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Abstract. Annealed functional CLT in the rough path topology is proved for the
standard class of ballistic random walks in random environment. Moreover, the
‘area anomaly’, i.e. a deterministic linear correction for the second level iterated
integral of the rescaled path, is identified in terms of a stochastic area on a regener-
ation interval. The main theorem is formulated in more general settings, namely for
any discrete process with uniformly bounded increments which admits a regenera-
tion structure where the regeneration times have finite moments. Here the largest
finite moment translates into the degree of regularity of the rough path topology.
In particular, the convergence holds in the α-Hölder rough path topology for all
α < 1/2 whenever all moments are finite, which is the case for the class of ballistic
random walks in random environment. The latter may be compared to a special
class of random walks in Dirichlet environments for which the regularity α < 1/2 is
bounded away from 1/2, explicitly in terms of the corresponding trap parameter.

1. Introduction

Rough path theory has been extensively developing since it was introduced by
Lyons (1998). The theory provides a framework to solutions to SDEs driven by
non-regular signals such as Brownian motions, while keeping the solution map con-
tinuous with respect to the signal. The Itô theory of stochastic integration, being
an L2 theory in essence, does not allow integration path-by-path, and hence does
not give rise to solutions with such continuity property.

As it was observed by Lyons, the difficulty is not only a technical issue; in
any separable Banach space B ⊂ C[0, 1] containing the sample paths of Brownian
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motions a.s. the map (f, g) →
∫ ·
0
f(t)ġ(t)dt defined on smooth maps cannot be

extended to a continuous map on B×B (see Friz and Hairer, 2014, Proposition 1.1
and the references therein). Some additional information on the path is needed to
achieve continuity, namely the so called “iterated integrals”, where the number of
iterations needed is determined by the regularity of the signal.

Fix T > 0 and X : [0, T ]→ Rd. The M -th level iterated integral of X is

SMs,t(X) =

∫
s<u1<...<uM<t

dXu1
· · · dXuM , s < t, s, t ∈ [0, T ]. (1.1)

Note that the definition of iterated integrals assumes a notion of integration with
respect to X.

Lyons’ theory uses the information coming from the iterated integral as a pos-
tulated high level information and constructs a space (called the rough path space)
in which solutions to SDEs driven by Brownian motion are continuous with respect
to the latter. In this case two levels of iteration are enough since the Brownian
motion is α-Hölder for some α > 1

3 (and actually for all α < 1
2 ). More generally,

roughly speaking, in case the signal is α-Hölder continuous for some α ∈ (0, 1], then
M = b1/αc levels of iteration are sufficient (and necessary).

For discrete processes with regeneration structure such as ballistic random walks
in random environment (RWRE), invariance principles are well known. The main
result of this paper, Theorem 3.3, shows that after lifting the path we have as well
a scaling limit in the rough path topology where the regularity is determined by
the moments of the regenerations.

The application to the so-called ballistic RWREs, formulated in Theorem 5.3, is
then immediate, and since regeneration times have all moments Sznitman (2000)
the convergence in spaces of regularity α is taken all the way to α < 1

2 . The theorem
is also applied to random walks in Dirichlet environments with large enough trap
parameter, where in this case the convergence is on a limited regularity space, see
Theorem 5.5 for the precise statement.

When a scaling limit is known for some process in the uniform topology, one
might be interested to get a richer information about the limit. For inhomogeneous
random walks with regeneration structure, an interesting phenomenon yields. As it
turns out, unlike the “classical” invariance principles, when considering the second
level iterated integral, which is related to the running signed area of the process as
we show, the local fluctuations do not disappear in the limit, and a correction has
to be considered. Moreover, thanks to the i.i.d structure of the walk on regenera-
tion intervals, the law of large numbers allows us to write the correction as a linear
function in time (tΓ)0≤t≤T , called the area anomaly. In particular, Γ is a deter-
ministic matrix which is the expected signed area accumulated in a regeneration
interval, divided by its expected length, see the main result, Theorem 3.3.

Another application is related to the Wong-Zakai type approximations of solu-
tions to SDEs. Let (BN )N be a sequence of semimartingales converging weakly
in the uniform topology to a Brownian motion B. An interesting question is to
understand the approximating differential equations, where the noise is replaces by
BN . Let X be a solution to a SDE with nice (in an appropriate sense) drift and
diffusion coefficients and let XN be a solution to corresponding difference equation
driven by BN . The Wong-Zakai Theorem implies that it is not true in general that
XN converges to X whenever the convergence of the noise holds in the uniform
topology Wong and Zakai (1965). However, if the weak convergence of BN to B
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holds in the rough path space of regularity α with a linear area correction tΓ, for
some α ∈ ( 1

3 ,
1
2 ), then the answer is affirmative, where the SDE under considera-

tion has to be modified by adding a drift term which is explicit in terms of Γ Kelly
(2016).

Other aspect of noise approximations effects is related to SPDEs. The theory of
rough path was strengthened with Gubinelli’s notion of controlled rough path (Gu-
binelli, 2004) and branched rough path (Gubinelli, 2010) which extend the notion
of integration and of solutions to differential equation with respect to an abstract
data coming from the noise. This then inspired Martin Hairer to develop the far-
reaching theory of regularity structures (Hairer, 2014), which is now extensively
studied. A similar question is fundamental to SPDEs: what can be learned on the
solutions if rather than mollifying the noise by a smooth function one takes more
complicated approximations? For a recent progress in this direction, see Bruned
et al. (2019).

Going back to the Brownian case, the fundamental result related to our work
is the Donsker’s invariance principle in the rough path topology (Breuillard et al.,
2009). An extension to random walks with general covariances was proved in Kelly
(2016).

In Lopusanschi and Simon (2017, 2018) the authors studied some discrete pro-
cesses converging to Brownian motion in Rd in the rough path topology with area
anomaly which was constructed explicitly. Our main idea of our proof is inspired by
theirs, with two main differences. First, we do not use the strong Markov property
for the excursions, which, for a finitely supported jump distribution implies that
the excursions have exponential tail. Instead, we only assume i.i.d. regeneration
structure and moments of the regeneration times. Second, the discrete processes in
these papers are homogeneous in space (a simple random walk on periodic graphs,
see Lopusanschi and Simon, 2017, or hidden Markov walk where the jumps are
independent of the current position, see Lopusanschi and Simon, 2018). In our case
we allow the process to have jump distributions that are inhomogeneous in space.

Another interesting example is a Brownian motion in magnetic field Friz et al.
(2015). Here the discretization converges to an enhanced Brownian motion with an
explicit area anomaly.

The problem of discrete processes seen as rough paths is dealt with in other
context as well. Kelly (2016) and Kelly and Melbourne (2016), and the more
recent Friz and Zhang (2018) used the rough path framework to deal with discrete
approximations of SDEs. The case of random walks on nilpotent covering graphs
was considered in Ishiwata et al. (2020a,b); Namba (2018) where the corresponding
area anomaly is identified in terms of harmonic embeddings (cf. Ishiwata et al.,
2020a, equation (2.6)). Anther paper concerning discrete processes which is of
relevance here is Chevyrev and Friz (2019). In that paper the authors showed a
general construction of rough SDEs allowing rough paths with jumps beyond linear
interpolations.

1.1. Structure of the paper. In order to keep the paper as self-contained as possible
in Chapter 2 we discuss basic notions in rough path theory and set up the framework
to be used in the rest of the paper. In chapter 3 we formulate our main result,
Theorem 3.3. In chapter 4 we give some simple examples of processes converging in
the rough path topology and lacking or having non-zero area anomaly. In Chapter 5
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we present other special cases of our main result. Particular cases are ballistic
random walks in random environment, for which we also present an open problem,
and random walks in Dirichlet environments. Finally, in Chapter 6 we give the
proof of Theorem 3.3.

2. Basic notions in rough path theory

The aim of this section is to introduce briefly the basic objects in our framework.
These are adapted from Chapters 2 and 3 of Friz and Hairer (2014). The experi-
enced reader can safely jump to Remark 2.4. Since we assume here no familiarity of
the reader with rough path theory we added a short discussion after Proposition 2.3
which is somewhat loosely formulated and should be treated accordingly. For an
extensive account of the theory the reader is suggested to consult Friz and Victoir
(2010) and Friz and Hairer (2014).

Initially developed for solving differential equations, rough path theory is also
useful in the discrete setting, and in particular for studying the convergence of
discrete processes. For example, in the uniform topology a simple random walk
(SRW) on Z2 to which we add deterministic four steps clockwise loops every two
steps (see Figure 2.1 below) converges to the same Brownian motion as a SRW
which stays still for four steps every two steps. Thus in the uniform topology the
loops simply disappear at the limit.

Figure 2.1. A simple random walk with a deterministic loop ev-
ery two steps. The double arrows (in red) are the random walk’s
steps while the added loops are presented by the single arrows (in
blue).

The loops certainly do not play a role if one is interested in the limit trajectory
only. However, if one wishes to study more aspects of the limit, the accumulated
area created by the loops could be also taken into consideration. A basic example
for accumulated area in the continuous setting is provided by the “bubble areas"
of Lejay (2003). This weakness of the uniform topology is precisely one of the
problems that rough path theory palliates.

Following Friz and Victoir (2010) we denote by ⊗ two different actions:
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• for two elements of vector spaces, it is the usual tensor product: if V and
W are d-dimensional, respectively d′-dimensional vector spaces, for v ∈ V
and w ∈W , v ⊗ w is the matrix (viwj)1≤i≤d,1≤j≤d′ ;

• for two elements of a group (in our case, G2(Rd), defined below), it denotes
the corresponding group operation.

The continuous process obtained by linear interpolation (or any other piecewise
C1 interpolation) of a discrete process, as well as its corresponding iterated integrals
can be encoded in terms of elements of a particular nilpotent Lie group (see Friz and
Hairer, 2014, Section 2.3 for more details). For simplicity and since our motivation
in this paper is to prove convergence to Brownian motion, which is α-Hölder for all
α < 1/2, we adapt the general point of view taken in the book Friz and Hairer (2014)
and consider (1.1) in the caseM ≤ 2, i.e. with only two levels of iteration. Therefore
in the rest of the paper, we write Ss,t(X) for S2

s,t(X). The pairs (Xs,t, Ss,t(X)),
s < t, with Xs,t = Xt −Xs, for a smooth path X, have a natural group structure
with respect to increment concatenation. Here is the formal definition (see also the
algebraic conditions in Proposition 2.4 for the corresponding formulation in terms
of paths).

Definition 2.1 (The group G2(Rd)). The step-2 nilpotent Lie group G2(Rd) ⊂
Rd ⊕ (Rd)⊗2 is defined as follows. An element can be presented by a pair (a, b) ∈
Rd×Rd×d (that is a is a vector and b is a matrix), the group operation ⊗ is defined
by

(a, b)⊗ (a′, b′) = (a+ a′, b+ b′ + a⊗ a′), (2.1)
and the following condition holds

∀(a, b) ∈ G2(Rd), Sym(b) =
1

2
a⊗ a, (2.2)

where Sym(·) is the symmetric part of an element, that is Sym(b)i,j = 1
2 (bi,j+bj,i).

(For clarity, we emphasize that above we used a ⊗ a′ = (aia
′
j)i,j for the tensor

product).

For an element (a, b), a and b are called the first and the second level, respectively.
The topology of G2(Rd) is induced by the Carnot-Caratheodory norm || · ||G2(Rd),

which gives for an element (a, b) ∈ G2(Rd) the length of the shortest path with
bounded variation that can be “encoded" as (a, b), i.e. whose increment is a and
whose iterated integral is b. In other words

||(a, b)||G2(Rd) := inf

{∫ 1

0

|γ̇(t)|dt
}
,

where the infimum is over all γ : [0, 1] → Rd of bounded variation so that
(γ0,1, S0,1(γ)) = (a, b). Showing that the set on which the infimum is taken is
non-empty is a non-trivial statement and is the content of Chow’s Theorem, see
Friz and Victoir (2010, Theorem 7.28). The norm defined in this fashion induces a
continuous metric d on G2(Rd) through the application

d : G2(Rd)×G2(Rd) → R+

(g, h) 7→ ||g−1 ⊗ h||G2(Rd)
. (2.3)

(G2(Rd),d) is then a geodesic space, i.e. any two points can be connected by a
geodesic.
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Definition 2.2 (Rough paths on G2(Rd)). Let 1/3 < α < 1/2. An α-Hölder
geometric rough path on G2(Rd) is an element X = (X,X) ∈ Cα([0, T ], G2(Rd)).
More preciesly, (Xs,t,Xs,t), s, t ∈ [0, T ], s < t, are in G2(Rd) and the path is an
α-Hölder continuous function with respect to the distance d.

Without going into details we remark that rough path theory also deals with
rough paths which are not geometric, i.e., those for which (2.2) does not hold.

An example in the probabilistic setting of an α-Hölder geometric rough path,
for any α ∈ ( 1

3 ,
1
2 ) is the Brownian motion rough path, which is also known as

the enhanced Brownian motion. It is constructed using Stratonovich integration as
follows:

(Bs,t,Ss,t) =
(
Bt −Bs,

∫
s≤u<v≤t

◦dBu ⊗ ◦dBv
)
, 0 ≤ s < t.

The group structure on G2(Rd) and the Carnot-Caratheodory norm and distance
are particularly tamed for treating path concatenations. For example the norm is
sub-additive. In particular, for a path X = (X,X) which takes value in G2(Rd) let
Xs,t := X−1s ⊗Xt. Then for every s < u < t

||Xs,t||G2(Rd) = ||Xs,u ⊗Xu,t||G2(Rd) ≤ ||Xs,u||G2(Rd) + ||Xu,t||G2(Rd). (2.4)

The next proposition can found be useful for actual estimations. It leans on the
equivalence

C−1 ≤
||(a, b)||G2(Rd)

|a|Rd + |b|1/2Rd⊗Rd
≤ C, (2.5)

where C ≥ 1 is a constant, | · |Rd is the Euclidean norm on Rd and | · |Rd⊗Rd is the
induced matrix norm.

Assume that (Xs,t,Xs,t), 0 ≤ s < t ≤ T , take value in Rd × Rd×d. Define

|||(X,X)|||α := ||X||α + ||X||2α, (2.6)

where

||X||α = sup
s<t,s,t∈[0,T ]

|Xs,t|Rd
|t− s|α

and ||X||2α = sup
s<t,s,t∈[0,T ]

|Xs,t|Rd⊗Rd
|t− s|2α

. (2.7)

Proposition 2.3. (Friz and Hairer, 2014, Proposition 2.4) Let α ∈ ( 1
3 ,

1
2 ].

X = (X,X) : {0 ≤ s < t ≤ T} → Rd × Rd×d is a geometric rough path as in
Definition 2.2 if and only if Xs,t = Xt −Xs and the following assumptions hold:

• |||(X,X)|||α <∞.
• Xs,t = Xs,u + Xu,t +Xs,u ⊗Xu,t for every s < u < t (Chen’s relation).
• Sym(Xs,t) = 1

2Xs,t ⊗Xs,t for every s < t (integration by parts property).

To end this brief review we mention an alternative definition of the group which
has some nice interpretation in terms of signed area. A path X considered in Defi-
nition 2.2 has increments in G2(Rd). This is relevant for the notion of integration,
which is, roughly speaking, defined based on “sewing" according to the increments.
However, since the symmetric part of the second level depends entirely on the first
level by definition, to handle path increments the following alternative definition
for the group on which the rough paths are considered is sometimes more useful.
The corresponding antisymmetric group operation ∧ is defined by

(a, b) ∧ (a′, b′) = (a+ a′, b+ b′ +
1

2
(a⊗ a′ − a′ ⊗ a)). (2.8)
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In particular, unlike the case of the law ⊗ where an element (a, b) represents a path
with an increment a and an iterated integral b, in the case of the antisymmetric
product an element (a, b) represents a path where a is still an increment but b is now
the corresponding area. In other words, for (X,X) ∈ G2(Rd) we consider (X,A)

instead, where Ai,js,t = 1
2 (Xi,js,t − Xj,is,t).

For example, the Brownian motion considered as a rough path in the case of the
antisymmetric product ∧ has the form

B∧s,t = (Bt −Bs,As,t), 0 ≤ s ≤ t, (2.9)

where A is the stochastic signed area of B, called the Lévy area. One also re-
mark that the Lévy area is invariant under performing the integration in either the
Stratonovich or the Itô sense.

The operation defined in (2.8) has a geometric interpretation which shows why
the group is suitable for concatenating paths. The first level translates into path
concatenation, whereas the second one gives the law of the “area concatenation”
(signed area of concatenated paths). Figure 2.2 demonstrates how to calculate the
signed area of two concatenated curves. The areas of γ1, γ2 and that of the triangle
(formed by the increments of γ1 and γ2) in the figure correspond respectively to b,

b′ and
1

2
(a ⊗ a′ − a′ ⊗ a) in formula (2.8). This rule for the area of concatenated

paths is also commonly referred as the Chen’s rule. It plays a fundamental role in
the theory of rough paths.

Figure 2.2. A geometric demonstration of Chen’s rule on the area
of concatenated paths.

Remark 2.4. In view of Proposition 2.3, one can use its assertion as a definition for
α-Hölder rough paths. This is sometimes preferable if one wishes to avoid the Lie
group construction. However, in this paper we find the group presentation useful,
mainly for the proof of the main result of the paper, Theorem 3.3, see section 6.
Moreover, Step 1 and 4 of the proof are based on Breuillard et al. (2009) which
is formulated in the Lie group language. Also, the group actions are useful for
presenting computations in a compact way, see in Step 2 of the proof.
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3. Main result

For a sequence X = (Xn)n of elements of Rd, its continuous rescaled version
X

(N)
· is defined by

X
(N)
t =

1√
N

(
XbNtc + (Nt− bNtc)(XbNtc+1 −XbNtc)

)
.

We denote the lift of X(N) to a rough path by

ι(N)(X)s,t :=
(
X

(N)
s,t , Ss,t(X

(N))
)
, (3.1)

where Ss,t(X(N)) is the second level iterated integral of X(N) between s and t,
Ss,t := S2

s,t, as defined in (1.1), and the integration is in the Riemann-Stieltjes
sense (which is well-defined since X(N) is of bounded variation on every compact
interval [s, t]). One can check that for natural numbers m < n, the associated
second level iterated integral has the following form

Si,jm,n(X(1)) =
∑

m+1≤k<`≤n

∆Xi
k∆Xj

` +
1

2

∑
m+1≤k≤n

∆Xi
k∆Xj

k, (3.2)

where ∆Xk := Xk −Xk−1 = Xk−1,k are the increments.

Definition 3.1. For a path Y in Rd of bounded variation we define the area

Ai,js,t(Y ) =
1

2
(Si,js,t(Y )− Sj,is,t(Y )) (3.3)

as the antisymmetric part of the iterated integral of Y . Set also St(Y ) := S0,t(Y )
and At(Y ) := A0,t(Y ).

Definition 3.2. Let (X,F ,P) be a discrete time stochastic process on Rd. We say
that X admits a regeneration structure if there are F-measurable integer valued
random variables (τk)k∈N0

so that 0 = τ0 < τ1 < τ2 < ... <∞ P-a.s. and(
τk − τk−1, {Xτk−1,τk−1+m : 0 ≤ m ≤ τk − τk−1}

)
are independent random variables for k ≥ 1, and have the same distribution for all
k ≥ 2.

Theorem 3.3. Let X be a discrete time stochastic process on Rd with bounded
jumps |Xn+1 −Xn|Rd ≤ K P-a.s. Assume that X admits a regeneration structure
in the sense of Definition 3.2 and let (τk)k≥0 be the corresponding regeneration
times. Assume further that X satisfies a strong law of large numbers

P
(

lim
n→∞

Xn

n
= v

)
= 1.

In this case the speed v ∈ Rd is defined by

v :=
E[Xτ1,τ2 ]

E[τ2 − τ1]
.

Also, assume that X̄n = Xn − nv satisfies an annealed invariance principle with
covariance matrix

M =
E[X̄

(1)
τ1,τ2 ⊗ X̄

(1)
τ1,τ2 ]

E[τ2 − τ1]
.
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The last assumption is the following moment condition:

E[(τk − τk−1)2p] <∞ (3.4)

for some p ≥ 4. Then we have the following weak convergence with respect to P to

ι(N)(X̄)⇒ (Bs,t,Ss,t + (t− s)Γ)0≤s<t≤T in Cα
(
[0, T ], G2(Rd)

)
for all α ∈ ( 1

3 ,
p∗−1
2p∗ ), where p∗ = min{bpc, 2bp/2c}, and the couple (B,S) are the

Brownian motion with covariance matrix M and its second level iterated
Stratonovich integral process. Moreover, the correction is the antisymmetric matrix

Γ =
E[Aτ1,τ2(X̄(1))]

E[τ2 − τ1]
.

In particular, if the moment condition holds true for all 1 ≤ p < ∞ then the
convergence holds true for all α < 1

2 .

Remark 3.4. The corresponding result for the area with the same correction Γ holds
as well, that is whenever the path is considered with the antisymmetric operation,
S(X) is replaced by A(X) and the enhanced Brownian motion S is replaced by the
Stratonovich Levy area A.

The correction matrix Γ has the following decomposition.

Lemma 3.5. The following decomposition holds

Γ =
E[Aτ1,τ2(X(1))]

E[τ2 − τ1]

+
E
[∑

τ1<k<`≤τ2(v ⊗∆Xk + ∆X` ⊗ v)− (∆Xk ⊗ v + v ⊗∆X`)
]

2E[τ2 − τ1]
.

Proof : One has

∆X̄` ⊗∆X̄k = ∆X` ⊗∆Xk + v⊗2 − (v ⊗∆Xk + ∆X` ⊗ v)

since X̄n = Xn − nv. Neglecting the symmetric term we get the assertion �

4. Simple applications

In this section we construct processes lacking or having non-zero area anomaly
with a simple but instructive description. For starters, going back to the two pro-
cesses compared in Chapter 2, the process with four steps clockwise loops every two
steps (see Figure 2.1) have a non-zero area anomaly, while the process which stands
still for four steps every two steps have no correction. For a discrete time process
X, we remind the reader the notation Xn(t) :=

Xbntc√
n

+ 1√
n

(
(nt− bntc)(Xbntc+1 −

Xbntc)
)
.

4.1. Rough path version of Donsker’s Theorem (Breuillard et al., 2009; Kelly, 2016).
Consider a discrete time random walk X on Rd. Assume that the increments
∆Xn are i.i.d. non-zero centered with finite 2p moment for some p ≥ 4. Then
ι(N)(X)→(B,S) in distribution in Cα

(
[0, 1], G2(R2)

)
, α ∈ ( 1

3 ,
1
2 −

1
p∗ ), where p∗ =

min(bpc, 2bp/2c), B is a d-dimensional Brownian motion, and (S) is the
Stratonovich second level iterated integral of B in the time interval [0, 1]. One
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can see this as a special case of our theorem for the case the regeneration times are
the set of natural numbers.

Note that in this example no area correction appears. Since centering a random
walk with a drift defines a new random walk with no drift, this example shows that
a non-zero area anomaly cannot be created only from the presence of drift.

4.2. Rotating drift (Lopusanschi and Simon, 2018). The following example shows
that non-zero area anomaly is possible even with no speed. Consider Z2 ⊂ C. Let
(ζn)n be i.i.d. so that P (ζ1 = 1) = p = 1 − P (ζ1 = −1). Define ∆Xn := inζn,
i =
√
−1. Then XN → B in distribution in the uniform topology, B is a BM with

covariance 2p(1 − p)I, where I is the identity matrix. However, after rescaling
ι(N)(X) → (B,S + Γ·) in distribution in Cα

(
[0, 1], G2(R2)

)
, α < 1/2, where S is

the Stratonovich second level iterated integral of B in [0, 1].
Indeed, X has a regeneration structure for the deterministic times τk := 4k, k ≥

0, which, trivially, have all moments. One can check that there is a strong law
of large numbers with speed v = 0. Then Γ = 1

4E[A0,4(X)], and straight forward
computation yields

Γ =
(2p− 1)2

4

(
0 1
−1 0

)
which is non-zero if p 6= 1

2 .

Different presentation: non-elliptic periodic environment. The same example as
above can be presented as a walk in a certain fixed space non-homogenous en-
vironment rather than a walk with drift rotating in time. Consider again Z2 as
a subset of C and fix some 0 < p < 1. Let ω be the two-periodic environ-
ment given by: ω(0, 1) = p = 1 − ω(0,−1), ω(1, 1 + i) = p = 1 − ω(1, 1 − i),
ω(1+ i, i) = p = 1−ω(1+ i, 2+ i), and ω(i, 0) = p = 1−ω(i, 2i). In particular, two-
periodicity means that ω(v, w) = ω(v + z, w) = ω(v, w + z) for every w, v ∈ Z + Zi
and z ∈ 2Z+ 2Zi. Finally, let X be the Markov chain on Z2 with transition proba-
bilities ω. Then, by parity, the law of X is the same as the law of the last rotating
drift example. In particular, the same result holds for this example as well.

5. Applications

5.1. Random walks in random environment. We first define random walks in ran-
dom environment on Zd. Let E := {ei : i = 1, ..., 2d} ⊂ Zd be the set of neighbors
of the origin. Let Px be the space of probability distributions on the algebraic sum
x+ E := {x+ e : e ∈ E}. We call Ω =

∏
x∈Zd Px the space of environments on Zd.

In particular, an environment ω ∈ Ω is of the form ω = (ω(x, x + e))x∈Zd,e∈E so
that ω(·, ·) ≥ 0 and

∑
e∈E ω(·, ·+ e) = 1.

For a fixed environment ω ∈ Ω and a starting point x ∈ Zd we define a nearest
neighbor walk X on Zd to be the Markov chain starting at x, Px,ω(X0 = x) = 1,
with transition probabilities Px,ω(Xn+1 = y + e|Xn = y) = ω(y, y + e). Given
a probability distribution P on Ω, the annealed (and sometimes called also the
averaged) law of the walk X is characterized by Px(·) :=

∫
Px,ω(·)dP (ω). We also

call Px,ω the quenched law. We say that the environment is i.i.d. if (ωx)x∈Zd is an
i.i.d. sequence under P . An i.i.d. random environment is called uniformly elliptic
if there is some deterministic κ > 0 so that P (ω(0, e) ≥ κ for all e ∈ E) = 1.
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We now define some ballisticity conditions and for that adapt the notation of
Berger et al. (2014). Fix L ≥ 0 and let ` ∈ Sd−1 be an element of the unit sphere.
Then we write

H`
L := inf{n ∈ N0 : Xn · ` > L} (5.1)

for the first entrance time of (Xn) into the half-space {x ∈ Zd : x · ` > L}, where
N0 = {0, 1, 2, . . .}.

Definition 5.1 (Sznitman (T ′)|` condition, Sznitman, 2002). Let γ ∈ (0, 1] and
l ∈ Sd−1. We say that condition (T )γ is satisfied with respect to `, and write (T )γ |`,
if for every b > 0 and each `′ in some neighborhood of ` one has that

lim sup
L→∞

L−γ lnP0

(
H`′

L > H−`
′

bL

)
< 0.

We say that condition (T ′) is satisfied with respect to `, and write (T ′)|`, if condition
(T )γ |` is fulfilled for every γ ∈ (0, 1).

Definition 5.2 (Berger-Drewitz-Ramirez (P ∗M |`) condition, Berger et al., 2014).
Let M > 0 and ` ∈ Sd−1. We say that condition P ∗M |` is satisfied with respect to `
if for every b > 0 and all `′ ∈ Sd−1 in some neighborhood of `, one has that

lim sup
L→∞

LMP0

(
H−`

′

bL < H`′

L

)
= 0, (5.2)

Theorem 5.3. Let X be a random walk in i.i.d. and uniformly elliptic random
environment on Zd, where d ≥ 2. Let ` ∈ Sd−1 and assume that the Sznitman-type
condition P ∗M |` of Berger-Drewitz-Ramirez holds for some M > 15d + 5. Then,
considering X with respect to the annealed law P0, the conditions of Theorem 3.3
are satisfied, and moreover the moment condition holds for all 1 ≤ p <∞.

Proof : Berger, Drewitz, and Ramirez (Berger et al., 2014, Theorem 1.6) states
that in this case the stronger condition (T ′)|` of Sznitman also holds. The law of
large numbers, including the existence of regeneration times were proved in Sznit-
man and Zerner (1999) where the independence mentioned only the increments
(Xτk−1,τk , τk − τk−1). However, the proof of Sznitman and Zerner (1999) shows
that the walk on different intervals (Xτk−1,τk−1+m · `)m≤τk−τk−1

, is independent
for k ≥ 1 and identically distributed for k ≥ 2, and, moreover, the walk satisfies
Xτk−1,τk−1+m · ` > 0 for all m > 0. This form appears specifically, e.g., in Berger
(2008, Claim 3.4). In particular, X admits a regeneration structure in the sense of
Definition 3.2. Annealed invariance principle was proved in Sznitman (2000, Theo-
rem 4.1) and Sznitman (2001, Theorem 3.6) based on the finiteness of all moments
for the regeneration time, which was proved in Sznitman (2001, Theorem 3.4). �

Remark 5.4. A version of a well-known conjecture by Sznitman is as follows: For
random walks in random environment on Zd, d ≥ 2, in i.i.d. and uniformly ellip-
tic environment directional transience in some direction ` is enough for attaining
finiteness of all moments for the regeneration times. Therefore, assuming the con-
jecture then directional transience in some direction ` is enough for an annealed
convergence in the α-Hölder rough path topology for all α < 1/2. In particular,
one would not expect an example with a more singular convergence, or, more ac-
curately no example for directionally transient i.i.d uniformly elliptic RWRE for
which there are some α < β < 1/2 so that the convergence holds in α-Hölder but
not in β-Hölder.
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A Dirichlet distribution with parameters α1 > 0, ..., αN > 0 is defined by the den-
sity ϕ with respect to Lebesgue measure on SN−1 := {x ∈ RN : xi ≥ 0,

∑N
i=1 xi =

1}, the (N − 1)-dimensional simplex, defined by

ϕ(x) =
1

B(α1, ..., αN )

N∏
i=1

xα1−1,

where B(α1, ..., αN ) is a normalizing constant. Let X be a random walk in i.i.d.
random environment so that ω0 has the Dirichlet distribution with parameters
αe > 0 for e ∈ E . It is known that in dimension d ≥ 2 if∑

e∈E
|αe − α−e| > 1 (5.3)

then for every direction ` for which
∑
|e|=1 αee · ` > 0 the walk can be decomposed

into regeneration intervals in direction ` in the form that appears in the proof of
Theorem 5.3 above, and in particular it admits a regeneration structure in the
sense of Definition 3.2. Moreover, the regeneration interval τ2− τ1 has a finite p-th
moment if and only if p < κ, where κ is defined by

κ = 2
∑
e∈E

αe −max
e∈E
{αe + α−e},

see Sabot and Tournier (2017, Corollary 2). In particular, we have

Theorem 5.5. Let X be a random walk in i.i.d. Dirichlet environment Zd, where
d ≥ 2. Assume that (5.3) holds. If κ > 8, then under the annealed law the
conditions of Theorem 3.3 are satisfied with p < κ/2. In particular, we have a
convergence in the α-Hölder rough path topology for all α ∈ ( 1

3 ,
1
2 −

1
(κ/2)∗ ), where

(κ/2)∗ = min{bκ/2c, 2bκ/4c}.

Remark 5.6. It is relevant to point out here that the α-Hölder rough topology is not
the only choice one can make (although it is certainly more common). We chose to
work with it in this paper due to availability of the results of Breuillard et al. (2009)
and Kelly (2016) which were considered in these settings. However, without going
into the details here, let us mention that one can also define a rough path topology
using the p-variation norm, which is parameterization-free and corresponds to 1/p-
Hölder topology. This was in fact the original definition in Lyons (1998). Using
some recent available estimates, we believe that one should be able to prove a
version of our Theorem 3.3 in the p-variation rough path topology, for every p > 2,
assuming only finiteness of the second moment of the jumps. The last example
shows why this might be desirable. On the other hand, in the view of Remark 5.4,
there’s no advantage for p-variation rough paths if one is interested in RWRE from
the ballistic class.

We close this section with an open problem. As one can notice in the exam-
ples given in Chapter 4, to construct a law with non-zero area anomaly it is not
enough to have an asymptotic direction or non-trivial covariances. Area anomaly
might hint that there is some asymmetry in the shape of the path with respect to
the asymptotic direction. We conjecture that, roughly speaking, any “reasonably
asymmetric" RWRE from the ballistic class considered in Theorem 5.3 would have
a non-zero area anomaly. However, the following is still an open problem.
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Problem 5.7. Is there a RWRE satisfying the conditions of Theorem 5.3 for which
the area anomaly Γ is non-zero? Note that the question is open even for stationary
and ergodic RWRE.

5.2. Periodic graphs or hidden Markov walks. Theorem 3.3 naturally generalizes
the main results in Lopusanschi and Simon (2018) and Lopusanschi and Simon
(2017).

Theorem 5.8 (Lopusanschi and Simon, 2017, 2018). Let X be either an irreducible
Markov chain on a periodic graph (see the definition in Lopusanschi and Simon,
2018) or an irreducible hidden Markov walk driven by a finite state Markov chain
(see the definition in Lopusanschi and Simon, 2017), then the conditions of Theo-
rem 3.3 are satisfied.

Proof (Sketch): If (Yn)n is an irreducible Markov chain on a periodic graph or an
irreducible hidden Markov walk, it admit an underlying irreducible Markov chain
(Xn)n on a finite state space. More precisely, for every n ≥ 1, the increment
Yn+1 − Yn depends on Xn in an appropriate way.

We can thus define a sequence on stopping times for (Xn)n as

T0 = 0 and Tn = inf{k > Tn−1 : Xk = X0}, n ≥ 1.

In particular, it is a sequence of return times to the initial position of (Xn)n≥0.
By construction, the sequence (Tn)n≥0 is strictly increasing and, as (Xn)n≥0 is
irreducible, all Tn are finite a.s. The increments (Tn+1 − Tn)n≥0 are i.i.d., as well
as the variables (YTn+1 − YTn)n≥0 (see the proof in Lopusanschi and Simon, 2018)
and, more generally,(

(YTn+m − YTn)0≤m≤Tn+1−Tn , Tn+1 − Tn
)
n≥0 .

Consequently the process (Yn)n≥0 admits a regeneration structure.
Moreover, since (Xn)n≥0 is irreducible and takes values on a finite state space,

all moments of the increments Tn+1 − Tn are finite (they actually have geometric
tails). Concluding the law of large numbers and the invariance principle is now
routine. �

6. Proof of Theorem 3.3

We shall take the general route of Lopusanschi and Simon (2017), where the
authors proved first the convergence for the path on a sequence of return times
with exponential tails, and then moved to the full path, where they identified an
area correction. For both identification of the limit and tightness they used the
strong Markov property together with the the tail bounds of the stopping times. To
demonstrate the idea in a rather simple way the reader is suggested to think about
the case of random walks on a deterministic periodic environment on Zd, where the
decomposition is done according to return times of the walk to the origin modulu
the period. In our proof, we decompose the path according to the regeneration
times, which are not stopping times and therefore the strong Markov property
does not apply. However, as we shall show, the i.i.d. nature of our decomposition
together with the finiteness of the regeneration time interval moments are enough
to conclude.

Proof of Theorem 3.3: The proof will be divided in four steps:
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• Convergence in distribution of the centered discrete process given by the
sum of X̄τk,τk+1

using the rough path version of Donsker’s Theorem.
• Convergence of the finite-dimensional marginals of the subsequence(

ι(τk)(X̄)
)
k≥1, where we see the area anomaly Γ.

• Convergence of finite-dimensional marginals of the full process(
ι(N)(X̄)

)
N≥1.

• Tightness of the sequence
(
ι(N)(X̄)

)
N≥1.

Step 1: Let Yn =: X̄τn . We claim that ι(N)(Y )t≤T → (B′t,S ′t)t≤T in distri-
bution with respect to P0 in Cα([0, T ], G2(Rd)) for all α ∈ ( 1

3 ,
1
2 −

1
2p∗ ), where B′

is a Brownian motion with covariance matrix E[X̄τ1,τ2 ⊗ X̄τ1,τ2 ] and S ′ is its cor-
responding second level iterated Stratonovich integral. Indeed, assuming without
loss of generality that (X̄τ1 , τ1) has the same distribution of (X̄τ1,τ2 , τ2 − τ1), then
Yn =

∑n
i=1 ∆Yi is a sum of i.i.d. centered random variables with values in Rd and

with covariance E[∆Y1⊗∆Y1] = E[X̄τ1,τ2 ⊗ X̄τ1,τ2 ]. Moreover, since the jumps are
P0-a.s. bounded |∆Xn|Rd ≤ K, then |∆Yn|Rd ≤ R(τn − τn−1) and therefore also
have finite 2p moment, where R = R(K, d) is some constant. Applying Theorem 1
of Breuillard et al. (2009) to the process D−1/2Yn, where D = E[X̄τ1,τ2 ⊗ X̄τ1,τ2 ],
we get weak convergence of Y (N) in in Cα

(
[0, T ], G2(Rd)

)
for all α ∈ ( 1

3 ,
1
2 −

1
2p∗ ).

(Alternatively, Lemma 3.1 of Kelly (2016) with V = 1 in the equation appearing
there implies the convergence in uniform topology and therefore the convergence
of the finite-dimensional marginals, then the tightness in Cα

(
[0, T ], G2(Rd)

)
for

all α ∈ ( 1
3 ,

1
2 −

1
2p∗ ) is showed in the proof of that lemma using the Kolmogorov

Criterion.)
Step 2: Denote by δε the standard dilatation by ε, that is δε(x, a) = (εx, ε2a).

By (2.1) and (3.2) we have the following decomposition of the rough path lift of X̄

δN1/2ι(N)(X̄)m
N

=

m⊗
k=1

(
∆X̄k,

1

2
∆X̄⊗2k

)
Then, using the properties of integrals for piecewise linear processes, for r ∈ N,

we get the decomposition

δ
τ
1/2
r
ι(τr)(X̄)1 =

r⊗
k=1

(
∆Yk,

1

2
∆Y ⊗2k

)
⊗

r⊗
k=1

(0, ak), (6.1)

where

ak =
1

2

∑
τk−1+1≤m<n≤τk

(
∆X̄n ⊗∆X̄m −∆X̄m ⊗∆X̄n

)
is the discrete area between the times τk−1 and τk. We note that the first term in
the product at the right hand side of (6.1) corresponds to the rough path of a partial
sum of our i.i.d. variables ∆(X̄τ )k. We have seen in step 1 that the sequence of
rough paths which is corresponding to these partial sums converges in distribution
to the enhanced Brownian motion in the α-Hölder topology, which implies that the
corresponding finite-dimensional marginals converge in distribution to those of the
Brownian motion.

On the other hand, for every fixed s ∈ N and 0 < t1 < . . . < ts, using the fact
that the process X admits a regeneration structure, we conclude that ak, k ≥ 2, are
i.i.d., and moreover each coordinate of ak is bounded by a multiple ofK(τk−τk−1)2,
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which has a bounded expectation. Thus, by the law of large numbers, we have the
following convergence(

1

r

r∑
k=1

abt1kc, ...,
1

r

r∑
k=1

abtskc

)
−→
r→∞

E[a2](t1, ..., ts) a.s.

Moreover, the law of large numbers implies τk
k → E[τ2 − τ1] =: β P0-a.s. Since⊗r

k=1(0, ak) = (0,
∑r
k=1 ak), we can use Slutsky’s theorem (Slutsky, 1925) as in

Lopusanschi and Simon (2017, Lemma 2.3.2) to conclude that we have the following
convergence in distribution(

ι(τr)(X̄)t1 , ..., ι
(τr)(X̄)ts

)
−→
r→∞

((Bt1 ,St1 + t1Γ), . . . , (Bts ,Sts + tsΓ))

where Γ = β−1E[a2] is an antisymmetric matrix, B = β−1/2B′ and S is its corre-
sponding Stratonovich iterated integral.

Step 3: Set κ(n) to be the unique integer such that τκ(n) ≤ n < τκ(n)+1. We
use (2.3) together with the fact that X̄ has bounded increments a.s. to deduce

d
(
δN−1/2

(
ι(1)(X)τκ(bNtc)

)
, δN−1/2

(
ι(1)(X)bNtc

))
= N−1/2d

((
ι(1)(X)τκ(bNtc)

)
,
(
ι(1)(X)bNtc

))
≤ dKN−1/2(bNtc − τκ(bNtc)).

Applying the Markov inequality we obtain the following convergence for any ε > 0

P
(
d
(
δN−1/2

(
ι(1)(X)Tκ(bNtc)

)
, δN−1/2

(
ι(1)(X)bNtc

))
> ε
)

≤ Kd
E[bNtc − τκ(bNtc)]

N1/2ε

≤ Kd
E[τκ(bNtc)+1 − τκ(bNtc)]

N1/2ε
.

Note that E[τκ(bNtc)+1−τκ(bNtc)] ≤ (E[τ32 ]t)1/3N1/3 as τ2 has a finite third moment.
Indeed,

E[τκ(bNtc)+1 − τκ(bNtc)] =

Nt∑
k=0

E[(τk+1 − τk)1κ(bNtc)=k]

≤
Nt∑
k=0

E[(τk+1 − τk)3]1/3P(κ(bNtc) = k)2/3

≤ E[τ32 ]1/3
Nt∑
k=0

P(κ(bNtc) = k)2/3

≤ E[τ32 ]1/3(Nt)1/3.

Therefore,

P
(
d
(
δN−1/2

(
ι(1)(X)τκ(bNtc)

)
, δN−1/2

(
ι(1)(X)bNtc

))
> ε
)
≤ Kd(E[τ32 ]t)1/3

N1/6ε
→ 0

as N → ∞. Next, using the strong law of large numbers together with the de-
composition of τk =

∑k
`=1(τ` − τ`−1) into independent variables, with the same

distribution for ` > 1, one deduces that κ(n)/n converges a.s. to β−1. Hence the



960 O. Lopusanschi and T. Orenshtein

conclusion of Step 2 together with Slutsky’s Theorem (Slutsky, 1925) imply the
convergence in distribution

ι(N)(X)→ (Bt,St + tΓ)

for any fixed t ∈ [0, T ]. Extending the convergence to all finite-dimensional
marginals of ι(N)(X) is done similarly using Slutsky’s Theorem on Rd × Rd⊗d.

Step 4: It is left to prove the tightness of the process. In order to do this,
we use the Kolmogorov tightness criterion for rough paths Friz and Hairer (2014,

Theorem 3.10). That is, in order to obtain tightness for α <
p∗ − 1

2p∗
. it is enough

to show that there exists a positive constant c such that, for all 0 ≤ s < t ≤ T ,

sup
N

E
[
||ι(N)(X)s,t||2p

∗

G2(Rd)

]
≤ c|t− s|p

∗
. (6.2)

To avoid heavy notation we write Xs,t := ι(1)(X)s,t and assume without loss of
generality that τ1 has the same distribution as τk − τk−1 for k > 1. From the
definition of iterated integral and the fact the paths are linear interpolations of
discrete paths proving (6.2) boils down to showing that there is a constant c so
that

E
[
||X`,k||2p

∗

G2(Rd)

]
≤ c(k − `)p

∗

uniformly on 0 ≤ ` < k ≤ NT . Note that by the i.i.d regeneration structure

E
[
||Xτ`,τk ||

2p∗

G2(Rd)

]
= E

[
||Xτk−τ` ||

2p∗

G2(Rd)

]
.

The tightness argument Breuillard et al. (2009, Step 2 in Chapter 3) then immedi-
ately implies

E
[
||Xτk ||

2p∗

G2(Rd)

]
= O(kp

∗
),

where we used the fact that E[τp
∗

k ] = O(kp
∗
). Next, if k, ` are in the same regen-

eration interval, the fact that the jumps are bounded, regeneration intervals have
finite 2p∗ moments, and the definition (2.3) imply

E
[
||X`,k||2p

∗

G2(Rd)1κ(`)=κ(k)

]
≤ C ′p

for some constant C ′p. Therefore by sub-additivity (2.4), and using Hölder’s in-
equality together with (2.5) we can find a constant C2p∗ so that

E
[
||X`,k||2p

∗

G2(Rd)

]
≤ C2p∗

(
2C ′p + E

[
||Xτκ(`),τκ(k)+1

||2p
∗

G2(Rd)

] )
= O((k − `)p

∗
).

We conclude that the Kolmogorov criterion is satisfied and so the sequence

(ι(N)(X))N is tight in Cα
(
[0, T ], G2(Rd

)
, α <

p∗ − 1

2p∗
. �

Remark 6.1. After the submission of an earlier version of this paper a variation
of Theorem 3.3 was proved in Orenshtein (2021), where the rough path space is
defined there with respect to the p-variation norm rather than the α-Hölder norm
used in this paper. The conditions on the jumps of the process were generalized
there, and, in particular, for the case of bounded jumps assumed in Theorem 3.3
the moment condition in (3.4) was weakened to the case p = 1, which is optimal.
Another recent related result is a rough path version of Kipnis-Varadhan’s Theorem
for additive functionals of Markov processes (Deuschel et al., 2021). One application
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is to a different class of random walks in random media which have no regenerative
structure - random walks among random conductances.
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