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Abstract. In this paper, we study spatial averages for the parabolic Anderson
model in the Skorohod sense driven by rough Gaussian noise, which is colored in
space and time. We include the case of a fractional noise with Hurst parameters Hy
in time and H; in space, satisfying Hy € (1/2,1), H; € (0,1/2) and Hyo+ H; > 3/4.
Our main result is a functional central limit theorem for the spatial averages. As
an important ingredient of our analysis, we present a Feynman-Kac formula that is
new for these values of the Hurst parameters.

1. Introduction

We consider the Parabolic Anderson Model (PAM) on Ry x R

% = %Au—i—uoW,
(1.1)
’U,(O, ) =1,

Received by the editors October 12th, 2020; accepted February 11th, 2021.

2010 Mathematics Subject Classification. 60H15, 60H07, 60G15, 60F05.

Key words and phrases. Parabolic Anderson model, fractional rough noise, Malliavin calculus,
central limit theorem, Wiener chaos expansion, Feynman-Kac formula, fourth moment theorems.

David Nualart is supported by the NSF Grant DMS 1811181.

907


http://alea.impa.br/english/index_v18.htm
https://doi.org/10.30757/ALEA.v18-33
https://nualart.ku.edu/
https://www.math.drexel.edu/~song/
https://gzheng1990.com/

908 D. Nualart, X. Song and G. Zheng

where W(t, x) is a generalized centered Gaussian random field with covariance

E[W(t,2)W (s,y)] = 70(t — s)v(x —y). (1.2)
The product in (1.1) is the Wick product and the mild solution is defined in the
Skorohod sense. We assume that the covariance (1.2) satisfies one of the following
two (overlapping) sets of conditions:
(H1) v : R — [0,00] is a nonnegative-definite locally integrable function and
v is a tempered distribution, whose Fourier transform p admits a density ¢ that
satisfies the following modified Dalang’s condition:

p(x)?
dr < . D
/]Rl T2t el ()
We also assume that ¢ is continuous at zero with ¢(0) = 0 and the following
concavity condition is satisfied: 3 kg € (0, 00) such that
oz +y) < Ko [g@(m) + ga(y)] for every z,y € R. (C)

(H2) yo(t) = [t|*Ho=2 for some Hy € (1/2,1) and ¢(z) = |z|*721 for some
Hy € (0,1/2) such that' Hy + H; > 3/4.

The existence of a unique mild solution under condition (H1) has been estab-
lished in Huang et al. (2017a,b). Notice, that unlike many of the works on the
stochastic heat equation with spatial colored noise, in (H1) the correlation func-
tion v does not need to be a measure. Previously the random field solution theory
for the stochastic heat equation driven by a Gaussian noise white in time and rough
in space, was restricted to the range Hy € (1/4,1/2) (see, for instance, Balan et al.,
2015; Hu et al., 2017, 2018). Condition Hy + H; > 3/4 in case (H2) breaks the
barrier 1/4, which is required under (H1) if ¢(z) = |2z|' =2, and it has been ob-
served in Song et al. (2020) that the random field solution exists for the PAM when
Hy € (1/2,1), Hy € (0,1/2) and Hy + Hy > 3/4.

We are interested in deriving a functional central limit theorem (CLT) for spatial
averages of the form

R
Ai(R) = /4% [u(t,z) — 1]dz, (1.3)

as R — oo, where t € [0,00). Using the chaos expansion of the solution (see (2.3))
and a chaotic CLT (see Theorem 1.4)), we prove the following main result.

Theorem 1.1. Let Ai(R) be defined as in (1.3) and suppose that one of the as-
sumptions (H1) or (H2) holds. Then, as R — oo,

1
{At(R)} converges in law to a centered Gaussian process G on C(Ry;R),
VR teRy

where for any t1,t2 € Ry,
E[G1,Gr] = 2 /R E[9(7%,(2)) | dz

with g(z) = e* —z—1 and Itll’iQ(z) being the random variable defined in Proposi-
tion 1.5.

n the fractional case we actually have ¢(z) = c¢(Hi)|z|1~2H1 | with ¢(H}) = wr(QHl +
1), but to simplify the presentation we take c¢(Hi) = 1.
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Since the work Huang et al. (2020a) of Huang, Nualart and Viitasaari, there have
been a series of papers devoted to central limit theorems for spatial averages of sto-
chastic partial differential equations. The authors of Huang et al. (2020a) consider
the nonlinear stochastic heat equation driven by space-time white noise on Ry x R
and they are able to provide a functional central limit theorem for A;(R). Their
methodology begins with rewriting A;(R) = §(V; r) as a Skorohod integral and
then appeal to the recent Malliavin-Stein approach (Nourdin and Peccati, 2012) to
obtain a quantitative CLT for A;(R) in total variation distance. The convergence
of finite-dimensional distributions can be proved using the multivariate Malliavin-
Stein bound and the tightness is established using Kolmogorov’s criterion. Other
key tools used in Huang et al. (2020a) are Clark-Ocone formula, Burkholder’s in-
equality and they essentially rely on the assumption that the underlying Gaussian
noise is white in time so as to render us a martingale structure. Soon later, the
authors of Huang et al. (2020b) consider the same equation with spatial dimension
d > 1; while imposing that the Gaussian noise is white in time and it has a spatial
covariance given by the Riesz kernel, they establish a functional CLT and a quan-
titative CLT for spatial averages. We also refer interested readers to several other
investigations on stochastic heat equations in Chen et al. (2019, 2020); Gu and Li
(2020); Khoshnevisan et al. (2020); Pu (2020) and on stochastic wave equations
in Nualart and Zheng (2020b); Delgado-Vences et al. (2020); Nualart and Zheng
(2020¢); these papers more or less follow the path paved by the work Huang et al.
(2020a), although the nature of the problems and the techniques differ.

In the above references, the underlying Gaussian noise is always white in time,
which is crucial to apply stochastic calculus techniques. These techniques are not
available in our framework because the noise is colored in time, which forces to
restrict our study to linear equations, where we can use Wiener chaos expansions
and Feynman-Kac formulas. In Nualart and Zheng (2020a), that is the closest work
to the present paper, Nualart and Zheng consider the PAM (1.1) on R x R? with
the correlation kernels 7y and ~ satisfying the following conditions:

(1) 70 : R — [0, o0] is nonnegative-definite and locally integrable.

(ii) ~y is a positive finite measure, expressed as the Fourier transform of some
nonnegative tempered measure u that satisfies Dalang’s condition (Dalang,
1999; Hu et al., 2015) [q % < oo, where || - || denotes the Euclidean
norm.

In Nualart and Zheng (2020a), the Gaussian fluctuation is established for

/ [u(t, z) — 1]dz
{ll=I<R}

for each ¢t > 0 and, under the extra integrability condition on ~q
to to
/ / Yo(s — t)s™ ¥t~ %dsdt < 0o, for some o € (0,1/2), to > 0, (1.4)
o Jo

the functional CLT holds as well; see Nualart and Zheng (2020a, Theorems 1.6, 1.9)
for more precise statements. Note also that in our Theorem 1.1, we do not need to
assume condition (1.4) used to guarantee the tightness.

Observe that unlike in the papers Huang et al. (2020b); Delgado-Vences et al.
(2020), the variance order of A;(R) is R, which does not depend on the parameters
of the covariance, for example, the Hurst index H; in the setting (H2). This is due
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to our assumption ¢(0) = 0 in both settings of (H1) and (H2), that forces the
negligibility of the first chaotic component of A;(R) in the limit, while the other
chaoses contribute to the order R. This situation is completely different from the
case Hy > 1/2, where a nonchaotic behavior occurs.

In what follows, we briefly sketch the main steps of the proof of Theorem 1.1.
The first step in proving Theorem 1.1 is to show the order of the limiting variance
and more generally, to establish the limit covariance structure.

Proposition 1.2. Assume hypothesis (H1) or (H2). Forty,ts € Ry,

1 R—00 T2 (2 1,2
ﬁcov(Atl(R),AtQ(R)) -, /R dzIE[e w2 T2 (2) 1], (1.5)
where Itll’?tz (2) is defined in Proposition 1.3. Moreover if I1,(e) denotes the orthog-
onal projection onto the pth Wiener chaos associated to W (see Section 2 for more
details), we have for p =1,

Jim iCov(HlAtl (R), T, Ay, (R)) =0, (1.6)
and for each p > 2,
p
Jim_ ﬁCov(n Auy (B), Ty A (R)) = - / dzJE[( . t2(z)) } (1.7)

An important ingredient to prove Proposition 1.2 is the following Feynman-Kac
formula for the moments of the solution. In the case (H1), this formula is essentially
a reformulation of Corollary 4.4 in Huang et al. (2017a) and the result for (H2) is
new, so we provide in Section 6 a unified proof for both cases.

Proposition 1.3. In both cases (H1) and (H2), we have for any (s;,t;, z;,y;) €
(0,002 xR2,i=1,...,k (k>2)

k
H U(ti, Z’i)
=1

E =E|exp| > T (wi—a) ]|, (1.8)

1<i<j<k

IZﬁ / / drdvyy va)/dfcp(g) —i(B}_,—BI_,+2)¢

is understood as the LP(Q)-limit (for any p > 1) of

/ / drdvyo rfu)/dgefsﬁ p(€)e I Bi-r=Bly+2)6 — 71T (),

with BY, ..., B* being i.i.d. standard Brownian motions on R. Moreover, for each
1 < j and for any A > 0,

sup {E[exp ()\|I§§E( )|)] 1e>0, ZER} < oo

Once Proposition 1.2 is proved, we apply the multivariate chaotic central limit
theorem to establish the convergence in law of finite-dimensional distributions
(f.d.d.). This chaotic CLT is a consequence of the well-known fourth moment the-
orems (Nourdin and Peccati, 2012; Nualart and Peccati, 2005; Peccati and Tudor,
2005).

where



Spatial averages for the PAM driven by rough noise 911

Theorem 1.4 (Multivariate chaotic CLT). Fiz an integer n > 1 and consider a
family {AR R > 0} of centered random wvectors in R™ such that each component
of Ap = (Ar1,...,Arn) belongs to L*(Q,0{W},P) and has the following chaos
expansion

oo
Arj =Y 1 (9g50) with gq;r € H,
q=1

where I;V denotes the qth-multiple stochastic integral with respect to W (see Sec-
tion 2). Suppose the following conditions (a)-(d) hold:

.. R—+o0
(a) Vi,j€{l,...,n} and Vg > 1, E[I;V(gq,j7R)IgV(gq)i7R)] Ak N Cijng-

(b) Vie{1,...,n}, Zai,i,q < 0.

q=1

R—+00
—_—

(C) Foranyl<r<gq-1, ng,i,R Qr gq,i7R||ﬁ®(2q—2r) 0.

d) Vie{1,...,n}, lim su E[I" (g,:r)*] =0.
(@ i€ flm, Jim sup 3, B (00sn)]

Then AR converges in law to N(0,%) as R — 400, where ¥ = (va)?j:
by 04,5 = Z:il 0i,5,9-

We refer to Campese et al. (2020); Nourdin and Peccati (2012); Hu and Nualart
(2005) for more details on this result and to Section 2.2 for the definition of the
Hilbert space $) and the r-contraction ®, in our setting. As the last step in the proof

of Theorem 1.1, we will establish the tightness by using Kolmogorov’s criterion. The
key tool is the hypercontractivity property of the Ornstein-Uhlenbeck generator, see

(2.1).
Remark 1.5. Theorem 1.1 and Proposition 1.3 also hold under Hypothesis (H1)
if 79 = dp, that means, if the noise is white in time. The proofs are similar and

we omit the details. In this framework, the random variables Izga (2) defined in
Proposition 1.3 would have the expression

tAs X .
/ d’r/ dge*EEQ(p(g)e—i(BLr—Bﬁfr‘f‘Z)&.
0 R

The rest of this article is organized as follows: Section 2 is devoted to prelimi-
nary knowledge that is required for later proofs, and we prove Proposition 1.2 in
Section 3; we show the f.d.d. convergence and tightness respectively in Section 4
and Section 5; the last section contains the proof of Feynman-Kac formula.

1 18 given

2. Preliminaries

We first introduce some handy notation here.

2.1. Notation. For r € N and z, = (x1,...,2,), we write dz, = dz;...dz,,
w(dey) = p(dey) ... p(dey) and 7(zp) = 21 + -+ - + 2. For integers 1 <7 < p, we
write (617 s 7517) = 5}1 = (frvnp—’") with 6"‘ = (517 s 767‘) and "7p—r = (£T+17 s 7517)‘

For any p € N, &, denotes the set of permutations of {1,2,...,p}, and for any
8p = (S1,---,5p) We write 85 = (55(1); -+ So(p))-
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For any interval I, we use |I| to denote its length.

Foranyt>0andmeNputA )i={rm ERT :t>r > - >r, >0}
and SIM,,, —{wm€R+ wy + - +wm§t}

For any p > 0 and any random variable X € LP(Q), we write || X, =

(B[ 1)
2.2. Wiener chaos expansion. For ¢,¢ € C°(R4 x R), we define
(6.4)5 = / | dsdirofs —1) [ depl©Fots. O Fult. =6

where Fo(s,§) := [pe —i28¢(s, 2)dx is the Fourier transform with respect to the
spatial variable only Due to our assumptions ((H1) or (H2)), the above functional
(¢,9) — ($,1)5 defines an inner product, under which C°(Ry x R) can be
extended to a Hilbert space, denoted by $.

We can view the noise W as an isonormal Gaussian process over §), that is,
{W(h) : h € $H} is a centered Gaussian family with

E[W(@)W ()] = (6, 9)s,

for any ¢, € $. For any n € N, we denote by $®" the nth tensor product of
and by $©" the symmetric subspace of $Hm.

It is a well-known fact that L?(Q2,0{W},P) can be decomposed into an infinite
orthogonal sum:

L(0,0(W),B) = DG,
p=0

where C,, is called the pth Wiener chaos and it is the L?(Q)-completion of the set
{H, (W) : [¥lls =1},

with Hy(z) = (—1)%”2/2(1‘%6_”2/2 denoting the pth Hermite polynomial. For any
integer p > 1, the multiple integral IXV of order p is a bounded linear operator from
H®P onto C,, uniquely characterized by the following conditions:
(i) Given any orthogonal unit vectors eq,...,e; € § (k > 2) and any nonneg-
ative integers nq, ...,ny such that ny; 4+ --- 4+ ng = p, it holds that

IZV( ®n1 ® 6®n2 ® - ®nk) HHm

(ii) Forany f € %, IIV(f) = II‘,’V(f), where f € HP denotes the symmetriza-
tion of f.
For p =0, Cy = R and I is the identity. The following isometry property holds for
any f € H%P and g € H®9 (see Nourdin and Peccati, 2012; Nualart, 2006 for more
details):
w w T~
]E[Ip (f)Iq (g)] = p!<fag>ﬁ®p1{p:q}-
Another important property of Wiener chaos is the following consequence of
hypercontractivity (see e.g. Nourdin and Peccati, 2012, Corollary 2.8.14): If F' € C,,
for p > 1, then for any k > 2,

1l < (6= 1272 ], )
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Let us introduce the contractions appearing in condition (c¢) of Theorem 1.4. For
integers p,q > 1, the r-contraction f ®, g for f € H®P, g c H®7and 1 <r <pAgq
is the element of H®@P+t4=27) defined by

oo

forg= 3 (fien® - @e)nerlg en @ - @e;)ger,

0] yeenstp=1

where {e;,i > 1} is a complete orthonormal system in $). In the particular case
where f and g are locally integrable functions, the contraction f ®, g has the
following expression

(f QR 9) (tp—‘r7€p—1'; sq—ra"]q—r) = / (]:rf) (tp—ragp—ryaraCr)

2r i
]RJr xR

X (Frg) (SqersMg—rbr, —Cr) [ [ 10(as — bj)eo(¢5)dasdb,d(;,

j=1

where F,. denotes the Fourier transform with respect to the r space variables. We
refer readers to the appendix of Nourdin and Peccati (2012) for more explanations
on the contractions.

2.3. Malliavin calculus. We will denote by D the derivative operator in the sense
of Malliavin calculus. That is, if F' is a smooth and cylindrical random variable of
the form

with h; € $ and f € C°(R™), then DF is the $)-valued random variable defined
by

DF = zn: %(W(hl), o W(hn))hy .

The Sobolev space D'+2 is the closure of the space of smooth and cylindrical random
variables under the norm

|DFll1 2 = /E[F?] + E[| DF|3].
We denote by § the adjoint of the derivative operator given by the duality formula
E(6(u)F) = E(DF,u)s),

for any F € D2 and any v € L?(Q;$) in the domain of §. The operator ¢ is
also called the Skorohod integral because in the case of the Brownian motion, it
coincides with an extension of the It6 integral introduced by Skorohod. We refer
to Nualart (2006) for a detailed account of the Malliavin calculus with respect to a
Gaussian process.

If F € DY? and h is a deterministic element of $, then Fh is Skorohod integrable
and, by definition, the Wick product F' o W(h) equals the Skorohod integral of Fh,
that is,

§(Fh) = F oW (h).
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2.4. Mild solution. Now we define
Fr=0{W(¢): ¢ € C°(R; x R) has support contained in [0,¢] x R} VN,

where N denotes the collection of null sets. This gives us a filtration F := {F; : t >
0}.

For each t > 0 and z € R, G(t,x) = (27775)_1/26_‘”2/(2” denotes the fundamental
solution of the heat equation.

Definition 2.1. An F-adapted random field v = {u(t,z) : ¢ > 0,z € R} is a mild
solution to (1.1) if for all (¢, ) € Ry xR, the process {G(t — s,z —y)u(s,y)1,q(s) :
(s,y) € Ry x R} is Skorohod integrable and following integral equation holds

t
ut) =1+ [ [ Gt sx = pyuls.p)Wds.dy), (22)
o JR
where the stochastic integral is understood in the Skorohod sense.

From the results of Huang et al. (2017b,a); Nualart and Zheng (2020a), under
hypotheses (H1) or (H2), there exists a unique mild solution to equation (1.1),
which has the following Wiener chaos expansion

u(t,z) =1+ Y LV (fraem)- (2.3)

n=1
where f; ., € HO™ is given by

n—1

1
Jtzn(8n,Yn) = EG(t — 55(1)s T — Yo(1)) H G(80(i) = Sa(i41)s Yo (i) = Yo (i+1))s

i=1

with o € &,, such that t > s5(1) > ... > 85(,) > 0; we refer readers to Hu et al.
(2015); Huang et al. (2017a); Song et al. (2020) for the rigorous derivation of (2.3).
Then the core object in this paper A;(R) has the following Wiener chaos expan-

sion
o R
At(R) = ZII‘;V (/ ft,x,pdx> 5
p=1 -k

as a consequence of stochastic Fubini.
In the end of this section, let us state a useful embedding result that is a conse-
quence of the Hardy-Littlewood inequality.

2.5. Embedding of L*/Ho(R% ) into HE™. Let H be the Hilbert space associated to
the fractional Brownian motion with Hurst parameter Hy € (1/2,1). That means,
H is the closure of C'2°(R;) under the seminorm

(f,9)n = /R f(8)g(t)|s — t|*Ho=2dsdt.

We have the continuous embedding L'/Ho (Ry) < H. More precisely, for any
frg Ry — Rowith [[f{|p1/mo @, ) < oo and ||g|[L1/m0r, ) < o0, we have

I, @)l < Crpll fll o @y lglloym e,y
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where the constant Cp, only depends on Hy; see, for instance, Mémin et al. (2001).
Then, by iteration, one can easily show that given two functions f, g € L'/Ho (R%),
then

(fs 9)en

= / dSl"'dSndt1"'dtnf(81,..., tl,..., H|8-7_t ‘QHO 2
R2"
< C?IO||f||L1/Ho(R1)HQHLI/Ho(Riy (2.4)

3. Limiting covariance structure

For any nonnegative measurable function © and for any integer p > 1, we define
the following two quantities:

Ki,(0,t) = /[Ot ds,,/ (d€p)O(7(£p)) exp WVarZBg]gj (3.1)
Ko@) = [ sy | [ mdepetrnem | vadime| | @2

where, here and along the paper, B denotes a standard real-valued Brownian mo-
tion.

Notice that integrating on the simplex A,(¢) and making the change of variables
nj =&+ -+& and s;_; —s; =wj, j =1,...,p, with the convention 7y = 0 and
so = 0, we obtain

K1,(0.1) = pl / du / anp©(m)e— T [T oty ) (33)
SIM,, (¢) RP i=1

K5 ,(0,1) zpl/ dwy, / dnp©(ny = Sk wani H@ —nj-1)
SIM,, () RP

The next technical lemma will play a fundamental role along the paper.

Lemma 3.1. Under hypothesis (H1), we have, for any N > 0,

K1 ,(0,1) < plt (/@ (1+ o ))dm) L (8roCn )P exp (Z@Z) (3.5)

where the constants Cy and Dy, given by

1+ ¢(n) + ¢(n)?
Cy ::/ o) + 20" 0 and Dy ::/ (14 ©(n) + ¢(n)*)dn,
{In[>N} {InI<N}

02
(3.6)
are finite for each N > 0 due to the modified Dalang’s condition” (D). Moreover
p! tDN
Kqi,(1,t) < — P — . .
(1,0 < 2 (oo oxp () (3.7

2
2Condition (D) implies Jz %dz < oo.
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Under hypotheses (H2), we have

P (ﬂ)h%—% v tpb+ﬁ)

K> ,(0,t) < pl (/ @(x)(1+|x|12H1)d1¢> , (3.8)
: R L(ph + 45721) AT(pb + 1775)
where h = 21{()24*7]_%1*1 > i; moreover,
K 1ch w 3
1,t) < plC5 ——, 9
2,17( ) >p 2F(pb+l) ( )

where Cy and Cs are constants depending only on Hy and Hy.

Remark 3.2. Notice that inequalities (3.7) and (3.9) cannot be obtained from (3.5)
and (3.8), respectively, by simply putting © = 1.

Proof of Lemma 5.1: Let us first show the inequality (3.7) under hypothesis (H1).
We will make use of the expression (3.3), where ® = 1. Using the concavity
condition (C) and the fact that ¢(—x) = ¢(x), we can write

p
I et —me1) <ub™t > Hsonk (3.10)
k=1

BEA, k=1
where A, is a collection of the indices B = (81, ..., 8p) € {0,1,2}P satisfying

IleUng%l ZHI

BeA, k=1

It is easy to see that the cardinality of A, is 2P~!. Plugging the inequality (3.10)
into (3.3) yields

Kip(1,t) <pleb™ Y / dw,,/ dnpe™3 Tier Wi H%" ()
Bea, JSIMy(1) RP =1

Following the same arguments as in the proof of Lemma 3.3 in Hu et al. (2015), we
have

Ky p(1,t) < pl(2k0)P Y (i) %(DN)’f(ch)p—’t (3.11)
k=0 ’

where the quantities Cy and Dy are defined in (3.6). The sum in the right-hand
side of (3.11) can be estimated as follows:

P k p k tD
Z (Z) %(DN)k(QCN)p_k = (QCN)pZ (Z) m < (4CN)p€2CN . (3.12)

k=0 k=0
Substituting (3.12) into (3.11) yields (3.7).
To show (3.5), using the expression (3.3), the estimates

=

1
‘P(np —Mp-1) < “0[90(7717) + 90(7717*1)] and eXp(_iwan) <1,

we write

K1,(0,t) (3.13)

=t ([ Oet)an, ) Koy (1.0)+ piv ([ O, ) Ripa(1.0,
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where

Ripi L0 = (=0 [ dwpes [ dpoge Bl
SIMP 1(8) Rp—1

Hso —n5-1) | p(np—1)-

It is easy to show that the estimate (3.7) still holds if we replace Ki ,(1,t) by
K1 ,(1,t). Therefore, substituting the estimate

~ —1)! tD
maX(Kl)p,l(l,t)7K1}p,1(1, t)) S %(8%00]\])10—1 exp (26&;)

into (3.13), we obtain (3.5).
Now let us prove (3.8) under hypothesis (H2). We observe that, using the
expression (3.4), we can write

K ,(0,1)

p
P wen?
ZP!/ dw,p /dnp@(np)/ dnp—re™ 2k=1 ¥ T T o(n; — mj-1)
SIM, (t) R Rp-1

L
2H,

Jj=1
1
2Ho
S p'/ dwp Z /dnp 77p / dnp—le Zk 1“”“719 Hl’l] |ﬁ](1 2H,)
SIM,(0)  \gen,
1
p 2H(
< p / dw, /dn @(77 )/ dn _16_Z£:1 wn; |n_|ﬂj(1—2H1)
2 st ) L \JR L Jreer I1in

BeA, j=1

For B € A,, we have 8, € {0,1}. As a consequence,

p—1 5
K>,(0,t) < Cotp! Y / dwp_y [ (/ dnje—'wfv?mjmj(l—wl))
j=1 R

gea, SIMp-i ()
B 1485 (1—2Hy)
~ Cotp! 3" HK(ﬁju—wn)wo/ oy IHw SO
ﬂG.Ap j=1 SIMpfl(t

where Co = [, ©(x)(1 + |#]|' 721 )dz and we use the notation
K(0) := / e_x2x0dac, 69> 0.
R

It is clear that by our assumptions on (Ho,H;), that the quantities a; :=

7%};2[{1) belong to the interval (—1,0), so that

_ 14B;(1-2H;)

p—1
[y o T 5 [ T
SIMP 1 ) SIMP71 (t) j=1

tp—1tarttap_1 p—1
= I'(1 4+ oy);
F(p+a1+'+ap—1)g ( Z)
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see also Lemma 6.2 in Song et al. (2020). As 1+ -+ Bp—1 € {p — 1,p}, then
p—1
1-H 1 1-H,
, (p—1 _
;O‘JG{ P=DSg " 1m P om, }

and p+a;+...+op_1 € {pf)-l- L Hl,pf)+4H }Withh:% > i. Thus,

Llp+ar+-+ap1)> (ph+ Hl) (h+7)

2H, 4H,
Then, inequality (3.8) follows from the previous computations. The inequality (3.9)
has been proved in Song et al. (2020, Remark 3.3). O
Remark 3.3. Suppose that we choose ©(x) = G(a,z) in Lemma 3.1, for some

€ (0,1). Then, if § > 0 is such that ¢ is bounded in [—4, §], we obtain, under
hypothesis (H1) or (H2),

[dsGaaptdr < s o)+ va / PRGN
R \m|>5}

z€[—6,0] €

which implies

Co = sup / G(a,z)(1 + ¢(z))dz < oco. (3.14)
ac(0,1) Jr

Next, we will give a useful estimate that will be applied in many places. For any
R > 0, we define

sin? (R¢)
Cr(§) = TR (3.15)
and note that
.2
/ drdye— e = ) p 6,
[-R,R]?

By Nualart and Zheng (2020a, Lemma 2.1), {¢r}r>o defines an approximation to
the identity (as R — 00).

Lemma 3.4. Assume (H1) or (H2). For any e > 0, there exists a constant C(e)

such that
C(e)

GG =

Proof: In both cases (H1) and (H2), the function ¢ is continuous at 0. Thus, for
any € > 0, there exists some § > 0 such that p(z) < e for |z| < d. Then,

/ CR(©)p(€)de < ¢ / CR(€)dE = ¢,
{l¢1<d} R

1 P& o Cl)
o /{§>6} = d¢ < R Incase (H1),

| @<
{I§1=6} —=

(3.16)

and

/{§>6} |12 e < % in case (H2).

In this way, we just proved (3.16). (]
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Remark 3.5. If we choose ©(z) = {r(x) in Lemma 3.1, then, from Lemma 3.4, we
get

C1 = sup / lr(z)(1 4 ¢(z))dx < co. (3.17)
R>1JR

Let II,A;(R) denote the projection of A;(R) on the pth Wiener chaos, where
A4 (R) is defined in (1.3), that is,

R
I,A(R) =1V ( / . ftx,pdz) )

In view of Theorem 1.4, we need first to establish the asymptotic covariance of each
chaos of ﬁAt(R) and we know that

o 1 R
H A (R v —/ frapdr | .
-5 S =31 (o [
Now we are ready to present the proof of Proposition 1.2.

Proof of Proposition 1.2 : In what follows, we only present the proof for the
particular case where t; = to, and the general case follows from the same arguments
with solely notational modifications. Let us fix ¢ > 0 and break the proof into three
steps.

Step 1: Proof of (1.6). Noting that IT; A;(R) = I}V (ffR ft7m71das) and recalling
Nualart and Zheng (2020a, page 32), we have

Var{ﬂl (Au(R / / drdy(fs.e1s fry1)s

R
:/ drdvyo(r—v)/dg/ / dmdye_i(“_y)ggo(g)e_%(7"*‘“)52_
[0,¢]2 R -RJ-R

We deduce from (3.15) that

ﬁVar [Hl (At(R))} = 271/

[0,2)?

drdvyo(r — v) / dglr(€)p(€)e 20T,
R
From Lemma 3.16 and using that ~y is locally integrable, we get for any € > 0,
1 C(e)
— < b 24
o Var[IL (4(R)] < © (5+ - ) ,
which implies Rlim R~'Var [Hl (At(R))} = 0 in both cases (H1) and (H2).
—00

Step 2: Proof of (1.5) and (1.7). Recall from Nualart and Zheng (2020a, page
31) that, for any p > 2,

%Var [Hp(At(R))} = 21R/[—R,R]2 dxdyE[ (ftp) ;}V(ft’ym)

—R.RIN[-z—R,—z+R
— !/d2<ft,z,p7ft,0,p>ﬁ®p|[ = 2R H
R
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and

1 .
: = dspdr i -1 / i (Ep)
0 W3 | RUCEY TS

J=1

p
< E |[J exp (-iBs,¢;) Hexp -iB,.&)| . (3.18)

It is not difficult to deduce from Proposition 1.3 and the expression in (3.18) that

P for Frow)en =B [(T2())']
Then

%Var [HpAt(R)] ” / d-F KI (Z))P} [[-R, R] N [—;R— R, —z+ R]\

Because |[-R,R] N[z — R,—z + R]|/(2R) converges to 1 as R tends to infinity,
the convergences (1.5) and (1.7) will be a consequence of

=1

In view of Fatou’s lemma and taking into account that for any z € R, Itl’f(z) is the
LF(Q)-limit of It{fa(z) (for any k > 2) as ¢ tends to zero, to show (3.19), it suffices
to prove that

2 z)m < o0. (3.19)

supz /dzE |Itlt2E (2)] < (3.20)

€>0

From

2
we deduce that (3.20) holds true provided

supz / d2E {(zgjg(z))%} < 0. (3.21)

Next, let us prove (3.21). First consider the case (H1). Fix an even integer
p =2n > 2. For any ¢,a > 0, by Fubini’s theorem,

Te.o(p) := /RIE {(Itlﬁg(z))f’} exp (_§Z ) dz
p p 2
- /[O,t]zp RP rdopry 31:[1 ol =) 31;[1 Ao

p
x G(a,7(&))E Hexp ~iBy,¢;) H -iB,,&) | . (3.22)
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Note that T, 4(p) > 0 since p is even. Using

P
E [[]exp (-iB,,&) | € (0,1],
j=1

we can bound T. ,(p) as follows:

P P
Te,a(p) < QWFf/ dgp/ dsp (p(fj) G(avT(Ep))E HeXp (_istfj) s
RP [0,8]? ol =1
where the constant I'; := ff ,Yo(r)dr is finite for each ¢t > 0, since 7o is locally

integrable. By the inequality (3.5) in Lemma 3.1,

tD
sup T:q(p) < sup 27IVK; ,(G(a,e),t) < Cotﬂffp!(8l€o€1v)p71€ﬁ,
a€(0,1) a€(0,1)
where C is the constant defined in (3.14). Then, recalling p = 2n > 2 and letting
a | 0, we obtain

1 1,2 2n 2n 2n—1 2204
@i LE [(zt’m(z)) ]dz < CotnD2" (8Kl Oy )2~ teZon | (3.23)
n). R 7

which implies (3.21), provided we choose N is such a way that 8xoI';Cn < 1.

= [t[2Ho-2 |1-2H

Now we consider the case (H2) where ~o(t) and o(z) = |z
with Hy > 1/2 > H; and Hy + H; > 3/4. We begin with (3.22) and apply the
embedding result (2.4) and Cauchy-Schwarz inequality to write for any €, a > 0 and
any even p = 2n > 2,

2H,

Ts,a(P) < 27rCIZ;O l/[o o dsp (/Rp u(dgp)G(a’T(Ep))e—vm P st§j> 2H0]

=2rCY [K2,(G(a,e), t)]2Ho,

where K5 ,(G(a,e),t) has been defined in (3.2). Then, applying inequality (3.8) of
Lemma 3.1 leads to

C2Hop (tQHOPthl*Hl v tQHoph+%>

T.a(p) < 27CY, (p!Co)2Ho

D(ph + S57)2Ho AT(ph + g75)20”

2Ho+H,—1 > 1

for e > 0, a € (0,1) and any even integer p = 2n > 2, where ) = T 1
and with Cy being the constant defined in (3.14). Thus, letting a | 0, we have for
n>1,

C2n((2n)1)2Ho~1 (t4Honh+1—H1 v t4Honh+%>

1 1,2 2n
W/R [(It,t,s(z)) } Z S T'(2nb + %)QHU AT (2nh + ﬁ)ﬂ{o )
(3.24)

for some constant Cy, which depends only on Hy and H;. Notice that the de-
nominator in the right-hand side of (3.24) behaves as [(2n)!]?HY as n — oo, and
2Hoh = 2Hy + H; — 1. Thus, the estimate (3.24) implies (3.21) in the case (H2).
Hence the proof of Proposition 1.2 is completed now. (I
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Remark 3.6. We observe that = Var(A4,(R)) is equal to

1
—Var

R
5 / (u(t,z) — 1)dz

R - % /[—R R)? (E[“(tvx)“(t’y)] - 1)dmdy,

which in view of Proposition 1.3, is equal to

ﬁ [73’3]2

2R

As R — oo, this converges to

/RIE[eIfa’tz(z) — 1} dz = /Rzi Z%E [(I;f(z))p} dz,

since E[Itlf(z)] = liﬁ)lE[Iifs(z)] = 0, based on Step 1 in the proof of Proposi-

tion 1.2. The above limit is exactly the one in (1.5).

4. Convergence of finite-dimensional distributions

To apply the multivariate chaotic CLT (Theorem 1.4), we need to show the
convergence of finite-dimensional distributions. There are four conditions in this
theorem that we need to check. In fact, we only need to verify the condition (c), as
the other conditions are satisfied as a consequence of our estimates in the previous
section. We refer readers to Nualart and Zheng (2020a) for similar arguments.

We can write

1

\/EAt(R) - };IZV(QP,R@))’

where

1 R
gpyR(t) = \/E/th,m,pdx-

Proposition 4.1. For each integer p > 2 and each integer 1 < r < p—1, we have

R—o00

HngR(t) Or gpvR(t)Hg)@prQr — 0.

Proof: Along the proof C will be a generic constant that may very form line to
line. We put

f(8p,Yp) = [1,0,0(8p Yp)

and recall that, with B a real-valued standard Brownian motion on R,

(F1) o &) = (Fhron)op:6) = B |exp (=1 Bug) | (1)
| )

where Ff stands for the Fourier transform with respect to the spatial variables. As a
consequence, (Ff)(8p,&p) is a positive, bounded and uniformly continuous function

in&.
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Now we write, with the notation d¢*? = dsr(IS‘}dvrdﬁ,.dtp_rd'f;,_rdwp_rd@'p_r for
the Lebesgue measure on [0, ],

HQP,R(t) Or gp,R(t)||.26®(2p—21‘) = (27T)2 /[O ja

et <H’YO i = Si)v0(v 51))

H% —wj) | Ir,

with Jr = Jr (srvgravraﬁmtp—ra‘t;—rva—ryﬁjp—r) given by
T = [ ntdes) o yltyr ) (pr)
X (ff)(sratp—ra"lp—ra&')(}-f) (grva—mﬁp—ra _ér)la + bl_l/Q‘a _Z‘_lﬂ
X (‘Ff)(v"‘a’t;—‘ra —ﬂp—rvgr)(ff)(aﬁﬁp—ra 71’717—1‘7 75‘)|E - b|71/2|’6\i +Fg|71/2
X J1/2 (R|a + b|)J1/2 (R|a — b|)J1/2 (R‘Ei — bDJl/2 (R|a + b|),
where we use the following short-hand notation a = 7(&.),b = 7(p—r),a = &),

b= 7(fp_r) and Jip(x) =4/2 sin(@) e R, is the Bessel function of first kind

™ T

with order 1/2. This is obtained in the same way as in Nualart and Zheng (2020a)
and we refer readers to this reference for more details.

Now we decompose the integral in the spatial variable into two parts, and we
write for any given 6 > 0, Jr = J1,r,s + J2,R,6 = [pop L{jatb|>6} + Jp2o L{jatb|<6}-
This leads to the decomposition

2
ng, ) @r 9p.R Hg@(zp—zr) = (27")2(3}17&6 + V2,r,5)s
where, for k = 1,2,

Vi.R,s
::/[ ]4d€4p (H’yo —vz> H'yo w; —W;) | Ti,r.s-
0,¢]4p

The proof will be done in two steps.

Step 1: We will show that for any fixed 6 > 0, V1 gr,s tends to zero as R — oo.
First we apply Cauchy-Schwarz inequality several times to get

1/2
Tins <4 / Cr(r(Ep)) | FT| (80 tper. &) p(dEsp)
{I7(€&p)|>0}

x ( | zR<r<ép>>|fﬂ2<a,wp_r,fp>u<d§p>)1/2 ( | ndgo)in(r€)

1/2 1/2
x |ff¢2<§r,wp_r,§p>> < | @(r(@))|ff|2<vrft;_r,sp>u<d£p>> ,

where (g(z) = L|z|™? 1/2(R|ac|) is introduced in (3.15). We will prove separately
for cases (H1) and (H2) that Y1 rs — 0 as R — oc.
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Proof of Y rs B2 ) under (H1): By Cauchy-Schwarz inequality again ap-
plied to the integration in time, we get

Virs < 4{ /[0 oo de*v (H% i — Si)vo(vi — ;) ) H% — wj)
([ w(sp))|ff|2<5r,mp_r,sp>u<d/sp>)

1/2
X / ER(T(&)))|]:f|2(3ratp—ra€})).u(dgp)}
{IT(€p)1>6}

X (/R zR(T(g,,))|ff|2(§r,wp_r,£p)u(d£p))

1/2
x / p eRmsp))\ff|2<vr,?p_r,§p>u<dsp>} =4V s Vo -

For the term Vj g s, we have the estimate

Vims < T2 / ds, / Cr(r(Ep)) | FT[ (59, £p) 1l dEy)
[0,t]P {I7(€p)|>6}

X (/[Ot dtp/ ER ép ’fﬂ tp;&p (dgp)> = F ‘/11R6‘/12 R, (4 2)

where we recall that I'; = f t’Yo s)ds. We will prove that Vi g is uniformly
bounded and Vi1 g vanishes asymptotlcally as R — oco. In view of (4.1), making
the change of variables t; =t —s; and n; =& +---+¢; foreach j = 1,...,p, with
1o = 0, we obtain, in view of (3.3),

1 P
Vio,r = *,/ dsp/ p(dep)Er(T(&p)) exp | = (sj—sj41)(&+ - +&)°
P Ja, ) Rp j=1
1 £ 2
= j/dnpﬁR(np)/ dnp—l/ dwp [T e e(n; —nj—1)
Pt JRr Rp—1 SIMp, (1) j=1
= K1,(lR,t).
By inequality (3.5) in Lemma 3.1 and (3.17), this implies
sup Vig r < 00. (4.3)
R>1

In the same way, we have, for any € > 0, using (3.5) and (3.16),

Vit,rs < K1 p(r1(—55)e,t) < C . }dnfR(U)(l + (1))
n|>d

.2
< c/ dn>= (277) +C (e + C(E)) . (4.4)
{InlzRrs} TN R
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for some constant C' > 0. So, limp_,o V11,86 = 0 and, therefore, from (4.4), (4.2)
and (4.3) we have proved that

% RS — 0.
For the term V5 g, note that V5 g < Ft V12, R 50 we have the uniform boundedness

of Vo g over R > 1. Thus, we completed the proof of Vi r s B2 0 under (H1).

Proof of Vi rs L2200 under (H2): Using the embedding result (2.4) and
Cauchy-Schwarz inequality, we can write

s <CHO[/[O,t]2p Gepty </{r(£p)25} eIl oo dfp))
1 qHo
X (/ ER(T(fp))|ff’2(3p7§p)ﬂ(d§p)> 0]
RP
x [ [ dsnts ([ x5t g ucy)) ™

1 7Ho
X (/]Rp ER(T(fp))|‘Ff|2(3pa§p)ﬂ(dfp)> i ] = C%OT{,{}%,(;T;%O,

where
Thns = / dt, ( / eR<r<£p>>|ff|2<tp,fp>,u(dm) and
[0,t]P {I7(&p)|>0}

Toi= [ty ([ entri&o) 71t &) ) .

From (4.1), a change of variables and inequalities (3.8) and (3.17), we can easily
get

B
_1
Ton =) 75 [ dsy | [ ey talrE) e VarZB &
0,t]? RP
= (p) T Ky (¢, t) < C (4.5)
for all R > 1. The term T} r s can be estimated as follows
g2y

1

Tins =) [ dsy| [ ldp)in(ri)) e VarZB ¢
[0,¢]P {Inp|>6}

1 B
= (p!) 7o K2p(Cr1(—s6)c,t) < C/ dnlr(n)(1 + |n|*—2M),
{Inl>s}

which converges to zero as R — oo as we have already noted. Therefore, combining
the calculations on T g s and 15 r, we show that Vi g s B0 ) under (H2).
Step 2: We will show that

lim limsup V> rs = 0. (4.6)

-0 R0



926 D. Nualart, X. Song and G. Zheng

Using Cauchy-Schwarz multiple times and changing of variables, we obtain

j2,R,5 < 4/ U(dfr).u(dnp—r) V ER(a + b) -F]C(sratp—ranp—ragr)
{la+b]<d}
- _ . 1/2
x ( / A )+ b)!fff(aﬁw,,_r,ﬁp_ﬁg)) [ / ()
1/2
X :u(dﬁp—f)éR(a +b)lr(a +g)|ff|2(vrvi;—r7np—ra€r) |-Ff|2(§rawp—r;ﬁp—ra§r)‘|
< 4[ ( | u(d&)@ﬁ@)!fﬂ?(a,ap_r,ﬁp))
1/2
2 (/ N(dfp)gR(T(Ep)”}—ff(3r7tp—rv£p)> ]
{I7(€p) <6}
x [ / () p(dlipp—r) () 1 ifp—r )
{|a+b| <8} xRP

1/2
X |-Ff|2(vraz;)—ranp—ragr')|»Ff|2(’grawp—raﬁp—rvér)glﬁ(ﬁ+b)eR(a+~)

= 4U11,/1§,5U21,/1§,5' (4.7)

In what follows, we are going to prove separately in case (H1) and in case (H2)
that (4.6) holds.

Proof of (4.6) under (H1): From (4.7), using Cauchy-Schwarz inequality again
for the integration in time, we have

Vars <4/ X1,R5X2R,5 5
where, for k =1, 2,

Xk,R,5

T p—r
= /[O » de*r <H Yo(si — 5i)v0(vi — @)) 1ot = t)ro(w; — ;) | Uk.res.
A i=1 i1

One can show by the same arguments as before that, for all R > 1 and § > 0,
X1,rs < F?prQ,R <C.

Now we write

Xors < Ffp/
[0,t]2p

057 0By vy .y / () () (0B ) 1 )
{latb| <5} xRP

X |Ff|2(vrvz;)—r,np—ragr') ’}—ﬂz(‘grva—raﬁp—rvfr)gl%(a + b)éR(a +~)

=y /Rzp “(dgp)“(dgp)l{lsl+~~+£T+§r+1+~~+5p\<6}£R(T(€P))£R(T(gp))

0, ~
X (/[o,t]p d3p|]:ﬂ (sp,ﬁp)> </[o .

s

pdt,,|ff|2<tp,5p)> -
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Using (4.1) and a change of variables in time, we can rewrite the last expression as
follows, with 1y = 19 = 0,

2p

Iy ~ ~
Xo,ps < W /RQP N(dﬁp)ﬂ(dgp)1{|§1+...+57,+gr+1+...+gp‘<5}£R(T(§p))£R(T(§p))

P ~ P
X /[w]zp dspdt, exp ( - Varjz::1 stﬁj) exp ( - Varjz::l Bt]fj)

F2p P _ _ _
= (pf)z /R dnpdiy | T 0(mi = ni—0) ey = T-1) | L+, —7 (<61 2R (M) €r (7p)
! 2p =1

P
></ dwpdwy I | e il e
SIMp (t)2 j=1

< / dnpdilp ® (Np, Tp ),
G(5)

where G(8) = {(1p.7lp) € B2 < [ + 7, — 7| < 6} and

~ 22— P N -
D (1, 7p) = W S T emn® e | er(mp)er ()
B.BeA, \J=1

p
_ —win? @R
X / dwpdpre Willj g WiM;
SIM,, (£)2

j=1
Then, we decompose the set G(d) as follows
G(6) Alnr — | <26} U{|7p| = 6}

From the estimation (4.4) for the term Vi3 g s, it follows that, for any ¢ > 0,
~ ~ R—oo
/ dnp iy ® (1hp, ) —— 0. (4.8)
{l7p1>6%}

On the other hand, from the proofs of the estimates (3.7) and (3.8) in Lemma 3.1,
we obtain

. ~ —~ —~ _ 2
/ dnpdp®(np, Mp) < C sup / / dn,dij,dw,dw,o(n, )P e~V
{Inr—7r|<26} B,8€{0,1,2} YR2 J[0,t]2

S
X () e T Ly 5 <26}

Note also that for any 3,3 € {0,1,2},
/ / dmdﬁrdwrd{brcp(m)ﬁe*wrnzgp(ﬁr)gefﬁrﬁf <C.
r2 J]0,4)

Since 1y, —7,|<253 — 0 as § — 0, we deduce

lim lim sup/ Anp ditp® (Np, Mp) = 0. (4.9)
{‘nr—ﬁrl<26}

=0 R0

Thus, (4.8) and (4.9) allow us to complete the proof of (4.6) in case (H1).
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Proof of (4.6) under (H2): From (4.7), the embedding result (2.4) and Cauchy-
Schwarz inequality, it follows that

Ho

Ho
1 I
yz,R,a§0{ / df?”Uf,’éfa} { / de"U;’;fa} = 0305 ;35
[0,¢]2P [0,¢]2P

where

Buns = [ st [ 006 a6 i o0 0
<[ u(dép)fR(T(ép))ffg(tpip))
{I7(&p)I <5}

Buns = [ dspdtp( / el o 1)
[0,t]2P {la+b|<8} xRP

1

2Hg

X |ff12(3p’np—r,§r)|fﬂ2(t;,ﬁp_r,£,~)63(a+b)zR(H’z}))

For the term 31 g s, we deduce from (4.5) that

L
2H,

31,6 < (/[0 " dsp (/Rp M(dﬁp)ER(T(gp))u:f2(3pv§p)) ) = T22,R <C

for all R > 1 and § > 0, which shows the uniform boundedness of 3; g s over R > 1
and 6 > 0.

Now let us consider the term 32 r 5. Similar to the analysis on the term Y g s,
one can get, with no =19 =0,

_2(1—-Hg)

32,Rrs = (p!) Ho / dwpdﬂ;p</ d”lpdﬁpl{\nr+77p777T|<6}€R(77p)£R(77p>
SIM, (t)2 R2p

p R 14 ) 2Hq

_  1—2H, _—w;n? ~  ~  1—2H, —@,7

X I||77]777]—1| e 7 ||‘773*77]—1‘ e
j=1 j=1

_2(1—Hg)

= (p!) Ho / dw,,dﬁi,,(/ d”?pdﬁpl{lm-s-'ﬁp—ﬁr\<6}£R(77p)€R(ﬁp)
SIM,, (t)? R2p

p p 2H(
_ apsm2 ~ ~ _ a2

[ 1n; = nial' =2 e (L, <0y + Lgapizay) [ 1 — -a )2 e w.m]>

Jj=1 j=1

=: 321,r,5 + 322,R,6,
where

_ 2(1—Hp)
H

321,m,5 = (D)) 0 / dwpdﬁp</ dnpdpL |y, 17,7, <6} L{ |7, | <5}
STM,, (t)2 R2P

p p 2H(
~ _ —win? ~ _ 2
< Lr(np)r(ip) [ Inj —nja = Pre=m T i — 5l > e “’”ﬂ)

j=1 j=1
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and

2(1—Hgp)
- H,

322,16 = (P!) 0 / dwpdﬁp< / M ip 1|y, +7, 7| <63 1{|7,|>6}
SIM,, (t)2 R2P

1

P p 2Hq
7 - —w;n; ~ - — ;7
< Lr(np)r(p) [T Ins — il =2 rem T 5 — w5l > e “”"3> :
=1 =1

For 321 Rr,s, we have

S21,r5 = C Z / dw,,dﬂ?,,(/ dnpdipL {1y, 7.1 <251 LR (M) LR (1)
5.5, I SIMp () R2p

1

P , P _ ,\ 20

183 (1=2H1) ,—w;mnj 7.8 (1=2Hy) ,—w;7;

X H|773| 5 ( e~ Winj |77]| 5 )e 375
Jj=1 Jj=1

1\ 2
B w2 ) 20
<C Z </[0 ]dw” (/RdnpgR(np)h?pﬁp(l e P”P) >
= it

SIMp (1) Rl JE{lp—1},5r

/ dw,dw, (/ dnrdﬁrl{\n,‘—"ﬁr|<26}|nr
(0,42 R2

Using some previous calculations, we obtain the following bound

1

2Hq
Br(1—2H,

)77,

E,.(12H1)6w,.nfﬁ,.ﬁf>

sup321,R,s
R>1

1

~ 2H,

<C dvds (/ dxdyl{lmy<26}|m|l3r(1—2H1)y|ﬁr(1—2H1)e—m2_sy2> 0
[0,2)2 R?

where ,., ET € {0,1,2} and this proves, by the dominated convergence theorem,
that

lim lim sup 321,r,6 = 0.
6—0 R>1

On the other hand, the term 322 g s can be treated as T r s and we obtain

lim 395 gpgs =0, for any fixed § > 0.

Rooo ~ 000
Hence, the proof of (4.6) under (H2) is completed and this ends the proof of
Proposition 4.1. ([

5. Proof of tightness

In this section, we will give the proof of the tightness by following the strategy
proposed in Nualart and Zheng (2020a, Section 3.3).
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Proposition 5.1. For any fixed T > 0, any 0 < s <t < T < R and any integer
k>2

%HAIL,(R) R)|, < Clt— 52, (5.1)

where C = Cr, is a constant that depends on T and k.

Proof: From the definition of mild solution (see Definition 2.2), we can write
u(t,x) =1+ / G(t —s1,2 —y1)Lo (s1)u(s1, y1)W(ds1, dyr).
R+ xR
Therefore, for s < t we have the decomposition of u(t,z) — u(s,x) into
/ di(s,t,z;81,y1)u(s1, y1)W(ds1, dyr)
Ry xR
+/ d2(sat7x;515yl)u(slvyl)w(dsladyl)v
R+ xR

with dy(s, t,@;51,51) = Ljg,6)(s1) [G(t — s1,2 — y1) — G(s — s1,@ — y1)] and
dZ(Satax;Shyl) = l[s,t)(sl)G(t — 51, — yl)'

Now we express A;(R) — As(R) as a sum of two chaos expansions that correspond
to d; and ds:

(oo} (oo}
Ay(R) — As(R) = Z J1pR T Z J2,4,Rs
p=1 q=1

where J;pr = [5 1V (gi7p7z)da: for i € {1,2} and

01,p,2(8p,Yp) Z 1, (5)(8p)d1(8,t, 75 S5(1): Yo (1))

Uebp
p—1
x [T Glsoi) = $oG41)s Yo ) = Uoi41));
j 1
92.p.x 3p7yp Z Ap (s, t) )G(t *50(1)@*%(1))
066
p—1
X H G(80(j) = Sa(j+1): Yo (i) ~ Yo(i+1));

Jj=1

with Ay(s,t) = {t > s1 > -+ > s, > s}. Finally, we apply (2.1) to get

1 oo
AR - 4B, < ﬁ 3 (Il + 120l
z =072 (Ipnlly + 2l

Now, let us estimate HJM%RHQ fori € {1,2} and p € {1,2,...}.
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Case i = 2, p > 2: Following the arguments in Nualart and Zheng (2020a, Section
3.3), we write

5 R R
2,2, :p!/ / dxdy<92’p’r792,p,y>ﬁ®p
—-RJ—-R
i 1 R R 1,2 P 2R 1,2 g
) dxdy]E[(It,S,t,S(m—y)) } < N dZEHIth,t*s(Z)‘ }
p:J-RJ-R P Jr

From (3.23) and (3.24), in view of the factor ¢ in the right-hand 51de of (3.23) and
the factor t4#09+3 in the right-hand side of (3.24), with 4Hyh + 2 > 1, it follows
easily that

S 1 1/2
> (57 fasmlmt o)) -1 < c- s
p=2 p

Hence, ZHJQ,F,RH}C <C(t—s)Y2

Case i = 2, p=1: We have go1,+(51,%1) = 1(5,4(51)G(t — 51,2 — y1), so it follows
from (3.15) that

1
gl

W47rR/ / drdvyo(r —v) /dﬁ/ / drdye i@ p(g)e— =1
/ / drdvyo(r =) / dLn(E)p(€)e F

Then, from (3.16) we obtain

el lls < ¢ =90 [ deta©)e@) < Ot =)

As a consequence,

1
ﬁ”JlLRH? < CVt— s so that \/RHJQ L&||, < CVE—s.
Therefore, we have proved
Z ’JQ,p,RHk <Ot —s)t/2 (5.2)

3\

Next, we shall prove

1 o0
77 2 Mol < =)' (5.3)
p=1
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Case i =1, p=1: We have g11.(51,%1) = 1{s5,<s} [G(t—shx—yl)—G(s—shx—
y1)] and then,

el sl - /o /0 drdvio(r =) /R dp()Ln(e) (-5 — e )

t—v ¢2 s—v &2
><(e*2E —6725)

< / ) / drdov(r —v) / dep(€)n(©)e ¢ (1 - e T)
—s5 [°

drdvo(r =) [ deplOa(@e TEE a1 e <o Va2 0
0 R

IN

t—s 2 [° e
<IN [ dsp(©tn©8 [ dre
1—e‘$

—(t—s)T / Q) en()* g < (¢~ 9)Tx / dEp(€)ln(€) < Ot — s),
for R > T, in view of (3.16). This implies

< C+/t — s so that < CVt - s.

1 1
ﬁHJLLRHz ﬁ”Jl,l,RHk

Case i =1, p > 2: Let us first compute the Fourier transform of gi , »

(‘7:91,17 z Sp,fp Z ]-Ap(s o' / dypefigp'yp
' oe6, o
X [G(t = $o1), % = Yo(1)) — G(5 — S0(1), T — Yo1))]
p—
H (S0(j) = Sa(j+1): Yo(j) — Yo(j+1))
— iT(Ep)r = p 110,41 (5p) (E [e—iz;;l(zst—st)fj} _E [e—iz;;l(Bs—Bs].)aD.

Therefore,

1 2 p! BB
ren R o ) T N

_ 47rR/ / dxdy/[o o dspdrpH’Yo(si - m)/RP 1(d€p) (Fa1,p.2) (5p.&p)

i=1
X (‘Fgl,p,y)(rpa_fp)

1 P iy _ )
= o dspdrp <H Yo(s; — n)) /Rp 1(dép) R (7(&p)) (lE {e 2= (B st)f,]

|
P i1

_E {efiz_’;zl(BS—Bsggj} ) (]E {efiZ?;:l(Bth,,)sj] _E {642_’;‘:1(3578,,)5]} )

Let us consider separately case (H1) and case (H2).
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In case (H1), using the local integrability of vy and the fact
E {642;1(3573”)5]} ) {efizgf:l(Bthrj)&j} e 0,1],
we can write

47rRH 1,p,RH2 =l /[o,s]p Sp /Rp w(dép) R(T( p)>
X (IE {e—izﬁ-’:l(Bs—BsJ )ﬁj] —-E [e—izi-’:l(Bt—st)ng .

‘We have
o 1S (Bs=Bs )&} _E[e—iz:i:l(Bt—BSj)&j}

[6712511(35—3%)& (1 _ e*i(Bths)-r(gp)>}

— [7125 \(Bs—B, >e} (1_6 10— s)ﬂep))

S —iy? s—Bs. )&
5 T(Sp)QE {e 21 (B B.])fg:|_ (5.5)

As a consequence, for all R > T, we can write

mHJLp»RHE

= }ff')rg /[0 I dspp(dp) Lr(7(Ep))7(6p) "B 20 (PP )8)

(t = )7 ds, | pu(d&p) M [ —izj’;l(Bs—st)gj]
[0,s]P RP p

<

2p' TR

(t —s)I'%, i j (t — )T
d 12*:1 BS]'EJ] = 7TK 1
s / | o | e [T sy K1n(19)

Then, applying inequality (3.7), yields, for R > T,

1 & 1 &
ﬁz HJLP»RHk < ﬁ Z HJLP,RHQ(k - 1)p/2

S\/> 1/22\/8@01\/ _1)I‘T)pexp<2g ) Ot — )1/2’

for some large N such that 8x¢C (k — 1)I'r < 1. This, together with the previous
estimate for p = 1, leads to (5.3) under the hypothesis (H1).

Consider now the case (H2). Let us continue with (5.4) and apply the embedding
result (2.4) and Cauchy-Schwarz inequality to write

/[O,S]P o [/Rp n(dp) L (7 (&)

-8 _(Bs—Br;)¢; —i3P_ (By—B,.)&; &2} o
(B[ Es] g a7
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We deduce from (5.5) and £r(z) = % that

1
mHJLp,RHz

C? ¢ iy 2Ho
Hot—s / ds (/ B {eizfl(Bsst)gj}> 0
p! onT [0,] 4 - M(dgp)
Czo t—s 2H
= 0
p| 27TT [K21P(17 S)] .

Then, applying the estimate (3.9) yields

1 2 _2(t—5) o1 2H,\P TP 2o
ol = 25 e sy ()"

for s <t <T < R. Hence, for s <t <T <R,

1 & e
= |iprll, <= ||T1p.r],(k — 1)
VR 2l = g 2ol

5 o0 2Hg—1 T\
<\ 2= 03 (O O3 ) (For+m)

p=2
< Ot — )2, (5.6)

where the last inequality follows from the fact that 2Honl —bhHy = f%. From

inequality (5.6) together with the one for p = 1, we can obtain (5.3) in case (H2).
Therefore, in both cases (H1) and (H2), the estimates (5.2) and (5.3) yield
(5.1), and hence the proof of tightness is concluded. O

6. Proof of Proposition 1.3

For a > 0, we define ¢, (t) = 11}y ,1(t), t € R, so {¢.(*)G(e,") 1 £,a > 0} is an
approximation to the delta function. Consider the approximating equation
ous?
ot

with initial condition u®%(¢,z) = 1 and

t
WEe = / / alt — $)G(e,x — y)W(ds, dy).
0 R

By following exactly the same lines as in the proof of Hu and Nualart (2009, Propo-
sition 5.2), we can show that

u(1,2) = B[ exp (W(A507) — 214508 13)] (62)

solves equation (6.1), where Ep denotes the expectation with respect to the ran-
domness B and

t
A0B( ) = /0 palt — 5 —1)G(e, Bo + 2 — y)ds 1. (r)

1
(t,x) = QAuE’“(t, x) +us(t, x) o Wi, (6.1)

1 an(t—r)
— / G(e,Bi—r—s +x —y)ds 1y 4(r),
0

a



Spatial averages for the PAM driven by rough noise 935

with {B;s,s € Ry} a standard Brownian motion on R independent of W. We omit
the details of the proof of (6.2)
The proof of the Feynman-Kac formula begins with the following identity: For

any ty,...,t; and any xy,...x; with k > 2,
k . .
i J
E uS(tj,xz;) | =E |exp Z <A§fw’? ,AZ’_?:;J_B sl (6.3)
j=1 1<i<j<k

where B',..., B¥ are k i.i.d copies of B; see e.g. equation (3.22) in Hu et al. (2015,
page 15).

The remaining proof consists of three steps. In Step 1, we will prove that the
expectations in (6.3) are uniformly bounded over € > 0,a € (0, ¢y) for some ¢y > 0;
the second step is devoted to proving that

g,a,B*  se,a,B7 al0 5 €l0 1,7
<Ati7$i 7Atj7$j >ﬁ a.s. Iti,tj,E(xl x]) Lr(Q) Iti,tj(xl m])’

where Itifti,s (x; —x;) and If;ftj (x; —x;) are respective limits whose expressions will
be clear later; in Step 3, we will show the LP(£2)-convergence of u®%(t, x) to u(t,x)
as €,a | 0. Combining these steps yields

k
E Hu(tj,;vj) =FE |exp Z L (@i =) ||
j=1

1<i<j<k

which is formula (1.8).

Step 1: It suffices to show that for ¢ < j and any A > 0,
sup {IE {exp <)\‘<A2fszi’ Aiax?]%’)} ca€ (0,t; Aty e > 0} < +oo0. (6.4)

Similar to (3.23) and (3.24) in Hu et al. (2015, page 15), we have

i j . ti tj
(A7t Az = [ wtagge= et [0 ardma(ts —r - 147
o R 0 0

1 alr aAT . i ;
X —2/ / dsdse€Br—a=Br ),
as Jo 0
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Thus, with m = 2n > 2, we can write

ti, T tj,r; )

E {<As,a,Bi’ As,a,Bj>m}

m

= [t (] eteincs= ) [ rn o
m E—1 [Oati]"LX[Ovt]']m

i _ 1
x (H Yol(ti =7k —t; + Tk)) agm/[ - AsmdSm 1 (s, <r\ 5. <Fiivk}
k=1 0,a]*m

x E lexp <i25k(3f~k_sk - Bij;k))]
k=1

1
S om dsm(fgm/ M(dﬁm)/ Armdrm s, <ry, 5, <7k}
[0,a]2m m [0,t:]m x[0,¢,]™

X (H Yolti — T —tj + m) E [exp (-ing(Bik_sk — Bg;;_gk)ﬂ (6.5)
k=1 k=1

and for s;, < 1y, s, < T,
m . .
E |f)Xp (—iZ&(Bf«k—sk - Bg‘;—gk)>‘|
k=1
1 % i j 1 Ny i
= exp —ivafZSk(Brrsk — B ;)| <exp _§VarZ§kB’“rSk '
k=1

k=1

Now let us consider case (H1) where 7 is locally integrable and the spectral
density @ satisfies the modified Dalang’s condition (D). By changing (ry—sg, 7 —Sk)
to (rx, ) for each k, we get the following estimate (a < t; A t;)

i i\ m 1
E[(45%7, 45520 < o / dsmdBm | (1(dEm) / drmdFom
" Ea a“™m [0,a)2m R™ [0,t:]m % [0,t;]™

m m
o 1 .
X (H Yo(t; — Tk — S — t; + T, + sk)> exp (—2VarZ§kBrk>

k=1 k=1

1 m
S F;?+tj /]R :u’(dém) /[0 : d'rm €xXp (-2\/3,1'26-]637%) = F;?+th1,m(17ti)a
m bal™ k=1

with T'; := fit vo(s)ds and Kj ,,,(1,t;) defined as in (3.1). The estimate (3.7) yields

t; Dy

s,a,Bi’ s,a,Bj m 1 ETores
]E[<Ati,$7t ’Atjw”ﬂj >ﬁ} = %m!(SKOCNFti"'tJ)me N

In particular, for any n € N, we have

i i t; D
E[[(45%7, 4557 )s|"] < (260) 72V (20)!e 3N (850CNT1,44,)"
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Note that for any given A € (0,00) we can choose N > 0 such that
0 < 16k0CNTy,+4;A < 1. Thus, we deduce that

)

- )‘i e,a,B* e,a,B7 n
<1+ Z n E[RAHJ@- A >55| }
n=1

€,a,B* e,a,B7
E [exp (A‘<Atu% 7Atjvxj >$3

7T

4D o 2n)!
<1+ (2530)_1/2\/6 o Y %(SMOC&BMQ”

n=1

DN o
< 1+ (260) "2V e BN Y (16Ar0Ci T, ;)"
n=1

where we used (2n)! < 4"(n!)2. Hence, we have proved (6.4) in case (H1).

Now let us consider case (H2) where 7o(t) = [¢t|?0~2 for some Hy € (1/2,1)
and p(z) = |z|'72H1 for some H; € (0,1/2) such that Hy + H; > 3/4. We begin
with (6.5) and make the change of variables t; —r, — 71, and t; — 7, — T, to write,
with m = 2n > 2,

E,a,Bi’ E,a,B-j m
ERAE‘,II‘ ’Atj,zj >_¢9}
1

< iy dsmdsm N(dfm)/ Armdrm
a=m R™

[0,a]2m [0,4:]m x[0,¢5]™

m
~ |2Ho—2
X Lsy <t —ri, 50 <t;—TriVk} (H | — |7 )

k=1

X exp (‘VMZ&@BQ—W—S;C) exp (—Varz Btjg:ggk)> .
k=1

k=1

Then, the embedding property (3.23), together with Cauchy-Schwarz inequality
and the change of variables vy, =t; — ry — sg, U = t; — 'y — Sk, leads to

e,a,B* €,a,BI\m
E[<Atu$1 7Atj796j >.VJ:|

1 Hy

m ZH,
< CH, /[ | dvm, (/ 11(dém) exp <—VarZ£kB£k>>
0,¢5]™ m Pt

1 Ho

X /[Omm dvm (/Rm p(dém) exp (—Varkz:lng;k))

= OF, (Ko (1, 1) Kz,m(1,1)]™ .
Finally, using the estimate (3.9), we can write

(m!)2Ho
(T'(mb 4 1))2Ho

ti,acj, tj,acj Ka)

E|:<As,a,Bi’As,a,Bj>m:| < Cﬁﬂchom (titj)mh
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Thus, for any A > 0,

AlAS BT goa BTy A2 e,a,B" ,e,a,B7 n
B[N D] <240 Y0 ESEALT ARL ol ]
n=1 .
- 2H, p127  ((2n)!)2Ho~!
<2523 PO 0" gy <>
n=1

because 2Hy — 1 — 2Hoh = —H; < 0. This implies (6.4) in case (H2).

Step 2. For fixede >0 and i < j, as a | 0,

1 aAr aAT (B B
7/ / dsydsgePr-a ™ Prsy)
a= Jo 0

is uniformly bounded and converges to e*if(Bi’Bﬁ), due to the path continuity of

Brownian motion. As p.(df) = e—<€ w(d€) is a finite measure and ~, is locally
integrable, we have

| » ti tj
,a,B* jea,Bl\  as. —eg?—i(wi—w, &
<Ai?a:1 7A§j(,lﬂ?j >~6 all0  Jp /'L(dg)e e —it(@imay) /0 /O drdr% (tz -r- tj + m
Cie(pi pi
« o~ i€(B.—B]) _. Ly, (i — xj).

The above almost sure limit Iti;{tjyg(:ri — x;) is real for any z;,z; € R and any
e > 0, since p is symmetric (i.e. the spectral density is an even function on R). In
the sequel, we just write Z7 (z; — x;), I (z; — x;) to mean I,fftj,g(l‘i — ;) and
Itigtj (x; — x;) respectively.

We will prove 77 (x; — x;) converges, as € | 0, in L?*(Q) (hence in probability)
to some limit, denoted by Z%J(z; — ;). Note that, by Fatou’s lemma and the
estimates in Step 1, we can establish that for any A € R,

E{exp (AZH (z; — z5)) } < Cy,
for all € > 0, where C), is a constant that does not depend on . Now we rewrite

—BJ ~Fxi—x;)

it _ié(B
T (w; — ;) = / dgp(€)e = / / drdiyg(r — 7)e S PP ,
R 0 0
and we compute for £1,e5 > 0,
E[I;vlj (-fi — a:j)Iai;j (xl _ x])} — / d£2g0(§1)<p(§2)€* SE skéiefi(mifmj)(gl+§2)
R2
X / d’l"gdfg’yo(’l‘l — ?1)’}/0(7’2 — ?2)
[0,¢3]2%x[0,¢t5]2

s 2 Q _nJ
<« E [6 ‘Zk:1fk(Bt,i—rk Bt‘jf;k)

L2 (B _gi ) .
Note that E[e 21 k(B Bt:"”v)] = exp [_ %Var Zi:l fk(Bzi—rk - Bir?k)]
is positive, and note also from previous calculations in both cases (H1) and (H2)
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that

/RQ dfldfzw(fl)@(fz)/ dradraryo(r1 — 71)yo(r2 — 72)

[O,ti]Q X [0,tj]2

2
1 . .
X exp <2VarZ§k(B§i_rk - Bi,-—ﬁ)) < 00.
k=1

By the dominated convergence theorem, the limit
Ell’igle[I;f (zi — 2;)IL (zi — xj)]
exists. Therefore, as € | 0, Z:9 (z; — x;) converges in L*(Q) to some limit Z%7 (z; —
x;), which is formally given by
i BJ 7;“1’1’7;713]‘)

. ti — _
I (@i — wj) = / dge(§) / / drdivo(r — 7)e P
R 0 0

In addition, it is easy to show that this convergence also takes place in LP(Q) for
any p > 1.

Thus, together with (6.4), we deduce by first passing a to zero, then ¢ to zero
that

E [exp Z <Aifgfi7A;’_’i]’vfj>ﬁ — E |exp Z I (v; — xj)

1<i<j<k 1<i<j<k

Step 3. The last step is to establish the L?(§))-convergence of u=%(¢, ) to u(t,x),
as g,a | 0. It is enough to show the L?(Q)-convergence in view of the moment
bounds from Step 1. First for €1, €5, a1, a2 > 0, we can write by similar arguments
as before,

E[ual"“ (t, x)u22 (¢, x)] =E {GXP (<A§,1:z’al’Bl ] Ai?afaz’Bzh)}

and

£1+en

B gy = [ ugage 5 /[ Aol =)
0,t

a1a2

R
a1 A\r pag AT
> / d81d826_i§(3i’51_3’g”52)
0 0

weald, [ e 526 [ drdir — e SO -P) £y i),
a.s. R [0,t]2 mn Lz(Q) ’

By (6.4) again, we have

E[u (¢, 2)u(t, x)] UL N E[elﬁlﬁ(o)}
’ ’ then €1,e2]0 ’

which implies that the limit

t := lim lim u*%(¢
v(t, z) = limlim u™*(t, 2)
exists in LP(Q) for any p > 1.
Now consider a test random variable F = exp (W (g) — 1[|g||3) for g € C° (R4 x
R) and recall that random variables of this from are dense in D'2. For such a F,
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we have
E[Fu(t,2)] = [ exp (W(ATD? + ) — 1452213 — 5ol )]
e (L4227, 1)

—E {exp (/ot@a(s —)G(e, Bis + - *)’g(.’*»ﬁdsﬂ 7

then putting S;, = E[Fu®“(t,z)], we deduce from the classical Feynman-Kac
formula that S; , solves the partial differential equation

1
atSt,gc = §A5t,z + St,r<90a(t - .)Gs(z - *)ag(.a *)>5§

with initial condition Sy , = E[F] = 1; see for instance Hu and Nualart (2009, page
315). It follows that

E[Fu>*(t,z)]

=1+ / / (5,9)]Gi—s(x — y){@a(s — &)Gec(y — *), g(®, *)) 5dsdy
theanwaw L+ E(DF,vGo(w — *)>f3> (6.6)

where the convergence in (6.6) is verified at the end of this proof. Assuming (6.6),
we have

E[Fu(t,z)] =1+ E(DF,0G;—o(x — %)),

which is equivalent to say that v(t,x) solves the same equation for u(¢,x) so that
v(t,x) = u(t,z) by the uniqueness of the mild solution; see also Hu and Nualart
(2009) for similar arguments for the case where the Gaussian noise is fractional in
time and white in space.

Now, let us now justify the convergence in (6.6). First, by L?-convergence of
u®?(s,y), we have
E[Fus*(s, y)] —— E[Fu(s,y)].
then €l0
And recall that g € C° (R4 xR) (suppose g(r,y) = 0 for (r,y) € [0, K]*x[- K, K]°),
so that

[Fg(r, )| < ons v(r,§) € Ry xR.

&

Combining the above bound and Dalang’s condition, we have

[ decolFolie) < o(€)de + C #(¢)

P8 4e < 400 6.7
{lel<1y ges1y € (67)

Noting also that vq is locally integrable, we observe that

(als=)Gely=r)ua)s = [ | drdidro(r=Tpals = r)ple)e 5 Fyr =0
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is uniformly bounded over (s,y,e,a) € [0,¢] x R x ( . Hence,
(Pa(s — 0)Ge(y — %), 9)5 = / dr(a *70)(s =7 /dfsa Je WIS Fg(F, —¢)

a0, / dFyo(s — 7) / dep(E)e e 5E Fo(F, —¢)
’ - (6.8)

K
= 0 d’?““%(s—ﬁ/dﬁw(é)e‘iyffg(ﬁ—é) (6.9)

where we used (6.7) and the fact that ¢, * vo converges in L (R) to o to obtain
(6.8) and we applied the dominated convergence theorem in (6.9).

Another application of dominated convergence together with Fubini’s theorem
leads to

E[FU t, x
—14 / / [Fu(s, y)]Grs(z — 1) / dFyo(s — ) /R dep(E)e W Fyg(F, —€)dsdy

—1+EF / ds /}R dF (s — 7) / 0@ (&) F (vG1-o(x — ) (s, ) Fg(F, ~€)
=14+ EF(9,9Gt—e(x — %))5y = 1 + E(DF,vGi_o(x — ), (as DF = Fg),

which confirms the convergence in (6.6).

Therefore, we can conclude our proof by combining the above steps. (I
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