, two-level concentration inequalities have been studied
in Wolff (2013) using the Hoeffding decomposition instead of a recentering of the
partial derivatives.

Note that (2.7) and Corollary 2.14 do not only recover Bobkov et al. (2017,
Theorem 1.1) and Götze and Sambale (2020, Theorem 1.4), but even strengthen
these results by providing two-level bounds. To illustrate this, we discuss one of
the examples from Götze and Sambale (2020) in more detail.

Example 2.15 (Eigenvalues of Wigner matrices). Let {ξjk, 1 ≤ j ≤ k ≤ N} be a
family of independent real-valued random variables whose distributions all satisfy
a ∇−LSI(ρ) for a fixed ρ > 0. Putting ξjk = ξkj for 1 ≤ k < j ≤ N , we define
the random matrix Ξ = (ξjk/

√
N)1≤j,k≤N . Then, by a simple argument using the

Hoffman–Wielandt theorem, the joint distribution µ(N) = µ of its ordered eigen-
values λ1 ≤ . . . ≤ λN on RN (in fact, λ1 < . . . < λN a.s.) satisfies a ∇−LSI(ρN )
with constant ρN = 2ρ/N (see for instance Anderson et al., 2010, Theorem 2.3.5).

Now consider a C2-smooth function g : R2 → R with first order (partial) deriva-
tives in L1(µ) and second order derivatives bounded by some constant γ. Consider-
ing a quadratic statistic

∑
j 6=k g(λj , λk) and recentering according to Corollary 2.14,

we shall study

QN :=
∑
j 6=k

g(λj , λk)−
∑
j 6=k

µ[g(λj , λk)]

−
N∑
i=1

( ∑
k:k 6=i

(µ[gx(λi, λk)] + µ[gy(λk, λi)])
)
(λi − µ[λi]),

where gx, gy denote partial derivatives. For instance, if g(x, y) := xy, we have
QN =

∑
j 6=k(λj−µ[λj ])(λk−µ[λk]). Simple calculations show that ‖Q′′N‖op ≤ cγN

as well as
∫
‖QN‖2HSdµ ≤ cγ2N3. Here, by c > 0 we denote suitable absolute

constants which may vary from line to line. Following Götze and Sambale (2020,
Proposition 8.5), this leads to the exponential moment bound∫

exp

(
c

ργN1/2
|QN |

)
dµ ≤ 2.

By Chebyshev’s inequality, µ(|QN | ≥ t) ≤ 2 exp(−ct/(ργN1/2)) for all t ≥ 0, thus
yielding subexponential fluctuations of order OP (N1/2).

By contrast, Corollary 2.14 leads to

µ(|QN | ≥ t) ≤ 2 exp
(
− cmin

( t2

ρ2γ2N
,
t

ργ

))
,

which is much better for large t. In particular, the fluctuations in the subexponen-
tial regime are of order OP (1) now. This can be interpreted as an extension of the
self-normalizing property of linear eigenvalue statistics to a second order situation
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on the level of fluctuations (cf. the discussion of Götze and Sambale, 2020, Propo-
sition 8.5). Note that in Götze and Sambale (2020), a comparable result could be
achieved for the special case of g(x, y) := xy only.

2.4. Weakly dependent measures. To continue the discussion of the previous section
for a larger class of measures, we will now consider applications of Theorem 1.1
for functions of weakly dependent random variables (which, in our case, essentially
means that a certain mLSI with respect to a suitable difference operator is satisfied).
Throughout this section, we shall consider probability measures µ on a product of
Polish spaces X = ⊗ni=1Xi. For a vector x = (xi)i∈I and j ∈ I we let xic =
(xj)j∈I\{i}, and for y ∈ R we write y+ = max(y, 0). Now we define difference
operators on L∞(µ) via

|df |(x) =
( n∑
i=1

∫
(f(x)− f(xic , x

′
i))

2dµ(x′i | xic)
)1/2

,

|d+f |(x) =
( n∑
i=1

∫
(f(x)− f(xic , x

′
i))

2
+dµ(x′i | xic)

)1/2

,

|hf |(x) =
( n∑
i=1

sup
xi,x′i

(f(x)− f(xic , x
′
i))

2
)1/2

,

|h+f |(x) =
( n∑
i=1

sup
x′i

(f(x)− f(xic , x
′
i))

2
+

)1/2

.

Here, the suprema over x′i (and xi) are to be understood with respect to the support
of µ. Clearly, |df | ≤ |hf | and |d+f | ≤ |h+f |. Moreover, we need a second order
version of the difference operator h. To this end, for any i 6= j, define

hijf(x) = sup
xi,x′i,xj ,x

′
j

|f(x)− f(xic , x
′
i)− f(xjc , x

′
j)− f(x{i,j}c , x

′
i, x
′
j)|

and let h(2)f(x) be the matrix (“Hessian”) with zero diagonal and entries hijf(x)
on the off-diagonal.

We now have the following second order result in presence of a d−mLSI:

Proposition 2.16. Let µ be a probability measure on a product of Polish spaces
X = ⊗ni=1Xi satisfying a d−mLSI(σ2), and let f : X → R be a bounded measurable
function. If |d+|df || ≤ b, we have for any t ≥ 0

µ
(
|f − Eµ f | ≥ t

)
≤ 2 exp

(
− 1

12σ2
min

( t2

(Eµ|df |)2
,
t

2b

))
. (2.8)

On the other hand, if ‖h(2)f‖op ≤ b for all x ∈ X , we have for all t ≥ 0

µ
(
|f − Eµ f | ≥ t

)
≤ 2 exp

(
− 1

12σ2
min

( t2

(Eµ|hf |)2
,
t

b

))
. (2.9)

Proposition 2.16 implies many second order results from previous articles. For
instance, it is well-known (and we will check again below) that any product prob-
ability measure µ satisfies a d−mLSI(1). Therefore, from (2.8) it is easily possible
to obtain results similar to Götze and Sambale (2020, Theorem 1.2). To see this,
it suffices to note that for functions with Hoeffding decomposition f =

∑n
k=2 fk,

one may apply Götze and Sambale (2020, Proposition 5.2) to upper bound Eµ |df |2
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by Eµ‖d(2)f‖2HS. Unlike in Götze and Sambale (2020), Proposition 2.16 yields two-
level (or Bernstein-type) inequalities, which can be regarded as an advantage of the
present approach.

Similarly, we may retrieve (and sharpen) some of the results from further articles
like e. g. Götze et al. (2019) for d = 2. On the other hand, it seems that requir-
ing modified logarithmic Sobolev inequalities instead of usual logarithmic Sobolev
inequalities extends the class of measures to which our results apply, in particular
in non-independent situations. We will discuss the d−mLSI property and provide
some sufficient conditions in more detail below.

For some classes of functions, we can obtain variants of Proposition 2.16 which
are especially adapted to the properties of the functions under consideration. In
particular, we may show deviation inequalities for suprema of quadratic forms in
the spirit of Klochkov and Zhivotovskiy (2020) for the weakly dependent case.

Proposition 2.17. Let µ be supported in [−1,+1]n and satisfy a d−mLSI(σ2). Let
B be a countable class of symmetric matrices, bounded in operator norm and with
zeroes on its diagonal. Define h(x) := supB∈B〈x,Bx〉, fB(x) := supB∈B‖Bx‖ and
Σ := supB∈B‖B‖op. We have for any t > 0

µ(h− Eµ h ≥ t) ≤
4

3
exp

(
− 1

128σ2
min

( t2

2(Eµ fB)2
,
t

Σ

))
. (2.10)

Note that while in general, we only obtain deviation inequalities here, for a
single symmetric matrix B with zeroes on its diagonal and the quadratic form
f(x) = 〈x,Bx〉 similar arguments as in the proof of Proposition 2.16 do lead to
concentration inequalities for f .

If µ is a product measure, the result of Proposition 2.17 is well-known and
has been proven various times, see for example Talagrand (1996, Theorem 1.2) for
concentration inequalities in Rademacher random variables, Ledoux (1995/97, The-
orem 3.1) for the upper tail inequalities and random variables satisfying |Xi| ≤ 1,
Boucheron et al. (2003, Theorem 17) for the upper bound and Rademacher random
variables and Boucheron et al. (2005, Corollary 4). More recent results include Hsu
et al. (2012); Rudelson and Vershynin (2013); Adamczak (2015); Adamczak et al.
(2019); Klochkov and Zhivotovskiy (2020); Götze et al. (2020).

To understand which classes of measures may be addressed by Propositions 2.16
and 2.17, let us study the d−mLSI property in more detail. First, we show that it
is implied by another functional inequality. Assume that a probability measure µ
on a product of Polish spaces X = ⊗ni=1Xi satisfies

Entµ(ef ) ≤ σ2
n∑
i=1

∫
Covµ(·|xic )(f(xic , ·), ef(xic ,·))dµ(x), (2.11)

where µ(· | xic) denotes the regular conditional probability. This functional inequal-
ity is (also) known as a modified logarithmic Sobolev inequality in the framework of
Markov processes, and it is equivalent to exponential decay of the relative entropy
along the Glauber semigroup, see for example Bobkov and Tetali (2006) or Caputo
et al. (2015).

Proposition 2.18. If µ satisfies (2.11), then a d−mLSI(σ2) and a d+−mLSI(2σ2)
hold. Consequently, for any f : X → R and any α > σ2/2 we have

Eµ exp
(
f − Eµ f

)
≤
(
Eµ exp

(
α|df |2

)) σ2

2α−σ2
. (2.12)
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The same is true for d+ with σ2 replaced by 2σ2. This especially holds for product
measures µ = µ1 ⊗ . . .⊗ µn with σ2 = 1.

Here, choosing α = σ2 or α = 2σ2 respectively leads to the exponential inequal-
ities

Eµ exp(f) ≤ Eµ exp
(
σ2|df |2

)
and Eµ exp(f) ≤ Eµ exp

(
2σ2|d+f |2

)
.

The inequality involving |df |2 is well-known in the case of the discrete cube, cf.
Bobkov and Götze (1999, Corollary 2.4) with a better constant. On the other
hand, the proof presented herein is remarkably short and does not rely on some
special properties of the measure µ, but can be derived under (2.11).

Proposition 2.18 implies Boucheron et al. (2003, Theorem 2), as product mea-
sures satisfy (2.11) with σ2 = 1. Indeed, taking the logarithms on both sides of
(2.12) gives for any α > 1 and λ ≥ 0

logEµ exp
(
λ(f − Eµ f)

)
≤ 1

α− 1
logEµ exp

(
λ2α|d+f |2

)
.

It remains to choose some fixed θ > 0 and set α = (λθ)−1.
The property (2.11) is satisfied for a large class containing non-product mea-

sures. Note that a sufficient condition (due to Jensen’s inequality) for (2.11) is the
approximate tensorization property

Entµ(ef ) ≤ σ2
n∑
i=1

∫
Entµ(·|xic )(e

f(xic ,·))dµ(x). (2.13)

Establishing (2.13) is subject to ongoing research, and we especially want to high-
light two possible approaches.

The first one is akin to the perturbation argument of Holley and Stroock as
outlined in Holley and Stroock (1987) (see also Royer, 2007, Proposition 3.1.18
for a similar reasoning). Assume that dµ = Z−1efdν, where f : X → R is a
measurable function, ν = ⊗ni=1νi is some product measure and Z = Eν ef . If we
require f to be bounded, we clearly have osc(f) < ∞ for its (maximal) oscillation
osc(f) = supx∈X f(x) − infx∈X f(x). Under these assumptions, µ satisfies (2.13)
with σ2 = exp(2osc(f)).

Furthermore, under weak dependence conditions on the local specifications of
some measure µ on a product space X , (2.13) was proven in Marton (2013, 2019);
Caputo et al. (2015).

2.5. Bernstein inequality. As a final application, let us demonstrate how to recover
the classical Bernstein inequality for independent bounded random variables by
means of Theorem 1.1 (up to constants). In fact, as in some previous works we
may remove the boundedness assumption.

There are various extensions of Bernstein’s inequality to unbounded random
variables. For instance, Adamczak (2008, Theorem 4) proves deviation inequalities
for empirical processes in independent random variables with finite Ψα norm for
some α ∈ (0, 1], which in particular includes concentration inequalities for sums of
random variables with finite Ψα norm. Moreover, Boucheron et al. (2013, Theo-
rem 2.10) requires a certain control of the moments of the random variables, which
is in essence a condition on the Ψ1 norms. Thirdly, Vershynin (2018, Theorem 2.8.1)
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provides a Bernstein inequality for random variables with bounded Ψ1 norms. How-
ever, note that the Gaussian term in the last two mentioned works is a sum of the
Ψ1 norm instead of the variance. By our methods, we obtain a version of Bern-
stein’s inequality for sub-Gaussian random variables with the variance of the sum
in the Gaussian term, with a reasonable constant.

Theorem 2.19. There exists an absolute constant c′ > 0 such that the following
holds. For any set of independent random variables X1, . . . , Xn satisfying ‖Xi‖Ψ2

<
∞, we have for any t ≥ 0

P
(
|
n∑
i=1

Xi−EXi| ≥ t
)
≤ 2 exp

(
−min

( t2

80Var(
∑
iXi)

,
t

c′‖maxi|Xi|‖Ψ2

))
. (2.14)

In particular, if |Xi| ≤ M almost surely for all i ∈ {1, . . . , n} and some M > 0,
then for all t ≥ 0 it holds

P
(
|
n∑
i=1

Xi − EXi| ≥ t
)
≤ 2 exp

(
−min

( t2

80Var(
∑
iXi)

,
t

c′M

))
.

We want to give three concluding remarks on Theorem 2.19. Firstly, note that
is not possible to prove an inequality

P
(
|
n∑
i=1

Xi − EXi| ≥ t
)
≤ 2 exp

(
− c t2

Var(
∑
iXi)

)
for some absolute constant c > 0 in the class of all sub-Gaussian random variables.
This can be easily seen in the case n = 1 and by choosing X ∼ Ber(p) for p → 0.
Thus, to obtain a sub-Gaussian tail with the variance parameter, one has to limit
the range of t for which one can expect sub-Gaussian behaviour.

Secondly, one cannot replace ‖maxi|Xi|‖Ψ2 by maxi‖Xi‖Ψ2 in (2.14), i. e. there
cannot be an inequality of the form

P
(
|
n∑
i=1

Xi − EXi| ≥ t
)
≤ 2 exp

(
− cmin

( t2

Var(
∑
iXi)

,
t

maxi‖Xi‖Ψ2

))
.

This, again, follows by choosing Xi ∼ Ber(p) for p = λ/n, λ > 0. In this case, the
sum converges (weakly) to a Poisson random variable, whereas the sub-Gaussian
range extends to t ∈ R+ for n→∞, giving a contradiction.

Thirdly, it is well known that the Ψ2 norm of the maximum of Ψ2 random
variables (bounded by some constant, say K) grows at most logarithmically in
the dimension. For example, if we consider i. i. d. random variables Xi with unit
variance, we have the sub-Gaussian estimate for t of order (at least) n/ log(n).

3. Proofs and auxiliary results

We begin by proving Theorem 1.1. Before we start, let us recall Bobkov and
Götze (1999, Theorem 2.1), relating the exponential moments of f −Eµ f to those
of Γ(f)2.

Theorem 3.1. Assume that (Ω, µ,Γ) satisfies (1.1) with constant ρ > 0. Then for
any f ∈ A and any α > ρ

2 we have

Eµ exp(f − Eµ f) ≤
(
Eµ exp(αΓ(f)2)

) ρ
2α−ρ .
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Note that formally, Theorem 3.1 and our own results like Theorem 1.1 are valid
for bounded functions f only, since Γ was defined on a subset of bounded func-
tions. However, it is not hard to see that our proofs can usually be extended to a
suitable larger class of functions Ã ⊃ A. One possible approach is first to truncate
the random variable f under consideration, and then prove bounds which are in-
dependent of the truncation level. As this is somewhat situational and depends on
the difference operator Γ, we stick to the boundedness assumption for the sake of
a clearer presentation of the arguments. Nevertheless, we can prove Theorem 1.1
under the assumption that Γ can be suitably defined for the function f at hand,
and that Γ(f) ≤ g for some sub-Gaussian function.

Furthermore, we need an elementary inequality to adjust the constants in con-
centration or deviation inequalities: for any two constants c1 > c2 > 1 we have for
all r ≥ 0 and c > 0

c1 exp(−cr) ≤ c2 exp
(
− log(c2)

log(c1)
cr
)

(3.1)

whenever the left hand side is smaller or equal to 1.

Proof of Theorem 1.1: Assume that ρ = 1, which can always be achieved by defin-
ing a new difference operator Γρ(f) =

√
ρΓ(f). The general inequality follows by

straightforward modifications from the ρ = 1 case.
Making use of Theorem 3.1 in the first and a2 ≤ 2(a− b)2

+ + 2b2 for any a, b ≥ 0
in the second inequality, we obtain for all λ ≥ 0

Eµ exp
(
λ(f − Eµ f)

)
≤ Eµ exp

(
λ2Γ(f)2

)
≤ exp

(
2λ2c2

)
Eµ exp

(
2λ2(g − c)2

+

)
.

The sub-Gaussian condition (1.3) leads to∫
exp(2λ2(g − c)2

+)dµ ≤ 1 +

∫ ∞
0

exp
(
− t
( 1

4λ2K2
− 1
))
dt ≤ C

1− 4λ2K2

whenever 4λ2K2 < 1. Consequently, for all λ ∈ [0, (2K)−1) we obtain by Markov’s
inequality

µ(f − Eµ f ≥ t) ≤
C

1− 4λ2K2
exp

(
− λt+ 2λ2c2

)
. (3.2)

Now we distinguish the two cases t ≤ c2

K and t > c2

K . In the first case, set λ := t
4c2

(which implies 4λ2K2 ≤ 1/4 and thus is in the range) to obtain

C

1− 4λ2K2
exp

(
− λt+ 2λ2c2

)
≤ 4C

3
exp

(
− t2

4c2
+

t2

8c2
)

=
4C

3
exp

(
− t2

8c2
)
,

(3.3)

using the monotonicity of 1
1−x . In the second case, we simply set λ := 1

4K (implying
λ2K2 = 1/4) and observe that

C

1− 4λ2K2
exp

(
− λt+ 2λ2c2

)
≤ 4C

3
exp

(
− t

4K
+

c2

8K2

)
≤ 4C

3
exp

(
− t

8K

)
.

(3.4)

Combining (3.3) and (3.4) finishes the proof of (1.4).
Finally, (1.5) follows by considering −f instead of f , which yields

µ(|f − Eµ f | ≥ t) ≤
8C

3
exp

(
− 1

8
min

( t2
c2
,
t

K

))
.

The constant can be adjusted using (3.1). �
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Proof of Corollary 1.2: Using the Γ−mLSI(ρ), by applying Theorem 3.1 to f := λg,
Markov’s inequality and optimizing it can be shown that for all t ≥ 0

µ(g − Eµ g ≥ t) ≤ exp
(
− t2

2ρb2

)
. (3.5)

Here, to obtain the factor 2 in the denominator, one has to let α → ∞ in Theo-
rem 3.1. Thus, the corollary follows easily from Theorem 1.1. �

Proof of Proposition 1.3: We assume b = 1 which can be done by rescaling.
First, observe that Bobkov and Götze (1999, equation (2.4)) holds for any pos-

itive function g, since the inequality Γ(g2) ≤ 2gΓ(g) is sufficient to apply the
argument given therein. Thus, for any positive function g satisfying Γ(g) ≤ 1 it
holds for λ ∈ [0, (2ρ)−1)

Eµ exp(λg2) ≤ exp
( λ

1− 2ρλ
Eµ g2

)
. (3.6)

So, by applying Theorem 3.1 (with α = ρ) we have

Eµ exp
( 1

2ρ
(f − Eµ f)

)
≤ Eµ exp

( 1

4ρ
Γ(f)2

)
≤ Eµ exp

( 1

4ρ
g2
)
≤ exp

( 1

2ρ
Eµ g2

)
,

which can also be applied to λf and λg instead of f and g, for λ ∈ [0, 1]. Thus, by
Markov’s inequality, for any λ ∈ [0, 1]

µ(f − Eµ f ≥ t) ≤ exp
(
− λt

2ρ
+
λ2

2ρ
Eµ g2

)
.

The claim follows by putting λ = min( t
2Eµ g2 , 1) and noting that if t/(2Eµ g2) ≥ 1,

we have t− Eµ g2 ≥ t/2. �

Proof of Proposition 1.4: Choosing α = ρ in Theorem 3.1, applying the inequality
to λf and using the monotonicity leads to

Eµ exp
(
λ(f − Eµ f)

)
≤ exp

(
λ2ρ(b+ aEµ f)

)
Eµ exp

(
λ2ρa(f − Eµ f)

)
.

Thus for λ ∈ (0, (aρ)−1), by Jensen’s inequality (applied to the concave function
x 7→ xλρa) we have(

1− λρa
)

log
(
Eµ exp

(
λ(f − Eµ f)

))
≤ λ2ρ(b+ aEµ f).

Finally, Markov’s inequality and Boucheron et al. (2003, Lemma 11) yield the first
inequality.

To see the second inequality, note that for any λ > 0 such that λaρ < 1, by
Theorem 3.1 and concavity of x 7→ xλaρ, it holds

Eµ exp
(
λ(Eµ f − f)

)
≤ Eµ exp

(
ρΓ(−λf)2

)
= Eµ exp

(
λ2ρΓ(f)2

)
≤ Eµ exp

(
λ2ρ(af + b)

)
= exp

(
λ2ρ(aEµ f + b)

)
Eµ exp

(
λ2ρa(f − Eµ f)

)
≤ exp

(
λ2ρ(aEµ f + b)

)(
Eµ exp

(
λ(f − Eµ f)

))λρa
.

Finally, applying the estimates from the first part we obtain

Eµ exp
(
λ(Eµ f − f)

)
≤ exp

( λ2ρ

1− λρa
(aEµ f + b)

)
.

The concentration inequality follows as in the first part. �
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Proof of Proposition 1.5: Using and rewriting Gao and Quastel (2003, Theorem 1)
we obtain for any f : Sn → R

Ent(ef ) ≤ 1

2nn!

n∑
i,j=1

∑
σ∈Sn

(f(στij)− f(σ))(ef(στij) − ef(σ)).

Now, the inequality (a− b)(ea− eb) ≤ 1
2 (ea+ eb)(a− b)2 and the fact that σ 7→ στij

is an automorphism of Sn leads to the Γ−mLSI(1). The Γ+−mLSI(2) follows in
the same manner from the inequality (a− b)+(ea − eb) ≤ (a− b)2

+e
a. �

Proof of Theorem 1.6: By Proposition 1.5 and Theorem 3.1 we have for any f :
Sn → R, any λ ∈ R and any α > 1/2 the inequality

Eπn exp
(
λ(f − Eπn f)

)
≤
(
Eπn exp

(
αλ2Γ(f)2

)) 1
2α−1

.

If f is locally Lipschitz with respect to d, an easy calculation shows that we can
upper bound Γ(f)2 ≤ ObsDiam(Sn, d), so that from the above inequality in com-
bination with α→∞ we get

Eπn exp
(
λ(f − Eπn f)

)
≤ exp

(
λ2ObsDiam(Sn, d)/2

)
.

The sub-Gaussian estimate follows by Markov’s inequality and the variance bound
from integration by parts. �

In order to prove Proposition 1.7, we first need to establish the following lemma:

Lemma 3.2. Let f : Sn → R be a non-negative function such that

(1) Γ+(f)2 ≤ f ,
(2) |f(σ)− f(στij)| ≤ 1 for all σ, i, j.

Then for all t ∈ [0,Eπn f ] we have

πn(Eπn f − f ≥ t) ≤ exp
(
− t2

8Eπn f
.
)

Especially we have

πn(f = 0) exp
(Eπn f

8

)
≤ 1.

In particular, this holds for f(σ) = 1
16dT (σ,A)2, where A ⊂ Sn is any set.

Proof of Lemma 3.2: Rewriting Gao and Quastel (2003, Theorem 1), we have that
for any positive function g,

Entπn(g) ≤ 1

n!

1

2n

∑
i,j

∑
σ∈Sn

(g(στij)− g(σ))(log g(στij)− log g(σ))

=
1

n!

1

n

∑
i,j

∑
σ∈Sn

(g(στij)− g(σ))(log g(στij)− log g(σ))+.
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Using this, we obtain for any λ ∈ [0, 1]

Entπn(e−λf ) ≤ λ

n
Eπn

∑
i,j

(f(σ)− f(στij))+

(
exp(−λf(στij))− exp(−λf(σ))

)
≤ λ

n
Eπn

∑
i,j

(f(σ)− f(στij))+(exp(λ(f(σ)− f(στij)))− 1)e−λf(σ)

≤ λ

n
Eπn

∑
i,j

(f(σ)− f(στij))+Ψ(λ(f(σ)− f(στij)))e
−λf(σ),

where Ψ(x) := ex − 1. By a Taylor expansion it can easily be seen that Ψ(x) ≤ 2x
for all x ∈ [0, 1], so that (recall that by (2) we have f(σ) − f(στij) ≤ 1, and
f(σ)− f(στij) ≥ 0 due to the positive part)

Entπn(e−λf ) ≤ 2λ2

n
Eπn

∑
i,j

(f(σ)− f(στij))
2
+e
−λf(σ)

= 2λ2 Eπn Γ+(f)2e−λf ≤ 2λ2 Eπn fe−λf .

Chebyshev’s association inequality yields

Entπn(e−λf ) ≤ 2λ2 Eπn f Eπn e−λf .

In other terms, if we set h(λ) := Eπn e−λf , we have( log h(λ)

λ

)′
≤ 2Eπn f,

which by the fundamental theorem of calculus implies for all λ ∈ [0, 1]

Eπn exp
(
λ(Eπn f − f)

)
≤ exp

(
2λ2 Eπn f

)
.

So, for any t ∈ [0,Eπn f ], by Markov’s inequality and setting λ = t
4Eπn f

πn(Eπn f − f ≥ t) ≤ exp
(
− λt+ 2λ2 Eπn f

)
= exp

(
− t2

8Eπn f

)
.

The second part follows by nonnegativity and t = Eπn f .
It remains to show that f(σ) = 1

16dT (σ,A)2 satisfies the two conditions of this
lemma. To this end, we first need to show that Γ+(dT (·, A))2 ≤ 4. Writing g(σ) :=
dT (σ,A), it is well known (see Boucheron et al., 2003) that we have

g(σ) = inf
ν∈M(A)

sup
α∈Rn:|α|2=1

n∑
k=1

αkν(σ′ : σ′k 6= σk), (3.7)

where M(A) is the set of all probability measures on A. To estimate Γ+(g)2(σ),
one has to compare g(σ) and g(στij). To this end, for any σ ∈ Sn fixed, let α̃, ν̃ be
parameters for which the value g(σ) is attained, and let ν̂ = ν̂ij be a minimizer of
infν∈M(A)

∑n
k=1 α̃kν(σ′ : σ′k 6= (στij)k). This leads to

Γ+(g)(σ)2 ≤ 1

n

n∑
i,j=1

( n∑
k=1

α̃k(ν̂(σ′k 6= σk)− ν̂(σ′k 6= (στij)k))
)2

+

≤ 2

n

n∑
i,j=1

(α̃2
i + α̃2

j ) ≤ 4.
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Using this and the non-negativity of dT (·, A), we have

Γ+(f)2 =
1

256
Γ+(dT (·, A)2)2 ≤ 1

64
dT (·, A)2Γ+(dT (·, A))2 ≤ f.

To show the second property, we proceed similarly to Boucheron et al. (2009,
Proof of Lemma 1). By (3.7) and the Cauchy–Schwarz inequality, we have

f(σ) =
1

16
inf

ν∈M(A)

n∑
k=1

ν(σ′ : σ′k 6= σk)2.

Assuming without loss of generality that f(σ) ≥ f(στij), choose ν̂ = ν̂ij ∈ M(A)
such that the value of f(στij) is attained. It follows that

f(σ)− f(στij) ≤
1

16

n∑
k=1

ν̂(σ′k 6= σk)2 − ν̂(σ′k 6= (στij)k)2 ≤ 2

16
,

which finishes the proof. �

The proof of Proposition 1.7 is now easily completed:

Proof of Proposition 1.7: The difference operator Γ+ clearly satisfies Γ+(g2) ≤
2gΓ+(g) for all positive functions g, as well as an mLSI(2). Moreover, as seen
in the proof of Lemma 3.2, we have Γ+(dT (·, A)) ≤ 2. Thus, by (3.6) it holds for
λ ∈ [0, 1/4)

πn(A)Eπn exp
(λ

4
dT (·, A)2

)
≤ πn(A) exp

( λ

4− 16λ
Eπn dT (·, A)2

)
.

Furthermore, Lemma 3.2 shows that

πn(A) exp
(Eπn dT (·, A)2

128

)
≤ 1.

So, for λ = 1/36 we have

πn(A)Eπn exp
(dT (·, A)2

144

)
≤ πn(A) exp

( 1

128
Eπn dT (·, A)2

)
≤ 1.

�

Proof of Proposition 1.8: Again, the proof mimics the proof given for independent
random variables in Boucheron et al. (2003). As stated in Proposition 1.5, the
uniform measure πn on Sn satisfies a Γ+−mLSI(2) with respect to

Γ+(f)(σ)2 =
1

n

n∑
i,j=1

(f(σ)− f(στij))
2
+.

Writing fA(σ) := dT (σ,A), we have Γ+(fA)(σ)2 ≤ 4 as seen in the proof of
Lemma 3.2. Hence, by similar arguments as in the proof of Theorem 1.1 we have
for any λ ≥ 0

Eπn exp
(
λ(fA − Eπn fA)

)
≤ exp(4λ2), (3.8)

implying the sub-Gaussian estimate πn(fA − Eπn fA ≥ t) ≤ exp(−t2/16). Fix a set
A ⊆ Sn satisfying πn(A) ≥ 1/2. As a Γ−mLSI(1) implies a Poincaré inequality
(see Bobkov and Tetali, 2006, Proposition 3.5 or Diaconis and Saloff-Coste, 1996),
we also have (by Chebyshev’s inequality)

t2πn
(
fA − Eπn fA ≤ −t

)
≤ Varπn(fA) ≤ 2Eπn Γ+(fA)2 ≤ 8,



878 H. Sambale and A. Sinulis

which evaluated at t = Eπn fA yields (Eπn fA)2 ≤ 16. Thus, for any t ≥ 4 it holds

πn(fA ≥ t) ≤ exp
(
− (t− 4)2

16

)
≤ 2 exp

(
− t2

64

)
, (3.9)

where the last inequality follows from (t− 4)2 ≥ t2/2− 16 for any t ≥ 0 and (3.1).
For t ≤ 4 the inequality (3.9) holds trivially. �

The proofs of the results for slices of the hypercube work in a very similar way.

Proof of Proposition 1.9: It follows from Gao and Quastel (2003, Theorem 1) that
we have for any f : Cn,r → R

Ent(ef ) ≤ 1

n
(
n
r

) ∑
η∈Cn,r

∑
i<j

(f(τijη)− f(η))(ef(τijη) − ef(η)).

From here, we may process as in the proof of Proposition 1.5. �

For the proof of Proposition 1.10, we need to establish the following analogue of
Lemma 3.2:

Lemma 3.3. Let f : Cn,r → R be a non-negative function such that
(1) Γ+(f)2 ≤ f ,
(2) |f(η)− f(τijη)| ≤ 1 for all η, i, j.

Then for all t ∈ [0,Eµn,r f ] we have

µn,r(Eµn,r f − f ≥ t) ≤ exp
(
− t2

8Eµn,r f
.
)

Especially we have

µn,r(f = 0) exp
(Eµn,r f

8

)
≤ 1.

In particular, this holds for f(η) = 1
32dT (η,A)2, where A ⊂ Cn,r is any set.

Proof of Lemma 3.3: Rewriting Gao and Quastel (2003, Theorem 1), we have that
for any positive function g,

Entµn,r (g) ≤ 1(
n
r

) 1

n

∑
i<j

∑
η∈Cn,r

(g(τijη)− g(η))(log g(τijη)− log g(η))

=
1(
n
r

) 2

n

∑
i<j

∑
η∈Cn,r

(g(τijη)− g(η))(log g(τijη)− log g(η))+.

From here, we may mimic the proof of Lemma 3.2.
Last, we need to show that f(η) = 1

32dT (η,A)2 satisfies the two conditions of this
lemma. As compared to the proof of Lemma 3.2, some of the constants will change
because of the different normalization of the difference operators. However, we may
argue similarly and show that Γ+(dT (·, A))2 ≤ 8. Using this and the non-negativity
of dT (·, A) yields

Γ+(f)2 =
1

1024
Γ+(dT (·, A)2)2 ≤ 1

256
dT (·, A)2Γ+(dT (·, A))2 ≤ f.

Finally, by arguing as above it is easily seen that |f(η)− f(τijη)| ≤ 2/32. �
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Proof of Proposition 1.10: As the difference operator Γ+ satisfies Γ+(g2) ≤
2gΓ+(g) for all positive functions g, as well as an mLSI(2), it remains to change the
proof of Proposition 1.7 in view of the different constants appearing in Lemma 3.3.
As noted in the proof of Lemma 3.3, we have Γ+(dT (·, A)) ≤

√
8. Thus, by (3.6) it

holds for λ ∈ [0, 1/4)

µn,r(A)Eµn,r exp
(λ

8
dT (·, A)2

)
≤ µn,r(A) exp

( λ

8− 32λ
Eµn,r dT (·, A)2

)
.

Furthermore, Lemma 3.3 shows that

µn,r(A) exp
(Eµn,r dT (·, A)2

256

)
≤ 1.

So, for λ = 1/68 we have

µn,r(A)Eµn,r exp
(dT (·, A)2

544

)
≤ µn,r(A) exp

( 1

256
Eµn,r dT (·, A)2

)
≤ 1.

�

Finally, we present the proofs of Section 2.

Proof of Proposition 2.8: We show that f is weakly (kML(f), 0)-self bounding in
the language of Boucheron et al. (2009). To see this, for any v ∈ V let fv(xvc) :=∑
e∈E:v/∈E weXe = f(Xvc , 0). Now we have∑

v∈V
(f(x)− fv(xvc))2 =

∑
v∈V

(
Xv

∑
e∈E:v∈e

weXe\v

)2

≤
∑
v∈V

Xv∂vf(X)2

≤ ML(f)
∑
v∈V

Xv∂vf(X) ≤ kML(f)f(X).

Here, the first inequality follows from Xv ∈ [0, 1] and the last one is a consequence
of Euler’s homogeneous function theorem and the fact that all quantities involved
are positive. Consequently, Boucheron et al. (2009, Theorem 1) yields for any t ≥ 0

P(f(X)− E f(X) ≥ t) ≤ exp
(
− t2

2kML(f)(E f(X) + t/2)

)
.

For the lower bound, apply Boucheron et al. (2009, Theorem 1) to f̃ = ML(f)−1f

which satisfies 0 ≤ f̃(x) − f̃v(xvc) ≤ 1 for all v ∈ V and x ∈ [0, 1]V and is weakly
(kML(f)−1, 0)-self bounding. �

Proof of Proposition 2.9: The first part follows as above. As for the second part, if
we choose F = Fq = {a ∈ RV : av ≥ 0, ‖a‖q ≤ 1} for some q ∈ [1,∞] this leads to

fF (X) = sup
a∈Fq

∑
v∈V

avXv =
(∑
v∈V
|Xv|p

)1/p

for the Hölder conjugate p, which is due to the nonnegativity of the Xi and the
dual formulation of the Lp norm in RV . �

Proof of Proposition 2.10: Clearly, fd is d-homogeneous and has positive weights in
the sense of (2.1), if we set V = [n] and E = {{j, j+1, . . . , j+d−1}, j = 1, . . . , n},
we = 1. Furthermore, the partial derivatives can be easily bounded: For any
fixed l ∈ [n] there are exactly d terms which depend on Xl, and the product is
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bounded by 1. Consequently, ML(fd) = maxl∈[n] maxx∈[0,1]n ∂lf(X) = d. Thus,
Proposition 2.8 yields for all t ≥ 0

P(fd(X)− E fd(X) ≥ t) ≤ exp
(
− t2

2d2(E fd(X) + t/2)

)
.

The assertion now follows, if we note that E fd(X) = nηd. �

Let us now prove the results from Section 2.4. To this end, we first need to
establish some basic properties of modified logarithmic Sobolev inequalities with
respect to the difference operators we use.

Lemma 3.4. Let µ be a probability measure on a product of Polish spaces X =
⊗ni=1Xi which satisfies a d−mLSI(σ2). Then, µ also satisfies a d+−mLSI(2σ2).

Proof : Let (Ω,F , ν) be a probability space and g a measurable function on it.
Then, ∫∫

(g(x)− g(y))2dν(y)eg(x)dν(x)

=

∫∫ (
(g(x)− g(y))2

+e
g(x) + (g(y)− g(x))2

+e
g(x)
)
dν(y)dν(x)

≤
∫∫ (

(g(x)− g(y))2
+e

g(x) + (g(y)− g(x))2
+e

g(y)
)
dν(y)dν(x)

= 2

∫∫
(g(x)− g(y))2

+dν(y)eg(x)dν(x).

Applying this to ν = µ(· | xic) and g = f(xic , ·) for any i = 1, . . . , n yields∫
|df |2efdµ ≤ 2

∫
|d+f |2efdµ,

which finishes the proof. �

Also note that by monotonicity a d − mLSI(σ2) implies an h − mLSI(σ2), and
the same holds for d+ and h+. Moreover, we recall the duality formula |x| =
supy∈Sn−1〈x, y〉.

Proof of Proposition 2.16: First, (2.8) follows by applying Theorem 1.1 to g = |df |
and noting that |d(af)| = |a||df | for all a ∈ R. To see that g is sub-Gaussian
with parameter K =

√
2σ2b and C = 1, note that by Lemma 3.4, µ satisfies a

d+−mLSI(2σ2), so that we can use (3.5).
The same arguments are valid for h+ and h respectively. Here, we additionally

use the estimate |h+|hf || ≤ |h(2)f |op (cf. Götze et al., 2020, Lemma 3.2). �

Proof of Proposition 2.17: Let us bound |d+h|2. Choose the matrix B̃ ∈ B maxi-
mizing supB∈B〈x,Bx〉 and use the monotonicity of y 7→ y+ to obtain

|d+h(x)|2 =

n∑
i=1

∫
(g(x)− g(xic , x

′
i))

2
+dµ(x′i | xic)

≤
n∑
i=1

sup
x′i

(
2(xi − x′i)

n∑
j=1

B̃ijxj

)2

+

≤ 16‖B̃x‖22 ≤ 16 sup
B∈B
‖Bx‖22 = 16f2

B(x).
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Furthermore, we have for some maximizer B̃ ∈ B of supB∈B‖Bx‖ and ṽ ∈ Sn−1 for
supv∈Sn−1〈B̃x, v〉

|d+fB|2 ≤
∑
i

sup
x′i

(
sup
v
〈B̃x, v〉 − sup

v
〈B̃(xic , x

′
i), v)〉

)2
+

≤
∑
i

sup
x′i

(
(xi − x′i)〈B̃ei, ṽ〉

)2
+

≤ 4
∑
i

〈B̃ei, ṽ〉2 ≤ 4
(

sup
w

∑
i

wi〈B̃ei, ṽ〉
)2 ≤ 4 sup

B∈B
‖B‖2op.

Here, the suprema of v and w are taken over the n-dimensional sphere. We can
now apply Corollary 1.2 to Γ = d+, ρ = 2σ2, g = 4fB and b = 8Σ to finish the
proof. �

Proof of Proposition 2.18: The idea of the proof of the mLSIs is already present in
Bobkov and Götze (2007). Let (Ω,F , ν) be any probability space. For any function
g we have due to the inequality (a − b)+(ea − eb)+ ≤ 1

2 (a − b)2
+(ea + eb) (for all

a, b ∈ R)

Covν(g, eg) ≤ 1

2

∫∫
(g(x)− g(y))2

+(eg(x) + eg(y))dν(x)dν(y)

=
1

2

∫∫
(g(x)− g(y))2dν(y)eg(x)dν(x).

Applying this to ν = µ(· | xic) and g = f(xic , ·) and using (2.11) yields

Entµ(ef ) ≤ σ2

2

n∑
i=1

∫∫
(f(x)− f(xic , x

′
i))

2dµ(x′i | xic)ef(x)dµ(x)

=
σ2

2

∫
|df |2efdµ.

To see that µ also satisfies a d+−mSLI(2σ2), it remains to apply Lemma 3.4. The
exponential inequalities are a consequence of Theorem 3.1. �

Proof of Theorem 2.19: Write X = (X1, . . . , Xn). Let us assume that EXi = 0 for
all i ∈ {1, . . . , n}, from which the general case follows easily using the inequality

‖max
i
|Xi − EXi|‖Ψ2 ≤ 4‖max

i
|Xi|‖Ψ2 .

Since the Xi are independent, it follows from Proposition 2.18 that their joint
distribution PX satisfies a d−mLSI(1), and we can calculate

|df |(X) =
( n∑
i=1

∫
(Xi − yi)2dPXi(yi)

)1/2

=
( n∑
i=1

X2
i + EX2

i

)1/2

≤ |‖X‖2 − E‖X‖2|+ E‖X‖2 +
( n∑
i=1

EX2
i

)1/2

=: g(X).

To apply Theorem 1.1, it remains to see that we may set c = E‖X‖2+
√

Var(
∑
iXi)

and K = ‖maxi|Xi|‖Ψ2
. This is seen by noting that

P(g(X) ≥ c+ t) = P(|‖X‖2 − E‖X‖2| ≥ t) ≤ 2 exp
(
− c2

t2

‖maxi|Xi|‖2Ψ2

)
,
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where the last step follows from Klochkov and Zhivotovskiy (2020, Lemma 1.4), as
X 7→ ‖X‖2 is a convex and 1-Lipschitz function. Note that although Klochkov and
Zhivotovskiy (2020, Lemma 1.4) is formulated for t ≥ t0 > 0, one can easily find
an estimate for all t ≥ 0, by first multiplying the right hand side by 2, and then
adjusting the constant in the exponential. �

Recall that as discussed above, the application of Theorem 3.1 is only possible
for bounded functions, so that an additional truncation step needs to be done.
Instead of applying Theorem 3.1 to f(X) =

∑
iXi −EXi, it is applied to the sum

of the random variables Yi := gR(Xi)− E gR(Xi) for gR(x) = min(R,max(x,−R))
for a suitable truncation level R > 0. As the right hand side of equation (2.14)
can be chosen to be independent of R, the theorem follows for unbounded random
variables by letting R→∞.
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