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Abstract. In this article we give a direct proof of a central limit theorem and law of large numbers
for a functional with compact support of a diffusion. Some applications are given in order to obtain
a parameter estimation for different models.

1. Introduction

Given a diffusion X solution of the Stochastic Differential Equations (SDE)

Xt = X0 +Bt +

∫ t

0
h(Xs) ds, (1.1)

where h is a smooth function with compact support and B is a Brownian motion (Bm). We want
to give the asymptotic distribution of the following functional of X

Ft =

∫ t

0
g(Xs)dBs, (1.2)
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where we also assume that g 6= 0 is compactly supported. Without a loss of generality we shall
assume that both h, g have a support contained in [−1, 1]. The main tool we shall use is to study
the trajectory of X upon the renovation times where it hits ±1.

Existence and uniqueness of this type of equations can be found for example in Takanobu (1986)
and limit theorems for stochastic integrals related to solutions of SDEs have been studied for a long
time, and there is an extensive literature concerning this subject (see e.g. Basawa and Prakasa Rao,
1980; Delattre and Jacod, 1997; Jacod and Shiryaev, 2003; Khasminskii, 2001; Kurtz and Prot-
ter, 1991; Kutoyants, 2004; Prakasa Rao, 1999; Prakasa Rao and Rubin, 1979, and the references
therein). In most cases, these works are related to the study of stability for solutions of stochastic
differential equations or the study of discrete-time schemes for diffusion processes.

If X = B, that is h ≡ 0, then in Revuz and Yor (1991); Delattre and Hoffmann (2002) by the
Papanicolaou-Strook-Varadhan we can obtain, the following limit (in distribution)(

T−1/4

∫ T

0
g(Bs)dBs, T

−1/2

∫ T

0
g2(Bs)ds

)
→
(
B∫

g2(x)dxL0
1(β),

∫
g2(x)dxL0

1(β)

)
,

where (B, β) are two independent Brownian motions and Lxt (β) denotes the Local time of β at time
t at level x. Our result bears some similarity with this one.

Khasminskii (2001) (see also Kutoyants, 2004) is the closest result with our work, nevertheless
the main difference with ours is that the author considers only martingale diffusions Y = (Ys)
and the results obtained are the law of large numbers (LLN) and the central limit theorem (CLT)
with standard normalization (T and

√
T ) for the Riemann integral

∫
f(Ys)ds. Although, our main

Theorem 2.4 can be obtained using a combination of results from Höpfner and Löcherbach (2003),
which are based upon some classical results from Khasminskii (2001) and Khasminskii (2012),
putting these arguments together is tricky and does not allow us to fully understand which are
the main points of this proof. We propose in this article a new and direct construction based on
renovation theory that provides insights on the main technical points, a clear explanation on the
limiting distribution for path functionals like (1.2), and could be used to effectively simulate and
do numerical analysis on them, with possible applications that we discuss at the end of the article,
some of them are up to our knowledge novel. The new technical tools we develop in this article are
Lemma 2.1, Lemma 2.3 and Theorem 2.2.

This paper is organized as follows. Section 2 introduces some properties about the trajectory of
X of (1.1) and the main results of the paper. The proofs are given in the section 3. Section 4 is
devoted to some applications of those results to simulate paths of functionals of X and to estimate
the parameter of the Skew Brownian motion and nonparametric estimation of the drift in SDE.
Finally, Section 5 presents a list of notations in order to facilitate the reading of this article.

2. Main Results

In this section we will study the trajectory of X of (1.1) upon the renovation times where it hits
±1. For that purpose we define the following stopping times:

T0 = inf{t ≥ 0 : Xt ∈ {−1, 1}}, T0 = T0, R0 = R0 = 0;
Ri+1 = inf{t > 0 : Xt+Ti ∈ {−2, 2}}, Ri+1 = Ti +Ri+1;
Ti+1 = inf{t > 0 : Xt+Ri+1

∈ {−1, 1}}, Ti+1 = Ri+1 + Ti+1;
(2.1)

First, we shall assume that X0 has initial distribution supported on {−1, 1}, where P(X0 =
1) = p = 1 − P(X0 = −1) = 1 − q, in such a way that the successive renovations have the same
distribution. Then we shall consider general initial conditions (see subsection 3.5). The renovation
times are Ti at which the process X is at ±1. This defines a Markov chain Zn = XTn . Thus,
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Figure 2.1. Diffusion X starting at 1.

p = P(Z0 = 1), q = P(Z0 = −1) is the stationary distribution of (Zn). The transition kernel for this
Markov chain is

P =

(
α 1− α

1− β β

)
, (2.2)

where 0 < α = P1(XR1 = 2) < 1; 0 < β = P−1(XR1 = −2) < 1. We obtain that

p =
1− β

2− (α+ β)
, q =

1− α
2− (α+ β)

.

In the sequel, unless we specify the contrary, P denotes the probability law assuming that X0 has
this special distribution.

We point out that {(Ti) : i ≥ 1} are identically distributed as the hitting time of 1 for a standard
Bm. They are also independent, but this is not so obvious (see Lemma 2.1). However, the random
times (Ri : i ≥ 1) are neither independent, nor identically distributed. We shall decompose them
into independent components as follows:

Ri = Ri,−1(1− Zi−1)/2 +Ri,1(Zi−1 + 1)/2 (2.3)

which simply says that when Zi−1 = 1 we have Ri = Ri,1 and when Zi−1 = −1, we have Ri = Ri,−1.
The collections of random times (Ri,1) and (Ri,−1) are independent and each collection is i.i.d.,
distributed as

Ri,1
d
= inf{t > 0 : Xt ∈ {−2, 2}}, when X0 = 1;

Ri,−1
d
= inf{t > 0 : Xt ∈ {−2, 2}}, when X0 = −1.

In order to have pointwise equality in (2.3), for i ≥ 0 we define Xi,±1 as the unique solutions of

Xi,±1
t = ±1 +BTi+t −BTi +

∫ t

0
h
(
Xi,±1
s

)
ds. (2.4)

Then, we define
Ri+1,±1 = inf{t > 0 : Xi,±1

t ∈ {−2, 2}}.

Notice we have (Rj+1,±1)j≥i are independent of (Zn)n≤i. We have Xt = Xi,Zi
t−Ti

that holds when
t ∈ [Ti,Ti+1).

We consider the renewal process associated to (Ti), given by

Nt = max{n : Tn ≤ t} (2.5)
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As an auxiliary renewal process we consider

Sn =
n∑
i=0

Ti, Mt = max{n : Sn ≤ t}. (2.6)

Now, we establish some important results about the hitting times and renewal processes defined
before.

Lemma 2.1.
(i) The random times (Ti) are independent and they are also independent of (Zn).
(ii) For every n

Sn
d
= inf{t > 0 : Bt = n}.

(iii) There exists a Brownian motion W such that for all t

Mt = bmax
s≤t

Wsc. (2.7)

Theorem 2.2. For all t we have Nt ≤Mt and

lim
t→∞

P(Nt < Mt) = 0.

Lemma 2.3. The process (Mt)t is independent of the excursions (XTi+s : 0 ≤ s ≤ Ri+1)i.

The following theorem give important results to obtain the asymptotic distribution of (1.2) and
the parameter estimation in the skew Brownian motion (sBm) case.

Theorem 2.4. The following properties hold
(i) Mt (and therefore Nt) has the following limit in distribution

lim
t→∞

Mt√
t

d
= Γ,

where Γ has the distribution of the absolute value of a N(0, 1).

(ii) The asymptotic distribution for Ft given by (1.2) is

lim
t→∞

∫ t
0 g(Xs)dBs

t1/4
d
= σ
√

ΓY,

where Γ is distributed as before, Y is a N(0, 1), they are independent and

σ2 = EX0

(∫ R1

0
g2(Xs)ds

)
. (2.8)

Here X0 has initial distribution P(X0 = 1) = p,P(X0 = −1) = q.

(iii) The weak law of large numbers

lim
t→∞

∫ t
0 g

2(Xs)ds

Mt

P
= σ2.

(iv) Finally,

lim
t→∞

∫ t
0 g(Xs)dBs√∫ t

0 g
2(Xs)ds

d
= Y,

where Y is a N(0, 1).

Remark 2.5. Note that in (ii),
√

ΓY has the same distribution as (Bmax0≤s≤·(Ws)), where W is a
Brownian motion independent of B; which corresponds to a particular case of the Mittag-Leffler
distribution (see Höpfner and Löcherbach, 2003).
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3. Proofs of the results

3.1. Proof of Lemma 2.1. In what follows we denote by (Ft) the natural filtration of (Bt).

(i) Let us introduce the following Markov chain Vn = XRn : n ≥ 1, which takes values in {−2, 2}.
Let us show that Vn = 2Zn for all n ≥ 1. Indeed, we have

Zn = XTn = XRn + (−sign(XRn)) =
1

2
XRn =

1

2
Vn.

In particular P(Vn = 2) = p,P(Vn = −2) = q. In what follows we denote by T the hitting time of 1
for a standard Bm.

Now, we show the desired property by induction. So let us start with T1 and Z1. Notice that
XR1+t −XR1 = BR1+t −BR1 , holds for all 0 ≤ t ≤ T1. Therefore, we have

T1 = inf{t ≥ 0 : BR1+t −BR1 = −V1/2}.

The main point here is that BR1+t − BR1 is independent of V1. This implies that P(T1 ∈ ds, V1 =
2) = pP(T ∈ ds) and P(T1 ∈ ds, V1 = −2) = qP(T ∈ ds). This shows the desired independence.

We shall prove now the independence of T1, T2, (Z1, Z2). Recall that

T1 = inf{t ≥ 0 : BR1+t −BR1 = −V1/2}, Z1 = V1/2,

T2 = inf{t ≥ 0 : BR2+t −BR2 = −V2/2}, Z2 = V2/2.

In particular (Z1, Z2, T2) is measurable with respect to σ(Z1, BT1+• − BT1). Hence, T1 is inde-
pendent of (Z1, Z2, T2). On the other hand, P(T2 ∈ ds, Z1 = z1, Z2 = z2) = P(T ∈ ds)P(Z1 =
z1, Z2 = z2). This shows the desired independence. The rest of the proof is done by induction.

(ii), (iii) Consider the process

Wt =
Mt∑
i=1

−Vi
2 (BTi −BRi) +

−VMt+1

2

(
BRMt+1+(t−SMt )

−BRMt+1

)
= Mt +

−VMt+1

2

(
BRMt+1+(t−SMt )

−BRMt+1

)
=

∑
n

(
n+ −Vn+1

2

(
BRn+1+(t−Sn) −BRn+1

))
1Sn≤t<Sn+1 ,

which is simply the sum of the Bm excursions Ξi = (BRi+s − BRi : 0 ≤ s ≤ Ti) modulated by the
sign of −Vi. Let us prove that all these excursions are independent, and independent of (Vn)n. We
do this for Ξ1,Ξ2, V1, V2, and the general case follows from induction.

Notice that Ξ2 is independent of FR2 , in particular we have

P(Ξ1 ∈ A1, V1 = v1, V2 = v2,Ξ
2 ∈ A2) = P(Ξ1 ∈ A1, V1 = v1, V2 = v2)P(Ξ2 ∈ A2).

The key observation is that V1, V2 is measurable in σ(V1, BT1+• − BT1). So, it is enough to show
that Ξ1 is independent of V1, BT1+• −BT1

P(Ξ1 ∈ A1, V1 = v1, BT1+• −BT1 ∈ C) = P(Ξ1 ∈ A1, V1 = v1)P(BT1+• −BT1 ∈ C)
= P(Ξ1 ∈ A1)P(V1 = v1)P(BT1+• −BT1 ∈ C).

This shows the claim. Now, it is straightforward to show that W is a standard Bm. Also, it is
direct to prove that

Sn = inf{t > 0 : Wt = n}.

From here we deduce that Mt =

⌊
max
s≤t

Ws

⌋
. �
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3.2. Proof of Theorem 2.2. In what follows we denote by Mt the running maximum of W , that is

Mt = max
0≤s≤t

Ws.

It is clear that Nt ≤ Mt. Now consider the random variables R̂i = Ri,1 + Ri,−1. These random
variables are positive and i.i.d.. They have exponential moments, that is, there exists λ > 0 such
that E(eλR̂1) < ∞, so they have finite moments. In particular, they satisfy the strong law of large
numbers

lim
n→∞

1

n

n∑
i=1

R̂i = E(R̂1),

where the limit holds a.s..
Therefore, the random variable Ψ = sup

{
1
n

n∑
i=1

R̂i : n ≥ 1

}
is finite a.s.

On the other hand, if 1/2 < γ < 1 then

lim
t→∞

ΨMt

tγ
d
= 0,

which implies that the limit also holds in probability.

Assume now that Ψ(Mt + 1) < tγ , then we have

t <

Nt+1∑
i=1

Ti +Ri <

Nt+1∑
i=1

Ti + R̂i ≤
Nt+1∑
i=1

Ti + Ψ(Mt + 1) ≤
Nt+1∑
i=1

Ti + tγ .

From these inequalities, we conclude that

t− tγ <
Nt+1∑
i=1

Ti,

which implies that Mt−tγ < Nt + 1. Given that Nt is an integer valued we conclude that

Mt−tγ − 1 ≤ Nt ≤Mt < Mt.

The last strict inequality holds a.s., for fixed t. The important conclusion is that

Mt −Nt < Mt −Mt−tγ + 1.

Let us now show that P(Mt −Mt−tγ > 0) converges to 0. Notice that this is stronger than proving
that Mt −Mt−tγ converges in probability to 0. The claimed limit follows from scaling properties
of Bm. In fact, since

Mt −Mt−tγ
d
=
√
t (M1 −M1−tγ−1) ,

we deduce
P(Mt −Mt−tγ > 0) = P(M1 −M1−tγ−1 > 0) = P(τ > 1− tγ−1)

=

∫ 1

1−tγ−1

ds

π
√
s(1− s)

,

where τ ∈ [0, 1] is the time where M1 is attained. Then, this probability clearly converges to 0.

Finally,
P(Mt > Nt) = P(Mt > Nt,ΨMt < tγ) + P(Mt > Nt,ΨMt ≥ tγ)

≤ P(Mt > Nt,ΨMt < tγ) + P(ΨMt ≥ tγ)

≤ P(1 ≤Mt −Nt < Mt −Mt−tγ + 1,ΨMt < tγ) + P(ΨMt ≥ tγ)

≤ P(Mt −Mt−tγ > 0) + P(ΨMt ≥ tγ),

which converges to 0 and the result is shown. �
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3.3. Proof of Lemma 2.3. The proof that follows is in the spirit of the proof of Lemma 2.1. For
z ∈ {−1, 1} consider Xi,z the unique solution of the SDE given in (2.4). We also recall the definition
of Ri+1,z. Similarly, we define Ti,z as

Ti,z = inf{t > 0 : BRi+t −BRi = z}.

We also define T0,z = 0. In order to show that (Tk)k and (XTi+s : 0 ≤ s ≤ Ri+1)i are independent
it is enough to show that (Tk)k and {(Zn)n, (BTi+s − BTi : 0 ≤ s ≤ Ri+1)i} are independent. For
that purpose we define Bk

s = BTk+s −BTk and consider (we take A0 = {0})

P(Tk ∈ Ak, (Bk
s : 0 ≤ s ≤ Rk+1) ∈ Ak, Zk = zk, k = 0, · · · ,m)

=P(Tk,zk ∈ Ak, (B
k
s : 0 ≤ s ≤ Rk+1,zk) ∈ Ak, Zk = zk, k = 0, · · · ,m)

=P(Tk,zk ∈ Ak, (B
k
s : 0 ≤ s ≤ Rk+1,zk) ∈ Ak, Zk = zk, k = 0, · · · ,m− 1, Zm = zm)

× P((Bm
s : 0 ≤ s ≤ Rm+1,zm) ∈ Am)P(Tm,zm ∈ Am)

=P(Tk,zk ∈ Ak, (B
k
s : 0 ≤ s ≤ Rk+1,zk) ∈ Ak, Zk = zk, k = 0, · · · ,m− 1, Zm = zm)

× P((Bm
s : 0 ≤ s ≤ Rm+1,zm) ∈ Am)P(Tm ∈ Am)

Note that if Zm−1 = zm−1 then Zm = zm iff XTm−1+Rm,zm−1
− XTm−1 = 2zm − zm−1. The

increment XTm−1+Rm,zm−1
− XTm−1 is a functional of Bm−1. So, we can include this restriction

to have Zm−1 = zm−1, (B
m−1
s : 0 ≤ s ≤ Rm,zm−1) ∈ Am−1, Zm = zm is equivalent to Zm−1 =

zm−1, B
m−1
• ∈ Ãm−1.

Then, we can continue to conclude

P(Tk ∈ Ak, (Bk
s : 0 ≤ s ≤ Rk+1) ∈ Ak, Zk = zk, k = 0, · · · ,m)

=P(Tk,zk ∈ Ak, (B
k
s : 0 ≤ s ≤ Rk+1,zk) ∈ Ak, Zk = zk, k = 0, · · · ,m− 2,

Zm−1 = zm−1)P(Bm−1
• ∈ Ãm−1)P(Tm−1,zm−1 ∈ Am−1)

× P((Bm
s : 0 ≤ s ≤ Rm+1,zm) ∈ Am)× P(Tm ∈ Am)

=P(Tk,zk ∈ Ak, (B
k
s : 0 ≤ s ≤ Rk+1,zk) ∈ Ak, Zk = zk, k = 0, · · · ,m− 2,

Zm−1 = zm−1)P(Bm−1
• ∈ Ãm−1)P((Bm

s : 0 ≤ s ≤ Rm+1,zm) ∈ Am)

× P(Tm ∈ Am)P(Tm−1 ∈ Am−1).

Then the claim follows by induction. �

3.4. Proof of Theorem 2.4. First we introduce some new variables and establish some auxiliary
lemmas.

We consider the variables

ψi,z =

∫ Ri+1,z

0
g(Xi,z

s )dBi
s, (3.1)

where Bi
s = BTi+s −BTi . We point out that

ψi =:

∫ Ri+1

Ti

g(Xs)dBs = ψi,Zi . (3.2)

Our first tool is the following lemma.
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Lemma 3.1. The following CLT holds for (ψi)

lim
n→∞

1√
n

n∑
i=0

ψi
d
= σY,

where Y is distributed as a N(0, 1).

Proof : ψi is a mixture of two distribution ψi,1, and ψi,−1 driven by the stationary Markov chain Z
which takes two values {1,−1}, where {ψi,1} (respectively {ψi,−1}) is a set of i.i.d random variables
with finite variance and independent of Z. A direct computation of the characteristic function of

1√
n

n∑
i=0

ψi conditioning on Z gives the result. �

Lemma 3.2.

lim
t→∞

1

t1/4

Nt∑
i=0

ψi
d
= σ
√

ΓY,

where Y is distributed as a N(0, 1), Γ has the distribution of the absolute value of a N(0, 1) and
both are independent.

Proof : For every x ∈ R we have∣∣∣∣∣P
(

1

t1/4

Nt∑
i=0

ψi ≤ x

)
− P

(
1

t1/4

Mt∑
i=0

ψi ≤ x

)∣∣∣∣∣ ≤ 2P(Nt < Mt).

So, it is enough to show the result forMt instead of Nt. On the other hand, according to Lemma 2.3
Mt is independent of (ψi)i and according to Lemma 2.1Mt

d
= b
√
tΓc. Therefore, if we further assume

that Γ is independent of (ψ)i, we get

P

(
1

t1/4

Mt∑
i=0

ψi ≤ x

)
=P

 1

t1/4

b
√
tΓc∑
i=0

ψi ≤ x

 = P

 √
Γ

(
√
tΓ)1/2

b
√
tΓc∑
i=0

ψi ≤ x


=

∞∫
0

P
( 1

(
√
tw)1/2

b
√
t wc∑
i=0

ψi ≤
x√
w

)
P(Γ ∈ dw).

The Dominated Convergence Theorem, Lemma 3.2 and the fact that P(Γ > 0) = 1, shows that

lim
t→∞

P

(
1

t1/4

Mt∑
i=0

ψi ≤ x

)
=

∞∫
0

P(σY ≤ x/
√
w)P(Γ ∈ dw),

and the result is shown. �

The same technique allows us to show the following result

Lemma 3.3. Let φi =
Ri+1∫
Ti

g2(Xs)ds, then

lim
t→∞

1

Mt

Nt∑
i=0

φi
P
= σ2.

Now, we are in a position to show Theorem 2.4.
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Proof : (i) This property follows immediately from Lemma 2.2 (iii) and the fact that max
s≤t

Ws
d
=
√
tΓ.

(ii) Notice that
t∫

0

g(Xs)dBs =

Nt∑
i=0

ψi +

t∫
TNt

g(Xs)dBs =

Nt∑
i=0

ψi + Et.

Of course t ∈ [TNt ,TNt+1). The term Et is also expressed as

Et =

t∫
TNt

g(Xs)dBs =

t∧RNt∫
TNt

g(Xs)dBs.

Using Doob’s inequality we get that
E(E2

t ) ≤ Cσ2.

In particular, Et
t1/4

converges to 0 in Probability. Then, the result follows from Lemma 3.2.

(iii) The argument we use is similar. This time we have to control
t∫

TNt

g2(Xs)ds.

Since E

(
t∫

TNt

g2(Xs)ds

)
≤ σ2, we conclude that for any θ > 0

lim
t→∞

t∫
TNt

g2(Xs)ds

tθ
P
= 0.

Lemma 2.1 and Lemma 3.3 allow us to conclude.

(iv) In order to study the asymptotic distribution of
∫ t
0 g(Xs)dBs√∫ t
0 g

2(Xs)ds
, it is enough to study

Nt∑
i=0

ψi
√
Mt

.

The same type of argument used in the proof of Lemma 3.2, shows that the asymptotic distribution
for this ratio is N(0, σ2). Then part (iv) allows us to finish the proof of Theorem 2.4. �

3.5. General initial distribution. We shall show how to prove Theorem 2.4 under a general initial
condition X0, which we assume has a distribution independent of B. It is clear that it is enough to
show the result for a non random initial condition X0 = x.

We shall give a sketch of the proof in case x = ±1. The other cases are similar. Let us prove (ii),
that is under both P1,P−1 we have

lim
t→∞

∫ t
0 g(Xs)dBs

t1/4
d
= σ
√

ΓY,

We denote by F the distribution of σ
√

ΓY . The first thing to show is that(∫ tk
0 g(Xs)dBs

t
1/4
k

)
k

,
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is tight, for any sequence tk ↑ ∞, under both P1,P−1. This is a consequence of the fact

P1

(
t−1/4

∣∣∣∣∫ t

0
g(Xs)dBs

∣∣∣∣ > z

)
≤ 1

p
P
(
t−1/4

∣∣∣∣∫ t

0
g(Xs)dBs

∣∣∣∣ > z

)
,

where in the right hand side the initial distribution is the stationary distribution (p, q). Then,
tightness under P1 follows from tightness under P. So we can assume that t−1/4

k

∣∣∣∫ tk0 g(Xs)dBs

∣∣∣ is
convergent (in distribution) to F1, F−1 under P1,P−1 respectively.

Consider that X0 = 1 and define T = inf{t > 0 : Xt = −1}. This is a finite stopping time and
then ∣∣∣∣∣∣P1

t−1/4
k

tk∫
0

g(Xs)dBs ≤ y

− P1

t−1/4
k

tk∫
0

g(Xs)dBs ≤ y, T < tk

∣∣∣∣∣∣ ≤ P1(T > tk)→ 0.

On the other hand, since
∫ T

0 g(Xs)dBs is a finite random variable, then

t
−1/4
k

∫ T

0
g(Xs)dBs → 0 a.s.

This observation shows that, if y is a point of continuity for F1 then

F1(y) = lim
k→∞

P1

t−1/4
k

tk∫
T

g(Xs)dBs ≤ y, T < tk

 .

Given that XT is constant and BT+•−BT is independent of T we get T,XT+• are independent and

P1

(
t
−1/4
k

∫ tk

T
g(Xs)dBs ≤ y, T < tk

)

=

tk∫
0

P−1

(
t
−1/4
k

∫ tk

u
g(Xs)dBs ≤ y

)
P1(T ∈ du).

For every fixed u ∈ (0,∞), the random variable
∫ u

0 g(Xs)dBs is finite a.s. and therefore
t
−1/4
k

∫ u
0 g(Xs)dBs converges to 0 a.s.. Under P−1, the sequence t−1/4

k

∫ tk
0 g(Xs)dBs converges in

distribution to F−1. We conclude that for all y, continuity point of F−1, it holds

P−1

(
t
−1/4
k

∫ tk

u
g(Xs)dBs ≤ y

)
→ F−1(y).

Thus, the Dominated Convergence Theorem implies that for all y, point of continuity of F1 and
F−1 (in particular for a dense set of values), we have

F1(y) =

∫ ∞
0

F−1(y)P(T ∈ du) = F−1(y).

The conclusion is that F1 = F−1. But, using what we have already proved in the case where the
initial distribution of X0 is the stationary distribution (p, q), we get

pF1(y) + qF−1(y) = F (y).

The conclusion is that F1 = F−1 = F . The limit point for (t
−1/4
k

∫ tk
0 g(Xs)dBs)k, under P1 or P2, is

independent of the subsequence, which implies that

(t−1/4

∫ t

0
g(Xs)dBs)t → F

under both P1 and P−1. �
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4. Applications

This section is devoted to some applications of Theorem (2.4), first to estimate the parameter of
the Skew Brownian motion with one or two barriers, and second to the nonparametric estimation
of the drift coefficient in a stochastic differential equation.

We would like to highlight that based on the elements in the proofs given before, we can establish
a simple way to simulate some functionals of the unique solution of (1.1). The simulation consists of
two independent blocks: first generate independents paths of X until the first time it leaves ±2 (for
example, by Euler method, see Gobet, 2000 and references therein). Then, simulate an independent
Markov chain Z with states {1,−1} and transition probabilities given by (2.2).

Remark 4.1. The length, Ti, of each renovation interval (Ri,Ti) is simple to simulate. The density
of this length is given by

f(t) =
1√

2πt3
e−

1
2t , t ≥ 0.

A possible scheme for simulation is found in Feller (1971), page 51.

4.1. Parameter Estimation in the Skew Brownian motion model. A skew Brownian motion (sBm)
of parameter α is defined by the strong solution of the stochastic differential equations with local
time given by

Xt = x+Bt + (2α− 1)L0
t (X). (4.1)

where Bt is a Brownian motion, α ∈ [0, 1] is constant and L0
t (X) is the symmetric local time at

0 of X. SBm is obtained from a Brownian motion by independently modifying the signs of the
excursions away from zero, α is the probability that the excursion is positive. Notice that for α = 0
or α = 1 we obtain a Reflected Brownian motion, while for α = 0.5 we get a Bm. A survery of sBm
can be found in Lejay (2006). The main purpose of this application is to obtain an estimation of
the parameter θ = 2α− 1.

Le Gall (1984) considers the problem of approximating the unique solution of a Stochastic Dif-
ferential Equation (SDE in short) of the type

Xt = X0 +

∫ t

0
f(Xs)dBs +

∫
R
ν(da)Lat (X), (4.2)

where ν is a bounded measure on R. The sBm corresponds to the case ν = (2α−1)δ0 (δ0 denotes the
Dirac measure at 0). On the other hand, if ν is absolutely continuous with respect to the Lebesgue
measure ν(da) = h(a)da, then X satisfies

Xt = X0 +

∫ t

0
f(Xs)dBs +

∫ t

0
(hf2)(Xs)ds. (4.3)

Under some regularity assumptions, Le Gall proved that any solution of (4.2) is the strong limit
of a sequence of solutions of (4.3). Conversely, any limit of a sequence of solutions of (4.3) is a
solution of (4.2).

In sBm case, we take f = 1 and h = θ`, where θ = 2α− 1 and `dx is an approximation of δ0. We
are interested to the estimation of θ, in this approximated model, when Least Square estimation
procedure is used. In this case the error θ̂tLS − θ is given by

θ̂tLS − θ =

∫ t
0 h(Xs)dBs∫ t
0 h

2(Xs)ds
. (4.4)

Our results give the asymptotic distribution for this error, which is of the order t−1/4.
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Considering the general framework in Le Gall (1984) and equations (4.2) and (4.3), we can
approximate the Skew Brownian motion by means of the equation

Xt = X0 +Bt + θ

∫ t

0

n√
2π

(
e−

n2X2
s

2 − e−n2/2

)
1|Xs|≤1 ds. (4.5)

In the direction of to estimate the parameter θ, we consider the following functional of X

Ft =

∫ t

0
g(Xs)dBs =

∫ t

0

n√
2π

(
e−

n2X2
s

2 − e−n2/2

)
1|Xs|≤1dBs, (4.6)

where t ∈ [0, T ], and we assume T = 10000. We approximate the solution of equation (4.5) by
means of an Euler scheme, with step size discretization T/M , M = 100000, X0 = 0 and n=1000.
All simulations were carried out in Matlab software. These simulations should be taken with caution,
because to approximate δ0 a finer should be carried out. Our simulations are intended to give only
a rough overview of what is happening.

The Figure 4.2 presents a path of the solution of equation (4.5) for different values of θ, recall
that θ = 0 corresponds to standard Bm.
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Figure 4.2. Path (4.5)

The Figure 4.3 presents the comparison between
∫ T

0 g2(Xs)ds (black line) and c
√
T (light blue

line) for equations (4.5) for different values of θ.
To estimate the parameter θ = 2α − 1, we will make use of the Least Square procedure. In this

case the estimator θ̂TLS(n) is given by:

θ̂TLS(n) =

∫ T
0 g(Xs)dXs∫ T
0 g2(Xs)ds

=

∫ T
0

n√
2π

(
e−

n2X2
s

2 − e−
n2

2

)
1|Xs|≤1 dXs

∫ T
0

(
n√
2π

(
e−

n2X2
s

2 − e−
n2

2

)
1|Xs|≤1

)2

ds

, (4.7)
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Figure 4.3. Comparison
∫ T

0 g2(Xs)ds vs c
√
T

and the error εT = θ̂TLS(n)− θ is given by:

εT =

∫ T
0 g(Xs)dBs∫ T
0 g2(Xs)ds

=

∫ T
0

n√
2π

(
e−

n2X2
s

2 − e−n2/2

)
1|Xs|≤1 dBs∫ T

0

(
n√
2π

(
e−

n2X2
s

2 − e−
n2

2

)
1|Xs|≤1

)2

ds

. (4.8)

To the best of our knowledge, the only works on the estimation for the skew parameter are given
in Lejay et al. (2014, 2019), these are based on the Maximum Likelihood estimation (ML), and after
that there is no similar results in this direction.

By Theorem 2.4 the error σT 1/4εT converges to the ratio of a standard Normal distribution and
an independent

√
Γ.

The next table, shows the estimation of different values of θ. We use N = 1000 samples, with
n = 1000.

θnLS Mean Standard Deviation
1 1.0062 0.0821
0.5 0.5043 0.0844
0 -1.3339 e−05 7.8772 e−04

-0.5 -0.5088 0.0874
-1 -1.0059 0.1008

Table 4.1. Estimation of different values of θ.

The Figure 4.4 shows the histograms of the error εT , for N = 1000 samples. We see that the
standard deviation is of order 1

T 1/4 , except in the case θ = 0 that corresponds to the standard
Brownian motion. All simulations were carried out in Matlab software.
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Figure 4.4. Histograms for different values of θ.

Simple versus simple hypothesis testing

We assume the null hypothesis H0 and the alternative hypothesis H1 given by

H0 : θ = θ0 versus H1 : θ = θ1

for some θ0, θ1 ∈ [−1, 1], with θ1 > θ0.
Test ϕ : T

1
4σ(θ̂ − θ). By Theorem 2.4, limT→∞ ϕ

d
= Γ−

1
2Y , where Γ has the distribution of the

absolute value of a N(0, 1), Y is a N(0, 1), both independent; and σ is given by (2.8).
By a direct calculus, we have that the density function of the distribution Γ−

1
2Y is given by

f(t) =
1

√
π27/4

et
2/8D− 3

2

(
t2√

2

)
,

where D is the parabolic cylinder function given by

Dp(z) =
e−z

2/4

Γ(−p)

∫ ∞
0

e−xz−x
2/2x−p−1dx

for p < 0.

Let γ = P{reject H0 | θ0}, and β = P{fail to reject H0 | θ1}.
For example, since the density function of Γ−

1
2Y is symmetric, choosing a small γ, the critical

region is as shown in the following figure 4.5 then we will reject H0 for any value of θ > x. The
critical value x is calculated such that

γ = P{θ̂ > x | θ0} = P{T
1
4σ(θ̂ − θ0) > T

1
4σ(x− θ0)} = P{Γ−

1
2Y > T

1
4σ(x− θ0)},

where σ given by (2.8) is obtained first taking N simple paths X(ω1), · · · , X(ωN ) of process X,
calculate the times R1(ωi) (i = 1, · · ·N) and by Monte Carlo method, approximate the integral∫ R1(ωi)

0 g2(Xs(ωi))ds for the function g given in (4.6). Finally,

σ ≈ 1

N

N∑
i=1

∫ R1(ωi)

0
g2(Xs(ωi))ds.
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Figure 4.5. Critical region

Skew Brownian motion with two barriers Now we consider the Skew Brownian motion with
two barriers (see Ouknine, 1990; Ramirez, 2011) given by

Xt = x+Bt + (2α1 − 1)Lx1t (X) + (2α2 − 1)Lx2t (X), (4.9)

where Lxit (X) denotes the local time at xi for the time t of the process X, α1, α2 ∈ [0, 1] and barriers
x1 < x2. The term αi is called the skewness at the barrier xi (i = 1, 2). In Ramirez (2011), the
author proved that the paths of this process behave as those of Brownian motion when away from
the barriers; and the process is skewed by αi at barrier xi, for i = 1, 2. The sBm with two barriers
corresponds to the case ν = (2α1 − 1)δx1 + (2α1 − 1)δx2 in equation (4.2).

We are interested to estimate the parameters θi = 2αi − 1 (i = 1, 2) by Least Square method.
Without loss of generality we shall assume that x1, x2 ∈ (0, 1). Similarly as the skew Brownian
motion, it is possible approximate the process {Xt} by the solutions of equations

X
(n)
t = x+Bt + θ1

∫ t

0
g

(n)
1 (Xs)1{a1≤Xs≤b1}ds+ θ2

∫ t

0
g

(n)
2 (Xs)1{a2≤Xs≤b2}ds, (4.10)

where g(n)
i (Xs)1{ai≤Xs≤bi} is an approximation of δxi for i = 1, 2 (δx denotes the Dirac measure at

x) , n ∈ N and −1 < a1 < b1 < a2 < b2 < 1. Like in the case of the sBm, we can take

gi(x) =

(
e−

n2(Xs−xi)
2

2 − e−
n2

2

)
, i = 1, 2.

Note that since 1{a1≤Xs≤b1}1{a2≤Xs≤b2} = 0, then the Least square estimator θ̂Ti (n) of θi and the
error ε(i)T = θ̂Ti (n)− θi, for i = 1, 2, are given by

θ̂Ti (n) =

∫ T
0 g

(n)
i (Xs)1{ai≤Xs≤bi}dXs∫ T

0 (g
(n)
i (Xs))21{ai≤Xs≤bi}ds

,

and

ε
(i)
T =

∫ T
0 g

(n)
i (Xs)1{ai≤Xs≤bi}dBs∫ T

0 (g
(n)
i (Xs))21{ai≤Xs≤bi}ds

.

Hence, from Theorem 2.4

lim
T→∞

T
1
4 ε

(i)
T

d
= σ−1

i Γ−
1
2Y, i = 1, 2

where

σ2
i = EX0

(∫ R1

0
(g

(n)
i (Xs))

21{ai≤Xs≤bi}ds

)
.
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Remark 4.2. (1) If one or both barriers do not belong to [−1, 1], we consider a bigger interval
with the both barriers and take appropriate functions g1, g2 with a support contained in
the new interval.

(2) The same technique above could be apply for sBm with more than two barriers.

4.2. Nonparametric estimation of the drift coefficient in SDE.
We are interested in the non-parametric estimation of h(x) for a fixed point x in (1.1) based on

the observation Xt, t ∈ [0, T ]. In Tuan (1981) the estimators for h(x) are given by

ĥT (x) =

∫ T
0 K

(
Xt−x
bT

)
dXt∫ T

0 K
(
Xt−x
bT

)
dt

, (4.11)

where K is a non-negative real kernel function such that
∫
RK(z)dz = 1. In Löcherbach and

Loukianova (2008) the authors consider the asymptotic of these estimators in the context of drift
estimation for 1-D diffusions. In the same vain, we assume the Kernel K has compact support
contained in [−1, 1] and the bandwidth parameter bT is constant. Some examples of Kernels are

• The triangle kernel
K(x) = (1− |x|)1[−1,1](x).

• The parabolic kernel

K(x) =
3

4
(1− x2)1[−1,1](x).

• The quartic kernel

K(x) =
15

16
(1− x2)1[−1,1](x).

The error εT = ĥT (x)− h(x) is given by:

εT =

∫ T
0 K

(
Xt−x
bT

)
dBt∫ T

0 K
(
Xt−x
bT

)
dt

, (4.12)

From Theorem 2.4, first replacing the function g by the Kernel K,

lim
T→∞

∫ T
0 K(Xs−xbT

)dBs

T 1/4

d
= σ1

√
ΓY, (4.13)

where Γ has the distribution of the absolute value of a N(0, 1), Y is a N(0, 1) and

σ2
1 = EX0

(∫ R1

0
K2

(
Xs − x
bT

)
ds

)
,

with R1 is the first hitting time of {x− bT −1, x+ bT +1} from the previous visit to {x− bT , x+ bT }
(see 2.1).

Now, taking the function g = K
1
2 , we obtain

lim
T→∞

∫ T
0 K

(
Xs−x
bT

)
ds

MT

P
= σ2

2, (4.14)

where

σ2
2 = EX0

(∫ R1

0
K

(
Xs − x
bT

)
ds

)
.

From (4.13), (4.14) and Theorem 2.4 (i), we have that

lim
T→∞

T
1
4 εT

d
=

σ1

σ2
Γ−

1
2Y.
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5. Notations

We include a list of notations to facilitate the reading of this article.

• (Ti)i hitting times of {−1, 1} from the previous visit to {−2, 2} (see 2.1), with associated
partial sums (Sn) and renewal process (Mt)t (see (2.6)).

• (Ri)i hitting times of {−2, 2} from the previous visit to {−1, 1} (see 2.1).

• (Ti) accumulated sums of (Rk + Tk) until i, which correspond to the times of successive
visits to {−1, 1} (see 2.1) and renewal process (Nt)t (see 2.5).

• (Ri) correspond to the times of successive visits to {−2, 2} (see 2.1).

• (Zn)n is the Markov chain associated to the visits at {−1, 1}, that is, Zn = XTn .

• Mt = max
0≤s≤t

Ws, the running maximum of the Bm (Wt)t.
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