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Abstract. We propose a new powerful family of tests of univariate normality. These tests are
based on an initial value problem in the space of characteristic functions originating from the fixed
point property of the normal distribution in the zero bias transform. Limit distributions of the test
statistics are provided under the null hypothesis, as well as under contiguous and fixed alternatives.
Using the covariance structure of the limiting Gaussian process from the null distribution, we derive
explicit formulas for the first four cumulants of the limiting random element and apply the results
by fitting a distribution from the Pearson system. A comparative Monte Carlo power study shows
that the new tests are serious competitors to the strongest well established tests.

1. Introduction

In view of the assumption of normality in many classical models, testing for normality is commonly
known as the mostly used and discussed goodness-of-fit technique. To be specific, let X,X1, X2, . . .
be real-valued independent and identically distributed (iid.) random variables defined on an under-
lying probability space (Ω,A,P). The problem of interest is to test the hypothesis

H0 : PX ∈ N = {N(µ, σ2) | (µ, σ2) ∈ R× (0,∞)} (1.1)

against general alternatives. This testing problem has been considered extensively and a multitude
of different test statistics is available. The classical tests are based on the empirical distribution
function, like the Kolmogorov-Smirnov test (modified in Lilliefors, 1967), the Anderson-Darling test,
see Anderson and Darling (1952), the empirical characteristic function, see Epps and Pulley (1983),
the empirical moment generating function, see Henze and Visagie (2020), on empirical measures of
skewness and kurtosis, see Bowman and Shenton (1975); Jarque and Bera (1980); Pearson et al.
(1977) (known to lead to inconsistent procedures), the Wasserstein distance, see del Barrio et al.
(2000), measures of entropy, see Tavakoli et al. (2019); Vasicek (1976), the integrated empirical
distribution function, see Klar (2001), or correlation and regression tests, like the time-honored
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“bench-mark test” of Shapiro-Wilk, see Shapiro and Wilk (1965), among others. For a survey of
classical methods see del Barrio et al. (2000), section 3, and Henze (1994), and for comparative
simulation studies, see Baringhaus et al. (1989); Farrell and Rogers-Stewart (2006); Landry and
Lepage (1992); Pearson et al. (1977); Romão et al. (2010); Shapiro et al. (1968); Yap and Sim
(2011). For a survey on tests of multivariate normality see Henze (2002), for recent multivariate
tests see Dörr et al. (2021), and for new developments on normality tests for Hilbert space valued
random elements, see Henze and Jiménez-Gamero (2021); Kellner and Celisse (2019).

Our novel approach relies on an initial value problem of the ordinary differential equation{
ϕ′(t) = −tϕ(t),
ϕ(0) = 1,

(1.2)

where the characteristic function ϕ(t) = exp
(
−t2/2

)
, t ∈ R, of the standard normal distribution

is the unique solution. Hence the normal distribution is characterised by the considered initial
value problem. Notice that the family of normal distributions N is closed under transformations
X → σX + µ, µ, σ ∈ R, in the sense that X ∼ N(0, 1) is equivalent to σX + µ ∼ N(µ, σ2), and
hence it suffices to characterise the standard normal distribution to propose a normality test. To
model the standardisation assumption, we consider the so called scaled residuals

Yn,j =
Xj −Xn

Sn
, j = 1, . . . , n,

where Xn = 1
n

∑n
j=1Xj is the mean and S2

n = 1
n

∑n
j=1(Xj −Xn)2 is the sample variance. Denot-

ing the empirical characteristic function by ϕn(t) = 1
n

∑n
j=1 exp(itYn,j), t ∈ R, we have ϕ′n(t) =

1
n

∑n
j=1 iYn,j exp(itYn,j), t ∈ R, and by estimating both sides of (1.2) we propose the test statistic

Zn = n

∫ ∞
−∞

∣∣∣∣∣∣ 1n
n∑
j=1

(iYn,j + t) exp(itYn,j)

∣∣∣∣∣∣
2

w(t)dt,

where w(·) is a suitable bounded weight function and |x|2 = Re(x)2+Im(x)2 is the squared absolute
value of a complex number x ∈ C. If X originates from a normal distribution, Zn should be close
to zero, and thus rejection of H0 in (1.1) will be for large values of Zn (empirical and asymptotic
critical values are specified in Section 5). Tacitly, we assume the conditions

w(t) = w(−t), t ∈ R,
∫ ∞
−∞

w(t)dt <∞. (1.3)

Note that Zn depends only on the scaled residuals Yn,1, . . . , Yn,n and is hence invariant under
translation or rescaling of the data set X1, . . . , Xn, which indeed is a desirable property, since the
family N is closed under affine transformations.

Remark 1.1. Note that the initial value problem (1.2) is connected to the famous Stein charac-
terisation of the normal law, see Stein (1972), and the zero bias transform. It is well-known that
the normal distribution is the fixed point of the zero bias transform, see Chen et al. (2011); Gold-
stein and Reinert (1997). Let X be a centred random variable with σ2 = E(X2) < ∞. Following
Shevtsova (2013), the characteristic function of the X-zero bias transformed random variable X∗ is

E
(
eitX

∗
)

=

{
− 1

σ2
ϕ′(t)

t
, t ∈ R \ {0},

1, t = 0,
(1.4)

where ϕ(·) is the characteristic function of X, and i stands for the imaginary unit. Together with
the assumption σ2 = 1 and the fixed point argument this leads to the initial value problem (1.2).
Interestingly, (1.4) represents an operator A mapping from the space of characteristic functions into
itself, where Aϕ(t)→ (ϕ′(t)−ϕ′(0))/(tϕ′′(0)), see statement (a) of Theorem 12.2.5 in Lukacs (1970),
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and apply ϕ′(0) = iE(X) = 0 and ϕ′′(0) = −σ2. This fact shows that the zero bias transform was
already studied in the late 60ies of the last century, hence some years before its introduction in
Goldstein and Reinert (1997) and the earliest reference therein.

Setting w(t) = wa(t) = exp(−at2), a > 0, a direct evaluation of integrals shows that Zn takes
the form

Zn,a =
1

n

√
π

a

n∑
j,k=1

(
1

4a2
(
2a− (Yn,j − Yn,k)2

)
− 1

2a
(Yn,j − Yn,k)2 + Yn,jYn,k

)
exp

(
− 1

4a
(Yn,j − Yn,k)2

)
,

which represents a computational stable and easy to implement version of Zn. By some expansion
of the exponential function and noting that

∑n
j=1 Yn,j = 0 and

∑n
j=1 Y

2
n,j = n, we have elementwise

on the probability space

lim
a→∞

16a
5
2

3n
√
π
Zn,a =

 1

n

n∑
j=1

Y 3
n,j

2

and lim
a→0

√
a

π
Zn,a −

1

2a
= 1.

It is interesting to see that the limit for a→∞ is squared sample skewness, and that this limiting
behaviour coincides with the one observed in Henze and Visagie (2020), section 4.

The rest of the paper is organized as follows. In Section 2 we derive the limit distribution of
Zn,a under the null hypothesis. Section 3 states results under a sequence of contiguous alternatives,
while in Section 4 we show that the new tests are consistent against alternatives satisfying a weak
moment condition. Furthermore, we obtain a central limit result for the test. In Section 5, we
derive explicit formulas for the first four cumulants of the limit null distribution of Zn,a and fit the
Pearson-system of distributions to approximate the critical values of the test statistic. We complete
the paper by a competitive Monte Carlo simulation study in Section 6 and finally draw conclusions
and identify some open problems for further research in Section 7. The paper is concluded by an
Appendix that contains proofs and the formula of the fourth cumulant.

2. Asymptotic null distribution

A suitable setup for deriving asymptotic theory is the Hilbert space of measurable, square in-
tegrable functions L2 = L2(R,B, wdL1), where B is the Borel-σ-field of R and L1 is the Lebesgue
measure on R. Notice that the functions figuring within the integral in the definition of Zn are
(A⊗ B,B)-measurable random elements of L2. We denote by

‖f‖L2 =

(∫
R

∣∣f(t)
∣∣2 ω(t) dt

)1/2

, 〈f, g〉L2 =

∫
R
f(t)g(t)ω(t) dt

the usual norm and inner product in L2. After straightforward calculations using (1.3) and symmetry
arguments, we have

Zn =

∫ ∞
−∞

W 2
n(t)w(t)dt,

where

Wn(t) =
1√
n

n∑
j=1

(Yn,j + t) cos(tYn,j) + (t− Yn,j) sin(tYn,j), t ∈ R. (2.1)
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Motivated by a multivariate Taylor expansion we consider the processes

W ∗n(t) =
1√
n

n∑
j=1

(Xj + t) cos(tXj) + (t−Xj) sin(tXj)

+
(
(tXj − (t2 + 1)) cos(tXj) + (tXj + (t2 + 1)) sin(tXj)

)
Xn

+Xj

(
(tXj − (t2 + 1)) cos(tXj) + (tXj + (t2 + 1)) sin(tXj)

)
(Sn − 1)

and

W̃n(t) =
1√
n

n∑
j=1

(Xj + t) cos(tXj) + (t−Xj) sin(tXj)

− exp

(
− t

2

2

)
Xj + t exp

(
− t

2

2

)
(X2

j − 1),

t ∈ R. In what follows let X1, X2, . . . be iid. random variables, and in view of affine invariance of
Zn we assume w.l.o.g. X1 ∼ N(0, 1). The following Lemma shows that the processes Wn, W ∗n and
W̃n are asymptotically equivalent. The proof is found in Appendix A.1.

Lemma 2.1. We have under H0

‖Wn −W ∗n‖L2
P−→ 0 and ‖W ∗n − W̃n‖L2

P−→ 0.

In order to derive the asymptotic null distribution of Zn, it suffices to show the weak convergence
of W̃n in L2 to a centred Gaussian process.

Theorem 2.2. Under the standing assumptions, there is a centred Gaussian random element W of
L2 with covariance kernel

KZ(s, t) = (st+ 1) exp

(
−(s− t)2

2

)
− (2st+ 1) exp

(
−s

2 + t2

2

)
, s, t ∈ R,

such that with Wn defined in (2.1), we have Wn
D−→W in L2 as n→∞.

Proof : By Lemma 2.1 it follows that the limit distribution of Wn is the same as that of W̃n. Note
that

W̃n(t) =
1√
n

n∑
j=1

W̃n,j(t), t ∈ R,

where

W̃n,j(t) = (Xj + t) cos(tXj) + (t−Xj) sin(tXj)

− exp

(
− t

2

2

)
Xj + t exp

(
− t

2

2

)
(X2

j − 1), t ∈ R,

j = 1, 2, . . . , n and EW̃n,1 = 0. Since W̃n,1, W̃n,2, . . . are iid. centred elements of L2, we can directly
apply the central limit theorem in Hilbert spaces, see Corollary 10.9 in Ledoux and Talagrand
(1991). Tedious calculations then show that the covariance kernel KZ(s, t) = E

(
W̃n,1(s)W̃n,1(t)

)
takes the given form. �

The next result follows from a direct application of the continuous mapping theorem.

Corollary 2.3. We have as n→∞

Zn
D−→
∫ ∞
−∞

W 2(t)w(t) dt = ‖W‖2L2 .

We will use this result in Section 5 to derive the first four cumulants of the limit random element.
As a consequence we obtain approximate critical values by the Pearson system of distributions.
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3. Contiguous alternatives

In this section we consider a triangular array of row-wise iid. random variables Xn,1, . . . , Xn,n,
n ∈ Z+, with Lebesgue density

fn(t) = f(t) ·
(

1 + c(t)√
n

)
, t ∈ R.

Here, f(t) = 1√
2π

exp(−t2/2), t ∈ R, is the density of N(0, 1), and c : R → R is a measurable,
bounded function satisfying

∫∞
−∞ c(t) f(t) dt = 0. Notice that, since c is bounded, we may assume

n to be large enough to ensure fn ≥ 0. Setting

µn =
n⊗
j=1

fL1 and νn =
n⊗
j=1

fnL1,

it is shown in Betsch and Ebner (2020), section 4, that by LeCam’s first Lemma νn is contiguous
to µn. Writing

η(x, s) = (x+ s) cos(sx) + (s− x) sin(sx)

− exp

(
−s

2

2

)
x+ s exp

(
−s

2

2

)
(x2 − 1), x, s ∈ R,

and following the same lines of proof as in Betsch and Ebner (2020), section 4, we can show the
following result.

Theorem 3.1. Under the triangular array Xn,1, . . . , Xn,n, we have

Zn
D−→ ‖W + ζ‖2L2 ,

where W is the limiting Gaussian process of Theorem 2.2 and

ζ(s) =

∫ ∞
−∞

η(x, s)c(x)f(x)dx, s ∈ R.

4. Consistency and behaviour under fixed alternatives

In this section we assume that the underlying distribution is a fixed alternative to H0 and that
the distribution is absolutely continuous, as well as in view of affine invariance of the test statistic,
we assume E(X) = 0 and E(X2) = 1.

Theorem 4.1. Under the standing assumptions, we have as n→∞,

Zn
n

a.s.−→
∫ ∞
−∞
|E ((iX + t) exp(itX))|2w(t)dt = ∆.

Proof : Let

W 0
n(t) =

1√
n

n∑
j=1

(Xj + t) cos(tXj) + (t−Xj) sin(tXj), t ∈ R.

In this setting, we have (Xn, Sn)
a.s.−→ (0, 1) and hence we can apply a similar reasoning as in the

proof of Lemma 2.1 to show that ∥∥∥n−1/2(Wn −W ∗n)
∥∥∥2
L2

a.s.−→ 0. (4.1)
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Next, we consider (for the definition of Ψ(·, ·) see (A.1) in Appendix A.1)

n−1/2(W ∗n(t)−W 0
n(t)) =

1

n

n∑
j=1

(
(tXj − (t2 + 1)) cos(tXj)

+(tXj + (t2 + 1)) sin(tXj)
)
Xn

+Xj

(
(tXj − (t2 + 1)) cos(tXj)

+(tXj + (t2 + 1)) sin(tXj)
)

(Sn − 1)

= Xn
1

n

n∑
j=1

Ψ(t,Xj) + (Sn − 1)
1

n

n∑
j=1

XjΨ(t,Xj).

By the triangle inequality, we have

∥∥∥n−1/2(W ∗n −W 0
n)
∥∥∥2
L2
≤ 2

∣∣Xn

∣∣2 ∥∥∥∥∥∥ 1

n

n∑
j=1

Ψ(·, Xj)

∥∥∥∥∥∥
2

L2

+2|Sn − 1|2
∥∥∥∥∥∥ 1

n

n∑
j=1

XjΨ(·, Xj)

∥∥∥∥∥∥
2

L2

. (4.2)

By the strong law of large numbers in Hilbert spaces and (Xn, Sn)
a.s.−→ (0, 1), the right hand side

of (4.2) converges to zero almost surely. Note that the expectations exist due to the existence of
the first two derivatives of the characteristic function of X, which is implied by E(X2) = 1 < ∞.
Again, by the strong law of large numbers in Hilbert spaces, we have

n−1/2W 0
n(t)

a.s.−→ E [(X + t) cos(tX) + (t−X) sin(tX))]

in L2. In view of (4.1), (4.2), and the symmetry of the weight function w(·), some calculations give

Zn
n

=
∥∥∥n−1/2Wn

∥∥∥2
L2

a.s.−→
∫ ∞
−∞
|E [(X + t) cos(tX) + (t−X) sin(tX))]|2w(t)dt = ∆.

�

Notice that, if g(t) = E[(exp(itX)] denotes the characteristic function of X, we have ∆ = 0 if
and only if g = ϕ, which is shown by the unique solution of the initial value problem (1.2). This
implies that Zn

a.s.−→ ∞ for any alternative with existing second moment. Thus we conclude that
the test based on Zn is consistent against each such alternative.

To derive further asymptotic results, we follow the methodology in Baringhaus et al. (2017). Put
z(t) = E [(X + t) cos(tX) + (t−X) sin(tX))] and W •n(·) = n−1/2Wn(t), we then have

√
n

(
Zn
n
−∆

)
=
√
n
(
‖W •n‖2L2 − ‖z‖2L2

)
=
√
n〈W •n − z,W •n + z〉L2

=
√
n〈W •n − z, 2z +W •n − z〉L2

= 2〈
√
n(W •n − z), z〉L2 +

1√
n
‖
√
n (W •n − z) ‖2L2 . (4.3)

The following structural Lemma is needed in the subsequent derivations and is proved in Appen-
dix A.2.

Lemma 4.2. For E(X4) <∞ we have
√
n(W •n − z)

D−→W,
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in L2, where W is a centred Gaussian process in L2 with covariance kernel

KW (s, t) = E
[
(st+X2) cos((s− t)X) + (st−X2)X sin((s+ t))

]
+E [((s− t) sin((s− t)X) + (s+ t)X cos((s+ t)X))]

+
1

2

[
E
[
(X + s)(b(t)(X2 − 1) + 2a(t)X) cos(sX)

]
+E

[
(b(s)(X2 − 1) + 2a(s)X)(t+X) cos(tX)

]
+E

[
(b(t)(X2 − 1) + 2a(t)X)(s−X) sin(sX)

]
+E

[
(b(s)X2 + 2a(s)X − b(s))(t−X) sin(tX)

]]
+

1

4

[
b(t)E(X4) + 2a(t)E(X3)− b(t)

]
b(s)

+
1

2
a(s)(b(t)E(X3) + 2a(t))− z(s)z(t), s, t ∈ R,

where
a(t) = E(Ψ(t,X)) and b(t) = E(XΨ(t,X)).

Lemma 4.2 shows that
√
n (W •n − z) is a tight sequence in L2, thus we see by Slutzky’s Lemma

and 1√
n
‖
√
n (W •n − z) ‖2L2

P−→ 0 that the limit distribution of
√
n
(
Zn
n −∆

)
in (4.3) only depends on

2〈
√
n(W •n − z), z〉L2 . A direct application of Theorem 1 in Baringhaus et al. (2017) and Lemma 4.2

yields the following result.

Theorem 4.3. Under the standing assumptions and E(X4) <∞, we have
√
n

(
Zn
n
−∆

)
D−→ N(0, τ2),

where
τ2 = 4

∫ ∞
−∞

∫ ∞
−∞

KW (s, t)z(s)z(t)w(s)w(t) dsdt.

In principle, one can calculate for a fixed alternative the explicit version of KW and z and finally
τ2. For most of the alternatives this will be too complicated, thus we suggest to estimate τ2 by a
consistent estimator τ̂2n. Corollary 1 in Baringhaus et al. (2017) then states that

√
n

τ̂n

(
Zn
n
−∆

)
D−→ N(0, 1),

which opens grounds to applications as suggested in Section 3 in Baringhaus et al. (2017), i.e.,
computation of an asymptotic confidence interval for ∆, approximation of the power function or
neighborhood-of-model validation. For specific examples of the needed methodology, see Section 4
of Baringhaus et al. (2017), or Betsch and Ebner (2020); Dörr et al. (2021) respectively.

5. Approximation of the limit null distribution

In this section we follow the methodology in Henze (1990) to approximate the critical values
of the asymptotic level α test based on Zn by exploiting the covariance structure of the limiting
centred Gaussian process of Theorem 2.2. Let Z∞,a = ‖W‖L2 be the random variable with the limit
null distribution of Zn in Corollary 2.3. Hence W is the random element in Theorem 2.2 and the
weight function wa(t) = exp

(
−at2

)
, t ∈ R, of Section 1 is used. By the results of Corollary 2.3 it

is well-known that the limiting null distribution of Zn,a is given by the infinite series

Z∞,a =
∞∑
j=1

λj(a)Y 2
j .
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a E(Z∞,a) Var(Z∞,a)
√
β1(a) β2(a)

0.1 30.4036 304.1938 1.4542 6.4513
0.25 7.7811 31.2928 1.7549 7.8821
0.5 2.6013 4.7153 1.9576 8.9907
0.75 1.3056 1.3821 2.0799 9.7885
1 0.7787 0.5430 2.1780 10.4822
3 0.0861 0.0094 2.5812 13.3852
5 0.0277 0.0011 2.7053 14.2265
10 0.0055 0.0001 2.7885 14.7597

Table 5.1. Values of mean, variance, skewness and kurtosis of Z∞,a rounded to 4 decimals

Here, Y1, Y2, . . . being independent N(0, 1) distributed random variables and (λj(a))j≥1 is the de-
creasing sequence of the positive eigenvalues of the integral operator

Kf(s) =

∫ ∞
−∞

KZ(s, t)f(t)wa(t) dt,

on L2. Notice that K depends solely on the covariance kernel KZ of Theorem 2.2 and the weight
function wa(·). It seems hopeless to obtain closed-form expressions for the eigenvalues λj , hence
we derive the first four moments of Z∞,a in order to fit the Pearson system of distributions, see
Johnson et al. (1994), chapter 12, section 4.1. The m-th cumulant κm(a) of Z∞,a is

κm(a) = 2m−1(m− 1)!

∫ ∞
−∞

hm(t, t)wa(t) dt,

where h1(s, t) = KZ(s, t) and

hm(s, t) =

∫ ∞
−∞

hm−1(s, u)KZ(u, t)wa(u) du, m ≥ 2.

The formulae for the first four cumulants are (the computations were performed by using the
computer algebra system Maple 2019, Maplesoft (2019))

κ1(a) = −1/2

√
π
(
2 a5/2 − 2

√
a+ 1a2 + 4 a3/2 − 3

√
a+ 1a−

√
a+ 1

)
(a+ 1)3/2 a3/2

,

where the formulae for κj(a) for j = 2, 3, 4 can be found in the arXiv version, see Ebner (2020).
From the first four cumulants we can approximate the distribution of Z∞,a by a member of the
Pearson system of distributions, since

E(Z∞,a) = κ1(a) and Var(Z∞,a) = κ2(a),

as well as the parameters of skewness and kurtosis of Z∞,a are given by√
β1(a) =

κ3(a)

(κ2(a))3/2
and β2(a) = 3 +

κ4(a)

(κ2(a))2
.

These values can directly be used in packages that implement the Pearson system, for concrete
values see Table 5.1. In the statistical computing language R, see R Core Team (2019), we will use
the package PearsonDS, see Becker and Klößner (2017), to approximate critical values, see Table 6.2,
and p-values of the corresponding tests.
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Test a\q 0.01 0.05 0.1 0.9 0.95 0.99
0.1 6.86169 10.51119 13.04177 53.02253 62.95695 84.99265
0.25 1.04896 1.85667 2.48811 15.17277 18.74151 26.51209
0.5 0.21479 0.42809 0.61130 5.43755 6.81869 9.96010

Z20,a 0.75 0.07838 0.16585 0.24721 2.75949 3.53893 5.41328
1 0.03616 0.08152 0.12623 1.63633 2.14516 3.40884
3 0.00136 0.00467 0.00866 0.17785 0.25076 0.44301
5 0.00030 0.00120 0.00225 0.05674 0.08146 0.14904
10 0.00004 0.00017 0.00032 0.01116 0.01631 0.03051
0.1 6.44914 9.96704 12.49225 53.05553 63.40399 86.79261
0.25 0.99974 1.79193 2.40350 15.05561 18.79428 26.90751
0.5 0.20190 0.42203 0.60621 5.40910 6.89826 10.24374

Z50,a 0.75 0.07554 0.16688 0.25100 2.79329 3.59782 5.50480
1 0.03526 0.08298 0.12909 1.69165 2.20391 3.46662
3 0.00144 0.00464 0.00847 0.19527 0.27076 0.46805
5 0.00030 0.00116 0.00221 0.06399 0.09031 0.16034
10 0.00004 0.00017 0.00033 0.01292 0.01859 0.03359
0.1 6.35269 9.91258 12.40696 53.26156 63.85351 87.88282
0.25 0.99012 1.75319 2.36455 15.13173 18.81316 27.23384
0.5 0.20292 0.41909 0.60298 5.43381 6.88596 10.38987

Z100,a 0.75 0.07478 0.16796 0.25341 2.80970 3.63695 5.56701
1 0.03583 0.08448 0.13175 1.70456 2.23136 3.47844
3 0.00149 0.00478 0.00876 0.20069 0.27509 0.45774
5 0.00031 0.00118 0.00228 0.06636 0.09233 0.15819
10 0.00004 0.00017 0.00034 0.01354 0.01923 0.03358
0.1 6.89295 9.89596 12.27245 53.39952 63.92766 87.89731
0.25 1.29920 1.83683 2.35713 15.10009 18.73029 27.15089
0.5 0.32955 0.45838 0.60581 5.41750 6.89193 10.35260

Z∞,a 0.75 0.13650 0.19046 0.25773 2.81741 3.63395 5.57065
1 0.07292 0.10059 0.13743 1.71902 2.23934 3.48445
3 0.00826 0.00931 0.01142 0.20558 0.27903 0.45910
5 0.00254 0.00274 0.00322 0.06843 0.09441 0.15828
10 0.00038 0.00041 0.00048 0.01414 0.01980 0.03371

Table 6.2. Empirical quantiles of Zn,a for n = 20, 50, 100 (100000 replications) and
approximation of the quantiles of Z∞,a by a Pearson family

6. Simulations

This section presents results of a comparative finite sample power simulation study. The study is
designed to match and complement the counterparts in Dörr et al. (2021), Section 7, and in Betsch
and Ebner (2020), Section 6, since we take exactly the same setting with regard to sample size,
nominal level of significance and selected alternative distributions. In this way, we facilitate the
comparison with existing procedures, even with some procedures not covered here. We consider
sample sizes n ∈ {20, 50, 100} and fix the nominal level of significance throughout all simulations
to 0.05. All simulations are performed using the statistical computing environment R, see R Core
Team (2019). We simulated empirical critical values under H0 for Zn,a with 100 000 replications,
see Table 6.2. The row segment entitled ’Z∞,a’ gives approximations by the method described in
Section 5. Each entry in Table 6.3 was simulated with 10 000 replications, and an asterisk ’*’
denotes a perfect rejection rate of 100%.
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The following alternatives are considered: symmetric distributions, like the Student tν-
distribution with ν ∈ {3, 5, 10} degrees of freedom, as well as the uniform distribution U(−

√
3,
√

3),
and asymmetric distributions, such as the χ2

ν-distribution with ν ∈ {5, 15} degrees of freedom,
the beta distributions B(1, 4) and B(2, 5), and the gamma distributions Γ(1, 5) and Γ(5, 1), both
parametrized by their shape and rate parameter, the Gumbel distribution Gum(1, 2) with loca-
tion parameter 1 and scale parameter 2, the Weibull distribution W(1, 0.5) with scale parameter 1
and shape parameter 0.5, and the lognormal distribution LN(0, 1). As representatives of bimodal
distributions, we simulate the mixture of normal distributions NMix(p, µ, σ2), where the random
variables are generated by (1 − p) N(0, 1) + pN(µ, σ2), p ∈ (0, 1), µ ∈ R, σ > 0. Note that these
alternatives can also be found in the simulation studies presented in Betsch and Ebner (2020); Dörr
et al. (2021); Dörr et al. (2021); Romão et al. (2010). We chose these alternatives in order to ease
the comparison with many other existing tests.

The considered competing test statistics are the following:

• the Anderson-Darling test, see Anderson and Darling (1952),
• the Shapiro-Wilk test, see Shapiro and Wilk (1965),
• the Jarque-Bera test, see Jarque and Bera (1980),
• the Henze-Visagie test, see Henze and Visagie (2020),
• the Betsch-Ebner test, see Betsch and Ebner (2020),
• the BHEP test, see Henze and Wagner (1997),
• the BCMR test, see del Barrio et al. (1999).

Note that these tests are very strong competitors as witnessed by extensive simulation studies, see
Romão et al. (2010).

We used the implementation of the Anderson-Darling (AD) test in the package nortest from
Gross and Ligges (2015) and the implementation of the Shapiro-Wilk (SW) test from the stats
package. The Jarque-Bera (JB) test was implemented in the package tseries, see Trapletti and
Hornik (2019). The Henze-Visagie (HV) test uses a weighted L2-type statistic based on a charac-
terization of the moment generating function that similarly as the newly proposed test employs a
first-order differential equation. The univariate statistic is defined by

HVγ =

√
π

γ

1

n

n∑
j,k=1

exp

(
(Y +
n,j,k)

2

4γ

)(
Yn,jYn,k + (Y +

n,j,k)
2

(
1

4γ2
− 1

2γ

)
+

1

2γ

)
,

where Y +
n,j,k = Yn,j +Yn,k and γ > 2. In what follows, we consider three different tuning parameters

γ ∈ {2.5, 5, 10}. Simulated critical values can be found in the arXiv version of Henze and Visagie
(2020). The Betsch-Ebner (BE) test is based on a L2-distance between the empirical zero-bias
transformation and the empirical distribution function. By the same fixed point argument, this
distance is minimal under normality. The statistic is given by

BE =
2

n

∑
1≤j<k≤n

{(
1− Φ

(
Y(k)√
a

))(
(Y 2

(j) − 1)(Y 2
(k) − 1) + aY(j)Y(k)

)
+

a√
2πa

exp

(
−
Y 2
(k)

2a

)(
−Y 2

(j)Y(k) + Y(k) + Y(j)

)}
+

1

n

n∑
j=1

{(
1− Φ

(
Yn,j√
a

)) (
Y 4
n,j + (a− 2)Y 2

n,j + 1
)

+
a√
2πa

exp

(
−Y 2

n,j

2a

)(
2Yn,j − Y 3

n,j

)}
,



Combining ZBT and ECF to test normality 1039

where Y(1) ≤ . . . ≤ Y(n) are the order statistics of the scaled residuals Yn,1, . . . , Yn,n, and Φ(·)
stands for the distribution function of the standard normal law. The parameter a > 0 and the
corresponding critical values were chosen by the algorithm presented in Betsch and Ebner (2020).

Tests based on the empirical characteristic function are represented by the
Baringhaus-Henze-Epps-Pulley (BHEP) test, see Baringhaus and Henze (1988); Epps and Pulley
(1983). The univariate BHEP test with tuning parameter β > 0 uses the test statistic

BHEP =
1

n

n∑
j,k=1

exp

(
−β

2

2

(
Yn,j − Yn,k

)2)

− 2√
1 + β2

n∑
j=1

exp

(
− β2

2(1 + β2)
Y 2
n,j

)
+

n√
1 + 2β2

.

We fix β = 1 and took the critical values from Henze (1990). Note that the BHEP test and the
HV test are included in the R package mnt, see Butsch and Ebner (2020). Furthermore, we include
the quantile correlation test of del Barrio-Cuesta-Albertos-Mátran-Rodríguez-Rodríguez (BCMR),
based on the L2-Wasserstein distance, see del Barrio et al. (2000), section 3.3, and del Barrio et al.
(1999). The BCMR statistic is given by

BCMR = n

1− 1

S2
n

(
n∑
k=1

X(k)

∫ k
n

k−1
n

Φ−1(t) dt

)2
− ∫ n

n+1

1
n+1

t(1− t)
(ϕ (Φ−1(t)))2

dt,

where X(k) is the k-th order statistic of X1, . . . , Xn, S2
n is the sample variance, and Φ−1(·) is the

quantile function of the standard normal distribution. Simulated critical values can be found in
Krauczi (2009).

The results presented in Table 6.3 show that the power of Zn,a depends on the choice of the
tuning parameter a > 0. In most cases one is able to find a value of a in which the tests are nearly
as good or better than the competitors. Note that for higher values of a Zn,a performs best for the
χ2
15, the Γ(5, 1) and the Gum(1, 2) distribution. Very interesting is the behaviour of the HV-test

for the uniform U(−
√

3,
√

3), where it fails to detect the alternative for any value of γ for any n.
Another interesting comparison can be made for this uniform distribution between Zn,a and the
BE-test if one also takes Table 3 of Betsch and Ebner (2020) into consideration, since it seems that
even though both procedures are based on the zero bias transform, Zn,a seems to attain higher
power for some values of a, while the BE-test seems to be much less sensitive to the actual choice of
a. The AD-test performs best for the normal mixture distributions, while the overall the SW-test
has a strong power for most asymmetric distributions.

Depending of the nature of the alternatives, we would suggest to use a = 0.25 for symmetric
alternatives and a = 3 for asymmetric alternatives for performing the test. If nothing is known
about the nature of the alternative, we suggest to use a = 1, as it seems to have a good overall
power performance. Naturally, it would be interesting to implement a data driven choice of the
tuning parameter as suggested by Allison and Santana (2015) and corrected in Tenreiro (2019), but
we leave this problem open for further research.

7. Conclusions and outlook

We have proposed a new family of tests for normality based on an initial value problem of an
ordinary differential equation, connected to the fixed point property of the zero bias transformation
and its corresponding characteristic function. These tests are universally consistent under weak
moment conditions and show a remarkable power performance in comparison to the strongest time-
honored tests of normality. Weak convergence results under the null hypothesis, under contiguous



1040 Bruno Ebner

Zn,a HVγ

Alt. n\a 0.1 0.25 0.5 0.75 1 3 5 10 2.5 5 10 SW BCMR BHEP AD JB BE

N(0, 1)
20 5 5 4 4 4 5 5 5 5 5 5 5 5 5 5 2 5
50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5
100 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5

NMix(0.3, 1, 0.25)
20 25 28 27 24 23 18 17 17 11 13 15 29 29 29 30 7 25
50 61 65 62 59 57 45 41 38 15 24 31 60 60 62 68 19 56
100 92 93 91 89 86 76 72 68 23 45 56 88 88 90 94 50 86

NMix(0.5, 1, 4)
20 35 42 42 41 40 33 32 32 32 32 31 39 41 41 46 25 34
50 78 85 83 80 77 59 53 48 49 50 46 77 78 79 86 59 52
100 98 99 99 98 97 86 77 66 68 68 63 98 98 98 99 87 75

t3

20 19 27 33 35 36 36 36 36 39 38 37 35 37 34 34 32 30
50 37 52 61 64 65 62 61 58 66 64 60 64 66 62 61 67 41
100 63 79 85 87 87 84 82 78 85 84 80 87 88 86 85 89 54

t5

20 8 12 16 18 19 20 20 21 22 22 22 19 20 18 17 17 16
50 14 22 30 34 35 36 35 34 40 39 36 36 38 31 30 39 22
100 23 38 48 52 54 53 50 47 59 57 51 56 58 50 48 63 27

t10

20 6 6 8 9 10 11 11 11 12 12 11 10 10 9 9 8 9
50 6 8 11 13 14 16 16 16 20 19 18 15 17 12 11 18 11
100 8 12 16 19 20 23 22 21 29 27 24 24 25 18 16 29 11

U(−
√

3,
√

3)
20 18 21 15 8 4 1 1 1 0 0 0 20 17 13 17 0 4
50 47 59 59 50 36 2 1 0 0 0 0 75 69 54 57 0 3
100 87 94 95 94 91 8 1 0 0 0 0 * 99 94 95 57 5

χ2
5

20 18 28 36 40 41 40 39 40 32 35 38 43 43 42 38 24 44
50 44 66 78 82 84 85 84 83 62 74 79 89 88 83 80 68 84
100 80 95 98 99 99 99 99 99 89 97 98 * * 99 99 97 99

χ2
15

20 7 11 15 16 17 18 18 18 16 17 18 18 18 17 15 11 18
50 13 23 33 39 42 45 45 45 31 37 42 43 43 40 35 31 44
100 21 42 59 67 71 76 77 76 50 65 72 74 74 68 61 60 74

B(1, 4)
20 32 41 47 48 48 43 41 41 27 34 38 59 58 52 51 20 49
50 78 88 92 93 94 91 89 87 51 73 81 99 98 94 95 67 90
100 99 * * * * * * * 84 98 99 * * * * 99 *

B(2, 5)
20 9 12 14 15 14 13 13 13 9 11 12 17 17 17 15 5 15
50 18 31 39 42 43 39 37 36 14 22 29 50 48 44 39 15 40
100 38 63 75 79 81 79 76 73 23 51 64 90 89 80 76 51 73

Γ(1, 5)
20 55 66 73 74 75 71 70 69 54 62 66 83 82 77 77 47 76
50 96 99 99 99 * 99 99 99 90 96 98 * * * * 96 99
100 * * * * * * * * * * * * * * * * *

Γ(5, 1)
20 9 14 19 22 23 23 24 24 20 22 23 23 24 23 20 14 25
50 18 34 47 53 56 59 59 59 40 49 54 59 58 54 48 42 58
100 35 63 79 84 87 90 90 89 65 81 86 90 90 85 81 78 88

W(1, 0.5)
20 56 68 74 75 76 72 71 70 56 63 67 84 83 78 78 49 76
50 96 99 99 * * 99 99 99 90 97 98 * * * * 96 99
100 * * * * * * * * * * * * * * * * *

Gum(1, 2)
20 12 19 26 29 31 31 32 32 27 29 31 31 31 31 27 20 32
50 24 44 58 65 68 71 70 70 53 62 67 68 69 65 60 55 70
100 47 76 87 91 93 95 95 95 80 90 93 94 94 92 89 89 94

LN(0, 1)
20 76 84 88 90 90 88 87 87 77 82 85 93 93 91 90 72 90
50 99 * * * * * * * 99 * * * * * * * *
100 * * * * * * * * * * * * * * * * *

Table 6.3. Empirical rejection rates of Zn,a and competitors (α = 0.05, 10 000 replications).
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and fixed alternatives were derived, which open ground to further insights on the behaviour of the
tests.

Finally, we point out some open problems concerning the test statistic. A first step to further
investigation, would be to derive a consistent estimator of the limiting variance τ2 in Theorem 4.3.
The approximation of the eigenvalues connected to the limiting random element Z∞,a would give
some further insight to approximate Bahadur efficiency statements and the structure of the initial
value problem gives hope to extend the procedure to the multivariate case. Note that the approach
in Remark 1.1 that leads to the initial value problem (1.2) of the differential equation can be modified
to characterise other parametric families of distributions, see, e.g., Section 2 of Gaunt (2019) for
Student’s t distribution or Gaunt (2017) for the family of generalized hyperbolic distributions. This
approach leads to feasible motivations of new test statistics even if the formula of the characteristic
function is unknown or intractable.
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Appendix A. Proofs

A.1. Proof of Lemma 2.1.

Proof : Let for t, x ∈ R

Ψt,x(µ, σ) =
x− µ
σ

(
cos

(
t
x− µ
σ

)
− sin

(
t
x− µ
σ

))
+t

(
cos

(
t
x− µ
σ

)
+ sin

(
t
x− µ
σ

))
,

and notice that a first order multivariate Taylor approximation around (µ0, σ0) = (0, 1) gives

Ψt,x(µ, σ) = Ψt,x(0, 1) +
∂Ψt,x(0, 1)

∂µ
µ+

∂Ψt,x(0, 1)

∂σ
(σ − 1) +R,

where R is a remainder term involving higher powers of µ and (σ − 1). With that notation and
(Xn, Sn)

P−→ (0, 1) (assuring that the stochastic remainder is oP(1)) we have

Wn(t) =
1√
n

n∑
j=1

Ψt,Xj (Xn, Sn) = W ∗n(t) + oP(1), t ∈ R,

and hence ‖Wn −W ∗n‖L2 = oP(1) by application of the triangle inequality, Slutzky’s Lemma and
the central limit theorem in L2 implying the boundedness in probability of mixed remainder terms.
Next, note that for X1 ∼ N(0, 1) and t ∈ R, we have by symmetry

E(sin(tX1)) = E(X1 cos(tX1)) = E(X2
1 sin(tX1)) = 0

and using the standard normal characteristic function ϕ(t) = E(cos(tX1))
= exp(−t2/2) and its derivatives, we have

E(X1 sin(tX1)) = t exp(−t2/2), and E(X2
1 cos(tX1)) = (1− t2) exp(−t2/2).

Let
Ψ(t, x) = (tx− (t2 + 1)) cos(tx) + (tx+ (t2 + 1)) sin(tx), (A.1)
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Hence, we have for t ∈ R

E (Ψ(t,X1)) = − exp(−t2/2) = −ϕ(t),

E (X1Ψ(t,X1))) = 2t exp(−t2/2) = −2ϕ′(t).

Now, it is easy to see that

∥∥ 1

n

n∑
j=1

Ψ(·, Xj) + ϕ(·)
∥∥
L2 = oP(1) and

∥∥ 1

n

n∑
j=1

XjΨ(·, Xj) + 2ϕ′(·)
∥∥
L2 = oP(1).

Since
√
n (Sn − 1) =

1√
n

n∑
j=1

1

2

(
X2
j − 1

)
+ oP(1),

we have

‖W ∗n − W̃n‖2L2 =

∫ ∞
−∞

∣∣ 1√
n

n∑
j=1

Ψ(t,X1)Xn +XjΨ(t,Xj)(Sn − 1) + ϕ(t)Xn

+ϕ′(t)(X2
j − 1)

∣∣2w(t)dt

≤
∫ ∞
−∞

∣∣∣( 1

n

n∑
j=1

Ψ(t,X1) + ϕ(t)
) 1√

n

n∑
l=1

Xl

+
( 1

n

n∑
j=1

XjΨ(t,Xj) + ϕ′(t)
) 1√

n

n∑
l=1

(X2
l − 1)

∣∣∣2w(t)dt+ oP(1)

≤ 2
{∥∥ 1

n

n∑
j=1

Ψ(·, Xj) + ϕ(·)
∥∥2
L2

( 1√
n

n∑
l=1

Xl

)2
+
∥∥ 1

n

n∑
j=1

XjΨ(·, Xj) + 2ϕ′(·)
∥∥2
L2

( 1√
n

n∑
l=1

(X2
l − 1)

)2}
+ oP(1)

and since n−1/2
∑n

l=1Xl and n−1/2
∑n

l=1(X
2
l −1) are tight sequences, the result follows by Slutsky’s

Lemma. �

A.2. Proof of Lemma 4.2.

Proof : Set

W̃ •n(t) =
1√
n

n∑
j=1

(Xj + t) cos(tXj) + (t−Xj) sin(tXj) + E(Ψ(t,X))Xj +
1

2
E(XΨ(t,X))(X2

j − 1)

by the same arguments as in the proof of Lemma 2.1, we have ‖Wn − W̃ •n‖L2
P−→ 0. Now, by the

central limit theorem in Hilbert spaces, we have

√
n

(
W̃ •n√
n
− z

)
D−→W,

whereW ∈ L2 is a centered Gaussian process with covariance kernelKW (s, t) = Cov(W̃ •1 (s), W̃ •1 (t)).
The stated formula is derived by straightforward calculation. �
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