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Abstract. Exchangeable coalescents with dust are studied. The rate of convergence as the sample
size tends to infinity of the scaled block counting process to the frequency of singleton process
is determined. This rate is expressed in terms of a certain Bernstein function. The proofs are
based on Taylor expansions of the infinitesimal generators and semigroups and involve a particular
concentration inequality arising in the context of Karlin’s infinite urn model. The rate of convergence
is calculated for several examples of coalescents.

1. Introduction

Exchangeable coalescents (Ξ-coalescents) have been the subject of extensive studies over the last
decades. These are continuous-time Markovian processes Π = (Πt)t≥0 with values in the space P
of partitions of N := {1, 2, . . .}. As time proceeds, blocks merge together to form larger blocks.
For fundamental information on these processes we refer the reader to Möhle and Sagitov (2001)
and Schweinsberg (2000a). Exchangeable coalescents are characterized by a finite measure Ξ on
the infinite simplex ∆ := {u = (ui)i∈N : u1 ≥ u2 ≥ · · · ≥ 0, |u| ≤ 1}, where |u| :=

∑
i∈N ui for

u = (ui)i∈N ∈ ∆. In general these processes allow for simultaneous multiple collisions of blocks.
The subclass of coalescents with multiple collisions (Λ-coalescents) is obtained if Ξ is concentrated
on {u ∈ ∆ : u2 = 0}. In this case the coalescent is characterized by the finite measure Λ on [0, 1]
defined via Λ(B) := Ξ(B × {0} × {0} × · · · ) for all Borel sets B ⊆ [0, 1]. Coalescents with multiple
collisions have been independently introduced by Pitman (1999) and Sagitov (1999). It is convenient
to decompose Ξ = Ξ({0})δ0 + Ξ0, where Ξ0 has no mass at 0 := (0, 0, . . .) ∈ ∆. We focus on the
subclass of Ξ-coalescents with dust. By definition, a Ξ-coalescent Π = (Πt)t≥0 has no dust if, for
all times t ≥ 0, the frequency St of singletons of Πt satisfies P(St = 0) = 1. For a precise definition
of St we refer the reader to Section 3 of Möhle (2010). By the criterion of Schweinsberg (2000a),
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Π has dust if and only if

Ξ({0}) = 0 and α :=

∫
∆
|u| ν(du) < ∞, (1.1)

where ν(du) := Ξ0(du)/(u, u) with (u, u) :=
∑

i∈N u
2
i for u = (ui)i∈N ∈ ∆. It is well-known (see, for

example, Eq. (8) of Möhle, 2010) that Z = (Zt)t≥0, defined via Zt := − logSt for all t ≥ 0 (with the
convention − log 0 := ∞), is a drift-free subordinator with state space [0,∞], initial value Z0 = 0
and Laplace exponent

Φ(q) :=

∫
∆

(
1− (1− |u|)q

)
ν(du), q ≥ 0. (1.2)

The subordinator Z has Lévy measure % := νT , where νT denotes the image measure of ν under
the transformation T : ∆ → [0,∞] defined via T (u) := − log(1 − |u|) for all u ∈ ∆. Note that St
takes values in E := [0, 1] and has moments E(Sqt ) = e−tΦ(q), t, q ≥ 0. The semigroup (Tt)t≥0 of
S = (St)t≥0 is given by

Ttf(x) := E(f(Ss+t) |Ss = x) = E(f(xSt)), t ≥ 0, f ∈ B(E), x ∈ E, (1.3)

where B(E) denotes the space of bounded measurable real valued functions on E. The infinitesimal
generator A of S satisfies

Af(x) =

∫
∆

(
f(x(1− |u|))− f(x)

)
ν(du), f ∈ C2(E), x ∈ E, (1.4)

where C2(E) denotes the space of twice continuously differentiable real valued functions on E. Note
that C2(E) is a core for A (see the remark after the proof of Corollary 2.3).

Coalescents with dust have been studied in a number of papers (see, for example, Gaiser and
Möhle, 2016, Gnedin et al., 2011, Haas and Miermont, 2011 and Möhle, 2010). The latter article
mainly focusses on the asymptotics as n→∞ of the total branch length of Ξ-coalescents with dust
restricted to a sample of size n. In the more recent work of Gaiser and Möhle (2016) the asymptotic
behavior of the block counting process of a coalescent with dust restricted to a sample of size n is
analyzed via the method of moments. Motivated from approximation theory it is natural to ask for
the speed of this convergence. This article provides detailed information on the speed of convergence
of the corresponding infinitesimal generators and semigroups of the block counting process, which
to the best of the author’s knowledge has not been addressed in the literature so far.

The article is organized as follows. Section 2 contains the main results concerning the block
counting process. Theorem 2.1 provides the speed of convergence for the generator of the scaled
block counting process as the sample size n tends to infinity. The rate r(n) of convergence (see
Eq. (2.4)) turns out to be related to a particular Bernstein function Φ̃ defined in (2.3). A Lévy–
Khintchine representation for Φ̃ is provided in Lemma 4.6. For a couple of important examples of
coalescents the Bernstein function Φ̃ is computed in Section 3 showing that in these examples the
rate r(n) of convergence is typically of order n−β for some β ∈ (0, 1] or of order (log n)/n. Proofs are
deferred to Section 4. The proofs are essentially based on Taylor expansions of the corresponding
infinitesimal generators and semigroups, but they involve in addition certain concentration inequal-
ities occurring in the context of Karlin’s infinite urn model (Karlin, 1967), where balls are allocated
independently to an infinite number of boxes. These concentration inequalities are provided and
verified in Sections 5 and 6 for Λ-coalescents and Ξ-coalescents respectively.

2. Results

For a Ξ-coalescent Π = (Πt)t≥0 and n ∈ N we denote by Π
(n)
t the restriction of Πt to Pn, the

set of partitions of {1, . . . , n}. For t ≥ 0 and n ∈ N let N (n)
t be the number of blocks of Π

(n)
t . The
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process (N
(n)
t )t≥0 is called the block counting process of the restricted coalescent (Π

(n)
t )t≥0. For Ξ-

coalescents with dust it is known (see Theorem 2.13 a) of Gaiser and Möhle (2016) or Corollary 2.4)
that the scaled block counting process (N

(n)
t /n)t≥0 converges in D[0,1][0,∞) to the frequency of

singleton process (St)t≥0 as n tends to infinity. We are interested in the speed of this convergence.
For this purpose let us briefly consider the semigroups and generators of the involved processes.
The scaled block counting process (N

(n)
t /n)t≥0 has semigroup

T
(n)
t f(x) = E

(
f

(
N

(n)
s+t

n

) ∣∣∣∣ N (n)
s

n
= x

)
= E

(
f

(
N

(nx)
t

n

))
=

nx∑
j=1

f

(
j

n

)
P(N

(nx)
t = j)

for t ≥ 0, n ∈ N, x ∈ En := {k/n : k ∈ {1, . . . , n}} and f : En → R. Thus, the corresponding
infinitesimal generator An satisfies

Anf(x) := lim
t→0

T
(n)
t f(x)− f(x)

t
= lim

t→0

nx∑
j=1

(
f

(
j

n

)
− f(x)

)
P(N

(nx)
t = j)

t

=
nx−1∑
j=1

(
f

(
j

n

)
− f(x)

)
qnx,j , n ∈ N, f : En → R, x ∈ En,

where qi,j := limt→0 t
−1P(N

(i)
t = j), i, j ∈ {1, . . . , n} with i > j, are the infinitesimal rates of the

block counting process (N
(n)
t )t≥0. By Möhle (2010, p. 2162), the infinitesimal rates qi,j , i > j, have

the form qi,j =
∫

∆ P(Y (i, u) = j) ν(du), where (see Möhle, 2010, Eq. (4))

Y (i, u) := X0(i, u) +
∑
r∈N

1{Xr(i,u)>0}, (2.1)

and (X0(i, u), X1(i, u), X2(i, u), . . .) has an infinite multinomial distribution with parameters i and
(1 − |u|, u1, u2, . . .). The occurrence of this infinite multinomial distribution comes from a putting
balls into boxes experiment, originally introduced by Karlin (1967) and further investigated by
several authors, see for example Dutko (1989), Gnedin et al. (2007) and Ben-Hamou et al. (2017).
In this experiment each ball is allocated independently of all other balls into box r with probability
ur, r ∈ N0 := {0, 1, . . .}, where u0 := 1−|u|. This experiment can as well be viewed as an urn version
of Kingman’s paintbox construction (Kingman, 1978a,b) of exchangeable random partitions. Most
articles concentrate on the number Ki :=

∑
r∈N 1{Xr(i,u)>0} of occupied boxes after i balls have been

allocated. In the context of coalescent theory however, Y (i, u), defined in (2.1), is the important
random variable, which counts all balls allocated in box 0 (the singletons) plus the number of all
other occupied boxes (the number of multiple collisions). The above formula for Anf(x) can hence
be written as

Anf(x) =

nx−1∑
j=1

(
f

(
j

n

)
− f(x)

)∫
∆
P(Y (nx, u) = j) ν(du)

=

∫
∆

(
E
(
f

(
Y (nx, u)

n

))
− f(x)

)
ν(du) (2.2)

for n ∈ N, f : En → R and x ∈ En. The proofs later on will draw heavily from this representation
of the generator An.

Particular integrals over the characterizing measure ν play an important role in the theory of
Ξ-coalescents. For example, the finiteness of the integral

∫
∆ |u| ν(du) in (1.1) characterizes the
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dust property and the integral in (1.2) characterizes the distribution of the associated frequency of
singleton process S = (St)t≥0. We shall see shortly that another family of integrals, defined via

Φ̃(q) :=

∫
∆

∑
i∈N

(
1− (1− ui)q

)
ν(du), q ≥ 0, (2.3)

plays an important role when studying the speed of convergence as n → ∞ of the scaled block
counting process of the Ξ-coalescent. Note that Φ̃(0) = 0, Φ̃(1) =

∫
∆ |u| ν(du) = Φ(1) and that

Φ̃(∞) := limq→∞ Φ̃(q) might be finite or infinite. By Lemma 7.1 in the appendix, Φ(n) ≤ Φ̃(n) for
all n ∈ N. Lemma 4.2 provided in Section 4 shows that Φ̃ is infinitely often differentiable on (0,∞)

with (−1)k−1Φ̃(k)(q) ≥ 0 for all k ∈ N and q > 0. Therefore, Φ̃, restricted to (0,∞), is a Bernstein
function in the sense of Schilling et al. (2012, Definition 3.1). A Lévy–Khintchine representation for
Φ̃ is provided in Lemma 4.6. For the subclass of Λ-coalescents with dust, Φ̃ = Φ coincides with the
Laplace exponent (1.2) of the subordinator Z associated with the coalescent. This equality of Φ̃ and
Φ however does not hold for arbitrary Ξ-coalescents with dust. In Section 3 the functions Φ and Φ̃
are calculated for several examples of coalescents. Let us introduce the function r : (0,∞)→ (0,∞)
via

r(q) :=
Φ̃(q)

q
, q > 0. (2.4)

For natural reasons becoming clear immediately we call r the rate function. Lemma 4.5 shows
that r is non-increasing on (0,∞) with r(q) → 0 as q → ∞. Our main result, Theorem 2.1
below, shows that, for the Ξ-coalescent with dust, r(n) is the rate of convergence of the generator
of the scaled block counting process to that of the frequency of singleton process. The proof
of Theorem 2.1, provided in Section 4, is based on Taylor expansions of the generators and on
crucial concentration inequalities for Y (n, u) defined via (2.1). These concentration inequalities are
provided in Sections 5 and 6 for Λ-coalescents and Ξ-coalescents respectively. Recall that E := [0, 1]
and En := {k/n : k ∈ {1, . . . , n}} (⊆ E) for n ∈ N. In the following πn : B(E)→ B(En) is defined
via πnf(x) := f(x) for all f ∈ B(E) and x ∈ En.

Theorem 2.1. (Rate of convergence of the generator of the scaled block counting process) Let
Π = (Πt)t≥0 be a Ξ-coalescent with dust and let An and A be the generators of the scaled block
counting process (N

(n)
t /n)t≥0, n ∈ N, and the frequency of singleton process (St)t≥0 respectively.

Then, for all n ∈ N and f ∈ C2(E), the space of twice continuously differentiable real valued
functions on E,

‖Anπnf − πnAf‖ := sup
x∈En

|Anπnf(x)− πnAf(x)| ≤ Cfr(n), (2.5)

where Cf := ‖f ′‖+ 2‖f ′′‖ and the rate r(n) is defined via (2.4).

Remark 2.2. (Optimality) The rate r(n) in (2.5) is optimal, which is seen as follows. Consider the
identity polynomial id(x) := x, x ∈ E. For n ∈ N, x ∈ En and u ∈ ∆,

E
(

id

(
Y (nx, u)

n

))
− id(x(1− |u|)) =

E(Y (nx, u))

n
− x(1− |u|)

=
∑
i∈N

1− (1− ui)nx

n
.

Integration with respect to the measure ν and taking (1.4) and (2.2) into account yields

Anπnid(x)− πnA id(x) =
1

n

∫
∆

∑
i∈N

(
1− (1− ui)nx

)
ν(du) (2.6)
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for n ∈ N and x ∈ En. This expression is non-decreasing in x ∈ En and hence takes its maximum
at x = 1 ∈ En. Thus, the supremum over all x ∈ En is

‖Anπnid− πnA id‖ =
1

n

∫
∆

∑
i∈N

(
1− (1− ui)n

)
ν(du) = r(n).

In this sense the rate r(n) in Theorem 2.1 is optimal. As a side effect the calculations show
that Cid = 1 is the best possible (smallest) constant in Theorem 2.1. However, we do not claim
that the constant Cf in Theorem 2.1 is optimal in general. For example (see the remark after
the proof of Theorem 2.1), for the Λ-coalescent, Eq. (2.5) even holds with the optimized constant
Cf := ‖f ′‖+‖f ′′‖. Finding the optimal constant Cf is a subtile problem related to the optimization
of certain concentration inequalities, which does not seem to be straightforward to solve.

The following corollary provides an analog result on the level of semigroups.

Corollary 2.3. In the situation of Theorem 2.1 let (T
(n)
t )t≥0 and (Tt)t≥0 denote the semigroups of

the scaled block counting process (N
(n)
t /n)t≥0 and the frequency of singleton process (St)t≥0 respec-

tively. Then, for all t ≥ 0, n ∈ N and f ∈ C2(E),

‖T (n)
t πnf − πnTtf‖ ≤ tCfr(n), (2.7)

where Cf is the constant from Theorem 2.1 and the rate r(n) is defined via (2.4).

The following weak convergence result is known from the literature, see Gaiser and Möhle (2016,
Theorem 2.13 a)). The proof in Gaiser and Möhle (2016) is based on the method of moments. We
provide alternative short proofs based on the bounds provided in Theorem 2.1 and Corollary 2.3.

Corollary 2.4. (Convergence of the scaled block counting process) In the situation of Theorem 2.1,
as n→∞, the scaled block counting process (N

(n)
t /n)t≥0 converges in D[0,1][0,∞) to the frequency

of singleton process S = (St)t≥0 = (e−Zt)t≥0.

3. Examples

In this section the functions Φ and Φ̃ and their asymptotics are computed for several examples.
The first two examples (beta coalescent and NLG-coalescent) are Λ-coalescents. In this case Φ̃
coincides with Φ. The other five examples are true Ξ-coalescents (with simultaneous multiple
collisions) where Φ̃ in general differs from Φ. In the following Ψ := (log Γ)′ = Γ′/Γ denotes the
digamma function (logarithmic derivative of the gamma function) and γ := −Γ′(1) ≈ 0.577216 the
Euler–Mascheroni constant.

Example 3.1. (beta coalescent) Let Λ = β(a, b) be the beta distribution with parameters a, b ∈
(0,∞). From (1.1) it follows that the beta coalescent has dust if and only if a > 1. Clearly, Φ̃ = Φ,
so it suffices to compute Φ. For a ∈ (1,∞) \ {2} the Laplace exponent Φ is given by

Φ(q) =
1

B(a, b)

∫ 1

0

(
1− (1− u)q

)
ua−3(1− u)b−1 du

=
Γ(a+ b)

(a− 1)(a− 2)

(
a+ b− 2

Γ(a+ b− 1)
− a+ b+ q − 2

Γ(a+ b+ q − 1)

Γ(b+ q)

Γ(b)

)
, q ≥ 0,

where B(., .) denotes the beta function. The case a = 2 has to be treated separately. In this case
Φ(q) = b(b+1)(Ψ(b+q)−Ψ(b)), q ≥ 0. Clearly, in all cases r(q) = Φ(q)/q, q > 0. For the particular
case a + b = 2, a class of coalescents studied extensively in the literature, the Laplace exponent
considerably simplifies to

Φ(q) =
1

b(1− b)
qΓ(b+ q)

Γ(q + 1)Γ(b)
, q ≥ 0, b ∈ (0, 1).
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As q →∞,

Φ(q) ∼


Γ(a+ b)

(a− 1)(2− a)Γ(b)
q2−a if 1 < a < 2,

b(b+ 1) log q if a = 2,
(a+ b− 1)(a+ b− 2)

(a− 1)(a− 2)
if a > 2.

(3.1)

In particular r(q) = Φ(q)/q → 0 as q →∞, in agreement with Lemma 4.5.

Example 3.2. (NLG-coalescent) Let Λ be the negative logarithmic gamma distribution with pa-
rameters α, % > 0 having density u 7→ α%uα−1(− log u)%−1/Γ(%), u ∈ (0, 1). We use the notation
Λ = NLG(α, %) for this distribution. As for the beta coalescents this family of Λ-coalescents contains
the Bolthausen–Sznitman coalescent (α = % = 1) and interpolates between the Kingman coalescent
(α→ 0 or %→∞) and the star-shaped coalescent (α→∞ or %→ 0). Schweinsberg (2000b, Exam-
ple 14) briefly considers the case α = 1 and % = 2, where Λ has density u 7→ − log u, u ∈ (0, 1). It
is readily checked that

∫
u−1Λ(du) = (α/(α− 1))% <∞ for α > 1 and

∫
u−1Λ(du) =∞ for α ≤ 1.

By (1.1), the NLG(α, %)-coalescent has dust if and only if α > 1, which is assumed in the following.
As for all Λ-coalescents, Φ̃ = Φ, so it suffices to consider Φ. By (1.2),

Φ(q) =
α%

Γ(%)

∫ 1

0

(
1− (1− u)q

)
uα−3(− log u)%−1 du, q ≥ 0. (3.2)

Note that Φ is the Laplace exponent of a drift-free subordinator Z with state space [0,∞) and Lévy
measure α%(Γ(%))−1(1 − e−x)α−3(− log(1 − e−x))%−1e−x dx, x ∈ (0,∞). Binomial series expansion
1− (1− u)q =

∑∞
j=1

(
q
j

)
(−1)j−1uj , 0 < u < 1, q ≥ 0, leads to the alternating summation formula

Φ(q) =
α%

Γ(%)

∞∑
j=1

(
q

j

)
(−1)j−1

∫ 1

0
uj+α−3(− log u)%−1 du

= α%
∞∑
j=1

(
q

j

)
(−1)j−1

(j + α− 2)%
.

For % = 1, NLG(α, 1) coincides with the beta distribution β(α, 1), in which case Φ(q) can be
expressed in terms of gamma functions for α ∈ (1,∞)\{2} and in terms of the digamma function for
α = 2 (see Example 3.1). For integer % ∈ N similar formulas for Φ(q) can be derived involving higher
derivatives of the gamma function, but these formulas become more and more involved for large
integer %. For example, for % = 2 and α > 2 the well-known formula

∫ 1
0 u

a−1(1−u)b−1(− log u) du =
B(a, b)(Ψ(a + b) − Ψ(a)), a, b > 0, applied with a := α − 2 and b ∈ {1, q + 1}, leads to Φ(q) =
α2/(α−2)2−α2B(α−2, q+ 1)(Ψ(q+α−1)−Ψ(α−2)). It does not seem to be possible to express
the integral in (3.2) more explicitly for general α, % and q. We thus focus on the asymptotics of
Φ(q) as q → ∞. Lemma 7.3 provided in the appendix, applied with a := α − 1 > 0, b := q and
c := %, shows that, as q →∞,

Φ(q) ∼



α%

Γ(%)

Γ(α− 1)

2− α
q2−α(log q)%−1 if 1 < α < 2,

2%

Γ(%+ 1)
(log q)% if α = 2,(

α

α− 2

)%
if α > 2.

(3.3)

For % = 1 the asymptotics (3.3) coincides with the asymptotics (3.1) of Φ(q) as q → ∞ for the
β(α, 1)-coalescent studied in the previous Example 3.1, which must be so, since NLG(α, 1) = β(α, 1).
As a side effect, Lemma 7.3 is also useful to clarify the coming down from infinity problem for the
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NLG(α, %)-coalescent for arbitrary parameters α, % > 0. For information on the coming down from
infinity property we refer the reader to Schweinsberg (2000b).

Proposition 3.3. Let α, % > 0. The NLG(α, %)-coalescent comes down from infinity if and only if
α < 1 or α = 1 and % > 1.

Remark 3.4. For α = 1 and % = 2 this result was obtained by Schweinsberg (2000b, Example 14).

Proof of Proposition 3.3: We have

ηn := n

∫
[0,1]

(
1− (1− u)n−1

)
u−1 Λ(du)

= n
α%

Γ(%)

∫ 1

0

(
1− (1− u)n−1

)
uα−2(− log u)%−1 du.

From Lemma 7.3, applied with a := α, b := n− 1 and c := %, it follows that, as n→∞,

ηn ∼



α%

Γ(%)

Γ(α)

1− α
n2−α(log n)%−1 if 0 < α < 1,

1

Γ(%+ 1)
n(log n)% if α = 1,(

α

α− 1

)%
n if α > 1.

Thus,
∑∞

n=2 η
−1
n < ∞ if and only if α < 1 or α = 1 and % > 1. The statement of Proposition 3.3

therefore follows from the criterion of Schweinsberg (2000b, Corollary 2). �

Example 3.5. (Dirac coalescent) Assume that the characterizing measure ν = δa is the Dirac measure
at some given point a = (ai)i∈N ∈ ∆\{0}. The corresponding coalescent has dust, since

∫
|u| ν(du) =

|a| ≤ 1 <∞. By (1.2) and (2.3),

Φ(q) = 1− (1− |a|)q and Φ̃(q) =
∑
i∈N

(1− (1− ai)q), q ≥ 0.

Note that Φ is the Laplace exponent of a drift-free subordinator Z with Lévy measure % :=

δ− log(1−|a|) whereas Φ̃ is the Laplace exponent of a drift-free subordinator Z̃ with Lévy measure
%̃ :=

∑
i∈N δ− log(1−ai). Clearly Φ(q)→ 1 as q →∞, since |a| > 0. The asymptotic behavior of Φ̃(q)

as q → ∞ is difficult to describe in general and heavily depends on the point a ∈ ∆ \ {0}. Define
a0 := 1− |a| and consider Karlin’s infinite urn model (Karlin, 1967), where balls are independently
allocated to an infinite number of boxes with probability ai for each ball to be allocated in box
i ∈ N0. Then, Φ̃(n) =

∑
i∈N(1 − (1 − ai)n) is the mean number of non-empty boxes (disregarding

box 0) after n ∈ N balls have been allocated. It is well-known (see, for example, Gnedin et al., 2007)
that, for particular choices of the point a ∈ ∆ \ {0}, this mean number can oscillate with n. Under
additional regularity assumptions the asymptotic behavior of Φ̃(q) as q →∞ can be determined as
follows. Let δa :=

∑
i∈N δai denote the counting measure of a. A straightforward calculation shows

that Φ̃(q) = q
∫∞

0 e−qxu(x) dx for q > 0, where u(x) := δa([1 − e−x, 1]) for all x ≥ 0, so Φ̃(q)/q

coincides with the Laplace transform of u. Define U(x) :=
∫ x

0 u(t) dt for all x ≥ 0. If

U(x) ∼ x1−α`(1/x), x→ 0, (3.4)

for some α ∈ [0, 1] and some function ` slowly varying at infinity, then a Tauberian argument (apply
for example Theorem 1.7.1’ of Bingham et al. (1987) with % := 1− α) yields

Φ̃(q) ∼ Γ(2− α)qα`(q), q →∞. (3.5)

In the following three examples are provided corresponding to the cases α = 0 (slow variation),
0 < α < 1 and α = 1 (rapid variation).
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(i) Assume that ai = cpi, i ∈ N, for some p ∈ (0, 1) and some c ∈ (0, (1 − p)/p]. Then u(x) =
b(log(1 − e−x) − log c)/ log pc ∼ µ log(1/x) as x → 0 and U(x) ∼ µx log(1/x) as x → 0 with
constant µ := −1/ log p ∈ (0,∞). Thus, (3.4) holds with α := 0 and `(y) := µ log y and, by (3.5),
Φ̃(q) ∼ `(q) = µ log q as q → ∞. The asymptotic behavior of Φ̃(q) can be alternatively derived
without exploiting Tauberian theorems via

Φ̃(q) =
∑
i∈N

(1− (1− cpi)q) ∼
∫ ∞

0
(1− (1− cpt)q) dt = µ

∫ c

0

1− (1− x)q

x
dx

∼ µ

∫ 1

0

1− (1− x)q

x
dx = µ(Ψ(q + 1) + γ) ∼ µ log q, q →∞.

(ii) Assume that ai = ci−β , i ∈ N, for some β ∈ (1,∞) and some c ∈ (0, 1/ζ(β)], where ζ(β) :=∑
i∈N i

−β . Define α := 1/β ∈ (0, 1). Then u(x) = bcα/(1 − e−x)αc ∼ cαx−α as x → 0 and
U(x) ∼ cαx1−α/(1 − α) as x → 0. Thus, (3.4) holds with `(y) := cα/(1 − α) and, by (3.5),
Φ̃(q) ∼ Γ(1− α)cαqα as q →∞. Alternatively,

Φ̃(q) =
∑
i∈N

(1− (1− ci−1/α)q) ∼
∫ ∞
cα

(1− (1− ct−1/α)q) dt

and the substitution x = ct−1/α yields

Φ̃(q) ∼ cα
∫ 1

0

α(1− (1− x)q)

xα+1
dx = cα

(
Γ(q + 1)Γ(1− α)

Γ(q + 1− α)
− 1

)
∼ Γ(1− α)cαqα

as q →∞.
(iii) Assume that a1 = 0 and ai = c/(i(log i)β), i ∈ N\{1}, for some β ∈ (1,∞) and some sufficiently
small constant c > 0 such that |a| ≤ 1. A technical but straightforward computation shows that
u(x) = by/(βW (y1/β/β))βc, where y := y(x) := c/(1−e−x) andW denotes the LambertW function
satisfying W (z)eW (z) = z. From W (t) ∼ log t as t → ∞ we conclude that u(x) ∼ c/(x(− log x)β)
as x→ 0. Therefore, U(x) ∼ c/((β − 1)(− log x)β−1) as x→ 0. Thus, (3.4) holds with α := 1 and
`(y) := c/((β − 1)(log y)β−1) and, by (3.5),

Φ̃(q) ∼ q`(q) =
c

β − 1

q

(log q)β−1
, q →∞.

Example 3.6. (Dirichlet coalescent) Let X = (X1, . . . , XN ) have a symmetric Dirichlet distribution
DN (α) with parameters N ∈ N and α > 0 and let X(1) ≥ · · · ≥ X(N) denote the order statistics
of X. The Dirichlet coalescent with parameters N ∈ N and α > 0 has been studied in Section 3
of Gaiser and Möhle (2016). In this case the measure ν(du) = Ξ0(du)/(u, u) is the distribution of
(X(1), . . . , X(N), 0, 0, . . .). Since ν is concentrated on ∆N := {u = (ui)i∈N ∈ ∆ : u1 + · · ·+ uN = 1},
it follows that the Laplace exponent (1.2) of the associated subordinator satisfies Φ(0) = 0 and
Φ(q) = ν(∆) = 1 for q > 0. The formula (2.3) for Φ̃(q) turns into

Φ̃(q) =

∫
∆N

N∑
i=1

(
1− (1− ui)q

)
ν(du), q ≥ 0.

The function below the integral is symmetric with respect to u1, . . . , uN . Thus,

Φ̃(q) =

∫ N∑
i=1

(
1− (1− ui)q

)
DN (α)(du1, . . . ,duN ) = NE(1− (1−X1)q), q ≥ 0.
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If N = 1 then X1 ≡ 1 and hence Φ̃ = Φ. Assume now that N ∈ N\{1}. Since X1 is beta distributed
with parameters α and Nα− α and hence satisfies

E((1−X1)q) =
1

B(α,Nα− α)

∫ 1

0
(1− x)qxα−1(1− x)Nα−α−1 dx

=
B(α,Nα− α+ q)

B(α,Nα− α)
=

Γ(Nα)Γ(Nα− α+ q)

Γ(Nα− α)Γ(Nα+ q)
,

it follows that

Φ̃(q) = N

(
1− Γ(Nα)Γ(Nα− α+ q)

Γ(Nα− α)Γ(Nα+ q)

)
→ N, q →∞.

Note that Φ̃ is the Laplace exponent of a drift-free subordinator Z̃ with state space [0,∞) and Lévy
measure %̃(dx) = N(B(α,Nα− α))−1(1− e−x)α−1e−(Nα−α)xdx, x ∈ (0,∞). The Laplace exponent
Φ̃ does not coincide with Φ.

Example 3.7. (Poisson–Dirichlet coalescent) The two-parameter Poisson–Dirichlet coalescent is the
Ξ-coalescent where the measure ν(du) = Ξ0(du)/(u, u) is the two-parameter Poisson–Dirichlet
distribution with parameters 0 ≤ α < 1 and θ > −α. This coalescent has been introduced in
Möhle (2010) and for the particular case α = 0 in Section 3 of Sagitov (2003). The associated
block counting process and its Siegmund dual fixation line have been investigated in Section 4 of
Gaiser and Möhle (2016). Since ν is concentrated on ∆∗ := {u ∈ ∆ : |u| = 1} it follows that∫

∆ |u| ν(du) = ν(∆∗) = 1 <∞, which implies that this coalescent has dust. Moreover, as in Exam-
ple 3.6, Φ(0) = 0 and Φ(q) = ν(∆) = 1 for q > 0. By Handa (2009, Eq. (2.1)), applied with n := 1
and f(x) := 1− (1− x)q,

Φ̃(q) =

∫
∆

∑
i∈N

f(ui) ν(du) =

∫
R

(
1− (1− x)q

)
µ1(dx), q ≥ 0,

where µ1 denotes the first correlation measure associated with the Poisson–Dirichlet distribution.
The density (correlation function) of µ1 is explicitly known (see, for example, Handa, 2009, Theo-
rem 2.1) and it follows that

Φ̃(q) = c1,α,θ

∫ 1

0

(
1− (1− x)q

)
x−α−1(1− x)θ+α−1 dx, q ≥ 0,

with normalizing constant c1,α,θ := B(1 − α, θ + α) = Γ(θ + 1)/(Γ(1 − α)Γ(θ + α)). Note that
Φ̃ is the Laplace exponent of a drift-free subordinator Z̃ with Lévy measure %̃(dx) = c1,α,θ(1 −
e−x)−α−1e−(θ+α)xdx, x ∈ (0,∞). In particular, Φ̃ does not coincide with Φ. In order to compute
Φ̃ explicitly assume first that α > 0. Then the integral above can be expressed in terms of gamma
functions which leads after some straightforward manipulation to

Φ̃(q) =
θ + q

α

Γ(θ + α+ q)Γ(θ + 1)

Γ(θ + 1 + q)Γ(θ + α)
− θ

α
, q ≥ 0.

In particular Φ̃(q) ∼ Γ(θ + 1)/Γ(θ + α)qα/α as q →∞. Assume now that α = 0. Then

Φ̃(q) = θ

∫ 1

0

(
1− (1− x)q

)
x−1(1− x)θ−1 dx = θ

(
Ψ(θ + q)−Ψ(θ)

)
, q ≥ 0.

Because of the occurrence of the Ψ-function in its Laplace exponent we call Z̃ the Ψ-subordinator
with parameter θ. Note that Φ̃(q) ∼ θ log q as q →∞.
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Example 3.8. (Dirichlet–Kingman coalescent) Let a1, a2, . . . be positive real numbers satisfying a :=∑
n∈N an <∞. For any finite non-empty subset J of N define aJ :=

∑
j∈J aj and let PJ denote the

probability measure on ∆J := {xJ := (xj)j∈J ∈ [0, 1]|J | : |xJ | :=
∑

j∈J xj ≤ 1} with density

fJ(xJ) := Γ(a)
(1− |xJ |)a−aJ−1

Γ(a− aJ)

∏
j∈J

x
aj−1
j

Γ(aj)
, xJ = (xj)j∈J ∈ ∆J ,

with respect to Lebesgue measure on ∆J . For any J ⊂ N with 1 < |J | < ∞ and any j ∈ J

a straightforward calculation shows that
∫ 1−|xH |

0 fJ(xJ) dxj = fH(xH) for all xH ∈ ∆H , where
H := J \ {j}. Thus, the family of probability measures (PJ)J is consistent. The projective limit P
of (PJ)J is called the Kingman–Dirichlet distribution with parameter (an)n∈N. For more information
on this distribution we refer the reader to Huillet and Martinez (2008, Section 4). Let X1, X2, . . . be
random variables with joint distribution P and let X(1) ≥ X(2) · · · denote these random variables in
decreasing order. The Dirichlet–Kingman coalescent, introduced in Example 6.1 on p. 549 of Huillet
and Möhle (2011), is the Ξ-coalescent where the characterizing measure ν(du) = Ξ0(du)/(u, u) is (by
definition) the distribution of (X(1), X(2), . . .). For this coalescent a (i1, . . . , ij)-merger, j, i1, . . . , ij ∈
N, occurs at the rate

ϕ(i1, . . . , ij) :=

∫
∆

∑
r1,...,rj∈N
all distinct

ui1r1 · · ·u
ij
rj ν(du) =

∑
r1,...,rj∈N
all distinct

E(Xi1
(r1) · · ·X

ij
(rj)

)

=
∑

r1,...,rj∈N
all distinct

E(Xi1
r1 · · ·X

ij
rj ) =

∑
r1,...,rj∈N
all distinct

[ar1 ]i1 · · · [arj ]ij
[a]i1+···+ij

,

where [x]0 := 1 and [x]i := x(x+ 1) · · · (x+ i− 1) for x ∈ R and i ∈ N.
If a1 = · · · = aN = α for some α > 0 and some N ∈ N, then in the limit an → 0 for all n > N we
are back to the Dirichlet model discussed in Example 3.6.
As in the previous example, since ν is concentrated on ∆∗, this coalescent has dust and the Laplace
exponent Φ of the associated subordinator satisfies Φ(q) = 1 for q > 0. The formula (2.3) for
Φ̃(q) turns into Φ̃(q) =

∑
i∈N(1 − E((1 −X(i))

q)) =
∑

i∈N(1 − E((1 −Xi)
q)). Since 1 −Xi is beta

distributed with parameters a− ai and ai, it follows that

Φ̃(q) =
∑
i∈N

(
1− Γ(a)Γ(a− ai + q)

Γ(a− ai)Γ(a+ q)

)
, q ≥ 0. (3.6)

Alternatively, by Lemma 4.6 and (4.8), Φ̃(q) =
∫

[0,1](1 − (1 − x)q)µ(dx), q ≥ 0, where µ(B) :=∫
∆

∑
i∈N 1B(ui) ν(du) =

∑
i∈N E(1B(Xi)) =

∑
i∈N P(Xi ∈ B) for all Borel sets B ⊆ [0, 1]. Note that

µ is the intensity measure of the point process
∑

i∈N δXi .
In order to see that Φ̃(q) ∼ a log q as q →∞ let us rewrite (3.6) for q > 1 in the form

Φ̃(q)

log q
=

∫
N
fq(i) δN(di), q > 1, (3.7)

where δN denotes the counting measure on N and

fq(i) :=
1

log q

(
1− Γ(a)Γ(1− ai + q)

Γ(a− ai)Γ(a+ q)

)
, q > 1, i ∈ N.

From
1− Γ(a)Γ(a− ai + q)

Γ(a− ai)Γ(a+ q)
∼ ai(Ψ(a+ q)−Ψ(a)) ∼ ai log q, q →∞,

it follows for all i ∈ N that fq(i)→ ai =: f(i) as q →∞.
Fix q0 > 1. In the following we find a dominating map for the functions fq, q ≥ q0. For q ≥ 1 the
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Pochhammer map x 7→ [x]q = Γ(x+ q)/Γ(x) is convex on (0,∞). (For q ≥ 1 even the map x−q[x]q
is completely monotone and hence convex on (0,∞) by Theorem 2.4 of Ismail et al. (1986), applied
with a := q and b := 0.) Replacing x by a−x and multiplying by the factor Γ(a)/Γ(a+ q) it follows
that

h(x) :=
Γ(a)

Γ(a+ q)
[a− x]q =

Γ(a)Γ(a− x+ q)

Γ(a− x)Γ(a+ q)

is convex on [0, a), which yields the inequality h(x) − h(0) ≥ h′(0)x, 0 ≤ x < a. Noting that
h(0) = 1 and h′(0) = Ψ(a)−Ψ(a+ q) we obtain

1− Γ(a)Γ(a+ q − x)

Γ(a− x)Γ(a+ q)
≤ (Ψ(a+ q)−Ψ(a))x, a > 0, q ≥ 1, 0 ≤ x < a.

Applying this inequality with x := ai (< a) yields for all i ∈ N and all q ≥ q0 that

fq(i) ≤
Ψ(a+ q)−Ψ(a)

log q
ai ≤ Kai,

where K := Ka := supq≥q0(Ψ(a + q) − Ψ(a))/ log q < ∞, since q0 > 1 and Ψ(a + q) ∼ log q as
q → ∞. The dominating map i 7→ Kai is integrable with respect to the counting measure on N.
Thus, by dominated convergence, the integral in (3.7) converges to

∫
N f(i) δN(di) =

∑
i∈N ai = a as

q →∞. Thus, Φ̃(q) ∼ a log q as q →∞.

Example 3.9. (Symmetric coalescent) Let (mk)k∈N be a sequence of non-negative real numbers
satisfying

∑
k∈Nmk/k < ∞. Suppose that ν assigns for each k ∈ N mass mk to the point u(k) :=

(1/k, . . . , 1/k, 0, 0, . . .) ∈ ∆?. The assumption
∑

k∈Nmk/k <∞ ensures that the measure Ξ is finite
as required. Except for the fact that we exclude a Kingman part for simplicity, i.e. Ξ({0}) = 0,
this class of coalescents has been recently studied in González Casanova et al. (2021+). For this
coalescent a (i1, . . . , ij)-merger, j, i1, . . . , ij ∈ N, occurs at the rate

ϕ(i1, . . . , ij) :=

∫
∆

k∑
r1,...,rj=1
all distinct

ui1r1 · · ·u
ij
rj ν(du) =

∑
k∈N

(k)j

(
1

k

)i
mk =

∑
k≥j

(k)j
ki

mk,

where i := i1 + · · · + ij , (x)0 := 0 and (x)j := x(x − 1) · · · (x − j + 1) for x ∈ R and j ∈ N. In
this symmetric situation, P(Y (i, u(k)) = j) is the probability to obtain j non-empty boxes when
i ∈ N balls are allocated independently and uniformly to k ∈ N boxes. This probability is given by
(a formula well-known from several textbooks, see for example Durrett (2019, p. 172), and already
known by Kolchin et al., 1978, Eqs. (1) and (2))

P(Y (i, u(k)) = j) = S(i, j)
(k)j
ki

, (3.8)

where S(i, j) := (1/j!)
∑j

r=0(−1)j−r
(
j
r

)
ri, i, j ∈ N0, denote the Stirling numbers of the second kind.

Thus, the block counting process moves from state i ∈ N to state j ∈ N with j < i at the rate

qi,j =

∫
∆
P(Y (i, u) = j) ν(du) =

∑
k∈N

P(Y (i, u(k)) = j)mk = S(i, j)
∑
k∈N

(k)j
ki

mk.

The total rates are

qi :=

i−1∑
j=1

qi,j =
∑
k∈N

mk

ki

i−1∑
j=1

S(i, j)(k)j

=
∑
k∈N

mk

ki
(ki − (k)i) =

∑
k∈N

mk

(
1− (k)i

ki

)
, i ∈ N.
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For all k ∈ N and i, j ∈ N with i < j,

P(Y (j, u(k)) = i, Y (j + 1, u(k)) = i+ 1) =
(k)i
kj

S(j, i)
k − i
k

=
(k)i+1

kj+1
S(j, i).

The Siegmund dual fixation line therefore moves from state i ∈ N to state j ∈ N with j > i at the
rate (see Gaiser and Möhle, 2016, Proposition 2.5)

γi,j =
∑
k∈N

P(Y (j, u(k)) = i, Y (j + 1, u(k)) = i+ 1)mk = S(j, i)
∑
k∈N

(k)i+1

kj+1
mk.

and the total rates are γi :=
∑

j>i γi,j = qi+1, i ∈ N. The well-known (see Gaiser and Möhle, 2016,
Theorem 2.9) Siegmund duality relations

∑j
l=1 qi,l =: qi,≤j = γj,≥i :=

∑∞
l=i γj,l, i, j ∈ N, are hence

equivalent to the combinatorial identities (see also Möhle, 2018, Eq. (19))

1

ki

j∑
l=1

S(i, l)(k)l = (k)j+1

∞∑
l=i

S(l, j)
1

kl+1
, i, j, k ∈ N,

for the Stirling numbers of the second kind. Note that the left hand side is a finite sum whereas
the right hand side is an infinite series. An analog combinatorial identity for the Stirling numbers
of the first kind is provided in Möhle (2018, Eq. (22)). Since the time of the first coalescence of the
associated Ξ-coalescent is exponentially distributed with parameter

∑
k∈N ν({u(k)}) =

∑
k∈Nmk =

ν(∆) it follows that this coalescent comes down from infinity if and only if ν(∆) = ∞. Since ν is
concentrated on ∆∗ this coalescent has dust if and only if

∫
∆ |u|ν(du) = ν(∆) =

∑
k∈Nmk < ∞.

Having dust and not coming down from infinity are therefore the same properties. In this case (2.3)
turns into

Φ̃(q) =
∑
k∈N

mk

k∑
i=1

(
1−

(
1− 1

k

)q)
=
∑
k∈N

kmk

(
1−

(
1− 1

k

)q)
=

∫
(0,1]

(
1− (1− x)q

)
ν̃(dx), q ≥ 0,

where the measure ν̃ (see Lemma 4.6) is discrete and assigns for each k ∈ N mass kmk to the point
1/k. These formulas for Φ̃(q) do not seem to simplify much further except for particular choices
of the sequence (mk)k∈N. If

∑
k∈N kmk < ∞ then Φ̃(∞) := limq→∞ Φ̃(q) =

∑
k∈N kmk < ∞. If∑

k∈N kmk = ∞ then Φ̃(∞) = ∞, but the asymptotics of Φ̃(q) as q → ∞ is not easy to determine
in general. For example, let α > 0 and assume that mk := k−α for k ∈ N. Then the associated
coalescent has dust if and only if α > 1. For α > 2, Φ̃(∞) =

∑
k∈N k

1−α = ζ(α− 1) <∞, where ζ
denotes the zeta function. For α ∈ (1, 2], as q →∞,

Φ̃(q) ∼
∫ ∞

1
t1−α

(
1−

(
1− 1

t

)q)
dt =

∫ 1

0

1− (1− x)q

x3−α dx

=

 Ψ(q + 1) + γ ∼ log q if α = 2,
1

2− α

(
Γ(q + 1)Γ(α− 1)

Γ(q + α− 1)
− 1

)
∼ Γ(α− 1)

2− α
q2−α if α ∈ (1, 2).

For example, for α = 3/2, Φ̃(q) ∼ 2
√
πq as q →∞.
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4. Proofs concerning the block counting process

Before we prove Theorem 2.1 we derive fundamental properties of the functions Φ̃ and r. We
start with an analysis of the function g : [0,∞)×∆→ [0,∞), defined via

g(q, u) :=
∑
i∈N

(
1− (1− ui)q

)
, q ≥ 0, u ∈ ∆. (4.1)

Lemma 4.1. For every u ∈ ∆ the function g(., u) is infinitely often differentiable on (0,∞) with
derivatives

g(k)(q, u) :=
∂k

∂kq
g(q, u) = −

∑
i∈N

(1− ui)q(log(1− ui))k, k ∈ N, q > 0. (4.2)

Proof : (of Lemma 4.1) We proceed similar as in the proof of Lemma 3.1 of Herriger and Möhle
(2012). For u = (1, 0, 0, . . .) ∈ ∆, g(q, u) = 1 − 0q = 1 − δ0,q has a discontinuity at q = 0 but is
infinitely often differentiable on (0,∞) and all derivatives vanish there. Thus, (4.2) obviously holds
for u = (1, 0, 0, . . .). In the following it is therefore assumed that (1, 0, 0, . . .) 6= u ∈ ∆. Then ui < 1
for all i ∈ N, so we can take the logarithm of 1 − ui. Note that

∑
i∈N(− log(1 − ui)) < ∞, since

− log(1 − t) =
∑∞

n=1 t
n/n ≤ t

∑∞
n=0 t

n = t/(1 − t) ≤ 2t for all t ∈ [0, 1
2 ]. In the following (4.2) is

verified by induction on k ∈ N.
For m ∈ N define gm : [0,∞)×∆→ R via

gm(q, u) :=

m∑
i=1

(
1− (1− ui)q

)
, q ≥ 0, u ∈ ∆.

Applying the inequality t ≤ − log(1 − t), t ∈ [0, 1), with t := 1 − (1 − ui)q ∈ [0, 1) it follows that
1− (1− ui)q ≤ −q log(1− ui), i ∈ N, q ≥ 0. Therefore, for all q ≥ 0,

|g(q, u)− gm(q, u)| =
∑
i>m

(
1− (1− ui)q

)
≤ q

∑
i>m

(
− log(1− ui)

)
→ 0

as m→∞, so gm(., u)→ g(., u) uniformly on any compact set K ⊆ [0,∞). Furthermore, each gm is
differentiable with respect to q with continuous derivative g′m(q, u) =

∑m
i=1(1− ui)q(− log(1− ui)).

From

|g′m(q, u)−
∑
i∈N

(1− ui)q(− log(1− ui))| ≤
∑
i>m

(1− ui)q(− log(1− ui))

≤
∑
i>m

(− log(1− ui)) → 0

asm→∞ it follows that g′m(q, u)→
∑

i∈N(1−ui)q(− log(1−ui)) uniformly for all q ∈ [0,∞). There-
fore, g(., u) is differentiable with derivative g′(q, u) = limm→∞ g

′
m(q, u) =

∑
i∈N(1− ui)q(− log(1−

ui)), q ∈ [0,∞). Thus, (4.2) holds for k = 1.
In order to prepare the induction step define gm,k : [0,∞)×∆→ R, m, k ∈ N, via

gm,k(q, u) := −
m∑
i=1

(1− ui)q(log(1− ui))k, q ≥ 0, u ∈ ∆.
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The induction step from k ∈ N to k + 1 works similarly as follows. Fix k ∈ N. By the induction
hypothesis,

|gm,k(q, u)− g(k)(q, u)|

=

∣∣∣∣− m∑
i=1

(1− ui)q(log(1− ui))k +
∑
i∈N

(1− ui)q(log(1− ui))k
∣∣∣∣

≤
∑
i>m

(1− ui)q(− log(1− ui))k ≤
∑
i>m

(− log(1− ui))k → 0

as m→∞, which shows that gm,k(., u)→ g(k)(., u) uniformly on [0,∞). Furthermore each gm,k is
differentiable with respect to q with continuous derivative g′m,k(q, u) = −

∑m
i=1(1−ui)q(1−ui)k+1 =

gm,k+1(q, u). From

|g′m,k(q, u) +
∑
i∈N

(1− ui)q(log(1− ui))k+1| ≤
∑
i>m

(1− ui)q(− log(1− ui))k+1

≤
∑
i>m

(− log(1− ui))k+1 → 0

as m→∞ it follows that g′m,k(q, u)→ −
∑

i∈N(1−ui)q(log(1−ui))k+1 uniformly for all q ∈ [0,∞).
Therefore, g(k)(., u) is differentiable with derivative

g(k+1)(q, u) = (g(k))′(q, u) = lim
m→∞

g′m,k(q, u)

= lim
m→∞

gm,k+1(q, u) = −
∑
i∈N

(1− ui)q(log(1− ui))k+1.

The induction is complete. �

Lemma 4.2. The function Φ̃, defined via (2.3), is infinitely often differentiable on (0,∞) with
derivatives

Φ̃(k)(q) = −
∫

∆

∑
i∈N

(1− ui)q(log(1− ui))k ν(du), k ∈ N, q > 0. (4.3)

Remark 4.3. In general Φ̃ is not differentiable at 0, which is seen by choosing the measure ν such that∫
∆ |u| ν(du) < ∞ but

∫
∆

∑
i∈N(− log(1 − ui)) ν(du) = ∞. Such an example (even a Λ-coalescent

where Λ has no mass at 1) is provided at the end of Remark 4.3 in Herriger and Möhle (2012). In
this example the measure Λ assigns for each m ∈ N mass m−2 to um := 1− e−m. Therefore,

Φ̃(q) = Φ(q) =

∞∑
m=1

1− (1− um)q

m2u2
m

=

∞∑
m=1

1− e−mq

m2(1− e−m)2
, q ≥ 0.

Thus, Φ̃ is a real-valued continuous function on [0,∞) and differentiable on (0,∞) with derivative
Φ̃′(q) =

∑∞
m=1 e

−mq/(m(1− e−m)2), q > 0, but Φ̃ is not differentiable at q = 0.

Remark 4.4. If ν has positive mass, say k > 0, at (1, 0, 0, . . .) ∈ ∆, then Φ̃ has even a discontinuity
(a jump of size k) at q = 0.

Proof : (of Lemma 4.2) By definition,

Φ̃(q) =

∫
∆
g(q, u) ν(du), q ≥ 0, (4.4)

where g is defined via (4.1). Having Lemma 4.1 in mind it suffices to verify that

Φ̃(k)(q) =

∫
∆
g(k)(q, u) ν(du), k ∈ N, q > 0. (4.5)
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We prove (4.5) by induction on k ∈ N.
It is readily checked that for every q > 0 there exists a constant cq ∈ (0,∞) such that (1 −

t)q(− log(1−t)) ≤ cqt for all t ∈ [0, 1). (Note that this statement does not hold for q = 0.) Applying
this inequality with t := ui < 1 it follows from Lemma 4.1 that |g′(q, u)| =

∑
i∈N(1−ui)q(− log(1−

ui)) ≤
∑

i∈N cqui = cq|u|, which implies that for every q > 0 the map g′(q, .) is ν-integrable.
Moreover, choosing some q0 ∈ (0,∞) it follows that |g′(q, u)| =

∑
i∈N(1 − ui)q(− log(1 − ui)) ≤∑

i∈N(1 − ui)q0(− log(1 − ui)) = |g′(q0, u)| ≤ cq0 |u| =: h(u) for all q ≥ q0, where the dominating
map h is ν-integrable. By the differentiation lemma, (4.4) is differentiable with respect to q ∈ (0,∞)
and it is allowed to take the derivative below the integral, which shows that (4.5) holds for k = 1.

The induction step from k ∈ N to k + 1 works essentially in the same way as follows. Let k ∈ N.
Again it is not hard to check that for every q > 0 there exists a constant ck,q ∈ (0,∞) such that
(1− t)q(− log(1− t))k ≤ ck,qt for all t ∈ [0, 1). Applying this inequality with t := ui < 1 it follows
from Lemma 4.1 that |g(k)(q, u)| =

∑
i∈N(1 − ui)

q(− log(1 − ui))
k ≤ ck,q|u|, which implies that

for every q > 0 the map g(k)(q, .) is ν-integrable. Moreover, choosing some q0 ∈ (0,∞) it follows
that |g(k)(q, u)| =

∑
i∈N(1− ui)q(− log(1− ui))k ≤

∑
i∈N(1− ui)q0(− log(1− ui))k = |g(k)(q0, u)| ≤

ck,q0 |u| =: hk(u) for all q ≥ q0, where the dominating map hk is ν-integrable. By the differentiation
lemma, (4.5) is differentiable with respect to q ∈ (0,∞) and it is allowed to take the derivative below
the integral, which shows that (4.5) holds with k replaced by k+ 1. The induction is complete. �

Let us now turn to properties of the rate function r.

Lemma 4.5. Let Ξ be a measure on ∆ satisfying (1.1). Then the rate function r, defined via (2.4),
is infinitely often differentiable on (0,∞) with first derivative

r′(q) =
qΦ̃′(q)− Φ̃(q)

q2

=

∫
∆

∑
i∈N

(1− ui)q − 1− (1− ui)q log((1− ui)q)
q2

ν(du), q > 0.

In particular, r is non-increasing on (0,∞). Moreover, r(q)→ 0 as q →∞.

Proof : (of Lemma 4.5) With Φ̃ also r is infinitely often differentiable on (0,∞) with first derivative

r′(q) =
d

dq

Φ̃(q)

q
=

qΦ̃′(q)− Φ̃(q)

q2

=
q
∫

∆

∑
i∈N(1− ui)q(− log(1− ui)) ν(du)−

∫
∆

∑
i∈N(1− (1− ui)q) ν(du)

q2

=

∫
∆

∑
i∈N

(1− ui)q − 1− (1− ui)q log((1− ui)q)
q2

ν(du) ≤ 0, q > 0,

since t− 1− t log t ≤ 0 for all t ∈ [0, 1]. In particular, r is non-increasing on (0,∞).
In order to see that r(q)→ 0 as q →∞ fix u = (ui)i∈N ∈ ∆ and define sq(i) := (1− (1− ui)q)/q,

q > 0, i ∈ N. Note that sq(i) ≤ 1/q → 0 as q → ∞ and sq(i) ≤ ui for all i ∈ N and q ≥ 1, where
the map i 7→ ui is integrable with respect to the counting measure δN on N. Thus, by dominated
convergence, for every u ∈ ∆,∑

i∈N

1− (1− ui)q

q
=

∫
N
sq(i) δN(di) → 0

as q →∞. Moreover, from sq(i) ≤ ui for all q ≥ 1 and i ∈ N we conclude that∑
i∈N

1− (1− ui)q

q
=
∑
i∈N

sq(i) ≤
∑
i∈N

ui = |u|
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for all q ≥ 1 and u ∈ ∆. Since the dominating map u 7→ |u| is ν-integrable, it follows that r(q)→ 0
as q →∞ again by dominated convergence. �

The following lemma provides a Lévy–Khintchine representation for Φ̃ and shows that the integral
over the infinite simplex ∆ in (2.3) can be replaced by a simpler integral over the half-open unit
interval (0, 1].

Lemma 4.6. Let Ξ be a measure on ∆ satisfying (1.1). Then there exists a unique measure ν̃ on
(0, 1] having total mass ν̃((0, 1]) = Φ̃(∞) ∈ [0,∞] and satisfying

∫
(0,1] x ν̃(dx) <∞ such that

Φ̃(q) =

∫
(0,1]

(
1− (1− x)q

)
ν̃(dx), q ≥ 0. (4.6)

Remark 4.7. The following proofs show that ν̃({1}) = Ξ({(1, 0, 0, . . .)}). In particular, if the Ξ-
coalescent has no star-shaped part, i.e. Ξ({(1, 0, 0, . . .)}) = 0, then Φ̃ is the Laplace exponent of a
drift-free subordinator Z̃ with state space [0,∞) and Lévy measure %̃ := ν̃T , where ν̃T denotes the
image of the measure ν̃ under the transformation T : (0, 1)→ (0,∞) defined via T (x) := − log(1−x)
for all x ∈ (0, 1).

Proof : (of Lemma 4.6) Two proofs of (4.6) are provided. The first proof is measure theoretic and
provides an explicit formula (see (4.8)) for the measure ν̃ in terms of the measure ν. The second
proof is based on a Bernstein function argument. Both proofs are relatively short.

Proof 1. Consider the measure space (∆,B(∆), ν) and the measurable space (S,S) :=
([0, 1],B([0, 1])). The point process ξ : ∆× S → N0 ∪ {∞}, defined via ξ(u,B) :=

∑
i∈N 1B(ui) for

all u ∈ ∆ and B ∈ S, has intensity measure

µ(B) := Eν(ξ(., B)) :=

∫
∆
ξ(u,B) ν(du) =

∫
∆

∑
i∈N

1B(ui) ν(du), B ∈ S,

and, hence, Campbell’s formula

Eν
(∫

[0,1]
f(x) ξ(.,dx)

)
=

∫
∆

∫
[0,1]

f(x) ξ(u,dx) ν(du)

=

∫
∆

∑
i∈N

f(ui) ν(du) =

∫
[0,1]

f(x)µ(dx) (4.7)

holds for f = 1B and hence for all nonnegative measurable functions f : [0, 1]→ [0,∞]. Fix q ≥ 0.
Choosing f(x) := fq(x) := 1− (1− x)q shows that

Φ̃(q) =

∫
∆

∑
i∈N

fq(ui) ν(du) =

∫
[0,1]

fq(x)µ(dx) =

∫
(0,1]

(1− (1− x)q) ν̃(dx),

where ν̃ denotes the restriction of µ to (0, 1], i.e.

ν̃(B) := µ(B) =

∫
∆

∑
i∈N

1B(ui) ν(du) (4.8)

for all Borel sets B ⊆ (0, 1]. Thus (4.6) holds. �

Proof 2. By Lemma 4.2, Φ̃ is infinitely often differentiable on (0,∞) with derivatives (4.3). In
particular, (−1)k−1Φ̃(k)(q) =

∫
∆

∑
i∈N(1 − ui)q(− log(1 − ui))k ν(du) ≥ 0 for all k ∈ N and q > 0.

Thus, Φ̃, restricted to (0,∞), is a Bernstein function in the sense of Definition 3.1 of Schilling et al.
(2012). By Schilling et al. (2012, Theorem 3.2), Φ̃ has a Lévy–Khintchine representation, i.e. there
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exist constants a, b ≥ 0 and a unique measure %̃ on (0,∞) satisfying
∫

(0,∞)(1 ∧ y)%̃(dy) < ∞ such
that

Φ̃(q) = a+ bq +

∫
(0,∞)

(1− e−qy)%̃(dy) = a+ bq +

∫
(0,1)

(
1− (1− x)q

)
ν̃(dx), q > 0,

where ν̃ := %̃ϕ is the image of %̃ under the transformation ϕ : (0,∞) → (0, 1) defined via ϕ(y) :=
1− e−y for all y ∈ (0,∞).

Assume now first that ν has no mass at (1, 0, 0, . . .) ∈ ∆. Then Φ̃ is continuous at q = 0 and
from Φ̃(0) = 0 it follows that a = 0. Moreover, b = limq→∞ Φ̃(q)/q = limq→∞ r(q) = 0 by Lemma
4.5. Thus,

Φ̃(q) =

∫
(0,1)

(
1− (1− x)q

)
ν̃(dx), q ≥ 0. (4.9)

Note that this formula obviously holds for q = 0, since in this case both sides in (4.9) are equal to
0.

If ν has mass k := ν({(1, 0, 0, . . .)}) = Ξ({(1, 0, 0, . . .)}) ∈ [0,∞) at (1, 0, 0, . . .) ∈ ∆, then extend
the measure ν̃ on (0, 1) to a measure on (0, 1], again denoted by ν̃, via ν̃({1}) := k, and note that
one has to add to the above expression (4.9) for Φ̃(q) the part∫

{(1,0,0,...)}

∑
i∈N

(1− (1− ui)q) ν(du) = (1− 0q)k =

∫
{1}

(1− (1− x)q) ν̃(dx),

which shows that (4.6) holds.

The total mass ν̃((0, 1]) = Φ̃(∞) of the measure ν̃ might be infinite, but its first moment∫
(0,1] x ν̃(dx) = Φ̃(1) is finite. Clearly, the measure ν̃ is uniquely determined by the values (4.6). �

Remark 4.8. The measure Λ̃(dx) := x2ν̃(dx) satisfies∫
(0,1]

x−1Λ̃(dx) =

∫
(0,1]

x ν̃(dx) < ∞,

which implies that the corresponding Λ̃-coalescent has dust. In this way we can define for each
Ξ-coalescent with dust a Λ̃-coalescent (allowing only for multiple collisions) with dust such that
both, the Ξ-coalescent and the Λ̃-coalescent, have the same function Φ̃. If the Λ̃-coalescent is in a
partition with b ∈ N \ {1} blocks then each possible merger of k ∈ {2, . . . , b} blocks into a single
block is occurring at the rate

λ̃b,k =

∫
(0,1]

xk(1− x)b−kν̃(dx) =

∫
[0,1]

xk(1− x)b−kµ(dx)

=

∫
∆

∑
i∈N

uki (1− ui)b−k ν(du), 2 ≤ k ≤ b, (4.10)

where the last equality holds by Campbell’s formula (4.7). The rates λ̃b,k can hence be expressed in
terms of the characterizing measure ν(du) = Ξ(du)/(u, u) of the exchangeable coalescent via (4.10).

We now prove Theorem 2.1.

Proof of Theorem 2.1: Fix f ∈ C2(E), n ∈ N, x ∈ En and u ∈ ∆. Define u0 := 1 − |u| and
Ỹ := Ỹ (nx, u) := Y (nx, u)/(nx) − u0 for convenience. Note that −1 ≤ Ỹ ≤ 1, so Ỹ may take
negative values with positive probability, but the mean E(Ỹ ) =

∑
i∈N(1− (1− ui)nx)/(nx) ∈ [0, 1]
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is non-negative. By Taylor expansion,

f

(
Y (nx, u)

n

)
− f(xu0)

= f ′(xu0)

(
Y (nx, u)

n
− xu0

)
+ f ′′(ξ)

(
Y (nx, u)

n
− xu0

)2

= f ′(xu0)xỸ + f ′′(ξ)x2Ỹ 2

for some ξ = ξ(n, x, u) taking values between Y (nx, u)/n and xu0, Taking expectation yields

E
(
f

(
Y (nx, u)

n

))
− f(xu0) = f ′(xu0)xE(Ỹ ) + x2E(f ′′(ξ)Ỹ 2)

and taking the absolute value leads to∣∣∣∣E(f(Y (nx, u)

n

))
− f(xu0)

∣∣∣∣ ≤ C1xE(Ỹ ) + C2x
2E(Ỹ 2) ≤ C1xE(Ỹ ) + C2xE(Ỹ 2),

where C1 := ‖f ′‖ <∞ and C2 := ‖f ′′‖ <∞. By Lemma 6.1 provided in Section 6, the concentration
inequality E(Ỹ 2) ≤ 2E(Ỹ ) holds. Thus, if we define C := Cf := C1 + 2C2, then∣∣∣∣E(f(Y (nx, u)

n

))
− f(xu0)

∣∣∣∣ ≤ CxE(Ỹ ) = C
∑
i∈N

1− (1− ui)nx

n

≤ C
∑
i∈N

1− (1− ui)n

n
.

From the integral representations (2.2) and (1.4) for the generators An and A we conclude that

|Anπnf(x)− πnAf(x)| =

∣∣∣∣ ∫
∆

(
E
(
f

(
Y (nx, u)

n

))
− f(xu0)

)
ν(du)

∣∣∣∣
≤

∫
∆

∣∣∣∣E(f(Y (nx, u)

n

))
− f(xu0)

∣∣∣∣ ν(du)

≤ C

∫
∆

∑
i∈N

1− (1− ui)n

n
ν(du) = Cr(n),

which is the desired result. �

Remark 4.9. For Λ-coalescents the sharper inequality E(Ỹ 2) ≤ E(Ỹ ) holds (see Proposition 5.1 in
Section 5) and the previous proof can hence be performed with the optimized constant C := C1+C2.

Proof : (of Corollary 2.3) Fix t ≥ 0 and f ∈ C2(E). By (1.3), Ttf(x) = E(f(xSt)), x ∈ E.
An application of the differentiation lemma shows that Ttf is twice differentiable with derivatives
(Ttf)′(x) = E(Stf

′(xSt)) and (Ttf)′′(x) = E(S2
t f
′′(xSt)), x ∈ E. Moreover, exploiting the fact

that ‖f ′′‖ <∞ it follows by dominated convergence that (Ttf)′′ is continuous. Thus, Ttf ∈ C2(E)
showing that Tt(C2(E)) ⊆ C2(E).

From estimates for semigroups (see, for example, Ethier and Kurtz, 1986, p. 29, Eq. (6.2)) we
conclude that, for all n ∈ N, ‖T (n)

t πnf − πnTtf‖ ≤
∫ t

0 ‖AnπnTsf − πnATsf‖ ds ≤ r(n)
∫ t

0 CTsf ds,
where the last inequality holds by Theorem 2.1, applied to the function Tsf ∈ C2(E) instead of f .
The result follows, since CTsf = ‖(Tsf)′‖+3‖(Tsf)′′‖ ≤ ‖f ′‖E(Ss)+3‖f ′′‖E(S2

s ) ≤ ‖f ′‖+2‖f ′′‖ =
Cf . �

Remark 4.10. The previous proof shows that Tt(C2(E)) ⊆ C2(E) for all t ≥ 0. Since C2(E) is dense
in B(E), the standard core theorem (see, for example, Ethier and Kurtz, 1986, p. 17, Proposition 3,
applied with L := B(E) and D0 := D := C2(E)) ensures that C2(E) is a core for the generator A
of the semigroup (Tt)t≥0.
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Proof of Corollary 2.4: Two proofs of Corollary 2.4 are provided. The first proof is based on the
generator bound in Theorem 2.1. The second proof is rather short and based on the corresponding
semigroup bound in Corollary 2.3.

Proof 1. (via generators) If gk denotes the monomial defined via gk(x) := xk for all x ∈ E, then,
by (1.4), Agk(x) =

∫
∆((x(1− |u|))k − xk) ν(du) = xk

∫
∆((1− |u|)k − 1) ν(du) = −Φ(k)xk, where Φ

denotes the Laplace exponent (1.2) of the associated subordinator. In particular, ADk ⊆ Dk for all
k ∈ N, where Dk denotes the finite-dimensional space of all polynomials f : E → R of degree less
than or equal to k. The space D :=

⋃
k∈NDk of all polynomials is dense in L := C(E). Exploiting

the fact that ADk ⊆ Dk for all k ∈ N it follows as in the proof of Theorem 3.5 on p. 19 of Ethier and
Kurtz (1986) that (λ− A)(D) = D for some λ ∈ (0,∞). In particular, the range (λ− A)(D) = D
is dense in L. Thus, by Ethier and Kurtz (1986, p. 17, Proposition 3.1), D is a core for A. From
Theorem 2.1 and Lemma 4.5 it follows that limn→∞ ‖Anπnf − πnAf‖ = 0 for all f ∈ D. From
Ethier and Kurtz (1986, p. 28, Theorem 6.1) we conclude that limn→∞ ‖T (n)

t πnf − πnTtf‖ = 0 for
all f ∈ L and t ≥ 0. The statement therefore follows from Ethier and Kurtz (1986, p. 232, Corollary
8.7), applied with Gn := En. �

Proof 2. (via semigroups) Corollary 2.3 yields limn→∞ ‖T (n)
t πnf − πnTtf‖ = 0 for all t ≥ 0 and

f ∈ C2(E), and hence also for all f ∈ L := C(E), since C2(E) is dense in L. The statement therefore
follows again from Ethier and Kurtz (1986, p. 232, Corollary 8.7), applied with Gn := En. �

5. A phenomenon of concentration

In this section we restrict our attention to the subclass of coalescents with multiple collisions (Λ-
coalescents). In fact, what follows depends only on the random variables Y (n, u) defined via (2.1),
so we are dealing with a problem which arises in the context of Kingman’s paintbox construction
(Kingman, 1978a,b) or, equivalently, in Karlin’s putting balls into boxes experiment (Karlin, 1967)
further studied by Dutko (1989) and Gnedin et al. (2007). We are interested in the scaled random
variables

Ỹ (n, u) :=
Y (n, u)

n
− (1− u) n ∈ N, u ∈ [0, 1], (5.1)

where Y (n, u) := X0(n, u) + 1{X1(n,u)>0} (see Eq. (2.1)). We will prove in this section (see Propo-
sition 5.1 (ii)) that these random variables satisfy for all n ∈ N and u ∈ [0, 1] the concentration
inequality

E((Ỹ (n, u))2) ≤ E(Ỹ (n, u)). (5.2)
Similar results that the second moment is bounded by the expectation are well-known for the number
of occupied boxes in Karlin’s model (see, for example, p. 153 of Gnedin et al., 2007). The inequality
(5.2) looks rather simple. However, we have not been able to find a short proof. In particular, we
have not been able to find a probabilistic proof of this inequality. The following analytic proof is
based on explicit calculations and carefully designed bounds. The proof shows that the inequality
(5.2) is more involved as it seems to be at a first glance. The conjecture that the same inequality
holds not only for Λ-coalescents but as well for the full class of all Ξ-coalescents will be discussed
in the following Section 6.

Proposition 5.1. For all n ∈ N and u ∈ [0, 1],

E(Y (n, u)) = n(1− u) + 1− (1− u)n (5.3)

and
Var(Y (n, u)) = nu(1− u) + (1− u)n

(
1− (1− u)n

)
− 2nu(1− u)n. (5.4)

Moreover, the scaled random variable Ỹ (n, u) := Y (n, u)/n−(1−u) has the following two properties.
(i) For every u ∈ [0, 1] the mean E(Ỹ (n, u)) = (1− (1− u)n)/n is non-increasing in n ∈ N.
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(ii) For all n ∈ N and u ∈ [0, 1] the concentration inequality E((Ỹ (n, u))2) ≤ E(Ỹ (n, u)) holds.

Proof : We suppress the parameters n and u and write Y for Y (n, u) and Xi for Xi(n, u) for
convenience. We have Y = X0 + 1{X1>0}, where (X0, X1) has a multinomial distribution with
parameters n ∈ N and (1 − u, u). Taking expectation and noting that E(X0) = n(1 − u) and
E(1{X1>0}) = 1 − P(X1 = 0) = 1 − (1 − u)n yields (5.3). Eq. (5.4) follows from Var(Y ) =
Var(X0) + Var(1{X1>0}) + 2Cov(X0, 1{X1>0}) and the explicit formulas Var(X0) = nu(1 − u),
Var(1{X1>0}) = P(X1 = 0)P(X1 > 0) = (1− u)n(1− (1− u)n) and

Cov(X0, 1{X1>0}) = Cov(X0, 1− 1{X1=0}) = −Cov(X0, 1{X1=0})

= E(X0)E(1{X1=0})− E(X01{X1=0})

= n(1− u)(1− u)n − nP(X1 = 0)

= n(1− u)n+1 − n(1− u)n = −nu(1− u)n.

From (5.3) it follows that E(Ỹ ) = E(Y )/n − (1 − u) = (1 − (1 − u)n)/n. In order to see that this
expression is non-increasing in n ∈ N we verify that the map m(x) := (1− (1− u)x)/x, x ∈ (0,∞),
is non-increasing on (0,∞). We have m′(x) = ((1− u)x − 1− (1− u)x log((1− u)x))/x2 ≤ 0, since
t− 1− t log t ≤ 0 for all t ∈ [0, 1]. Thus, the map m is non-increasing on (0,∞).

It remains to verify (ii). From (5.3) and (5.4) we conclude that

E(Ỹ 2) = Var(Ỹ ) + (E(Ỹ ))2 =
Var(Y )

n2
+

(
1− (1− u)n

n

)2

=
u(1− u)

n
+

(1− u)n(1− (1− u)n)

n2
− 2u(1− u)n

n
+

(1− (1− u)n)2

n2

=
u(1− u)

n
− 2u(1− u)n

n
+

1− (1− u)n

n2
.

Therefore, the function pn : [0, 1]→ R, defined via pn(u) := E(Ỹ )−E(Ỹ 2), is a polynomial of degree
n+ 1 of the form

pn(u) =
1− (1− u)n

n
− u(1− u)

n
+

2u(1− u)n

n
− 1− (1− u)n

n2
. (5.5)

In particular p1(u) = u(1 − u) ≥ 0. In order to check that pn(u) is nonnegative we can therefore
assume that n ≥ 2. We have pn(0) = 0 and pn(1) = 1/n− 1/n2 ≥ 0. A straightforward calculation
shows that

p′n(u) = (2u− 1)

(
1− (1− u)n−1

n
− (1− u)n−1

)
.

It follows that pn has a local minimum at u = 1/2 (independent of n). (The polynomial pn has as
well a local maximum at u = 1− ( 1

n+1)
1

n−1 , which is however not important in our context.) Since
the value pn(1/2) = (3n−4 + (1/2)n−2)/(4n2) of pn at this minimum is still positive, it follows that
pn(u) ≥ 0. Thus, the concentration inequality E(Ỹ 2) ≤ E(Ỹ ) holds. �

Remark 5.2. The previous proof shows that the polynomial pn in (5.5) is nonnegative on [0, 1].
By (a linear transformed variant of) Lasserre (2010, p. 24, Theorem 2.8) there exists d ∈ N0 and
coefficients cij = cij(n) ≥ 0, i, j ∈ N0 with i + j ≤ d, such that pn(u) =

∑
i+j≤d ciju

i(1 − u)j . It
does not seem to be straightforward to determine the coefficients cij explicitly.

Remark 5.3. From part (ii) of Proposition 5.1 it follows that the quantity D(Ỹ ) := Var(Ỹ )/E(Ỹ ),
sometimes called the index of dispersion in the literature (see, for example, Cox and Lewis, 1966,
p. 72, Eq. (3)), never exceeds 1.
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6. The phenomenon of concentration for Ξ-coalescents

It is natural to conjecture that the concentration inequality (5.2) holds not only for the class of
Λ-coalescents but as well for the full class of all Ξ-coalescents. Unfortunately, we have not been able
to prove this conjecture. In this last section the less strict inequality E((Ỹ (n, u))2) ≤ 2E(Ỹ (n, u))
is verified and some information is provided, which could be helpful in proving the conjecture that
E((Ỹ (n, u))2) ≤ E(Ỹ (n, u)). The main results on the random variable Y (n, u), defined via (2.1),
are collected in the following lemma.

Lemma 6.1. For all n ∈ N and u ∈ ∆,

E(Y (n, u)) = n(1− |u|) +
∑
i∈N

(
1− (1− ui)n

)
(6.1)

and

Var(Y (n, u)) = n|u|(1− |u|) +
∑
i∈N

(1− ui)n
(
1− (1− ui)n

)
−2n(1− |u|)

∑
i∈N

ui(1− ui)n−1 − 2
∑
i,j∈N
i<j

(
(1− ui)n(1− uj)n − (1− ui − uj)n

)
. (6.2)

Moreover, Ỹ (n, u) := Y (n, u)/n− (1− |u|) satisfies the concentration inequality

E((Ỹ (n, u))2) ≤ 2E(Ỹ (n, u)) =
2

n

∑
i∈N

(
1− (1− ui)n

)
, n ∈ N, u ∈ ∆. (6.3)

Remark 6.2. Write Ỹ := Ỹ (n, u) for convenience. Eq. (6.3) in particular implies that Var(Ỹ ) ≤
2E(Ỹ ). For the number Kn :=

∑
i∈N 1{Xi(n,u)>0} of occupied boxes (disregarding box 0) similar

statements that the variance Var(Kn) is bounded by its expectation E(Kn) are stated on p. 153 of
Gnedin et al. (2007).

Proof : Recall the notation |u| =
∑

i∈N ui and u0 := 1 − |u| for u = (u1, u2, . . .) ∈ ∆. We suppress
the parameters n and u and write Y for Y (n, u) and Xi for Xi(n, u), i ∈ N, for convenience.
We have Y = X0 +

∑
i∈N 1{Xi>0}, where (X0, X1, . . .) has an infinite multinomial distribution

with parameters n ∈ N and (u0, u1, . . .). Taking expectation and noting that E(X0) = nu0 and
E(1{Xi>0}) = 1− P(Xi = 0) = 1− (1− ui)n yields (6.1). Eq. (6.2) follows from

Var(Y ) = Var(X0) +
∑
i∈N

Var(1{Xi>0})

+2
∑
i∈N

Cov(X0, 1{Xi>0}) + 2
∑
i<j

Cov(1{Xi>0}, 1{Xj>0})

and the explicit formulas Var(X0) = nu0(1 − u0), Var(1{Xi>0}) = P(Xi = 0)P(Xi > 0) = (1 −
ui)

n(1− (1− ui)n),

Cov(X0, 1{Xi>0}) = Cov(X0, 1− 1{Xi=0}) = −Cov(X0, 1{Xi=0})

= E(X0)E(1{Xi=0})− E(X01{Xi=0})

= E(X0)P(Xi = 0)−
n∑
j=1

j

(
n

j

)
uj0(1− u0 − ui)n−j

= nu0(1− ui)n − nu0(1− ui)n−1 = −nu0ui(1− ui)n−1
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and

Cov(1{Xi>0}, 1{Xj>0}) = Cov(1− 1{Xi=0}, 1− 1{Xj=0})

= Cov(1{Xi=0}, 1{Xj=0})

= P(Xi = Xj = 0)− P(Xi = 0)P(Xj = 0)

= (1− ui − uj)n − (1− ui)n(1− uj)n

for all i, j ∈ N with i 6= j. In order to prove (6.3) we write Ỹ = X0/n − u0 + Kn/n, where
Kn :=

∑
i∈N 1{Xi>0} denotes the number of occupied boxes (disregarding box 0). We have

E(Ỹ 2) = E
((

X0

n
− u0

)2)
+ 2E

((
X0

n
− u0

)
Kn

n

)
+ E

((
Kn

n

)2)
.

The first expectation on the right hand side is equal to the variance ofX0/n. The second expectation
on the right hand side is non-positive since the covariance Cov(X0,Kn) =

∑
i∈N Cov(X0, 1{Xi>0}) =

−nu0
∑

i∈N ui(1− ui)n−1 of X0 and Kn is non-positive. We therefore obtain the upper bound

E(Ỹ 2) ≤ Var

(
X0

n

)
+ E

((
Kn

n

)2)
.

Using that ui = 1 − (1 − ui) ≤ 1 − (1 − ui)n, n ∈ N, the first quantity on the right hand side is
bounded by

Var

(
X0

n

)
=
|u|(1− |u|)

n
≤ 1

n

∑
i∈N

ui ≤
1

n

∑
i∈N

(
1− (1− ui)n

)
= E

(
Kn

n

)
= E(Ỹ ).

From 0 ≤ Kn/n ≤ 1 we conclude as well that

E
((

Kn

n

)2)
≤ E

(
Kn

n

)
= E(Ỹ ),

which yields the desired inequality E(Ỹ 2) ≤ 2E(Ỹ ). �

Problem 6.3. For u2 = u3 = · · · = 0 (which corresponds to the Λ-coalescent case), the sharper
inequality E(Ỹ 2) ≤ E(Ỹ ) holds (see Proposition 5.1 in Section 5). It is hence natural to conjecture
that this sharper inequality E(Ỹ 2) ≤ E(Ỹ ) holds as well for arbitrary u = (ur)r∈N ∈ ∆ (which
corresponds to the Ξ-coalescent case). We have neither been able to verify this conjecture nor to
find a counterexample. In order to verify this conjecture one would need to show the nonnegativity
of the function pn : ∆→ R, defined via

pn(u) := E(Ỹ )− E(Ỹ 2) = E(Ỹ )− (E(Ỹ ))2 −Var(Ỹ ) = E(Ỹ )− (E(Ỹ ))2 − Var(Y )

n2
.
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Noting that E(Ỹ ) = 1
n

∑
i∈N(1− (1− ui)n) and, hence, (E(Ỹ ))2 = 1

n2

∑
i∈N(1− (1− ui)n)(1− (1−

ui)
n) + 1

n2

∑
i 6=j(1− (1− ui)n)(1− (1− uj)n) we obtain via (6.2) for pn(u) the explicit formula

pn(u) =
1

n

∑
i∈N

(1− (1− ui)n)− 1

n2

∑
i∈N

(1− (1− ui)n)(1− (1− ui)n)

− 1

n2

∑
i,j∈N
i 6=j

(1− (1− ui)n)(1− (1− uj)n)

−|u|(1− |u|)
n

− 1

n2

∑
i∈N

(1− ui)n(1− (1− ui)n)

+
2(1− |u|)

n

∑
i∈N

ui(1− ui)n−1

+
1

n2

∑
i,j∈N
i 6=j

((1− ui)n(1− uj)n − (1− ui − uj)n)

=
1

n

∑
i∈N

(1− (1− ui)n)− |u|(1− |u|)
n

+
2(1− |u|)

n

∑
i∈N

ui(1− ui)n−1

− 1

n2

∑
i∈N

(1− (1− ui)n)

+
1

n2

∑
i,j∈N
i 6=j

((1− ui)n + (1− uj)n − 1− (1− ui − uj)n).

In particular p1(u) = |u|(1 − |u|) ≥ 0. Note that pn is a symmetric function with respect to the
coordinates ui, i ∈ N. We have not been able to prove for general n ∈ N that pn(u) ≥ 0 and leave
this conjecture as an open problem for future research.

7. Appendix

Lemma 7.1. For all n ∈ N and u = (ui)i∈N ∈ ∆ the inequality

1− (1− |u|)n ≤
∑
i∈N

(1− (1− ui)n) (7.1)

holds. In particular, Φ(n) ≤ Φ̃(n) for all n ∈ N.

Proof : Induction on n. Clearly (7.1) holds for n = 1. The induction step from n ∈ N to n+1 works
as follows. By the induction hypothesis,

1− (1− |u|)n+1 = |u|+ (1− |u|)(1− (1− |u|)n)

≤ |u|+ (1− |u|)
∑
i∈N

(1− (1− ui)n)

= |u|+
∑
i∈N

(1− |u|)(1− (1− ui)n) ≤ |u|+
∑
i∈N

(1− ui)(1− (1− ui)n)

= |u|+
∑
i∈N

(1− ui − (1− ui)n+1) =
∑
i∈N

(1− (1− ui)n+1),

where the last equality holds, since |u| =
∑

i∈N ui by definition. Integration of both sides of (7.1)
with respect to the measure ν yields Φ(n) ≤ Φ̃(n) for all n ∈ N. �
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The following two asymptotic results for beta like integrals with an additional logarithmic factor
are of general interest. Lemma 7.3 is used in Example 3.2 (NLG-coalescent).

Lemma 7.2. Let a, b, c > 0. Then, as b→∞,∫ 1

0
ua−1(1− u)b(− log u)c−1 du ∼ B(a, b)(log b)c−1 ∼ Γ(a)b−a(log b)c−1, (7.2)

where B and Γ denote the beta function and the gamma function respectively.

Proof : The integral is monotone (decreasing) in b ≥ 0. It hence suffices to consider integer b ∈ N.
Binomial expansion (1− u)b =

∑b
j=0

(
b
j

)
(−u)j turns the integral into

b∑
j=0

(
b

j

)
(−1)j

∫ 1

0
uj+a−1(− log u)c−1 du = Γ(c)

b∑
j=0

(
b

j

)
(−1)j

(j + a)c
,

which is asymptotically equal to Γ(a)b−a(log b)c−1 as b → ∞ (see, for example, Rubinstein, 2013,
Theorem 1.7). �

Lemma 7.3. Let a, b, c > 0. Then, as b→∞,

∫ 1

0
ua−2

(
1− (1− u)b

)
(− log u)c−1 du ∼



Γ(a)

1− a
b1−a(log b)c−1 if 0 < a < 1,
(log b)c

c
if a = 1,

Γ(c)

(a− 1)c
if a > 1.

(7.3)

Proof : Let I(b) denote the integral on the left hand side in (7.3). Assume first that 0 < a ≤ 1.
Since I(b) is monotone (increasing) in b ≥ 0 it suffices to consider integer b ∈ N. Using 1−(1−u)b =

u
∑b−1

k=0(1− u)k it follows that

I(b) =
b−1∑
k=0

∫ 1

0
ua−1(1− u)k(− log u)c−1 du.

The integral below the sum is asymptotically equal to Γ(a)(log k)c−1/ka as k →∞ by Lemma 7.2.
Taking a ≤ 1 and c > 0 into account we conclude that, as b→∞,

I(b) ∼ Γ(a)

b−1∑
k=1

(log k)c−1

ka
∼

{
Γ(a)(log b)c−1 b1−a

1−a if 0 < a < 1,
(log b)c

c if a = 1,

since
∫ b

2 (log x)c−1/xa dx ∼ (log b)c−1b1−a/(1− a) for 0 < a < 1 and, for a = 1,
∫ b

2 (log x)c−1/xdx ∼
(log b)c/c as b→∞. Alternatively, the case a = 1 may be handled as follows. By partial integration,
I(b) = (b/c)

∫ 1
0 (1 − u)b−1(− log u)c du ∼ (log b)c/c as b → ∞ by Lemma 7.2, applied with a := 1

and c replaced by c+ 1.
If a > 1 then dominated convergence yields I(b) →

∫ 1
0 u

a−2(− log u)c−1 du = Γ(c)/(a − 1)c as
q →∞. �
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