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Abstract. We prove the existence of non-trivial phase transitions for the intersection of two inde-
pendent random interlacements and the complement of the intersection. Some asymptotic results
about the phase curves are also obtained. Moreover, we show that at least one of these two sets
percolates in high dimensions.

1. Introduction

The model of random interlacements was first introduced by Sznitman (2010) to clarify the local
structure left by a simple random walk on a discrete torus running up to some time proportional
to its volume. It has interesting percolative and geometric properties, and a lot of research has
been done in this field, e.g., Procaccia et al. (2016); Sapozhnikov (2017); Sidoravicius and Sznitman
(2009); Sznitman (2010).

More precisely, random interlacements are a Poisson point process whose “points” are doubly-
infinite trajectories on Zd (d ≥ 3), with the intensity measure governed by a parameter u > 0.
We let Iu denote the set of vertices visited by at least one of these trajectories and call it the
interlacement set at level u. We let Vu denote the complement of Iu and call it the vacant set at
level u. We refer to Section 2 for precise definitions.

In this article, we will consider two independent interlacements Iu11 , Iu22 with intensity parameters
u1, u2, and their vacant sets Vu11 , Vu22 . Let Ku1,u2 = Iu11 ∩ I

u2
2 be their intersection and Vu1,u2 =

Vu11 ∪V
u2
2 be the complement of the intersection. Superscripts will be omitted whenever no ambiguity

arises.
We now present our main results on the percolative properties of the intersection and its comple-

ment. First, both K and V have at most one infinite connected component and undergo a non-trivial
phase transition in u1 and u2. We also obtain some results about the asymptotic behavior of the
phase curves. The phase curve of V will tend to the lines x = u+ and y = u+, where u+ is a
parameter between the two percolative thresholds of interlacements u∗ and u∗∗ defined in Section 2
(see Figure 1). The phase curve of K will tend to x-axis and also y-axis (see Figure 2).1
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1Currently, we do not know whether this curve hits the coordinate axes for d = 3, 4, see Theorem 1.2 b) and d).
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Figure 1.1. (Phase diagram of V.) Region I: V does not percolate. Region II: V percolates.

Figure 1.2. (Phase diagram of K.) Region I: K percolates. Region II: K does not percolate.

We also research the phase graph of K and V put together and consider the questions whether
there is a phase where two infinite components coexist and whether there is a phase where neither
of them exists. It follows from the above asymptotic analysis that there exists a certain region such
that both K and V percolate. The second question is hard and depends on the dimension, e.g.,
Bernoulli site percolation on Zd. In low dimensions, it might be the case that the occupied vertices
and vacant vertices wrap each other. We claim that in high dimensions at least one of K and V
percolates through showing that the phase curve of K lies below {(x, y) : x ≥ 1, y ≥ 1}. In this
case, the phase graph of K and V put together is as follows (Figure 3).

The motivation of this article comes from the study of random walks. It is conjectured in Asselah
and Schapira (2020); van den Berg et al. (2004) that two independent random walks conditioned
to intersect many times will behave like two independent tilted interlacements. This article is also
the starting point of giving large deviation bounds for the probability that the intersection of two
independent random walks disconnects a large box (see Li, 2017; Sznitman, 2017) and the probability
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Figure 1.3. (Phase diagram of K and V in high dimensions.) Region I: K percolates
but V does not percolate. Region II: both K and V percolate. Region III: K does
not percolate but V percolates.

that the intersection of two independent random walks connects the original to the distance N (see
Goswami et al., 2021).

Next, we will state our results rigorously and briefly explain the main ideas after each theorem.
Let B(x, r) be the l∞ ball centered at x and of radius r. For a finite subset K of Zd, let ∂iK be its
inner boundary. First, we present the result about the percolative properties of V.

Theorem 1.1 (Percolative properties of V).
a) The set V contains at most one infinite component a.s.
b) When u1 < u∗ or u2 < u∗, there is a.s. a unique infinite component in V.
c) Given u1 > u∗∗, there exists C = C(u1, d) such that for all u2 > C, there are a.s. no infinite

components in V.
d) There exists a constant u+ ∈ [u∗, u∗∗] and a decreasing function Γ : [u+,+∞) → [u+,+∞]

(only Γ(u+) can be +∞) 2 such that V a.s. has a unique infinite component when
i. u1 < u+;
ii. u1 ≥ u+ and u2 < Γ(u1),

and V a.s. has no infinite components when u1 ≥ u+ and u2 > Γ(u1).

Claim a) is an elementary property of most percolation models on Zd or more generally an
amenable graph. The proof of it uses a variant of the Burton-Keane argument (Burton and Keane,
1989; Teixeira, 2009). Claim b) is immediate from the definition of u∗. For c), one can see Vu22
as a small perturbation when u2 is large. Thus, Claim c) mainly says that the percolation of the
vacant set of interlacements is stable under this fluctuation. The proof relies on the renormalization

2Currently, we do not know whether Γ is continuous.
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argument introduced in Sidoravicius and Sznitman (2009) and local properties of random interlace-
ments. The renormalization argument builds on an induction along the renormalization scheme and
provides us with the decoupling inequalities (see Proposition 2.1). Thus, we only need to prove the
“triggers", i.e., some local inequalities in a finite box B(0, 2L0). Locally, with high probability V
cannot have a large connected component, since with high probability Vu11 cannot connect B(0, L0)
with ∂iB(0, 2L0) and Vu22 is empty in B(0, 2L0) by enlarging u2. Finally, combining b) and c), we
can get d) instantaneously.

Next, we will present our result about the percolative properties of K. These properties are
different from those of the original model, i.e., random interlacements.

Theorem 1.2 (Percolative properties of K).
a) The set K has at most one infinite component a.s.
b) Given u1 > 0, there exists a constant C = C(u1, d) < ∞ such that K has a unique infinite

component a.s. for all u2 > C.
c) There exists a constant c = c(d) > 0 such that for all u1, u2 < c, there are a.s. no infinite

components in K.
d) Given d ≥ 5 and u1 > 0, there exists a constant c = c(u1, d) > 0 such that for all u2 < c,

there are a.s. no infinite components in K.

Claim a) is elementary and its proof is the same as that of Theorem 1.1 a). For b), one can
see Vu22 as a small fluctuation when u2 is large. Thus, Claim b) mainly says that the percolation
of the intersection K = Iu11 \V

u2
2 is stable under this fluctuation. The proof uses local properties

of random interlacements and the renormalization argument. Locally, random interlacements are
strongly connected meaning that with high probability all the vertices of Iu in B(0, N) are connected
in B(0, 2N). Meanwhile, u2 can be taken large such that with high probability Vu22 is empty in
B(0, 2N). Thus, with high probability, K has a large connected component in B(0, 2N). Then,
through the renormalization argument, these local properties can be pushed to the global ones.
The rigorous proof is a little bit harder since the above mentioned event isn’t monotone and we
cannot use the decoupling inequalities directly to it. For the result of c), we consider the box of
side length 2N and write M = u1N

d−2 = u2N
d−2. First, pick a large M to offset the error terms in

the decoupling inequalities. In Iu11 ∩B(x, 2N) and Iu22 ∩B(x, 2N), with high probability there are
O(M) independent random walks individually. Given M , one can take N large and simultaneously
u1 and u2 small such that only with small probability ∂iB(0, N) is connected to ∂iB(0, 2N) by
the intersection. Then, we can use the renormalization argument to push these local properties to
the global ones. The rigorous proof will need some concrete calculations on simple random walks.
Claim d) is an improvement of Claim c) for d ≥ 5. Its proof uses cut times of random walks Lawler
(1996).

By now, two natural questions arise: is there a phase where two infinite components coexist?
Similarly, is there a phase where neither of them exists? Our results above also shed some light to
these questions. By Theorem 1.1 b) and Theorem 1.2 b), there exist choices of u1 and u2 such that
both K and V have an infinite component. For the second question, we give an affirmative answer
when the dimension is high. Together with Theorem 0.1 in Sznitman (2011), Theorem 1.1 b) and
the following Theorem 1.4, we conclude that when the dimension is high, at least one of K and V
has an infinite component. We summarize the discussion above into the following theorem.

Theorem 1.3.
a) There exists a phase such that K and V both have a unique infinite component a.s.
b) There exists D2 < ∞ such that for all d > D2 and u1, u2 > 0, at least one of K and V has

a unique infinite component a.s.

A key ingredient of the proof of Theorem 1.3b) is the following Theorem 1.4.
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Theorem 1.4. There exists a constant D1 such that for all d > D1 and u1, u2 > 1, there is
a.s. a unique infinite component in K. In other words, the phase curve of K lies below the region
{(x, y) : x ≥ 1 and y ≥ 1}.

As a remark, we note that the lower bound 1 here is not optimal and can be improved to
1

d1/2−ε
. However, the argument cannot be extended to low dimensions as it involves some asymptotic

analysis.
The proof of this theorem contains two parts: a local analysis and a renormalization argument

similar to those in the proof of Theorem 1.1 and 1.2. Locally, in a hypercube {0, 1}d, random
interlacements can stochastically dominate a Bernoulli site percolation. Thus, by the method in
Alon et al. (2004), in high dimensions, in each hypercube with high probability there is a ubiquitous
component (see Section 5 for the definition) connected to the neighboring ones (which also exist
with high probability). Then, by the renormalization argument, there will be an infinite component.

Next, we will explain how this article is organized. In Section 2, we introduce some notation,
make a brief introduction to random interlacements, explain the renormalization argument which
we will use repeatedly in this article and give some estimates on simple random walks. Section 3 is
devoted to the proof of Theorem 1.1. In Section 4, we prove Theorem 1.2. The phase diagram of K
and V put together is discussed in Section 5.

Finally, we explain the convention regarding constants in this work. All constants in this article
are positive. Constants like c, C, ε, γ may change from place to place, while constants with subscripts
like c1, C1, D1 are kept fixed through the article. The constants in Section 3 and 4 may depend on
d implicitly, while the constants in Section 5 will not.

2. Notation and useful results

In this section, we introduce notation, review some basic properties of random interlacements
together with the renormalization argument introduced in Section 2 of Sidoravicius and Sznitman
(2009) and collect some estimates related to simple random walks.

For a real value a, we write [a] for the largest integer ≤ a. We consider the integer lattice Zd
with d ≥ 3. Norms | · |1 and | · |∞ represent the l1-norms and l∞-norms on Zd. We call two
vertices x and y *-neighbors if |x − y|∞ = 1 and nearest neighbors if |x − y|1 = 1. We call a set
π = (y1, y2, ..., yk) ⊂ Zd a *-neighbor path if yi, yi+1 are *-neighbors for 1 ≤ i ≤ k−1, and a nearest
neighbor path if yi, yi+1 are nearest neighbors for 1 ≤ i ≤ k − 1. A path is simple if yis are all
different from each other. GivenK,L,U subsets of Zd, we sayK and L are connected by U and write
K

U←→ L, if there exists a nearest neighbor path with values in U which starts in K and ends in L.
We denote by B(x,N) = {y ∈ Zd : |x− y|∞ ≤ N} the closed l∞ ball centered at x and of radius N .
For a finite subset K of Zd, we write ∂iK = {x ∈ K : x is a nearest neighbor of some point y /∈ K}
for its inner boundary.

Here is some notation about discrete-time simple random walks. Px represents the discrete-time
simple random walk X started at x on Zd. We write Px,y for two independent discrete-time simple
random walks started at x and y respectively. Let K be a finite subset of Zd. We write τK for
the first time that X hits K and τ+

K for the first positive time that X hits K. We denote the
equilibrium measure of K by eK(x) = Px

[
τ+
K =∞

]
1K(x) for x ∈ Zd, and the capacity of K by

cap(K) =
∑

x eK(x).
For functions f, g : Z→ R, we write f = O(g) if there is a constant C such that f(x) ≤ C · g(x),

for all x ∈ Z. We write f = Ω(g) if there are constants c, C such that c · g(x) ≤ f(x) ≤ C · g(x), for
all x ∈ Z.
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2.1. Random interlacements and the renormalization argument. First, we briefly introduce the ran-
dom interlacements.

Let W be the space of doubly-infinite nearest neighbor paths in Zd, and let W ∗ be the quotient
space of W modulo time shift. π is the quotient map from W to W ∗. By Chapter 5 of Drewitz
et al. (2014a), we can define a Poisson point measure µ on W ∗ with the following local property.
Given K a finite subset of Zd, we write W ∗K for the paths in W ∗ that pass through K and µK for
µ restricted to W ∗K . Then

µK =

NK∑
i=1

δπ(Xi), (2.1)

where NK is a random variable ∼ Poisson(u · cap(K)) and Xi is a doubly-infinite path in which
Xi(0) is a random point in K according to the equilibrium measure distribution. Conditional on
Xi(0), the positive side {Xi}i≥0 is a simple random walk, and the opposite side {Xi}i≤0 is a simple
random walk conditional on {τ+

K = ∞} and independent of the positive one. Given NK , all these
NK paths are conditionally independent. The set of points occupied by at least one path is called
the interlacement set at level u, denoted by Iu. The complement of it is called the vacant set,
denoted by Vu. The graph induced by the edges visited by random interlacements on Zd is denoted
by Ĩu.

There is a more concise alternative definition of interlacements. The random interlacements Iu
are a random subset of Zd whose law is given by

P [Iu ∩K = ∅] = e−u·cap(K), for all finite subset K of Zd. (2.2)

Let (Ω1,F1, P
u1) be the probability space on which Iu11 is defined (see (5.2.1) and (5.2.6) of

Drewitz et al., 2014a for more details). Let (Ω2,F2, P
u2) be the probability space on which Iu22 is

defined. Finally, let (Ω,F ,P) = (Ω1×Ω2, σ(F1×F2), P u1⊗P u2) be the probability space on which
Iu11 and Iu22 are jointly defined.

Random interlacements are a typical model of percolation with long-range correlation. It has been
known that the interlacement set itself almost surely has a unique infinite component as shown in
(2.21) of Sznitman (2010), while the vacant set undergoes a non-trivial phase transition in u (see
Theorem 4.3 of Sznitman, 2010, Theorem 3.4 of Sidoravicius and Sznitman, 2009 and Theorem 3.1
of Popov and Teixeira, 2015). There are two percolative thresholds of interlacements u∗ and u∗∗
that we will use in this paper:

u∗ = inf
{
u : P

[
0
Vu←→∞

]
= 0
}
, (2.3)

u∗∗ = inf

{
u : lim inf

L→∞
P
[
B(0, L)

Vu←→ ∂iB(0, 2L)
]

= 0

}
. (2.4)

When u is above u∗, there are a.s. no infinite clusters in the vacant set. When u is above u∗∗, each
component of the vacant set is exponentially small. There is another critical parameter u introduced
in Theorem 1.1 of Drewitz et al. (2014b). It is plausible, but unproven at the moment, that actually
u = u∗ = u∗∗, which is one of the most important open problems in this field. In the context of
the level-set percolation of Gaussian free field, a model which bears similar properties to random
interlacements, the parallel problem has been solved recently in Theorem 1.1 of Duminil-Copin et al.
(2020).

Next, we will state the renormalization argument first introduced in Chapter 2 of Sidoravicius and
Sznitman (2009). The idea is to zoom in on a large box layer upon layer along the renormalization
scheme. In each layer, we can decouple the configurations in two boxes that are far apart with small
error. The version we present here is from Chapter 8 of Drewitz et al. (2014a). Let L0 and l0 be
two positive integers chosen according to the context, and Ln = L0 · ln0 . We define the renormalized
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lattice graph Gn as
Gn = LnZd =

{
Lnx : x ∈ Zd

}
.

For x ∈ Zd and n ≥ 0, let
Λx,n = Gn−1 ∩B(x, Ln)

be a renormalized box with side length Ln. We call an event Gx,0, or for short Gx, seed event if it
is measurable with respect to the configuration in B(x, 2L0) and shift-invariant, i.e., ψ ∈ Gx if and
only if ψ(·−x) ∈ G0, where x is a vertex of Zd. We also hope Gx monotone. For x ∈ Zd and n ≥ 1,
we write

Gx,n =
⋃

x1,x2∈Λx,n;|x1−x2|∞> Ln
100

Gx1,n−1 ∩Gx2,n−1. (2.5)

Gx,n means that there exists a dyadic tree whose leaves are separated apart and satisfy Gx.
A typical scenario where we will use this event is in the following claim. When there is a *-

neighbor or nearest neighbor path connecting 0 to ∂iB(0, Ln) such that every vertex of this path
satisfies Gx, then Gx,n happens. This claim can be proved by induction and it is used in the proof
of Theorem 1.1c) and Theorem 1.2 b), c).

The following decoupling inequalities are a variant of Theorem 8.5 of Drewitz et al. (2014a)
and they are used repeatedly in our proofs. They follow from the idea of renormalization and the
sprinkling technique in Proposition 3.1 of Sznitman (2010).

Proposition 2.1 (Decoupling inequalities for two interlacements). For d ≥ 3 and ε > 0, there exists
an integer A = A(d, ε) such that for all n ≥ 0, L0 ≥ 1 and l0 ≥ A, the following two statements
hold:

1. if Gx is an increasing seed event, then for all u1
− ≤ (1− ε)u1 and u2

− ≤ (1− ε)u2

P

[
Ku1−,u2− ∈ G0,n

]
≤(2l0 + 1)d·2

n+1 [
P [Ku1,u2 ∈ G0] + ε(u1

−, L0, l0) + ε(u2
−, L0, l0)

]2n
;

(2.6)

2. if Gx is a decreasing seed event, then for all u1
+ ≥ (1 + ε)u1 and u2

+ ≥ (1 + ε)u2

P

[
Ku1+,u2+ ∈ G0,n

]
≤(2l0 + 1)d·2

n+1
[P[Ku1,u2 ∈ G0] + ε(u1, L0, l0) + ε(u2, L0, l0)]2

n

,
(2.7)

where

ε(u, L0, l0) =
2e−uL

d−2
0 l

d−2
2

0

1− e−uLd−2
0 l

d−2
2

0

. (2.8)

Proof : The proof is similar to Theorem 8.5 in Drewitz et al. (2014a) despite that the claim here
involves two independent interlacements. We need to change the coupling in Theorem 7.9 of
Drewitz et al. (2014a) into a coupling of two independent copies of the point measures there
and the term ε there should be changed into ε1 + ε2, where ε1 = ε(u1−, u1+, S1, S2, U1, U2) and
ε2 = ε(u2−, u2+, S1, S2, U1, U2). The term ε(u−, n) in (8.1.9) and (8.1.10) of Drewitz et al. (2014a)
should be replaced by ε(u1−, n) + ε(u2−, n). Equation (8.3.4) of Drewitz et al. (2014a) is still true
since am + bm + cm ≤ (a+ b+ c)m. �

2.2. Estimates about SRW. Here, we present some results about simple random walks on Zd(d ≥ 3)
that will be used. For x, y ∈ Zd, the Green function is denoted by G(x, y) =

∑∞
n=0 Px(Xn = y).

The following lemma is very simple and we give a proof just for completeness. It is used in Section 5
to prove that interlacements can dominate Bernoulli site percolation in a hypercube {0, 1}d.
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Lemma 2.2. There exists a constant c1 > 0 such that for all d ≥ 3,

P0

[
τ+
{0,1}d =∞

]
> c1. (2.9)

Proof : Thanks to symmetry and the strong Markov property,∑
x∈{0,1}d

G(0, x) = E0

[ ∞∑
i=0

1{Xi∈{0,1}d}

]
=

1

P0

[
τ+
{0,1}d =∞

] .
Thus, it is sufficient to prove that ∑

x∈{0,1}d
G(0, x) <

1

c1
.

By (2.10), p.243 in Montroll (1956), we have

G(0, x) =

∫ ∞
0

e−u
d∏
i=1

Ixi

(u
d

)
du, for x = (x1, ..., xd) ∈ Zd,

where

In(u) =
1

π

∫ π

0
eu cos θ cosnθdθ, u ∈ C.

We get that ∑
x∈{0,1}d

G(0, x) =

∫ ∞
0

e−u
∑

x∈{0,1}d

d∏
i=1

Ixi

(u
d

)
du

= d

∫ ∞
0

(
I0(u) + I1(u)

eu

)d
du.

Denote (I0(u) + I1(u))/eu by Z(u). Then, Z(0) = 1. By some easy calculations, we can take a
constant A ∈ (1,∞) and B = 1/(4eA) + 1/(4e2A) such that

Z(u) ≤ 1√
u
, for all u ≥ A,

and
Z(u) ≤ 1−Bu, for all u ≤ A.

Therefore, ∑
x∈{0,1}d

G(0, x) = d

∫ A

0
(Z(u))ddu+ d

∫ ∞
A

(Z(u))ddu

≤ d
∫ A

0
(1−Bu)ddu+ d

∫ ∞
A

(
1√
u

)d
du

≤ 1

B

d

d+ 1
+A−

d
2

+1 d
d
2 − 1

.

Note that d ≥ 3, A > 1 and A,B are independent of d. Hence, there exists a constant c1 > 0
independent of d such that

∑
x∈{0,1}d G(0, x) < 1/c1. This completes the proof of (2.9). �

Remark 2.3. With more careful calculations, we can get that the left-hand side in (2.9) tends to
1/2 as d tends to ∞. This coincides with the heuristic that whenever Xi leaves {0, 1}d in high
dimensions, it will not come back any more.
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The following notation is defined when d = 3. Let x = (x1, x2, x3) ∈ Z3. The disc centered at x
of radius M is denoted by

D(x,M) = {(y1, y2, y3) : |y1 − x1|, |y2 − x2| ≤M,y3 = x3}.
We denote one quarter of the disc centered at x of radius M by

D+(x,M) = {(y1, y2, y3) : x1 ≤ y1 ≤ x1 +M,x2 ≤ y2 ≤ x2 +M,y3 = x3}.
The first exit time of a simple random walk is written by ξm = inf{i ≥ 0 : Xi /∈ B(0,m)}. The
following proposition is used to prove Theorem 1.2c).

Proposition 2.4. For d = 3, there exists C1 > 0 such that for all M ≥ 1,

max
x,y∈∂iB(0,2M)

Px,y
[
X1[0,∞) ∩X2[0,∞) ∩ ∂iB(0,M) 6= ∅

]
<

C1

log(M)
, (2.10)

where X1 and X2 are two independent simple random walks starting from x and y.

The order Ω(1/ log(M)) here is right. The proof is similar to Section 3.4 in Lawler (1991). The
expectation of the intersection in ∂iB(0,M) is O(1). Intuitively, when X1 and X2 intersect in
∂iB(0,M), then with high probability they will have Ω(log(M)) intersection points in ∂iB(0,M).
Thus, the probability that X1 and X2 intersect in ∂iB(0,M) is Ω(1/ log(M)). However, there are
no natural stopping times, which makes the rigorous proof difficult. To prove this proposition, we
will need two lemmas.

Lemma 2.5. For d = 3, there exists ε > 0 and a positive integer N such that for all M ≥ N ,

min
x∈B(0,M+1)

Px

[
ξ2M−1∑
i=0

1{Xi∈D+(0,2M)} > εM

]
> ε.

Proof : Write y for (3M/2, 3M/2, 0). By comparing the simple random walk with Brownian motion,
there exists µ > 0 such that for M large

min
x∈B(0,M+1)

Px

[
τD(y, 1

4
M) < ξ2M

]
> µ. (2.11)

Furthermore, we can prove the following inequality with some γ > 0 and large M :

P0

ξM/4∑
i=0

1{Xi∈D(0, 1
4
M)} > γM

 > γ. (2.12)

This inequality can be proved by considering the third coordinate. The movements in the third
coordinate x3 can be seen as a one-dimensional simple random walk {Yi}i≥0 starting from 0. By
just calculating the first moment and second moment (first moment is of order

√
n and second

moment is of order n) and then using the Paley-Zygmund inequality, we can prove that there exists
some η > 0 such that for large n,

P0

[
n∑
i=0

1{Yi=0} > η
√
n

]
> η. (2.13)

In addition, we can take some c > 0 such that for large M,

P0[Z] > 1− η

2
, (2.14)

where Z represents the event that ξM/4 > cM2 and in the first cM2 moves there are at least cM2/4
ones in the third coordinate.

If the event in (2.13) with n = [cM2/4] and Z happen at the same time, then the event in (2.12)
happens for γ ≤ η

√
c/2. Note that for large M , with more than η/2 probability the event in (2.13)
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with n = [cM2/4] and Z happen at the same time. Let γ = min{η/2, η
√
c/2} and this completes

the proof of (2.12).
By (2.11), (2.12) and the strong Markov property, for any x ∈ B(0,M + 1) and large M ,

Px

[
ξ2M−1∑
i=0

1{Xi∈D+(0,2M)} > γM

]

≥Px
[
τD(y, 1

4
M) < ξ2M

]
· P0

ξM/4∑
i=0

1{Xi∈D(0,M/4)} > γM

 > µ · γ.

In Lemma 2.5, take ε = min{γ, µγ} and N large. We complete the proof. �

Next, we consider the random variable DM defined by

DM =
∞∑
i=0

G (0, Xi)1{Xi∈D+(0,M)}.

Lemma 2.6. For d = 3, there exist two constants a, ε > 0 and a positive integer N such that for
all M ≥ N

P0 [DM ≥ ε log(M)] ≥ 1− 1

Ma
.

Proof : Denote the ε and N in Lemma 2.5 by ε1 and N1. We decompose [0, ξM ) into k dis-
joint intervals [ξN1 , ξ2N1) , [ξ2N1 , ξ4N1) , ...,

[
ξ2k−1N1

, ξ2kN1

)
, where k = [log2(M/N1)]. Recall that

G(0, x) ≥ C/|x|∞ when d = 3. Therefore,

DM =
∞∑
i=0

G (0, Xi)1{Xi∈D+(0,M)}

≥
k−1∑
l=0

ξ
2l+1N1

−1∑
i=ξ

2lN1

G (0, Xi)1{Xi∈D+(0,2l+1N1)}

≥
k−1∑
l=0

ξ
2l+1N1

−1∑
i=ξ

2lN1

C

2l+1N1
1{Xi∈D+(0,2l+1N1)}

.
By the strong Markov property and Lemma 2.5, each of the k terms above is independent and has
more than ε1 probability to be more than C/(2l+1N1) · ε12lN1 = Cε1/2. Thus, by the Hoeffding’s
inequality, for large k

P0

[
DM ≥

Cε21
4
k

]
≥ 1− e−ck.

In Lemma 2.6, take ε < Cε21
4 log2 e, a < c log2 e and N large. We complete the proof. �

With the above two lemmas, we can complete the proof of Proposition 2.4.

Proof of Proposition 2.4: We will use the a and ε in Lemma 2.6. Take any pair of points x and y in
∂iB(0, 2M). The constants below are all independent of x, y and M . Now, X1 and X2 below are
two independent simple random walks started at x and y. Define RM to be

RM =

∞∑
i=0

∞∑
j=0

1{X1
i =X2

j ∈∂iB(0,M)}.

An easy calculation shows that

Ex,y [RM ] ≤ C, where C is a constant independent of x, y and M.
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Let ζ be the stopping time

ζ = inf
{
i ≥ 0 : X1

i ∈ X2[0,∞) ∩ ∂iB(0,M)
}
.

Define σ as
σ = inf

{
j ≥ 0 : X2

j = X1
ζ

}
.

For any vertex z in ∂iB(0,M), we can find a M ×M disc in ∂iB(0,M) with z as one of its corners
in a deterministic way. We write D(z) for this disc. Define Dj,M as

Dj,M =
∞∑
i=0

G
(
X2
j , X

2
j+i

)
1{X2

j+i∈D(X2
j )}

The time j is called good if Dj,M ≥ ε log(M) and bad otherwise. By the strong Markov property
applied to X1,

Ex,y [RM |ζ <∞, σ is good] ≥ ε log(M).

Therefore,

Px,y [ζ <∞, σ is good] ≤ Ex,y [RM ] [Ex,y [RM |ζ <∞, σ is good]]−1

≤ C

log(M)
.

By Lemma 2.6, symmetry and the Markov property applied toX2, we have Px,y[Dj,M < ε log(M)] ≤
1/Ma for large M . Thus, for large M

Px,y[ζ <∞, σ is bad] ≤
∞∑
i=0

∞∑
j=0

Px,y
[
X1
i = X2

j ∈ ∂iB(0,M), Dj,M < ε log(M)
]

=
∞∑
i=0

∞∑
j=0

Px,y
[
X1
i = X2

j ∈ ∂iB(0,M)
]
Px,y [Dj,M < ε log(M)]

≤ 1

Ma
Ex,y [RM ] ≤ C

Ma
.

So,

Px,y
[
X1[0,∞) ∩X2[0,∞) ∩ ∂iB(0,M) 6= ∅

]
= Px,y[ζ <∞]

=Px,y[ζ <∞, σ is good] + Px,y[ζ <∞, σ is bad] ≤ C

log(M)
.

The above inequality holds whenM is large. Enlarge C if necessary such that for anyM , inequality
(2.10) holds. �

3. Percolative properties of V

In this section, we consider the percolative properties of V and prove Theorem 1.1 which is split
into four parts.

The proof of Theorem 1.1 a) is an adaptation of the Burton-Keane argument (see Theorem 2 of
Burton and Keane, 1989, Corollary 2.3 of Sznitman, 2010 and Theorem 1.1 of Teixeira, 2009). The
proof presented here is a streamlined version of that in Theorem 1.1 of Teixeira (2009). Also, the
maps φ and Φ defined below are adapted from (2.23) to (2.24) in Sznitman (2010) and (3.2), (3.4),
(3.11) in Teixeira (2009). The idea is to change the situation in a finite box by local surgeries.

Proof of Theorem 1.1 a): Recall that random interlacements are translation-invariant and ergodic
as shown in Theorem 2.1 of Sznitman (2010). It follows that the total numberN of infinite connected
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components of V is a.s. a constant, possibly infinite. The proof contains two parts. The first step is
to argue that

for 1 < k <∞, P[N = k] = 0.

Suppose that in contrast for some k ∈ (1,∞), there are k infinite clusters a.s. Then, there exists a
large constant M such that P[A] > 0, where A denotes the event that all the k infinite connected
components of V intersect the box K = [−M,M ]d.

We first prove that P[A1] = 0, where A1 denotes the event that V\K contains more than k
infinite connected components. We consider the following map φ1 : W ∗ → W ∗. Recall that W ∗K is
the set of the paths in W ∗ that intersect K. For a path ω in W ∗K , whenever ω enters K, the map
φ1 adds to ω a subpath that covers K and leaves K at that point. For the paths in (W ∗K)c, the
map φ1 is an identity map. φ1 can induce a natural map Φ1 : Ω→ Ω, where Ω is the configuration
space of two independent interlacements defined in Section 2. The map Φ1 is defined as:

Φ1(ψ) =
∑
i,j

δ(φ(ωi),φ(ω′j))
, for ψ =

∑
i,j

δ(ωi,ω′j)
∈ Ω.

Note that Φ1(A1) ⊂ {N > k} (because the situation outside K is unchanged and K is occupied)
and Φ1 ◦P is absolutely continuous with respect to P. Thus,

P[A1] ≤ P[Φ−1
1 {N > k}]

= Φ1 ◦P[N > k] = 0.

Therefore P[A\A1] = P[A] > 0. If the event A happens, then we can find two vertices z1 and z2

in ∂iK such that they are vacant and contained in two distinct infinite components of V. Since the
number of choices is finite, there exist z1 and z2 in ∂iK such that P[B] > 0, where B represents the
event that {A\A1, vertices z1 and z2 satisfy the above conditions}. Choose a set U ⊂ K containing
a simple path joining z1 and z2. We also demand that U ∩ ∂iK = {z1, z2}. Consider the following
map φ2 : W ∗ →W ∗. For a path ω inW ∗K , whenever ω enters K, the map φ2 replaces the subpath of
ω until it leaves K by a subpath that bypasses U and exits K at the same point as ω (If ω enters or
leaves K at z1, then the subpath need not bypass z1, and the same is true for z2). For the paths in
(W ∗K)c, the map φ2 is an identity map. Then we can define Φ2 induced by φ2 as before. Note that
no path passes through U\{z1, z2} under φ2 and all the paths passing through z1 or z2 must pass
through z1 or z2 in the preimage of φ2. In addition, the situation outside K remains unchanged.
Thus, Φ2(B) ⊂ {N < k}, since V\K contains at most k infinite components and two of them are
connected under the map Φ2. So,

P[B] ≤ P
[
Φ−1

2 {N < k}
]

= Φ2 ◦P[N < k] = 0.

We get a contradiction. Hence, for 1 < k <∞, P[N = k] = 0.
The second step is to reject that P[N = ∞] > 0. We assume the opposite happens. Then

there exists M such that P[C] > 0, where C denotes the event that at least 100d distinct infinite
components in V intersect K = [−M,M ]d. We can find three vacant vertices y1,y2 and y3 in ∂iK
such that they are at least distance 10 from each other and all the corners of the box, and belong
to three distinct infinite components. Since there are finitely many choices, P[D] > 0 for some
y1,y2 and y3 in ∂iK, where D represents the event that C happens and y1, y2, y3 satisfy the above
conditions. We can find a subset U ⊂ K such that (1). U\{0} contains three disjoint simple paths
from 0 to y1, y2 and y3; (2). U ∩ ∂iK = {y1, y2, y3}. We consider the following map φ3 : W ∗ →W ∗.
For a path ω in W ∗K , whenever ω enters K, the map φ3 replaces the subpath of ω until it leaves
K with a subpath that bypasses U , fills K\U and exits K at the same point as ω (If ω enters or
leaves K at y1, then the subpath need not bypass y1, and the same is true for y2 and y3). For
the paths in (W ∗K)c, the map φ3 is an identity map. We can define Φ3 induced by φ3 as before.
Note that no path passes U\{y1, y2, y3} under φ3 and all the paths passing through y1, y2 or y3
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must pass it in the preimage. Besides, K\U is occupied and the situation outside K has not been
changed. Thus, in Φ3(D), the vertex 0 is a trifurcation point meaning that 0 belongs to an infinite
component of V which is split into three distinct components by deleting 0. By definition, Φ3 ◦ P
is absolutely continuous with respect to P. This together with 0 < P[D] ≤ Φ3 ◦P[Φ3(D)] implies
that P[Φ3(D)] > 0. Thus, P[0 is a trifurcation point] ≥ P[Φ3(D)] > 0. This is impossible due to
the Burton-Keane argument as shown in Theorem 2 of Burton and Keane (1989).

In conclusion, either N = 0 a.s. or N = 1 a.s. �

Proof of Theorem 1.1 b): This is obvious since V = Vu11 ∪ V
u2
2 and by (2.3) Vu a.s. has an infinite

cluster when u < u∗. �

Proof of Theorem 1.1 c): Take h = (u1 + u∗∗)/2 > u∗∗. We define our seed event Gx as the
event that B(x, L0) is connected with ∂iB(x, 2L0) in V, where L0 is an integer to be determined
later. Then, Gx is measurable with respect to the configuration in B(x, 2L0), shift-invariant and
decreasing. Gx is contained in the union of the following two events: (1). in Vu11 , the box B(x, L0)
is connected to ∂iB(x, 2L0); (2). Vu22 ∩B(x, 2L0) 6= ∅. Since h > u∗∗, by Theorem 3.1 of Popov and
Teixeira (2015) there exist constants c, C > 0 depending on h such that

P

[
B(x, L0)

Vh1←→ ∂iB(x, 2L0)

]
≤ Ce−L0

c

.

Thus, by the above inequality and (2.2),

P

[
Kh,u2 ∈ Gx

]
≤ P

[
B(x, L0)

Vh1←→ ∂iB(x, 2L0)

]
+P [Vu22 ∩B(x, 2L0) 6= ∅]

≤ Ce−L0
c

+
∑

y∈B(x,2L0)

P [y ∈ Vu22 ]

= Ce−L0
c

+ (4L0 + 1)de−u2·cap(0).

Next, we will use the decoupling inequalities, i.e., Proposition 2.1. In Proposition 2.1, take ε > 0
such that u1 = (1 + ε)h. In (2.7), we take u1 = h, u+

1 = u1, u2 = g, u+
2 = (1 + ε)g, where g is a

constant to be determined later. Therefore, for n ≥ 0 and l0 ≥ A (A = A(d, ε) is the integer in
Proposition 2.1),

P

[
Ku1,(1+ε)g ∈ G0,n

]
≤(2l0 + 1)d·2

n+1
[
P

[
Kh,g ∈ G0

]
+ ε(h, L0, l0) + ε(g, L0, l0)

]2n

≤(2l0 + 1)d·2
n+1
[
Ce−L0

c

+ (4L0 + 1)d · e−g·cap(0) + ε(h, L0, l0) + ε(g, L0, l0)
]2n

.

(3.1)

Recall that by (2.8),

ε(u, L0, l0) =
2e−uL

d−2
0 l

d−2
2

0

1− e−uLd−2
0 l

d−2
2

0

.

Take l0 = A. There exists a large integer B such that for L0 = g = B the right-hand side of (3.1)
is smaller than 2−2n , or equivalently

(2A+ 1)2d
(
Ce−B

c
+ (4B + 1)d · e−B·cap(0) + ε(h,B,A) + ε(B,B,A)

)
<

1

2
.

We claim that if 0 is connected to ∂iB(0, 2Ln) in V, then the event G0,n happens (see (2.5) for
the definition of G0,n). We can prove this claim by induction. For n = 0, this holds immediately. If
for n = k it holds, we consider the case n = k+ 1. For a simple path connecting 0 to ∂iB(0, 2Lk+1),
it must pass ∂iB(0, Lk+1/3) and ∂iB(0, 2Lk+1/3). By the induction hypothesis, we can prove that
the Lk boxes first passed by the path in ∂iB(0, Lk+1/3) and ∂iB(0, 2Lk+1/3) satisfying Gx,k and
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their distance is by definition larger than Lk+1/100. Hence, the claim holds for n = k + 1. By
induction, it holds for all n. Recall that V is decreasing in u2. Thus, for L0 = B and q ≥ (1 + ε)B,

P

[
0
Vu1,q←→ ∂iB(0, 2Ln)

]
≤ P

[
0
Vu1,(1+ε)B←→ ∂iB(0, 2Ln)

]
≤ P

[
Ku1,(1+ε)B ∈ G0,n

]
≤ 2−2n .

As n tends to ∞, the right-hand side tends to zero. Thus,

P

[
0
Vu1,q←→ ∞

]
= 0, for all q ≥ (1 + ε)B.

Take C(u1) = (1 + ε)B in Theorem 1.1 c) and the proof is completed. �

Remark 3.1. Although the connectivity function we obtain here has stretched exponential decay,
by the method in Section 7 of Popov and Teixeira (2015) we can greatly improve the bound to
exponential decay in d ≥ 4 and exponential decay with a logarithmic correction in d = 3. In
other words, for d ≥ 4, u1 > u∗∗ and u2 > C(u1), there exist two constants c = c(u1, u2, d) and
C = C(u1, u2, d) such that

P

[
0
V←→ x

]
≤ Ce−c|x|1 .

For d = 3, u1 > u∗∗, u2 > C(u1) and any ε > 0, there exist two constants c = c(u1, u2, d, ε) and
C = C(u1, u2, d, ε) such that

P

[
0
V←→ x

]
≤ Ce−c

|x|1
log3+ε |x|1 .

The proof is similar to Section 7 in Popov and Teixeira (2015) despite that we have to change both
u1 and u2 and produce two error terms in the sprinkling process. For the sake of brevity, we will
not give a complete proof here.

Proof of Theorem 1.1 d): Take Γ(x) = inf{u : P
[
0
Vx,u←→∞

]
= 0} (by convention, the infimum of

an empty set is ∞). By monotonicity, Γ(x) is a decreasing function. Let u+ = inf{x : Γ(x) <∞}.
By Theorem 1.1 b) and c), we have u∗ ≤ u+ ≤ u∗∗. It follows from the symmetry of u1 and u2

that Γ(x) ≥ u+ when x ≥ u+. When u1 < u+, we have Γ(u1) = ∞ and thus P
[
0
Vu1,u2←→ ∞

]
> 0

which implies that V percolates. When u1 ≥ u+ and u2 < Γ(u1), we have P
[
0
Vu1,u2←→ ∞

]
> 0 which

implies that V percolates. When u1 ≥ u+ and u2 > Γ(u1), we have P
[
0
Vu1,u2←→ ∞

]
= 0 and thus V

doesn’t percolate. �

Remark 3.2. Here, Γ is the phase curve of V. We conjecture that it is continuous and strictly
decreasing. A much more difficult problem is what happens to V on this curve, since we do not
even know whether u∗ = u∗∗ and what happens to Vu∗ .

4. Percolative properties of K

In this section, we study the percolative properties of K and prove Theorem 1.2. The original
model, random interlacements, is almost surely connected and contains a unique infinite component
as shown in Corollary 2.3 of Sznitman (2010). Furthermore, in Ráth and Sapozhnikov (2012); Pro-
caccia and Tykesson (2011), it has been shown that any pair of vertices in random interlacements
can be connected via at most

[
d−1

2

]
+ 1 trajectories and this value is optimal. However, the inter-

section of two independent random interlacements is not connected (this can be easily proved) and
may even have no infinite components. Theorem 1.2 is split into four parts.
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Proof of Theorem 1.2 a): We use the same method as in the proof of Theorem 1.1 a). We denote
by N the number of infinite components. Then, N is a constant a.s., possibly infinite. The proof
contains two parts.

The first step is to prove that P[1 < N <∞] = 0. We assume that on the contrary there exists
an integer k ∈ (1,∞) such that P[N = k] = 1. Then, there exists M such that P[A] > 0, where A
denotes the event that all the k infinite components of K intersect K = [−M,M ]d. We introduce a
map φ4 : W ∗ →W ∗, which is an identity map on (W ∗K)c. For ω ∈W ∗K , the map φ4 adds a subpath
that fills the box K when the first time ω enters K. The map φ4 induces a map Φ4 : Ω → Ω and
Φ4 ◦P is absolutely continuous with respect to P. Note that in Φ4(A) there is exactly one infinite
component in K, since the situation outside K is unchanged and all the points in K are occupied.
Thus, P[N = 1] ≥ P[Φ4(A)] > 0, which is a contradiction. Therefore, P[1 < N <∞] = 0.

The second step is to prove that P[N = ∞] = 0. We assume that in contrast P[N = ∞] = 1.
We can find K = [−M,M ]d and x1, x2, x3 ∈ ∂iK such that P[B] > 0 where B represents the
event that K intersects three distinct infinite components of K at x1, x2 and x3. We consider the
maps φ4 and Φ4 as before. Then, P[Φ4(B)] > 0. In Φ4(B), the vertex 0 is a M -trifurcation point
(meaning that B(0,M) intersects an infinite component and this infinite component is split into at
least three disjoint clusters if we close all the vertices in B(0,M)). Thus, the vertex 0 has a positive
probability to be aM -trifurcation point. By the Burton-Keane argument, this is impossible. Hence,
P[N =∞] = 0.

In conclusion, either N equals 0 a.s. or N equals 1 a.s. �

The proof of Theorem 1.2 b) is similar to that of Theorem 1 in Ráth and Sapozhnikov (2013). We
will use the strong connectivity property of random interlacements as shown in Lemma 3.1 of Ráth
and Sapozhnikov (2013), which says that all the occupied vertices in a finite box are connected in
a slightly larger box with high probability. The idea of this proposition is that in a [−N,N ]d box,
every component has larger than 1−exp(−N δ) probability to have capacity larger than N (d−2)(1−δ).
Thus, the simple random walks started from them have larger than 1 − exp(−N ε) probability to
intersect in a slightly larger box [−(1 + ε)N, (1 + ε)N ]d. The rigorous statement is as follows.

Proposition 4.1. Let d ≥ 3, ε > 0 and u > 0. There exist constants c = c(d, u, ε) > 0 and
C = C(d, u, ε) > 0 such that for all R ≥ 1,

P

 ⋂
x,y∈Iu∩B(0,R)

x←→ y in Ĩu ∩B(0, (1 + ε)R)

 ≥ 1− C exp(−cR1/6), (4.1)

where Ĩu denotes the graph induced by the edges visited by random interlacements on Zd.

To prove Theorem 1.2 b), we first need to define seed events and prove estimates about them.
Unfortunately, the above event is not monotone. Thus, it cannot be defined as the seed event
directly. We will separate it into three monotone events. There will be three seed events: Ex, F x
and Gx. When we choose appropriate constants, each of them has small probability to happen.
Ex is defined as the intersection of the following two events: (1). for all e ∈ {0, 1}d, the graph

Ĩu11 ∩(x+eL0 +[0, L0)d) contains a connected component with at least 3m(u1)L0
d/4 vertices, where

m(u1) = P[0 ∈ Iu11 ] = 1 − e−u1·cap(0); (2). all of the above 2d components are connected in the
graph Ĩu1 ∩ (x+ [0, 2L0)d). The event Fx is defined as: for all e ∈ {0, 1}d, Iu11 ∩ (x+ eL0 + [0, L0)d)

contains at most 5m(u1)L0
d/4 vertices. Gx is defined as: Vu22 ∩ (x+ [0, 2L0)d) = ∅. The events Ex

and Gx are increasing and Fx is decreasing. Thus, their complements Ex, Gx are decreasing and
F x is increasing. Furthermore, Ex, Gx and F x are measurable with respect to the configuration in
B(x, 2L0) and shift-invariant. Let Ex, Gx, F x be our seed events. We need the following proposition
to prove Theorem 1.2 b).
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Proposition 4.2. Given u1 > 0, there exist integers l0, L0 and a constant C = C(u1) > 0 such
that for all n ≥ 0 and u2 > C,

P
[
Ku1,u2 ∈ E0,n

]
,P
[
Ku1,u2 ∈ F 0,n

]
,P
[
Ku1,u2 ∈ G0,n

]
≤ 2−2n . (4.2)

See (2.5) for the definition of E0,n. One note is that here E0,n is the hierarchical event defined by
Ex, not the complement of E0,n.

Proof of Proposition 4.2: Take ε = 1/2 in Proposition 2.1. Let l0 = A (A is the integer in Proposi-
tion 2.1). We begin with E0,n. By an appropriate ergodic theorem, e.g., Theorem 8.6.9. in Dunford
and Schwartz (1988),

lim
L0→∞

[∣∣∣∣ 1

Ld0
|Iu ∩ [0, L0)d| −m(u)

∣∣∣∣ > δ

]
= 0, for all δ > 0. (4.3)

By Proposition 4.1 and (4.3), we can prove that for fixed u1 and u2,

lim
L0→∞

P
[
Ku1,u2 ∈ Ex

]
= 0. (4.4)

For more details, one can see Lemma 4.2 in Ráth and Sapozhnikov (2013). Inserting u+
1 = u1, u

+
2 =

u2, u1 = 2u1/3, u2 = 2u2/3 into (2.7), we get that

P
[
Ku1,u2 ∈ E0,n

]
≤(2A+ 1)d·2

n+1

[
P

[
K

2
3
u1,

2
3
u2 ∈ E0

]
+ ε

(
2

3
u1, L0, A

)
+ ε

(
2

3
u2, L0, A

)]2n

.

By (2.8) and (4.4), there exists Γ = Γ(u1, u2) > 0 such that for L0 > Γ,

(2A+ 1)2d

(
P

[
K

2
3
u1,

2
3
u2 ∈ E0

]
+ ε

(
2

3
u1, L0, A

)
+ ε

(
2

3
u2, L0, A

))
<

1

2
.

Combining the above two inequalities, we have for L0 > Γ,

P
[
Ku1,u2 ∈ E0,n

]
≤ 2−2n .

Note that E0,n is independent of Iu22 . Thus, we can let Γ independent of u2.
For F 0,n, by (4.3), limL0→∞P

[
Ku1,u2 ∈ F x

]
= 0. Inserting u−1 = u1, u

−
2 = u2, u1 = 2u1, u2 = 2u2

into (2.6), we get that

P
[
Ku1,u2 ∈ F 0,n

]
≤(2A+ 1)d·2

n+1 [
P
[
K2u1,2u2 ∈ F 0

]
+ ε(u1, L0, A) + ε(u2, L0, A)

]2n
.

Thus, we can take Λ = Λ(u1, u2) such that for L0 ≥ Λ,

P
[
Ku1,u2 ∈ F 0,n

]
≤ 2−2n .

Note that F 0,n is independent of Iu22 . So, we can let Λ independent of u2.
For G0,n, by (2.2),

P
[
Ku1,u2 ∈ Gx

]
= P

[
Vu22 ∩ (x+ [0, 2L0)d) 6= ∅

]
≤

∑
y∈(x+[0,2L0)d)

P [y ∈ Vu22 ] = (2L0)de−u2·cap(0).
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Inserting u+
1 = u1, u

+
2 = u2, u1 = 2u1/3, u2 = 2u2/3 into (2.7), we get that

P
[
Ku1,u2 ∈ G0,n

]
≤(2A+ 1)d·2

n+1

[
P

[
K

2
3
u1,

2
3
u2 ∈ G0

]
+ ε

(
2

3
u1, L0, A

)
+ ε

(
2

3
u2, L0, A

)]2n

≤(2A+ 1)d·2
n+1

[
(2L0)de−

2
3
u2·cap(0) + ε

(
2

3
u1, L0, A

)
+ ε

(
2

3
u2, L0, A

)]2n

.

(4.5)

There exists an integer H > min{Γ,Λ} such that

(2A+ 1)2d

(
(2H)de−

2
3
H·cap(0) + ε

(
2

3
u1, H,A

)
+ ε

(
2

3
H,H,A

))
<

1

2
.

Take L0 = H and C(u1) = H in Proposition 4.2. Note that the left-hand side of (4.5) is decreasing
in u2 when n, l0 and L0 are fixed. Thus, for n ≥ 0, l0 = A, L0 = H and u2 > C(u1), we have
P
[
Ku1,u2 ∈ G0,n

]
≤ 2−2n . This completes the proof of (4.2). �

Proof of Theorem 1.2 b): Take the l0, L0 and C(u1) in Proposition 4.2. We call a vertex x good if
Ex ∩ Fx ∩Gx occurs, otherwise bad. We claim that if there exists a nearest neighbor path of good
vertices with infinite length, then there exists an infinite component of K along this path. By Gx,
along this path Vu22 is empty. It follows from Ex and Fx that there is only one component with more
than 3m(u1)Ld0/4 vertices in each L0 box along the path and all these components are connected
with the neighboring ones. Therefore, there is an infinite component in K. If there are no nearest
neighbor paths of good vertices with infinite length, then by the dual argument there are infinitely
many *-neighbor circuits of bad vertices surrounding 0.

By an induction argument (see Lemma 5.2 of Ráth and Sapozhnikov, 2013),
P [x is connected to ∂iB(x, 2Ln) by a *-neighbor path of bad vertices]

≤4d
[
P
[
E0,n

]
+P

[
F 0,n

]
+P

[
G0,n

]]
≤ 12d · 2−2n .

Therefore, ∑
x∈Z2×{0}d−2

P [Zx] <∞,

where Zx represents the event that x is passed by a *-neighbor circuit of bad vertices surrounding
0. Hence, there are finitely many such circuits. Therefore, an infinitely long path of good vertices
exists a.s., which implies that K percolates a.s. when u2 > C(u1). �

Proof of Theorem 1.2 c): Given K a finite subset of Zd, we write N1
K and N2

K for the number of
paths passing through K in Iu11 and Iu22 , i.e., NK in (2.1). We need the following lemma.

Lemma 4.3. For d ≥ 3, u1, u2 > 0 and any integer M ≥ 1, we have

lim
L0→∞

P

[
∂iB(0, L0)

Iu11 ∩I
u2
2←→ ∂iB(0, 2L0)

∣∣∣N1
B(0,2L0) = N2

B(0,2L0) = M

]
= 0. (4.6)

Proof : Denote the probability in the left-hand side by I. The proof is fairly simple for d ≥ 4.
Equation (2.1) implies that conditional on

{
N1
B(0,2L0) = M

}
, interlacements Iu11 in B(0, 2L0) can

be seen as M independent simple random walks started at some points in ∂iB(0, 2L0). The same is
true for N2

B(0,2L0) and I
u2
2 . To connect ∂iB(0, L0) with ∂iB(0, 2L0), at least one vertex of ∂iB(0, L0)

should be occupied. There are at most CL0
d−1 many vertices but the probability of a vertex to be

occupied is at most CM2 · 1/L0
d−2 · 1/L0

d−2. Thus,

I ≤ CM2L0
d−1 · 1

L0
d−2
· 1

L0
d−2

= C
1

Ld−3
0

.



1078 Zijie Zhuang

For d = 3, we use Proposition 2.4 which is a more powerful estimate. By Proposition 2.4,

I ≤M2 max
x,y∈∂iB(0,2L0)

Px,y
[
X1[0,∞) ∩X2[0,∞) ∩ ∂iB(0, L0) 6= ∅

]
<

C

log(L0)
.

Let L0 tend to ∞. Then, both terms above tend to 0 and we complete the proof. �

We define the seed event Gx as the event that ∂iB(x, L0) is connected to ∂iB(x, 2L0) in K. Thus,
Gx is measurable with respect to the configuration in B(x, 2L0), shift-invariant and increasing.

Let u1 = u2 and M = u1 · L0
d−2 = u2 · L0

d−2. Observe that there exists B such that
cap(B(0, 2L0)) ≤ BLd−2

0 and NB(x,2L0) ∼ Poisson(u · cap(B(0, 2L0))). Thus, by the Hoeffding’s
inequality, there exist two constants δ and γ such that

P [Gx] ≤ P
[
N1
B(x,2L0) > 2BM

]
+P

[
N2
B(x,2L0) > 2BM

]
+P

[
Gx
∣∣N1

B(x,2L0) ≤ 2BM,N2
B(x,2L0) ≤ 2BM

]
≤ δe−γM +P

[
Gx
∣∣N1

B(x,2L0) = [2BM ], N2
B(x,2L0) = [2BM ]

]
([x] represents the largest integer ≤ x). Take ε = 1/2 in Proposition 2.1 and l0 = A (A is the integer
in Proposition 2.1). Inserting u−1 = u1/2, u1 = u1, u

−
2 = u2/2, u2 = u2 into (2.6), toghther with

(2.8) we get that

P

[
K

1
2
u1,

1
2
u2 ∈ G0,n

]
≤(2A+ 1)d·2

n+1

[
P [Ku1,u2 ∈ G0] + ε

(
1

2
u1, L0, A

)
+ ε

(
1

2
u2, L0, A

)]2n

≤(2A+ 1)d·2
n+1

[
δe−γM + 4

e−
1
2
MA

d−2
2

1− e−
1
2
MA

d−2
2

+P

[
Gx
∣∣N1

B(x,2L0) = [2BM ], N2
B(x,2L0) = [2BM ]

] ]2n

.

Next, pick a large M such that

(2A+ 1)2d

δe−γM + 4
e−

1
2
MA

d−2
2

1− e−
1
2
MA

d−2
2

 <
1

4
.

Finally, thanks to Lemma 4.3, we can enlarge L0 such that

(2A+ 1)2d
P

[
Gx
∣∣N1

B(x,2L0) = [2BM ], N2
B(x,2L0) = [2BM ]

]
<

1

4
.

Combining the above three inequalities, we get that there exist certain u1 = u2 > 0 and L0, l0 such
that for all n ≥ 0

P [Ku1,u2 ∈ G0,n] ≤ 2−2n . (4.7)
We claim that if 0 is connected to ∂iB(0, 2Ln) in K, then the event G0,n happens (see (2.5) for the

definition of G0,n). We can prove this claim by induction. For n = 0, this holds immediately. If for
n = k it holds, then we consider the case n = k+ 1. For a simple nearest neighbor path connecting
0 to ∂iB(0, 2Lk+1), it must pass ∂iB(0, Lk+1/3) and ∂iB(0, 2Lk+1/3). By the induction hypothesis,
we can prove that the Lk boxes first passed by the path in ∂iB(0, Lk+1/3) and ∂iB(0, 2Lk+1/3)
satisfying Gx,k and their distance is by definition larger than Lk+1/100. Hence, the claim holds for



On the percolative properties of the intersection
of two independent interlacements 1079

n = k + 1. By induction, it holds for all n. So, P
[
0
K←→ ∂iB(0, 2Ln)

]
≤ P [K ∈ G0,n]. Together

with (4.7), we have

P

[
0
K←→ ∂iB(0, 2Ln)

]
≤ 2−2n .

Let n tend to ∞. Then, we have P
[
0
K←→∞

]
= 0 for some u1 = u2 > 0. We take c(d) = u1 = u2

in Theorem 1.2 c) and get the non-trivial phase transition of K. �

Remark 4.4. In this proof, we obtain the stretched exponential decay of connectivity function.
By the method in Section 7 of Popov and Teixeira (2015), we can greatly improve the bound to
exponential decay for d ≥ 4 and exponential decay with a logarithmic correction for d = 3 (one can
see Remark 3.1 for more details).

We just proved that when both u1 and u2 tend to 0, there are no infinite components in K. We
conjecture that for d ≥ 3 if one fix one of u1 and u2 and let the other tend to 0, there are no infinite
components in K.

We can prove this rigorously for d ≥ 5. We now present the proof of Theorem 1.2 d), which gives
a precise statement of the claim above.

Proof of Theorem 1.2 d): It is sufficient to prove a variant of Lemma 4.3 with only one conditioning,
i.e., for d ≥ 5, u1, u2 > 0 and any interger M ≥ 1

lim
L0→∞

P

[
∂iB(0, L0)

Iu11 ∩I
u2
2←→ ∂iB(0, 2L0)

∣∣∣N1
B(0,2L0) = M

]
= 0.

It follows from (2.1) that contional on
{
N1
B(0,2L0) = M

}
, interlacements Iu11 in B(0, 2L0) are M

independent simple random walks started at some random points in ∂iB(0, 2L0). Note that

lim
L0→∞

P [no two simple random walks of these M ones intersect] = 1,

for that with high probability their starting points are at least
√
L0 from each other and random

walks started from these points do not intersect when d ≥ 5. Therefore, we can assume thatM = 1.
By the strong Markov property, Iu11 in B(0, 2L0) can be dominated by two independent simple
random walks from some point x in ∂iB(0, L0). With high probability, these two random walks do
not intersect out a small box, say B(x, L0/2). So, we only need to prove that

lim
L0→∞

sup
x∈∂iB(0,L0)

Px

[
∂iB(0,

3

2
L0)

X[0,∞)∩Iu22←→ ∂iB(0, 2L0)

]
= 0. (4.8)

The time n is called a cut time if X[0, n] ∩X(n,∞) = ∅. Call a time n bad if it is a cut time and
X(i) is not occupied by Iu22 , otherwise good. Given δ > 0, we can choose N > 0 and ε > 0 such
that for all integer L0 ≥ 1

P

[
min
i>NL2

0

|X(i)|∞ > 4L0

]
> 1− δ (4.9)

and

P

[
max

|i−j|≤εL2
0;i,j≤NL2

0

|X(i)−X(j)|∞ <
1

2
L0

]
> 1− δ. (4.10)

Take N large first and then ε small. The above two inequalities can be obtained by the central limit
theorem and reflection principle. Furthermore, for arbitrary N, ε > 0 and L0 large,

P
[
there are no consecutive εL2

0 good times in
[
0, NL2

0

]]
> 1− 2δ. (4.11)
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Following is the proof of (4.11). The cut times of X are independent of Iu22 . Given NL2
0 different

points chronologically, for L0 large

P [some consecutive L0 points are all occupied by Iu22 ] < δ,

since

P [Iu2 contains M given points] ≤ Ce−cM
d−2
d .

Therefore,
P [there is a bad time in every consecutive L0 cut times] > 1− δ.

In addition, for a random walk in d ≥ 5, the density of cut times will converge to a positive constant
as shown in (1) of Lawler (1996). Combining these two facts, we can get (4.11).

If the above three events in (4.9), (4.10) and (4.11) occur at the same time, then the event in
(4.8) will not happen for that X leaves B(0, 2L0) after NL2

0 and the first NL2
0 steps are cut into

disjoint subpaths with diameter smaller than L0/2 by the bad times. Let δ tend to zero and the
proof of (4.8) is completed. This completes the proof for the case d ≥ 5. �

Remark 4.5. For d = 4, the bi-infinite simple random walk still has cut times and bad times, so we
guess that ∂iB(0, L0) and ∂iB(0, 2L0) can be disconnected by bad times. However, for d = 3, there
are no cut times for a doubly-infinite simple random walk, i.e., ζ3 > 1/4 (see (2) to (3) in Lawler,
1996), and a new approach is required.

5. On the coexistence of infinite clusters

In this section, we will consider the phase diagram of K and V put together and prove Theorem 1.3
which is split into two parts.

Proof of Theorem 1.3a): Take u1 ∈ (0, u∗) and u2 sufficiently large. By Theorem 1.1b) and Theo-
rem 1.2b), we conclude that both K and V have an infinite component. �

Next, we consider whether there is some region such that neither of K and V percolates, or
equivalently the occupied vertices and the vacant vertices wrap each other. In general, this problem
is difficult in low dimensions except d = 2 due to lack of adequate tools. We claim that in high
dimensions there does not exist such region, see Theorem 1.3b) for a precise statement.

Proof of Theorem 1.3b): The proof relies on Theorem 1.4 and Theorem 0.1 of Sznitman (2011). By
Theorem 0.1 in Sznitman (2011), we know that

lim inf
d→∞

u∗(d)

log(d)
≥ 1.

Thus, there exists a constant D such that for all d ≥ D, we have u∗(d) ≥ log(d)/2. Theorem 1.4
tells us that when d ≥ D1 and u1, u2 > 1, the intersection K percolates. Let D2 = min{D1, D, 10}.

For all d > D2 and u1, u2 > 0, there are two cases.
(1). min{u1, u2} < u∗(d). By Theorem 1.1 b), the vacant set V percolates.
(2). min{u1, u2} ≥ u∗(d) > 1. By Theorem 1.4 and d > D2 ≥ D1, the intersection K percolates.

�

The following part is devoted to the proof of Theorem 1.4. The proof contains two parts. The
first is to prove that in each hypercube {0, 1}d, with high probability, there is a ubiquitous connected
component (meaning that most vertices in the hypercube are connected to it, see below for a rigorous
definition) and this ubiquitous component is also connected to those of the neighboring hypercubes
(which also exist with high probability). The second step is to prove that such hypercubes with
ubiquitous components percolate in the whole space. H represents a hypercube. For x ∈ Zd, let
Hx = x + {0, 1}d be the hypercube at x. Recall that Bernoulli site percolation with parameter
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p is a model in which each vertex is independently occupied with probability p and vacant with
probability 1− p, denoted by Bernoulli(p).

Proof of Theorem 1.4: Lemma 2.2 says that P0(τ+
{0,1}d =∞) > c1. Thanks to this Lemma, we claim

that the interlacements with intensity 1 in a hypercube H can dominate Bernoulli site percolation
with parameter 1 − e−c21 . For a vertex x in H, we only count the paths that pass through H only
at x and only once. They have intensity Px(τ+

H = ∞) · Px(τ+
H = ∞) ≥ c2

1. Hence, conditional on
all the other vertices in H, the probability that x is occupied is at least 1 − e−c21 . This completes
the proof of the claim. Furthermore, K1,1 can dominate Bernoulli site percolation with parameter
(1− e−c21)2 in H. Let 3p = (1− e−c21)2. It is sufficient to prove the increasing properties about K1,1

in H for Bernoulli(3p).
Next, we will define some notation to be used later. We want to mention that all the inequalities

below hold when d is larger than a universal constant and all the constants are independent of d.
Let n = 2d = |H|. For any subset X of a hypercube H, write N(X) for all the neighbors of X in H
and X for X ∪N(X). A connected component of H is called an atom if it contains more than d100

vertices. Call a connected component A of H a ubiquitous component if
∣∣A∣∣ > (1− 1/d2

)
n. There

is only one ubiquitous component in a hypercube H. Suppose that in contrast H has two distinct
ubiquitous components A and B. Since B ∩A = ∅, we have |B| ≤ n−

∣∣A∣∣ < n/d2. Hence,

|B| = |B|+ |N(B)|
≤ |B|+ d|B| <

(
1− 1/d2

)
n.

B is not a ubiquitous component. Therefore, H has at most one ubiquitous component.
The seed event Gx is defined as the intersection of the following two events: (1). for any e ∈

{(0, 0), (0, 1), (0,−1), (1, 0), (−1, 0)}× {0}d−2, K1,1 ∩Hx+e has a ubiquitous component; (2). all the
above five ubiquitous components are connected in K1,1∩B(x, 2). The event Gx is measurable with
respect to the configuration in B(x, 2), shift-invariant and increasing. Gx is the complement of Gx.
We first prove the following inequality:

lim
d→∞

d3
P
[
Gx
]

= 0. (5.1)

It is sufficient to prove this property for Bernoulli(3p). Now, Hx is a fixed hypercube and
H1, H2, H3, H4 are the four neighboring hypercubes of Hx in the first and second directions. The
proof follows three steps. With high probability, (1). in Bernoulli(p), most vertices in Hx have a
neighbor in an atom; (2). in Bernoulli(2p), these atoms are connected to a ubiquitous component
of Hx; (3). in Bernoulli(3p), this ubiquitous component is connected with those of the neighboring
four hypercubes. If the above three events happen simultaneously, then Gx happens.

Consider Bernoulli site percolation on Hx with parameter p. For a fixed vertex of Hx, we can
construct a 1000-high tree in Hx in which every node except leaves has more than d/2000 descen-
dants. By the Hoeffding’s inequality, P [Y ] ≥ 1−e−Cd, where Y represents the event that each node
except leaves has more than pd/10000 occupied descendants. When Y happens, this vertex has a
neighbor in an atom. Thus, by the Markov’s inequality

P [Z] ≥ 1− e−Cd,

where Z represents the event that except n/eCd vertices, every vertex of Hx has a neighbor in an
atom.

Consider, now, the set of atoms obtained in Hx. We open all the vacant vertices independently
with probability q = p/(1− p). With these additional open vertices, the atoms in Hx have a large
probability to be connected to a ubiquitous component. We claim that with high probability no
union of atoms A covering more than n/d5 vertices can be separated from the union of all the other
atoms B, when B also has at least n/d5 vertices. This follows from the following lemma.
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Lemma 5.1. Assume that Z happens and A,B ⊂ Hx satisfy the above conditions including
|A|, |B| > n/d5 and A ∩ B = A ∩ B = ∅. Also, except n/eCd vertices, every vertex of Hx has
a neighbor in A or B. Then, there exist cn/d7 pairwise disjoint paths connecting A and B, which
have length at most three, i.e., in the form A↔ y ↔ B or A↔ y ↔ z ↔ B.

Proof : There are two cases. Case 1: |N(A) ∩ N(B)| > n/d7, then take A ↔ y ↔ B, where
y ∈ N(A)∩N(B). Case 2: |N(A)∩N(B)| < n/d7. Suppose that

∣∣A∣∣ ≤ ∣∣B∣∣, then we can prove that∣∣A∣∣ < 3n/4. With the isoperimetric inequality,
∣∣N (A)∣∣ > ∣∣A∣∣ (n− ∣∣A∣∣) /(nd) > cn/d6. In addition,

by Z, all the vertices in N
(
A
)
except n/eCd ones should have a neighbor in B. Thus, there are

at least cn/d6 different paths in the form A ↔ y ↔ B or A ↔ y ↔ z ↔ B, where y ∈ N(A) and
z ∈ N

(
A
)
. Since y can be in at most d different paths, there are at least cn/d7 disjoint paths. �

The number of choices of A and B satisfying the above conditions is at most 2n/d
100 . By the

above lemma, each pair has smaller than (1− q2)
cn/d7 probability to be still disconnected. So, the

probability of existing such A and B is at most (1− q2)
cn/d7 · 2n/d100 . If there are no such pairs of

A and B, we obtain a ubiquitous component (because the vertices not in this component is at most
n/eCd + d · n/d5). Therefore,

P [U ] ≤ e−Cd +
(
1− q2

)cn/d7
2n/d

100
,

where U represents the event that there are no ubiquitous components in Hx. By symmetry,

P [V ] ≤ 5
(
e−Cd +

(
1− q2

)cn/d7
2n/d

100
)
,

where V represents the event that there are no ubiquitous components in H1, H2, H3, H4 or Hx.
Suppose that V does not happen and we obtain five ubiquitous components in these five hyper-

cubes. The final step is to connect the ubiquitous component in Hx with the neighboring four ones.
We open all the vacant vertices independently with probability r = p/(1− 2p). Note that there are
2d−1 common vertices for the neighboring two hypercubes Hx and H1 and at least 2d−1−2n/d2 > cn
of them are connected to both the two ubiquitous components in Hx and H1. Thus, with probability
more than 1 − (1 − r)cn, the two ubiquitous components in Hx and H1 are connected with each
other, the same for H2, H3 and H4.

Summing over all the probabilities of bad events, we have

P
[
Gx
]
≤ 5

(
e−Cd +

(
1− q2

)cn/d7 · 2n/d100)+ 4(1− r)cn.

This completes the proof of (5.1).

Remark 5.2. The most costly step is the first one. It is easy to find that (5.1) still holds when
u = 1

d1/2−ε
for any ε > 0.

For the second part, we directly use Theorem 2.2 in Sznitman (2011), i.e.,

Proposition 5.3. Gx is measurable with respect to the configuration in B(x, 2) and shift-invariant.
If lim supd d

3
P
[
Gx
]
<∞, then Gx will percolate in the slab Z2 × {0}d−2 for some large d meaning

that there exists an infinite long nearest neighbor path in which every vertex satisfies Gx.

The proof of this result uses a direct decoupling inequality rather than the sprinkling version, so
we do not even need monotonicity of the seed event. Observe that u ≤ d also holds here.

Once there exists an infinitely long nearest neighbor path in which every vertex satisfies Gx,
there is an infinite component of K along this path, because every hypercube along this path has a
ubiquitous component and all these components are connected with the neighboring four ones. �
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