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Abstract. We extend the general stochastic matching model on graphs introduced in Mairesse and
Moyal (2016), to matching models on multigraphs, that is, graphs with self-loops. The evolution of
the model can be described by a discrete time Markov chain whose positive recurrence is investigated.
Necessary and sufficient stability conditions are provided, together with the explicit form of the
stationary probability in the case where the matching policy is ‘First Come, First Matched’.

1. Introduction

Over the past decade, an increasing interest has been dedicated to stochastic systems in which
incoming elements are matched according to specified compatibility rules. This is, first, a natural
representation of service systems in which customers and servers are of different classes, and where
designated classes of servers can serve designated classes of customers. For this general class of
queueing models, termed skill-based queueing systems, it is then natural to investigate the conditions
for the existence of a stationary state, and under these conditions, to design and control the model at
best, for given performance metrics (end-to-end delay, matching rates, fairness, etc.). Such models
are classical queueing systems, in the sense that there is a dissymmetry between customers and
servers: customers come and depart the system, whereas servers are part of the ‘hardware’, remain
in the system, and switch to the service of another customer when they have completed one (with
possible vacation times in-between services).

In Caldentey et al. (2009) (see also Adan and Weiss, 2012), a variant of such skill-based systems
was introduced, which are now commonly referred to as ‘Bipartite matching models’ (BM): couples
customer/server enter the system at each time point, and customers and servers play symmetric
roles: exactly like customers, servers come and go into the system. Upon arrival, they wait for
a compatible customer, and as soon as they find one, leave the system together with it. These
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settings are suitable to various fields of applications, among which, blood banks, organ transplants,
housing allocation, job search, dating websites, and so on. In both references, compatible customers
and servers are matched according to the FCFS (‘First Come, First Served’) service discipline. In
Adan et al. (2018a), a subtle dynamic reversibility property is shown, entailing that the stationary
state of such systems under FCFS, can be obtained in a product form. Moreover, a sub-additivity
property is proved, allowing (under stability conditions) the construction of a unique stationary
bi-infinite matching of the customers and servers, by a coupling-from-the-past (CFTP) technique.
Interestingly, the product-form of the stationary state can then be adapted to various skill-based
queueing models as well, and in particular those applying (various declinations of) the so-called
FCFM-ALIS (Assign the Longest Idling Server) service discipline - see e.g. Adan and Weiss (2014),
and various extensions of BM models in Adan et al. (2018b); Büke and Chen (2015, 2017). In Bušić
et al. (2013), the settings of Caldentey et al. (2009); Adan and Weiss (2012) are generalized to more
general service disciplines (termed ‘matching policies’ in this context), and necessary and sufficient
conditions for the stability of the system are introduced, which are functions of the compatibility
graph and of the matching policy. Moreover, as opposed to the previously cited references, the
results in Bušić et al. (2013) do not assume the independence between the types of the entering
customer and the entering server. The system is then called Extended Bipartite Matching Model
(EBM, for short), and suits applications in which independence between the classes of the customers
and servers entering simultaneously cannot be assumed. In Moyal et al. (2018), a CFTP result is
obtained, showing the existence of a unique bi-infinite matching in various cases for EBM models,
and for a broader class of matching policies than FCFS, thereby generalizing the results of Adan
et al. (2018a).

For the purpose of modeling concrete systems, the need then arose to extend these different
models. Indeed, in many applications the assumption of pairwise arrivals may appear somewhat
artificial, and it is more realistic to assume that arrivals are simple. In addition, all the afore-
mentioned references assume that the compatibility graph is bipartite, namely there are easily
identifiable classes of servers and classes of customers, whatever these mean: donors/receivers,
houses/applicants, jobs/applicants, and so on. However, in many cases the context requires that
the compatibility graph take a general (i.e., not necessarily bipartite) form. For instance, in dating
websites, it is a priori not possible to split items into two sets of classes (customers and servers) with
no possible matches within those sets. Similarly, in kidney exchange programs, intra-incompatible
couples donor/receiver enter the system, looking for a compatible couple to perform a ‘crossed’
transplant. Then, it is convenient to represent couples donor/receiver as single items, and compat-
ibility between couples means that a kidney exchange can be performed between the two couples
(the donor of the first couple can give to the receiver of the second, and the donor of the second can
give to the receiver of the first). In particular, if one consider blood types as a primary compatibility
criterion, the compatibility graph between couples is naturally non-bipartite. Motivated by these
observations, a variant model was introduced in Mairesse and Moyal (2016), in which items arrive
one by one and the compatibility graph is general, i.e., not necessarily bipartite: specifically, in
this so-called General stochastic Matching model (GM for short), items enter one by one in discrete
time in a buffer, and belong to determinate classes in a finite set V. Upon each arrival, the class
of the incoming item is drawn independently of everything else, from a distribution µ having full
support V. A connected graph G whose set of nodes is precisely V, determines the compatibility
among classes. Then, an incoming item is either immediately matched, if there is a compatible item
in line, or else stored in a buffer. It is the role of the matching policy Φ to determine the match
of the incoming item in case of a multiple choice. Then, the two matched items immediately leave
the system forever. The stability region of the model, given G and Φ, is then defined as the set
of measures µ such that the model is positive recurrent. A necessary condition for the stability of
GM models is provided in Mairesse and Moyal (2016) (see (4.1) below). In particular, the latter
condition is empty if and only the compatibility graph is bipartite (which partly justifies why items
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enter by pairs in BM and EBM models - otherwise the model could not be stabilizable). On another
hand, it is proven in Mairesse and Moyal (2016) that the matching policy ‘Match the Longest’ has
a maximal stability region, that is, the latter necessary condition is also sufficient (we then say
that the latter policy is maximal). However, Moyal and Perry (2017) shows that in fact, aside for a
particular class of graphs, random policies are never maximal, and that there always exists a strict
priority policy that isn’t maximal either. Then, by adapting the dynamic reversibility argument
of Adan et al. (2018a) to the GM models, Moyal et al. (2021) shows that the matching policy
First Come, First Matched (FCFM) is also maximal, and derives the stationary probability in a
product form. More recently, following the work of Nazari and Stolyar (2019), matching policies of
the broader Max-Weight type (including ‘Match the Longest’) are shown to be maximal, and drift
inequalities allow to bound the speed of convergence to the equilibrium, and the first two moments
of the stationary state. Variants of the GM model to the case of (i) hypergraphical structures (i.e.
matching items by groups of two or more) and (ii) graphical systems with reneging are investigated,
respectively in Gurvich and Ward (2014); Nazari and Stolyar (2019); Rahmé and Moyal (2019) and
Jonckheere et al. (2020) (see also Boxma et al. (2011)).

Motivated again by concrete applications, in the present article we present a further extension
of the GM model. Indeed, in various contexts, among which dating websites and peer-to-peer
interfaces, it is natural to assume that items of the same class can be matched together. Hence,
the need to generalize the previous line of research to the case where the matching architecture is
a multigraph (a graph admitting self-loops, that is, edges connecting nodes to themselves), rather
than just a graph. This generalization is the core subject of the present paper. We show how several
stability results of Mairesse and Moyal (2016); Moyal et al. (2021); Jonckheere et al. (2020) can be
generalized to the case of a multigraphical matching structure. As is easily seen, the buffer of a
matching model on a multigraph is hybrid by essence: nodes admitting self-loops (if any) admit at
most one item in line, whereas nodes with no self-loops (if any) have unbounded queues. A matching
model on a multigraph typically has a larger stability region than the corresponding model on a
graph on which all self-loops are erased (the maximal subgraph of the latter - see Definition 2.2),
but the interplay between self-looped nodes and their non-self-looped neighbors needs to be clearly
understood: intuitively, the arrival flows to self-looped nodes appear as auxiliary flows helping their
neighboring non-self-looped nodes to stabilize their own queues - provided that the arrivals to self-
looped nodes don’t match too often with one another. On another hand, in the extreme case where
all nodes are self-looped, the model is finite and has a flavor of statistical-physical system: it is an
irreducible Markov chain on {0, 1}|V| with local interactions - see Example 5.1 below. En route, by
showing results for stochastic matching models on multigraphs, we show various results that have
their own inner interest for GM models on graphs - see in particular Propositions 4.2 and 4.12 and
Sub-section 7.5 below.

This paper is organized as follows: we start by some preliminary in Section 2, and in particular by
introducing the main definitions and properties of multigraphs. In Section 3, we formally introduce
the present model. In Section 4, we present our main results for GM models on multigraphs, among
which, the maximality and the explicit product form of the stationary probability for the FCFM
policy, and the maximality of Max-Weight policies. To illustrate these results, several examples are
presented in Section 5. The proofs of our main results are then presented in Sections 6, 7 and 8.

2. Preliminary

General notation. We denote by R the set of real numbers, by N the set of non-negative integers
and by N+ the subset of positive integers. For any p, q ∈ N+, we denote by Jp, qK the integer interval
[p, q] ∩ N+. For a, b ∈ R, we write a ∨ b and a ∧ b for the maximum and the minimum of a and b,
respectively.

We let Sn denote the symmetric group on the set J1, nK, i.e. the set of permutations of J1, nK.
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For any finite set A, we denote by |A| the cardinality of A. The set A is often implicitly ordered,
and identified with J1, |A|K. The set of probability measures having full support on A is denoted by
M (A).

Words. For k ∈ N+ and k finite sets A1, . . . , Ak, we identify the cartesian product A1×A2×· · ·×Ak
with the set, denoted by A1A2 . . . Ak, of words of length k whose i-th letter is an element of Ai, for
all i ∈ J1, kK. In particular, Ak is identified with the set of words of length k over the alphabet A.
We then denote by A∗ , ∪k∈NAk the set of finite words over the alphabet A. We denote the length
of w ∈ A∗ by |w|, so that if w ∈ Ak, |w| = k.

For w ∈ A∗ and B ⊂ A, we introduce the notation |w|B , Card{i ∈ {1, . . . , |w|} : wi ∈ B}. For
a letter a ∈ A, we denote simply by |w|a , |w|{a} the number of occurrences of the letter a in the
word w.

The concatenation of k words w1, w2, . . . , wk of A∗, that is, the word w in which appear succes-
sively from left to right, the words w1, w2, . . . , wk, is denoted by w = w1w2 . . . wk. In particular, for
a word w and a letter i, the word wi denotes the concatenation of the word w with the single-letter
word i, in that order. Any word w ∈ A∗ of length |w| = q is written w = w1w2 . . . wq, and for any
i ∈ J1, nK, we denote by w[i] the word of length |w|−1 obtained from w by deleting its i-th letter wi.
The empty word (i.e. the unique word of A∗ of length 0) is denoted ε. For any word w = w1w2...wq,
the prefix of w of length k ≤ q is the word w′ = w1w2...wk.

For any w ∈ A∗, we let [w] , (|w|a)a∈A ∈ N|A| be the commutative image of w. For any integer
q, the vectors of Nq are denoted as w , (w(1), . . . , w(q)). We let, for any i ∈ J1, qK, ei be the i-th
vector of the canonical basis of Rq.

Multigraphs. Hereafter, a multigraph is given by a couple G = (V, E), where V is the (finite) set of
nodes and E ⊂ V × V is the set of edges. All graphs considered hereafter are undirected, that is,
(u, v) ∈ E =⇒ (v, u) ∈ E , for all u, v ∈ V. We write u−v or v−u for (u, v) ∈ E , and u6−v (or v 6−u)
else. Elements of the form (v, v) ∈ E , for v ∈ V, are called self-loops. For any multigraph G = (V, E)
and any U ⊂ V, we denote

E(U) , {v ∈ V : ∃u ∈ U, u− v}
the neighborhood of U , and for u ∈ V, we write for short E(u) , E({u}). The set V can then be
partitioned in V = V1 ∪ V2, where V1 , {u ∈ V : u−u} and V2 , {u ∈ V : u6−u}, i.e., V1 contains
all nodes from which a self-loop emanates, if any, and V2 is the complement set of V1 in V. A
multigraph having no self-loop, that is, a couple G = (V, E) such that V1 = ∅, is simply a graph.
Observe that, with respect to the classical notion of multigraphs, we assume hereafter that all edges
are simple. For any node i ∈ V, we denote by

deg(i) = |E(i)|,

the degree of node i, that is, the number of neighbors of i (possibly including i itself if i ∈ V1).
Notice that, by defining E as a set of (ordered) couples as we did above, for any i, j such that i−j,
(i, j) appears in E together with (j, i). In particular we get that∑

i∈V
deg(i) = |E|. (2.1)

For any multigraph G = (V, E) and any U ⊂ V, the subgraph induced by U in G is the multigraph
(U, E ∩ (U ×U)). An independent set of G is a non-empty subset I ⊂ V which does not include any
pair of neighbors, i.e. :

(
∀(i, j) ∈ I2, i 6−j

)
. We let I(G) be the set of independent sets of G. Then,

observe that ∀I ∈ I(G), I ∩ V1 = ∅, i.e. I ⊂ V2. An independent set is said maximal, if it is not
strictly included in another independent set.

Let us now recall and introduce the following definitions:



Stochastic matching model on multigraphs 1329

Definition 2.1. A graph G = (V, E) is said to be complete q-partite (or blow-up graph of order q)
if V can be partitioned into q maximal independent sets I1, . . . , Iq, such that for any k, ` ∈ J1, qK,
k 6= ` and any ik ∈ Ik and i` ∈ I`, we have that ik−i`.
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Figure 2.1. Complete 3-partite subgraph (left), complete graph of order 3 (right).

In other words, a complete q-partite graph is a blow-up of the complete graph of size q, in the
sense that all nodes are duplicated into one, or several distinct and unconnected nodes having the
same neighbors as the original node. See an example on Figure 2.1.

Definition 2.2. Let G = (V, E) be a multigraph. The maximal subgraph of G is the graph Ǧ =
(V, Ě) obtained by deleting all self-loops in G, that is

Ě , E \ {(i, i) : i ∈ V1} . (2.2)

See an example on Figure 2.2.

Definition 2.3. Let G = (V1 ∪ V2, E) be a multigraph. The minimal blow-up graph of G is the
graph Ĝ = (V̂, Ê) defined as follows:

V̂ , V ∪ V1 and Ê , Ě ∪ E1, (2.3)

where V1 is a disjoint copy of V1, Ě is defined by (2.2) and

E1 , {(i, j) : (i, j) ∈ E , i ∈ V1, j ∈ V}.

In other words, Ĝ is obtained from G by duplicating each node having a self-loop by two nodes
having the same neighborhood and replacing each self-loop by an edge between the node and its
copy. See an example in Figure 2.2. For any set A ⊂ V1, we denote by A the set of all copies of
elements of A, that is

A , {i : i ∈ A} .
For any element j ∈ A, we will also denote by j the unique element i ∈ A such that j = i. The
maximal subgraph Ǧ of G is then called reduced graph of Ĝ.
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Figure 2.2. A multigraph G (middle), its maximal subgraph Ǧ (left) and its min-
imal blow-up graph Ĝ (right).

Throughout this paper, all considered multigraphs are connected, that is, for any u, v ∈ V, there
exists a subset {v0 , u, v1, v2, . . . , vp , v} ⊂ V such that vi−vi+1, for any i ∈ J0, p− 1K.



1330 Jocelyn Begeot, Irène Marcovici, Pascal Moyal and Youssef Rahme

3. The model

All the random variables (r.v., for short) hereafter are defined on a common probability space
(Ω,F ,P).

3.1. Stochastic matching model on a multigraph. Generalizing the model introduced in Mairesse
and Moyal (2016) to multigraphs (rather than only graphs), a matching model is formally specified
by the triple (G,Φ, µ), where

(1) G = (V, E) is a connected multigraph having at least two nodes;
(2) Φ is the matching policy, to be properly defined later;
(3) µ is an element of M (V), i.e. a probability measure having full support V.

The dynamics of the matching model associated to (G,Φ, µ) is then similar to that of stochastic
matching models on general graphs, as in Mairesse and Moyal (2016): start with an empty “buffer”
and, for any n ∈ N+, draw an element Vn of V from the probability measure µ, independently of
σ ({V1, V2, . . . , Vn−1}), and apply the following rules:

• if there is no element of class i in the buffer such that Vn − i, then add an item of class Vn
to the buffer;
• otherwise, do not add Vn and remove from the buffer an element of class i such that Vn − i
(we say that Vn and i are matched together). If several elements i of the buffer are such
that Vn − i, the one to be removed depends on a matching policy to be specified for the
considered model.

3.2. State spaces. We reproduce here the state description of the model introduced in Mairesse and
Moyal (2016) for the stochastic model on general graphs, and then Moyal et al. (2021) for the same
model under fcfm. Fix a connected multigraph G = (V, E), in the sense specified above, until
the end of this section. Fix an integer n0 ≥ 1, a realization v1, . . . , vn0 of V1, . . . , Vn0 , and define
the word z , v1 . . . vn0 ∈ V∗. Then, for any matching policy Φ, there exists a unique matching of
the word z, that is, a graph on the set of nodes {v1, . . . , vn0}, whose edges represent the matches
performed in the system until time n0, if the successive arrivals are given by z. This matching is
denoted by MΦ(z). The state of the system is then defined as the word WΦ(z) ∈ V∗, whose letters
are the classes of the unmatched items at time n0, i.e. the isolated vertices in the matching MΦ(z),
in their order of arrivals. The word WΦ(z) is called queue detail at time n0. Then, any admissible
queue detail belongs to the set

W ,
{
w ∈ V∗ : ∀i 6= j s.t. (i, j) ∈ E , |w|i|w|j = 0 and ∀i ∈ V1, |w|i ≤ 1

}
. (3.1)

As will be seen below, depending on the service discipline Φ, we can also restrict the available
information on the state of the system at time n0, to a vector only keeping track of the number
of items of the various classes remaining unmatched at n0, that is, of the number of occurrences
of the various letters of the alphabet V in the word WΦ(z). This restricted state thus equals the
commutative image of WΦ(z) and is called class detail of the system. It takes values in the set

X ,
{
x ∈ N|V| : ∀i 6= j s.t. (i, j) ∈ E , x(i)x(j) = 0 and ∀i ∈ V1, x(i) ≤ 1

}
=
{

[w] : w ∈W
}
.

3.3. Matching policies. We now present and formally define the set of usual matching policies that
can be considered,
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Definition 3.1. A matching policy Φ is said admissible if the choice of the match of an incoming
item depends solely on the queue detail upon the arrival (and possibly on an independent uniform
draw, in case of a tie).

An admissible matching policy can be formally characterized by an action �Φ of V onW, defined
as follows: if w is the queue detail at a given time and the input is augmented by the arrival of
v ∈ V at that time, then the new queue detail w′ and w satisfies the relation:

w′ = w �Φ v. (3.2)

Notice that the action �Φ is possibly random. See below.

3.3.1. Matching policies that depend on the arrival times. In ‘First Come, First Matched’ (fcfm),
the oldest item in line is chosen, so the map �fcfm is given, for all w ∈W and all v ∈ V, by

w �fcfm v ,

{
wv if |w|E(v) = 0,
w[Φ(w,v)] else, where Φ(w, v) = min{k ∈ [[1; |w|]] : wk ∈ E(v)}.

In ‘Last Come, First Matched’ (lcfm), the updating map �lcfm is analog to �fcfm, for Φ(w, v) =
max{k ∈ [[1; |w|]] : wk ∈ E(v)}.

3.3.2. Class-admissible matching policies. A matching policy Φ is said to be class-admissible if it
can be implemented upon the sole knowledge of the class-detail of the system. Let us define, for
any x ∈ X and any v ∈ V,

P(x, v) ,
{
j ∈ E(v) : x (j) > 0

}
,

the set of classes of available compatible items with the entering class v-item, if the class-detail of
the system is given by x. Then, a class-admissible policy Φ is fully characterized by a (possibly
random) mapping pΦ, such that pΦ(x, v) denotes the class of the match chosen by the entering
v-item under Φ, in a system of class-detail x, such that P(x, v) is non-empty. Then, the arrival of
v entails the following action on the class-detail:

x}Φ v ,

{
x+ ev if P(x, v) = ∅,
x− epΦ(x,v) else. (3.3)

Remark 3.2. As is easily seen, to any class-admissible policy Φ corresponds an admissible policy, if
one makes precise the rule of choice of match for the incoming items within the class that is chosen
by Φ, in the case where more than one item of that class is present in the system. In this paper, we
always assume that within classes, the item chosen is always the oldest in line, i.e. we always apply
the fcfm policy within classes. Under this convention, any class-admissible policy Φ is admissible,
that is, the mapping }Φ from X × V to X can be detailed into a map �Φ from W × V to W, as
in (3.2), such that for any queue detail w and any v,

[w �Φ v] = [w]}Φ v.

Class-admissible random policies. In a random policy, the only information that is needed to deter-
mine the choice of the match of an incoming item is whether its various compatible classes have an
empty queue or not. Specifically, the order of preference of each incoming item is drawn upon the
arrival following a given probability distribution; then, the considered item investigates its compat-
ible classes in that order, until it finds one having a non-empty buffer, if any. The incoming item is
then matched with an item of the latter class. In other words, upon each arrival of an item of class
v, a permutation σ = (σ(1), . . . , σ (|E(v)|)) is drawn from a given probability distribution on SE(v),
and we set

pΦ(x, v) , σ(k), where k = min
{
i ∈ E(v) : σ(i) ∈ P(x, v)

}
. (3.4)

In particular, the uniform policy u corresponds to the uniform distribution on SE(v).
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Priority policies. In a priority policy, for any v ∈ V, the order of preference of v in E(v) is fixed
beforehand. In other words, upon the arrival of an item of class v, the permutation σ of SE(v)

is deterministic and corresponds to the order of preference of class v-item in E(v). This is thus a
particular case of random policy.

Max-Weight policies. The Max-Weight (mw) policies are an important class of class-admissible poli-
cies, in which matches are based upon the queue length and a fixed reward that is associated to
each match. Formally, for any (i, j) ∈ E , we let wi,j be the reward associated to the match of an
i-item with a j-item, and fix a real parameter β.

Then, in a system of class-detail x, the match of the incoming v-item is given by

pΦ(x, v) , argmax {βx(j) + wv,j : j ∈ P(x, v)} ,

where ties are broken uniformly at random whenever the above is non-unique. In other words, j
maximizes a linear combination of the queue-size and the rewards. Several particular cases are to
be mentioned:

(i) If β > 0 and the rewards are constant (i.e. wi,j = wi′,j′ , for any (i, j) and (i′, j′) ∈ E), then
the matching policy is ‘Match the Longest’ (ml), i.e., the incoming v-item is matched upon
the arrival with an item of the compatible class having the longest queue size (ties being
broken uniformly at random).

(ii) If β < 0 and the rewards are constant, then the matching policy is ‘Match the Shortest’
(ms), i.e., the incoming v-item is matched upon the arrival with an item of the compatible
class having the shortest queue size (ties being broken uniformly at random).

(iii) If β = 0 and wi,j 6= wi,j′ for any i ∈ V and any j 6= j′ ∈ E(i) (implying that there is a strict
ordering of rewards for all possible matches of any given class), then the matching policy is
of a priority type, defined above.

3.3.3. V2-favorable policies. An important class of matching policies is given by the following:

Definition 3.3. We say that an admissible matching policy Φ on G is V2-favorable if any incoming
item always prioritizes a match with a compatible item of class in V2 over a compatible item of class
in V1, whenever it has the choice. Formally, if the class-detail is given by x ∈ X and the arrival is of
class v, it never occurs that the incoming v-item is matched with a j-item, for some j ∈ V1, while
P(x, v) ∩ V2 6= ∅.

3.4. Primary Markov representation. The Markov representation of the model is similar to that of
general matching models on graphs. Denote, for all w ∈ W and all n ≥ 1, by W {w}n , the buffer-
content at time n (i.e. just after the arrival of the item Vn) if the buffer-content at time 0 was set
to w. In other words, {

W
{w}
0 = w,

W
{w}
n = WΦ (wV1 . . . Vn) , n ∈ N+.

It readily follows from (3.2) and Remark 3.2 that the buffer-content sequence
{
W
{w}
n

}
n∈N

is a
Markov chain. Indeed, for any w ∈W, we have

W
{w}
n+1 = W {w}n �Φ Vn+1, ∀n ∈ N.

For a fixed initial condition and for all n ∈ N, we denote, for all B ⊂ V, by Wn(B), the number
of items in line of classes in B at time n, and by |Wn|, the total number of items in the system at
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time n. In other words, 
Wn(B) ,

∑
i∈B

Wn(i),

|Wn| ,Wn(V) =
∑
i∈V

Wn(i).

In line with Mairesse and Moyal (2016), for any admissible matching policy Φ, we define the
stability region associated to G and Φ as the set of measures

stab(G,Φ) ,
{
µ ∈M (V) : {Wn}n∈N is positive recurrent

}
. (3.5)

Definition 3.4. We say that a multigraph G is stabilizable if stab(G,Φ) 6= ∅, for some matching
policy Φ. If not, G is said non-stabilizable.

Remark 3.5. If G is such that V = V1, i.e. all nodes of the multigraph have a self-loop, we say, for
obvious reasons, that the considered matching models are finite. Then any matching model on G
is necessarily stable, that is, for any admissible Φ we have that

stab(G,Φ) = M (V).

Indeed, the Markov chain {Wn}n∈N is irreducible on the finite state spaceW, containing only words
having size less or equal to the cardinality of the largest independent set of G.

4. Main results

We now state the main results of this paper. Similarly to Mairesse and Moyal (2016), we will be
led to consider the set

Ncond(G) , {µ ∈M (V) : ∀I ∈ I(G), µ (I) < µ (E (I))} . (4.1)

Let us immediately observe that

Lemma 4.1. For any connected multigraph G, we have that

Ncond
(
Ǧ
)
⊆ Ncond(G).

Proof : Let µ ∈ Ncond
(
Ǧ
)
and I ∈ I(G). Plainly, I is then also an element of I(Ǧ), so we have

that µ(I) < µ
(
Ě(I)

)
. But as I ⊂ V2 we also have that Ě(I) = E(I), which concludes the proof. �

It is stated in Theorem 1 of Mairesse and Moyal (2016) that, if G is a graph, the set Ncond(G)
is non-empty if and only if G is not a bipartite graph. This result can be generalized to multigraphs,
and completed as follows,

Proposition 4.2. For any connected multigraph G, we have that

Ncond(G) 6= ∅ ⇐⇒ G is not a bipartite graph.

In that case, recalling (2.1), the probability measure µdeg defined by

µdeg(i) =
deg(i)
|E|

, i ∈ V, (4.2)

is always an element of Ncond(G).

Proposition 4.2 is proven in Section 6. From Proposition 2 in Mairesse and Moyal (2016), whenever
G is a graph (i.e., V1 = ∅), the set stab(G,Φ) is included in Ncond(G) for any admissible policy
Φ. In other words, for any measure µ, belonging to Ncond(G) is necessary for the stability of the
system (G,Φ, µ), for any Φ. A similar result holds for any multigraph G:

Proposition 4.3. For any connected multigraph G = (V, E) and any admissible matching policy Φ,
we have that

stab(G,Φ) ⊂ Ncond(G).
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Proof : The proof is analog to that of Proposition 2 in Mairesse and Moyal (2016). �

Hence, the notion of maximality of a matching policy is:

Definition 4.4. For any connected multigraph G that is not a bipartite graph, a matching policy
Φ is said maximal if the sets stab(G,Φ) and Ncond(G) coincide.

Whenever G is a graph, Theorem 1 of Moyal et al. (2021) shows, first, that the policy ‘First
Come, First Matched’ (fcfm) is maximal, and second, that the stationary probability of the chain
{Wn}n∈N can be expressed in a remarkable product form. We generalize this result to multigraphs:

Theorem 4.5. The matching policy ‘First Come, First Matched’ is maximal: for any connected
multigraph G that is not a bipartite graph, we have that Stab(G, fcfm) = Ncond(G). Moreover,
for any µ ∈ Ncond(G) the unique stationary probability ΠW of the chain {Wn}n∈N is defined by

ΠW (ε) = α;

ΠW (w) = α

q∏
l=1

µ(wl)

µ(E({w1, . . . , wl}))
, for all w = w1 . . . wq ∈W \ {ε},

where

α−1=1 +
∑
I∈I(Ǧ)

∑
σ∈S|I|

|I|∏
i=1

µ
(
eσ(i)

)
µ(E({eσ(1), . . . , eσ(i)}))− µ({eσ(1), . . . , eσ(i)} ∩ V2)

, (4.3)

and where we denote I = {e1, . . . , e|I|} for any I ∈ I
(
Ǧ
)
.

Theorem 4.5 is proven in section 7.

Remark 4.6. If the model is finite, i.e. all nodes of G have self-loops or in other words, V2 = ∅, then
it readily follows from Theorem 4.5 that the unique stationary probability on the finite state space
W, is given by

ΠW (ε) = α;

ΠW

(
eσ(1) · · · eσ(|I|)

)
= α

|I|∏
i=1

µ
(
eσ(i)

)
µ(E({eσ(1), . . . , eσ(i)}))

, for all I ∈ I(Ǧ), σ ∈ S|I|,

with the normalizing constant

α =

1 +
∑
I∈I(Ǧ)

∑
σ∈S|I|

|I|∏
i=1

µ
(
eσ(i)

)
µ(E({eσ(1), . . . , eσ(i)}))


−1

·

On another hand, as is shown in Theorem 3.2 of Jonckheere et al. (2020), all Max-Weight matching
policies such that β > 0 are maximal whenever G is a graph. (Notice that Theorem 3.2 in Jonckheere
et al. (2020) is in fact shown only for β = 1, however a generalization to any β > 0 is straightforward,
by modifying the rewards accordingly.) In particular, the maximality of ‘Match the Longest’ (ml)
for GM models was first proven in Theorem 2 of Mairesse and Moyal (2016), as a consequence of
the corresponding result for EBM models, see Theorem 7.1 of Bušić et al. (2013). This result can
also be generalized to multigraphs:

Theorem 4.7. Any Max-Weight policy Φ such that β > 0 is maximal: for any multigraph G that
is not a bipartite graph, we have that stab(G,Φ) = Ncond(G).

Aside from fcfm and Max-Weight policies, we can determine, or lower-bound, the stability region
of the model for particular classes of multigraphs.
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Definition 4.8. Let G be a connected multigraph. We say that G is complete p-partite, p ≥ 2, if
its maximal subgraph Ǧ is complete p-partite. Then, the minimal blow-up graph Ĝ is itself called
an extended complete p-partite graph.

Observe that an extended complete p-partite graph is not complete p-partite whenever the con-
struction above is non-trivial, i.e., the multigraph in the above definition is not a graph, see an
example on Figure 4.3.

1

4 5

2
3

1

4 5

2
3

1

4

2

5

3

5

Figure 4.3. A multigraph G (middle), its maximal complete 3-partite subgraph Ǧ
(left), and extended complete p-partite graph Ĝ (right).

Theorem 4.9. Let G be a complete p-partite multigraph, p ≥ 2. Then,
(i) If p ≥ 3 or V1 6= ∅, then any V2-favorable matching policy Φ is maximal, that is,

stab(G,Φ) = Ncond(G).
(ii) If p ≥ 3, then Ncond

(
Ǧ
)
⊂ stab(G,Φ), for any admissible matching policy Φ.

With the above results in hands, we have the following panorama regarding the stability region
of a matching model on a connected multigraph G:

(i) Any measure µ that does not belong to the set Ncond(G) makes the system unstable;
(ii) If G is a bipartite graph, then the model cannot be stable;
(iii) Otherwise, the region Ncond(G) is necessarily non-empty, and the models (G, fcfm, µ) and

(G,Φ, µ) for any Max-Weight policy Φ with β > 0, are stable for any µ ∈ Ncond(G). In
particular, in that case Ncond(G) necessarily includes the measure µdeg defined by (4.2),
so any model (G,Φ, µdeg), for Φ = fcfm or Φ = mw with β > 0, is stable.

(iv) For any complete p-partite multigraph (p ≥ 2) that is not a bipartite graph and any µ ∈
Ncond (G), any model (G,Φ, µ) such that µ ∈ Ncond

(
Ǧ
)
or Φ is V2-favorable, is stable.

As a by-product of Theorem 4.9 we can determine, or lower-bound, the stability region of GM
models on extended complete p-partite graphs.

Definition 4.10. For any measures µ ∈M (V) and µ̂ ∈M (V̂), we say that µ̂ extends µ on Ĝ, and
that µ reduces µ̂ on G, if {

µ̂(i) = µ(i), for all i ∈ V2 ;
µ̂(i) + µ̂(i) = µ(i), for all i ∈ V1.

Definition 4.11. Let Φ and Φ̂ be two admissible matching policies, respectively on G and Ĝ. We
say that Φ̂ extends Φ on Ĝ if, for any µ ∈M (V) and µ̂ ∈M

(
V̂
)
, whenever both systems (G,Φ, µ)

and
(
Ĝ, Φ̂, µ̂

)
are in the same state w ∈W and welcome the same arrival, Φ and Φ̂ induce the same

choice of match, if any.

Proposition 4.12. Let Ĝ be an extended complete p-partite graph, p ≥ 2, and Ǧ be its reduced
graph.
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(i) If p ≥ 3 or V1 6= ∅, then for any matching policy Φ̂ on Ĝ that extends a V2-favorable policy
on G, stab(Ĝ, Φ̂) = Ncond(Ĝ).

(ii) If p ≥ 3, then for any measure µ̂ on Ĝ whose reduced measure µ is an element of Ncond(Ǧ),
and any matching policy Φ̂ on Ĝ, the model (Ĝ, Φ̂, µ̂) is stable.

The proofs of Theorem 4.7, Theorem 4.9 and Proposition 4.12 are given in section 8.

5. A few examples

In this section, we illustrate our main results by different examples.

Example 5.1. Consider the multigraph G of Figure 5.4, made of four nodes arranged in a square,
with a self-loop at each node. Since all nodes have a self-loop, it follows from Remark 3.5 that any

1 2

34

Figure 5.4. Multigraph G of Example 5.1.

matching model on G is necessarily stable, that is, for any admissible Φ, we have that stab(G,Φ) =
M (V). Let us focus on the fcfm policy. The set of admissible queue details is given by W =
{ε, 1, 2, 3, 4, 13, 24, 31, 42}, and as a consequence of Remark 4.6, we can compute explicitly ΠW ,
obtaining the following values:

ΠW (ε) = α

ΠW (1) = α µ(1)
1−µ(3) ΠW (2) = α µ(2)

1−µ(4)

ΠW (3) = α µ(3)
1−µ(1) ΠW (4) = α µ(4)

1−µ(2)

ΠW (13) = α µ(1)
1−µ(3)µ(3) ΠW (24) = α µ(2)

1−µ(4)µ(4)

ΠW (31) = α µ(3)
1−µ(1)µ(1) ΠW (42) = α µ(4)

1−µ(2)µ(2),

with

α =

[
1 + µ(1)

1 + µ(3)

1− µ(3)
+ µ(2)

1 + µ(4)

1− µ(4)
+ µ(3)

1 + µ(1)

1− µ(1)
+ µ(4)

1 + µ(2)

1− µ(2)

]−1

,

using the fact that I
(
Ǧ
)

= {{1}, {2}, {3}, {4}, {1, 3}, {2, 4}}.

Example 5.2. Consider the multigraph G (at the middle) of Figure 2.2. From Theorems 4.5 and 4.7,
both the stability region stab(G, fcfm) under First Come, First Matched, and the stability region
stab(G,mw) under any Max-Weight policy, coincide with the set

Ncond(G) =

{
µ ∈M (V) : µ(1) < µ(2), µ({1, 3}) ∨ µ({1, 4}) < 1

2

}
.
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1
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Figure 5.5. A multigraph on the complete 2-partite graph of size 3 (left), and its
minimal blow-up graph (right).

Example 5.3. Consider now the multigraph G of Figure 5.5, whose maximal subgraph is a complete
2-partite graph of order 3 (i.e., a string of 3 nodes).
We easily obtain that

Ncond(G) =

{
µ ∈M (V) : µ(1) < µ(2) <

1

2

}
,

Ncond(Ĝ) =

{
µ ∈M (V̂) : µ(1) < µ(2), µ(2) ∨ µ({1, 3}) ∨ µ({1, 3}) < 1

2

}
.

In view of Theorems 4.5 and 4.7, the respective stability regions stab(G, fcfm) and stab(G,mw)
under First Come, First Matched, or any Max-Weight policy, coincide with Ncond(G).

Let us first focus on the fcfm policy. The set of admissible queue details is given by

W = {ε} ∪
{

1k : k ≥ 1
}
∪
{

2k : k ≥ 1
}
∪
{

1r31k−r : k ≥ 0, 0 ≤ r ≤ k
}
.

By Theorem 4.5, we have that


ΠW (ε) = α

ΠW (1k) = α
(
µ(1)
µ(2)

)k
ΠW (2k) = α

(
µ(2)

1−µ(2)

)k
ΠW

(
1r31k−r

)
= α

(
µ(1)
µ(2)

)r
× µ(3)

1−µ(1) ×
(

µ(1)
1−µ(1)

)k−r
,

and since I
(
Ǧ
)

= {{1}, {2}, {3}, {1, 3}}, we can express α as follows,

α =

[
1 +

µ(1)

µ(2)− µ(1)
+

µ(2)

1− 2µ(2)
+

µ(3)

1− µ(1)

+
µ(1)

µ(2)− µ(1)

µ(3)

1− 2µ(1)
+

µ(3)

1− µ(1)

µ(1)

1− 2µ(1)

]−1

.

Second, consider a matching policy Φ̂ such that a 2-item always prioritizes a 1-item over a 3 or a
3-item. Then Φ̂ extends a V2-favorable policy Φ on Ĝ. Thus, from Proposition 4.12(i), the stability
region of the system is Ncond(Ĝ), in other words Φ̂ is maximal on Ĝ. We thereby generalize
with a very simple proof, the result of Lemma 3 of Mairesse and Moyal (2016) to the case where
µ(3) 6= µ(3). Last, in view of Theorem 4.9(i), any V2-favorable matching policy Φ on G (i.e., such
that 2 prioritizes 1 over 3) is maximal, that is, the two sets stab(G,Φ) and Ncond(G) coincide.
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Example 5.4. Last, consider the multigraph G represented in (the middle figure of) Figure 4.3. The
maximal subgraph is 3-partite complete, and we readily obtain that

Ncond(Ǧ) =

{
µ ∈M (V) : µ(1) ∨ µ({2, 4}) ∨ µ({3, 5}) < 1

2

}
;

Ncond(G) =

{
µ ∈M (V) : µ(1) ∨ µ({2, 4}) < 1

2
, µ(3) < µ({1, 2, 4})

}
;

Ncond(Ĝ) =

{
µ ∈M (V) : µ(1) ∨ µ({2, 4}) ∨ µ({3, 5}) ∨ µ({3, 5}) < 1

2

}
.

Then, from Theorems 4.5 and 4.7, the respective stability regions stab(G, fcfm) and stab(G,mw)
under First Come, First Matched, or any Max-Weight policy coincide with the set Ncond(G).
From Theorem 4.9(i), for any policy Φ on G according to which all items prioritize 3-items over 5
items is maximal, i.e. stab(G,Φ) = Ncond(G). From Theorem 4.9(ii), any policy Φ on G is such
that Ncond(Ǧ) ⊂ stab(G,Φ). Last, from Proposition 4.12, any policy Φ̂ on Ĝ giving priority to
3-items over 5 and 5-items is maximal, whereas for any matching policy Φ̂ and any measure µ̂ on V̂
extending a measure of Ncond(Ǧ), the model (Ĝ, Φ̂, µ̂) is stable.

6. Proof of Proposition 4.2

The proof of the fact that Ncond(G) = ∅ whenever G is a bipartite graph was given in Theorem 1
of Mairesse and Moyal (2016). We reproduce it hereafter for easy reference: Let us assume that
G is a connected bipartite graph, and let (A,B) be a bipartition of V such that if i−j, then
(i, j) ∈ (A × B) ∪ (B × A). Then, A,B ∈ I(G), and E(A) = B, E(B) = A. So, for any measure
µ ∈M (V), we have either µ(A) ≥ µ(E(A)) or µ(B) ≥ µ(E(B)), meaning that Ncond(G) = ∅.

In order to prove the converse statement, we show that if G is a connected multigraph such that
µdeg 6∈ Ncond(G), then G is a bipartite graph.

For a subset A of V, let us denote by S(A) the set of edges having at least one extremity in A,
where we identify the edges (i, j) and (j, i), and where we include self-loops. Formally,

S(A) , {{i, j} ⊂ V : i 6= j, i−j and {i, j} ∩A 6= ∅} ∪ {(i, i) : i ∈ V1 ∩A} .

Observe that we have the following properties.

(1) For any A ⊂ V, S(A) ⊂ S(E(A)).
(2) For any A ⊂ V,

∑
i∈A deg(i) ≥ CardS(A), so that µdeg(A) ≥ 1

|E| CardS(A), with equality
if A ∈ I(G).

Let us assume that µdeg 6∈ Ncond(G), meaning that there exists I ∈ I(G) with µdeg(I) ≥
µdeg(E(I)). By the property (2) above, we have µdeg(I) = 1

|E| CardS(I) and
µdeg(E(I)) ≥ 1

|E| CardS(E(I)), so that CardS(I) ≥ CardS(E(I)). But by property (1), S(I) ⊂
S(E(I)), which implies that S(I) = S(E(I)).

Let us prove that (I, E(I)) is a bipartition of V such that if i−j, then (i, j) ∈ (I×E(I))∪(E(I)×I).

• Since I ∈ I(G), I ∩ E(I) = ∅.
• Using that S(I) = S(E(I)), we deduce that E(E(I)) = I. So, the vertices reachable from I
all belong to I ∪ E(I). The multigraph G being connected, this implies that I ∪ E(I) = V.
• Since I ∈ I(G), there is no edge between vertices of I. Furthermore, since S(I) = S(E(I)),
there is no edge between vertices of E(I).

Consequently, G is a bipartite graph, which ends the proof.
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7. Proof of Theorem 4.5

Let us recall that the multigraph G = (V, E) is connected but is not a bipartite graph, with
|V| ≥ 2. Then, in particular, Ncond(G) 6= ∅ (cf. Proposition 4.2). Our product form result,
Theorem 4.5, follows from a reversibility scheme that generalizes to the case of multigraphs, the
one constructed in Moyal et al. (2021). In fact, we propose a proof that is simpler, at some points,
than the one in Moyal et al. (2021). We reproduce hereafter the main steps of this construction for
easy reference, and only develop exhaustively the points that are specific to the present context, or
based on different arguments.

Hereafter, we denote by PW , the transition operator of the buffer-content Markov chain, that is,
for all w,w′ ∈W, we write PW (w,w′) = P [Wn+1 = w′ |Wn = w] , for any n ∈ N.

7.1. Two auxiliary chains. As in section 3.2 of Moyal et al. (2021), we first need to define two
auxiliary Markov chains. For this, let us denote by V an independent copy of V, i.e. a set with the
same cardinal formed with copies of elements of V. We set V , V ∪ V, and we define, for w ∈ V∗,

V(w) , {a ∈ V : |w|a > 0},
V(w) , {a ∈ V : |w|a > 0}.

For a ∈ V, we will use the notation a = a.

Definition 7.1. We define the backward detailed chain as the process (Bn)n∈N with values in V∗

given by B0 = ε and, for any n ≥ 1,
• if Wn = ε (i.e. all the items arrived up to time n are matched at time n), then Bn = ε,
• otherwise, let i(n) ∈ [[1, n]] be the arrival time of the oldest item still in the buffer, then, the
word Bn is the word of length n− i(n) + 1, defined, for any ` ∈ [[1, n− i(n) + 1]], by

(Bn)` =


Vi(n)+`−1 if Vi(n)+`−1 has not been matched up to time n;

Vk if Vi(n)+`−1 is matched at or before time n, with item Vk
(where 1 ≤ k ≤ n).

In other words, the word Bn gathers the class indexes of all unmatched items entered up to n,
at the places corresponding to their arrival times, and the copies of the class indexes of the items
matched before n, but after the arrival of the oldest unmatched item at n, at the place corresponding
to the arrival time of their respective match.

Observe that by the construction of (Bn)n∈N, for all n ∈ N, the word Bn necessarily contains all
the letters of Wn. More precisely, for any n ∈ N, Wn is the restriction of the word Bn to its letters
in V. Furthermore, (Bn)n∈N is also a Markov chain since for any n ≥ 0, the value of Bn+1 can be
deduced from that of Bn and from the class Vn+1 of the item entered at time n+ 1.

A state w ∈ V∗ is said to be admissible for (Bn)n∈N if it can be reached by the chain (Bn)n∈N,
under the fcfm policy. We set

B , {w ∈ V∗ : w is admissible for (Bn)n∈N}.

The following result can be proven exactly as Lemma 1 in Moyal et al. (2021).

Lemma 7.2. Let w = w1 . . .wq ∈ V∗. Then, w ∈ B if and only if w1 ∈ V and for 1 ≤ i < j ≤ q,
• if (wi,wj) ∈ V2, then wi 6−wj,
• if (wi,wj) ∈ V × V, then wi 6−wj.

As a consequence of Lemma 7.2, any word w ∈ B can be written as

w = b1a11a12 . . . a1k1b2a21a22 . . . a2k2b3 . . . bqaq1 . . . aqkq ,
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where q, k1, . . . , kq ∈ N, b1, . . . , bq ∈ V, aij ∈ V for 1 ≤ i ≤ q, 1 ≤ j ≤ ki, and {b1, . . . , bq} = V(w) ∈ I
(
Ǧ
)
,

∀i ∈ [[1, q]], bi ∈ V1 ⇒ [∀j 6= i, bi 6= bj ] ,
∀i ∈ [[1, q]], ∀j ∈ [[1, ki]], aij ∈ E({b1, . . . , bi})c.

The transition operator of the chain {Bn}n∈N is denoted by PB, that is, for all w,w′ ∈ B, we write
PB(w,w′) = P [Bn+1 = w′ | Bn = w], for all n ∈ N.
Definition 7.3. We define the forward detailed chain as the process (Fn)n∈N with values in V∗

given by F0 = ε (the empty word) and, for any n ≥ 1,
• if Wn = ε (i.e. all the items arrived up to time n are matched at time n), then Fn = ε,
• otherwise, let Un be the set of items arrived before time n that are not matched at time n
(note that Un is non-empty, since Wn 6= ε). Also, set

j(n) , sup {m ≥ n+ 1 : Vm is matched with an element of Un} .
Observe that j(n) is possibly infinite. Then, if j(n) is finite, Fn is the word of V∗ of length
j(n)−n (respectively of AN of length +∞, if j(n) = +∞), such that for any ` ∈ [[1, j(n)−n]]
(respectively ` ∈ N+),

(Fn)` =

{
Vn+` if Vn+` is not matched with an item arrived up to n;
Vk if Vn+` is matched with item Vk, where 1 ≤ k ≤ n.

In other words, the word Fn contains the copies of all the class indexes of the items entered up to
time n and matched after n, at the place corresponding to the arrival time of their respective match,
together with the class indexes of all items entered after n and before the last item matched with
an item entered up to n, and not matched with an element entered before n, if any, at the place
corresponding to their arrival time. Similarly to Moyal et al. (2021), we make the three following
simple observations:

• If Fn ∈ V∗ is finite, then (Fn)j(n)−n ∈ V;
• {Fn}n∈N is a Markov chain;
• If Fn is a.s. an element of V∗ for all n ∈ N.

As for the backward chain, we say that a state w ∈ V∗ is admissible for (Fn)n∈N if it can be
reached by the chain (Fn)n∈N, under the fcfm policy. Then, we set

F ,
{
w ∈ V∗ : w is admissible for {Fn}n∈N

}
and we denote by PF the transition operator of the chain {Fn}n∈N on F. For any word w =

w1 . . .wn ∈ V∗, let us define its reversed-copy by
←−
w , wn . . .w1 ∈ V∗. Note that the map

Ψ : V∗ → V∗,w 7→ ←−w satisfies Ψ ◦ Ψ = IdV∗ . Thus, Ψ is a bijection and its inverse function is
Ψ−1 = Ψ.

Lemma 7.4. The map

ΨB :

{
B −→ F
w 7−→ Ψ(w) =

←−
w

is well-defined and bijective.

Proof : Exactly as in Lemma 2 in Moyal et al. (2021), it can be proven that w ∈ F if and only
if Ψ(w) ∈ B. This guarantees that the mapping ΨB is well-defined and surjective. It is injective
because Ψ clearly is so. �

Let us define a measure ν on V∗ by ν(ε) , 1 and

∀w ∈ V∗ \ {ε}, ν(w) ,
|V|∏
i=1

µ(i)|w|i+|w|i . (7.1)
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We can use the measure ν defined above to establish the following link between the dynamics of
the chains (Bn)n∈N and (Fn)n∈N. The following result can be established exactly as Lemma 3 in
Moyal et al. (2021),

Proposition 7.5. For any (w,w′) ∈ B2, we have that

ν(w)PB(w,w′) = ν

(←−
w′
)
PF
(←−
w′,
←−
w

)
.

7.2. Positive recurrence of (Bn)n∈N and (Fn)n∈N. We will exploit the local balance equations of
Proposition 7.5 to derive stationary distributions of these two Markov chains. To this end, the
following technical lemma will simplify the proofs.

Lemma 7.6. The measure ν defined by (7.1) satisfies the following properties:

(1) For any A ⊂ V = V ∪ V, we have ν(A) = µ(V(A)) + µ
(
V(A)

)
.

(2) For any A1, . . . ,An ⊂ V, ν(A1 . . .An) = ν(A1) . . . ν(An). In particular, ν(Ak) = ν(A)k.
(3) If A ⊂ V is such that ν(A) < 1, then ν(A∗) = 1

1−ν(A) .

Proof : The first point follows from the definition of ν and the second point is a direct consequence
of its multiplicative structure. Regarding the third point, observe that A∗ = ∪k∈NAk, so that

ν(A∗) =
∑
k∈N

ν
(
Ak
)

=
∑
k∈N

ν(A)k.

�

We can now state the following result,

Proposition 7.7. Suppose that µ ∈ Ncond(G). Then, the chains (Bn)n∈N and (Fn)n∈N are
positively recurrent and admit respectively the restrictions on B and on F of ν (that is, νB(w) =
νF (ΨB(w)) = ν(w), for any w ∈ B) as unique stationary measure (up to a multiplicative constant),
respectively on B and F.

Proof : Let µ ∈ Ncond(G).
Step 1: we first prove that νB is a stationary measure for the chain (Bn)n∈N.

For this, let us fix w′ ∈ B. Then we have that

∑
w∈B

PB(w,w′)νB(w)

νB(w′)
=
∑
w∈B

PF
(←−
w′,
←−
w

)
νB

(←−
w′
)

νB(w′)

=
∑
w∈B

PF
(←−
w′,
←−
w

)
= 1,

where the first equality follows from Proposition 7.5, the second from the fact that νB
(←−
w′
)

=

νB(w′) and the last, from Lemma 7.4. Thus, for all w′ ∈ B, we have that

νB(w′) =
∑
w∈B

PB(w,w′)νB(w),

which means exactly that νB is a stationary measure for the chain (Bn)n∈N.
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Step 2: we now prove that νB(B) <∞.
By Lemma 7.2, we know that w ∈ B \ {ε} if and only if w belongs to a set

b1A∗1 b2A∗2 . . . bqA∗q
,
{
w ∈ V∗ : w = b1w

1b2w
2 . . . bqw

q; wi ∈ A∗i , for all i ∈ J1, qK
}
, q ≥ 1, (7.2)

where b1, . . . , bq are elements of V such that {b1, . . . , bq} ∈ I
(
Ǧ
)
and such that for all distinct i, j

in J1, qK, bi ∈ V1 implies that bi 6= bj , and where we denote

Ai , E({b1, . . . , bi})c, i ∈ J1, qK.

Equivalently, by highlighting only the first occurrence of each letter of V appearing in w and
employing a similar notation to (7.2) we obtain that w ∈ B \ {ε} if and only if w belongs to some
sets of the form

CI,σ , eσ(1) B∗σ(1) eσ(2) B∗σ(2) . . . eσ(|I|) B∗σ(|I|),

where I =
{
e1, ..., e|I|

}
∈ I
(
Ǧ
)
, σ ∈ S|I|, and where we denote

Bσ(i) , E({eσ(1), . . . , eσ(i)})c ∪ ({eσ(1), . . . , eσ(i)} ∩ V2), i ∈ J1, |I|K.
In view of assertion (1) of Lemma 7.6, we have that for all i ∈ J1, kK,

νB(Bσ(i)) = µ
(
E
(
{eσ(1), . . . , eσ(i)}

)c)
+ µ({eσ(1), . . . , eσ(i)} ∩ V2)

= 1− µ(E({eσ(1), . . . , eσ(i)})) + µ({eσ(1), . . . , eσ(i)} ∩ V2).

Since {eσ(1), . . . , eσ(i)} ∈ I(Ǧ), we have, by definition, that {eσ(1), . . . , eσ(i)} ∩ V2 ∈ I(G) and since
the measure µ satisfies Ncond(G), it follows that

µ
(
{eσ(1), . . . , eσ(i)} ∩ V2

)
< µ

(
E
(
{eσ(1), . . . , eσ(i)} ∩ V2

))
≤ µ

(
E
(
{eσ(1), . . . , eσ(i)}

))
and thereby, that νB

(
Bσ(i)

)
< 1. As a conclusion, applying successively all assertions of Lemma 7.6,

we obtain that for all such I and σ,

νB(CI,σ) =

|I|∏
i=1

µ(eσ(i))

µ(E({eσ(1), . . . , eσ(i)}))− µ({eσ(1), . . . , eσ(i)} ∩ V2)
.

The set B is the disjoint union of the sets CI,σ, for I in the finite set I
(
Ǧ
)
, and σ in the finite

set S|I|. It follows that νB(B) is finite and given by

νB(B) = νB(ε) +
∑
I∈I(Ǧ)

∑
σ∈S|I|

νB(CI,σ)

= 1 +
∑
I∈I(Ǧ)

∑
σ∈S|I|

|I|∏
i=1

µ(eσ(i))

µ(E({eσ(1), . . . , eσ(i)}))− µ({eσ(1), . . . , eσ(i)} ∩ V2)
. (7.3)

Step 3: we conclude with the positive recurrence of the two chains.
By the results above, the chain (Bn)n∈N has a stationary probability distribution on B, which is

given by the measure νB normalized by νB(B).
Observe that the chain is irreducible on B. To see this, let w ∈ B and first observe that the empty

word ε leads to w with positive probability for the transitions of {Bn}n∈N (this is the constructive
argument proving Lemma 7.2 - see the proof of Lemma 1 in Moyal et al. (2021)). Conversely,
denoting by b1, . . . , bq the elements of V(w), it is easy to see that the word w leads to the empty
word with positive probability for the transitions of {Bn}n∈N : indeed, by the definition of the
policy fcfm, if the chain is in the state w, then it will reach the empty state after exactly q steps,
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by seeing the successive arrivals of q elements of respective classes in E(b1), E(b2), . . . , E(bq), which
concludes the proof of irreducibility.

It then follows that the chain {Bn}n∈N is positively recurrent on B and that its stationary probabil-
ity distribution is unique. Consequently, νB is the unique stationary measure (up to a multiplicative
constant) of the chain (Bn)n∈N.

Now, as in step 1, we obtain that for all w′ ∈ B,

νF (ΨB(w′)) =
∑
w∈B

PF (ΨB(w),ΨB(w′))νF (ΨB(w)).

Using Lemma 7.4, we deduce that νF is a stationary measure for the chain (Fn)n∈N. Then, step 2
shows equivalently that νF (F) <∞. So, the chain (Fn)n∈N has a stationary probability distribution
on F, which is given by the measure νF normalized by νF (F).

Similarly as above, we can check that the chain {Fn}n∈N is irreducible on F. First, the empty
word leads with positive probability to any element w ∈ F, as can be checked using the same
constructive argument as in the proof of Lemma 2. Conversely, suppose that the chain {Fn}n∈N is
at time n in a state

w = aqkq . . . aq1aq . . . a3a2k2 . . . a21a2a1k1 . . . a11a1 ∈ F

and let r , q+
∑q

i=1 ki be the length ofw. Then, going forward in time, perform the fcfm-matching
of the ‘unmatched’ elements of respective classes in V(w). Say there remains in the system, at time
n + r, ` unmatched elements denoted c1, c2, . . . , c` in their order of arrivals. Then, the chain can
return to the empty state in particular if the first ` arrivals after time n + r (excluded) are of
respective classes in E(c1), E(c2), . . . , E(c`). This concludes the proof of irreducibility.

As a consequence, the chain {Fn}n∈N is positively recurrent on F and its stationary probability
distribution is unique. Consequently, νF is the unique stationary measure (up to a multiplicative
constant) of the chain (Fn)n∈N, which concludes the proof. �

7.3. Positive recurrence of {Wn}n∈N. The Markov chain (Wn)n∈N can be seen as the projection of
the chain (Bn)n∈N on V∗. In order to obtain the stationary probability distribution of (Wn)n∈N
from the one of (Bn)n∈N, we will use the following lemma:

Lemma 7.8. Let PY and PY ′ be the transition matrices of two homogeneous Markov chains {Yn}n∈N
and {Y ′n}n∈N with values in some countable sets S and S′ respectively, and consider a map p : S → S′

satisfying
∀a′, b′ ∈ S′, ∀a ∈ p−1({a′}),PY (a, p−1({b′})) = PY ′(a′, b′).

Then, if a measure µ is invariant for PY , the measure µ′ defined by µ′(a′) , µ(p−1({a′})) for all
a′ ∈ S′, is an invariant measure for PY ′ on S′.

Proof : Let µ be an invariant measure for PY , and let b′ ∈ S′. We have

∑
a′∈S′

µ′(a′)PY ′(a′, b′) =
∑
a′∈S′

 ∑
a∈p−1({a′})

µ(a)

PY ′(a′, b′)
=
∑
a′∈S′

∑
a∈p−1({a′})

µ(a)PY (a, p−1({b′}))

=
∑
s∈S

µ(s)PY (s, p−1({b′})) = µ(p−1({b′})) = µ′(b′),

meaning that µ′ is invariant for PY ′ . �
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For µ ∈ Ncond(G), let us denote by ΠB the unique stationary probability law associed to the
chain (Bn)n∈N (cf. Prop. 7.7). It is defined by

∀w ∈ B, ΠB(w) , ανB(w),

where α , (νB(B))−1 is given by (4.3) in view of (7.3). Let us now introduce the projection

p :

{
B −→W
w 7−→ w|V ,

which is well-defined from Lemma 7.2. We have the following result:

Proposition 7.9. Let µ ∈ Ncond(G). Then, the Markov chain (Wn)n∈N is positively recurrent,
and its unique stationary probability distribution is the measure ΠW defined on W by:

∀w ∈W, ΠW (w) , ΠB(p−1(w)) =
∑

w∈B : w|V=w

ΠB(w).

Proof : Let µ ∈ Ncond(G). We can apply Lemma 7.8 to PB and PW to prove that ΠW is a
stationary distribution for (Wn)n∈N. Indeed, using the fact that for any n ∈ N, Wn is the restriction
of the word Bn to its letters in V, we have that

∀w,w′ ∈W, ∀w ∈ p−1({w}), PB(w, p−1({w′})) = PW (w,w′).

The measure ΠW is a probability distribution on W, since ΠW (W) = ΠB(p−1(W)) = ΠB(B) = 1.
The chain (Wn)n∈N being irreducible on W, it follows that ΠW is its unique stationary probability
distribution. �

7.4. Concluding the proof. We first show that stab(G, fcfm) = Ncond(G). First, we know from
Proposition 4.3 that stab(G, fcfm) ⊂ Ncond(G). Also, from Proposition 4.2, Ncond(G) 6= ∅,
since G is not a bipartite graph. Then, for all µ ∈ Ncond(G), by Proposition 7.9, the chain (Wn)n∈N
is positively recurrent on W. So, Ncond(G) ⊂ stab(G, fcfm), and therefore stab(G, fcfm) =
Ncond(G).

We now fix µ ∈ Ncond(G), and compute explicitly the unique stationary probability distribution
ΠW of the chain (Wn)n∈N. First, if w = ε, then p−1({w}) = ε and ΠW (ε) = α, given by (4.3).
Now, fix w 6= ε in W. By (7.2), we know that if w = w1 . . . wq ∈ W, q ≥ 1, then p−1({w}) =

w1A∗1w2A∗2 . . . wqA∗q , with Ai = E({w1, . . . , wi})c, for all i ∈ J1, qK. Applying Lemma 7.6 and
observing that for all i, µ

(
Ai
)
< 1 since Ai  V, it follows that

ΠW (w) = ΠB(w1A∗1w2A∗2 . . . wqA∗q)
= ανB(w1A∗1w2A∗2 . . . wqA∗q)

= α

q∏
i=1

µ(wi)

1− µ
(
Ai
) = α

q∏
i=1

µ(wi)

µ(E({w1, . . . , wi}))
·

The proof is complete.

7.5. Observation on the sequence of copied letters. As we will explain below, observe that under
the fcfm policy, the i.i.d. sequence of arrivals induces an i.i.d. sequence for the copied letters,
with the same distribution on V as on V. Notice that a similar result was observed for the related
construction in Adan et al. (2018a).

LetM ⊂ V∗ represent the set of words z ∈ V∗\{ε} such thatW fcfm(z) = ε andW fcfm(z′) 6= ε for
any prefix z′ of z. In other words, a word z ∈M represents a sequence of arrivals leading to a first
reset to zero of the buffer. The i.i.d. sequence of letters of distribution µ can be uniquely decomposed
into an i.i.d. sequence of words of M of distribution µM, where for any w = w1 . . . wq ∈ M,
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µM(w) =
∏q
i=1 µ(wi). Note also that the distribution µM characterizes µ. In particular, if we have

an i.i.d. sequence of words of M of law µM, then the sequence of letters out of which the words are
made is an i.i.d. sequence of law µ.

Let us denote by f : M → M the map that, to a word w = w1 . . . wq ∈ M, associates the
word v = v1 . . . vq, where vi is the class of the item with which wi is matched. If follows from
Prop. 3 of Moyal et al. (2021) that the map f is well-defined and bijective, its inverse function
being the function g : M → M, w 7→

←−−−
f(←−w ). Furthermore, by definition of M, the action of f

only consists in permuting letters. The measure µM having a product structure, it follows that f
preserves the distribution µM: for any w ∈ M, µM(w) = µM(f−1({w})). Consequently, if (Wi)i∈N
is an i.i.d. sequence of words distributed according to µM, then the sequence (f(Wi))i∈N is also an
i.i.d. sequence of words distributed according to µM, meaning that the sequence of letters out of
which the words f(Wi) are made is an i.i.d. sequence of law µ.

Thus, replacing each arrival by the class of the item with which it is matched preserves the
measure µ⊗N.

8. Remaining proofs

Throughout the section, G is a connected multigraph, Ǧ is its maximal subgraph and Ĝ denotes
its minimal blow-up graph. To simply compare a (G,Φ, µ) system with the two corresponding
matching models on graphs

(
Ĝ, Φ̂, µ̂

)
and

(
Ǧ, Φ̌, µ

)
, let us add a “hat” (resp. a “check”) to all

characteristics of the second (resp. the third) system: in particular, we denote, for all n, by V̂n

(resp. V̌n), the class of the item entering in the
(
Ĝ, Φ̂, µ̂

)
(resp.

(
Ǧ, Φ̌, µ

)
) system at time n. The

natural Markov chain of the system is then denoted by
{
Ŵn

}
n∈N

(resp.
{
W̌n

}
n∈N) and its state

space, by Ŵ (resp. W̌). Specifically,

Ŵ =
{
w ∈

(
V ∪ V1

)∗
: ∀i 6= j s.t. (i, j) ∈ Ê , |w|i|w|j = 0

}
;

W̌ =
{
w ∈ V∗ : ∀i 6= j s.t. (i, j) ∈ Ě , |w|i|w|j = 0

}
.

Observe that we have W ⊂ W̌ ⊂ Ŵ.
For any measurable mapping F : W → R (resp. W̌ → R, Ŵ → R) and any given w ∈ W (resp.

ŵ ∈ Ŵ, w̌ ∈ W̌), we denote by ∆FΦ
µ (w) (resp. ∆̂F Φ̂

µ̂ (ŵ), ∆̌F Φ̌
µ̌ (w̌)) the drift of the chain {Wn}n∈N

(resp.
{
Ŵn

}
n∈N

,
{
W̌n

}
n∈N) starting from w (resp. ŵ, w̌) for a (G,Φ, µ) (resp. (Ĝ, Φ̂, µ̂), (Ǧ, Φ̌, µ̌))

system. In other words, for any n ∈ N we denote

∆Φ
µF (w) = E

[
F (Wn+1)− F (Wn)

∣∣Wn = w
]

;

∆̂Φ̂
µ̂F (ŵ) = E

[
F (Ŵn+1)− F (Ŵn)

∣∣ Ŵn = ŵ
]

;

∆̌Φ̌
µ̌F (w̌) = E

[
F (W̌n+1)− F (W̌n)

∣∣ W̌n = w̌
]
.

8.1. Drift inequalities. Consider the following mappings,

Q :


Ŵ −→ R+

ŵ 7−→
|V|∑
i=1

(|ŵ|i)2 +
|V1|∑
i=1

(
|ŵ|i

)2
;

(8.1)
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L :


Ŵ −→ R+

ŵ 7−→
|V|∑
i=1
|ŵ|i +

|V1|∑
i=1
|ŵ|i;

(8.2)

where it follows from the observation above that Q and L are well defined also on W and W̌.

We have the following result,

Proposition 8.1. Let Φ be an admissible policy on G and µ ∈M (V). Let Φ̂ be a matching policy
extending Φ on Ĝ and µ̂ be a measure extending µ on V̂. Then, for all w ∈ W we have that
∆Φ
µQ(w) ≤ ∆̂Φ̂

µ̂Q(w).

Proof : Fix w ∈ W throughout the proof. Recall that for all i ∈ V1 (if any), we have that |w|i ∈
{0, 1}, and let us set

Ow , {i ∈ V1 : |w|i = 1},
Zw , {i ∈ V1 : |w|i = 0 and |w|j = 0, for any j ∈ E(i)}.

First, for any i ∈ V2, an incoming item of class i finding a system (G,Φ, µ) in a state w finds
the same possible matches (if any) as an incoming item of class i finding the system

(
Ĝ, Φ̂, µ̂

)
in

a state w. Likewise, if a system (G,Φ, µ) is in state w, then, for any i ∈ V1 ∩ (Ow)c ∩ (Zw)c, an
incoming of class i finds the same possible matches (if any) as an incoming item of class i or of class
i finding the system

(
Ĝ, Φ̂, µ̂

)
in the state w. As Φ̂ extends Φ, in all cases the choice of the match

(if any) of the incoming item is then the same, or follows the same distribution in case of a draw,
in both systems. Therefore, as µ̂ extends µ, for all n ∈ N we get that

E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈V2∪V1∩(Ow)c∩(Zw)c}

∣∣Wn = w
]

= E

[(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈V2∪(V1∩(Ow)c∩(Zw)c)∪(V1∩(Ow)c∩(Zw)c)}

∣∣Ŵn = w

]
. (8.3)

Now, if a system (G,Φ, µ) is in state w, then, for any i ∈ Zw, and incoming item of class i finds
no possible match. All the same, if the system

(
Ĝ, Φ̂, µ̂

)
is in the state w and the entering item

is of class i ∈ Zw or of class i ∈ Zw, then the entering item does not find any possible match in(
Ĝ, Φ̂, µ̂

)
. In all cases, one coordinate of the Markov chain increases from zero to one, and thus for

all n ∈ N,

E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈Zw} |Wn = w

]
= µ(Zw)

= µ̂ (Zw) + µ̂
(
Zw
)

= E
[(
Q(Ŵn+1)−Q(Ŵn)

)
1l{V̂n+1∈Zw∪Zw} | Ŵn = w

]
.

(8.4)

Last, if the system (G,Φ, µ) is in the state w, then, the arrival of a class i-item, for i ∈ Ow, leads
to the matching of two items of class i. Therefore, as |w|i = 1 we obtain

(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈Ow} = −1l{Vn+1∈Ow}. (8.5)

Now, suppose that the system
(
Ĝ, Φ̂, µ̂

)
is in the state Ŵn = w. Then, if an item of class i ∈ Ow

enters in the system, the corresponding item is not matched and the number of i-items in the system
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increases from 1 to 2. Therefore we get that(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈Ow} = 31l{V̂n+1∈Ow}. (8.6)

If on the other hand, an item of class i ∈ Ow enters in the same system
(
Ĝ, Φ̂, µ̂

)
, then, the

corresponding item match with the stored class i-item and so the coordinate i of the chain decreases
to 0. Thus, (

Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈Ow} = −1l{V̂n+1∈Ow}.

Gathering this with (8.5) and (8.6) and then taking expectations, we obtain that

E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈Ow}

∣∣Wn = w
]

= E
[(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈Ow∪Ow}

∣∣ Ŵn = w
]
− 4µ̂ (Ow) . (8.7)

Finally, (8.3) together with (8.4) and (8.7) give that

∆Φ
µQ(w) = ∆̂Φ̂

µ̂Q(w)− 4µ̂ (Ow) , (8.8)

which concludes the proof. �

Definition 8.2. Let G be a connected multigraph and Φ be an admissible matching policy on G.
We say that Φ̌ reduces Φ if, for any µ ∈M (V), whenever the two systems (Ǧ, Φ̌, µ) and (G,Φ, µ)
are in the same state w ∈ W and welcome the same arrival, then Φ̌ and Φ induce the same choice
of match, if any.

Proposition 8.3. Let G = (V, E) be a connected multigraph and Φ be a class admissible policy on
G and µ ∈ M (V). Let Φ̂ be a matching policy extending Φ on Ĝ, µ̂ a measure extending µ on V̂
and Φ̌ be a policy that reduces Φ on Ǧ. Then the drift of the respective Markov chains are such that
for all w ∈W,

∆Φ
µL(w) ≤ ∆̂Φ̂

µ̂L(w) ≤ ∆̌Φ̌
µL(w). (8.9)

Proof : Fix w ∈ X. The only case in which the proof of the left inequality of (8.9) differs from that
of Proposition 8.1 is when an item of class i ∈ Ow enters the (Ĝ, Φ̂, µ̂) system in a state w. Then,
we now get that for all n,(

L(Ŵn+1)− L(Ŵn)
)

1l{V̂n+1∈Ow} =
∑
i∈Ow

1l{V̂n+1=i},

which, taking expectations and reasoning as in (8.8), leads to

∆Φ
µL(w) = ∆̂Φ̂

µ̂L(w)− 2µ̂ (Ow) .

We now turn to the proof of the right inequality of (8.9). Denote

Pw = {i ∈ V1 : |w|i > 0}.

Fix also n ∈ N, and denote by V̌n, the class of the incoming item at time n in the (Ǧ, Φ̌, µ) system.
First, similarly to (8.3) and (8.4) we clearly get that

E
[(
L(W̌n+1)− L(W̌n)

)
1l{V̌n+1∈V2∪(V1∩(Pw)c)} | W̌n = w

]
= E

[(
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈V2∪(V1∩(Pw)c∪(V1∩(Pw)c))}|Ŵn = w

]
. (8.10)
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Now, we also clearly have that

E
[(
L(W̌n+1)− L(W̌n)

)
1l{V̌n+1∈Pw} | W̌n = w

]
= µ(Pw);

E
[(
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈Pw} | Ŵn = w

]
= µ̂(Pw);

E
[(
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈Pw} | Ŵn = w

]
= −µ̂(Pw),

which, together with (8.10), implies that

∆̂Φ̂
µ̂L(w) = ∆̌Φ̌

µL(w)− 2µ̂(Pw).

�

8.2. Proofs of the remaining main results. We are now in position to prove Theorem 4.7, Theo-
rem 4.9 and Proposition 4.12. Let us first observe the following result,

Lemma 8.4. For any µ ∈M (V) we have that

µ ∈ Ncond(G) ⇐⇒ µ̂1/2 ∈ Ncond
(
Ĝ
)
,

where µ̂1/2 is the extended measure of µ such that

µ̂1/2(i) = µ̂1/2(i) =
1

2
µ(i) for all i ∈ V1.

Proof : Let us first observe that

For any A ⊂ V, µ(E(A)) = µ̂1/2

(
Ê(A)

)
. (8.11)

Indeed we have that

µ(E(A)) = µ(E(A) ∩ V2) + µ(E(A) ∩ V1)

= µ̂1/2(E(A) ∩ V2) + µ̂1/2(E(A) ∩ V1) + µ̂1/2

(
E(A) ∩ V1

)
= µ̂1/2

(
(E(A) ∩ V2) ∪ (E(A) ∩ V1) ∪

(
E(A) ∩ V1

))
= µ̂1/2

(
Ê (A)

)
.

⇐: Let µ̂1/2 ∈ Ncond
(
Ĝ
)
and I ∈ I(G). As I ⊂ V2 and in view of (8.11), we get that

µ(I) = µ̂1/2(I) < µ̂1/2

(
Ê(I)

)
= µ(E(I)).

⇒: Let us now fix µ ∈ Ncond(G) and Î ∈ I
(
Ĝ
)
. We reason by induction on the number of

elements of Î that belong to V1 ∪ V1. First, observe that if Î ⊂ V2, then Î is also an element of
I(G). Thus, as µ ∈ Ncond(G) and in view of (8.11) we get that

µ̂1/2(Î) = µ(Î) < µ(E(Î)) = µ̂1/2

(
Ê
(
Î
))

.

Second, assume that for a given Î ∈ I
(
Ĝ
)
, we have µ̂1/2(Î) < µ̂1/2(E(Î)), and let u ∈ V1 ∪ V1

be such that u 6∈ Î and Î ∪ {u} ∈ I
(
Ĝ
)
. Then, we have u /∈ Ê(Î), and thus also u /∈ Ê(Î). Since

u ∈ Ê(Î ∪ {u}), it follows that

µ̂1/2(Ê(Î ∪ {u})) ≥ µ̂1/2(Ê(Î)) + µ̂1/2(u) = µ̂1/2(Ê(Î)) + µ̂1/2(u)

> µ̂1/2(Î) + µ̂1/2(u) = µ̂1/2(Î ∪ {u}),
and we conclude by induction. �
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Proof of Theorem 4.7: Let µ ∈ Ncond(G). From Lemma 8.4, the measure µ̂1/2 belongs to

Ncond
(
Ĝ
)
. Let Φ be a matching policy of the Max-Weight class on G, with β > 0. Clearly,

its extension Φ̂ is also of the Max-Weight class on Ĝ. Then, we know from Theorem 3.2 in Jon-
ckheere et al. (2020) that the model

(
Ĝ, Φ̂, µ̂1/2

)
is stable. In particular, we see in the proof of

Theorem 3.2 in Jonckheere et al. (2020) that the Foster-Lyapunov Theorem (Brémaud, 2020, Theo-
rem 5.1) can be applied to the chain

{
Ŵn

}
n∈N

for the quadratic function Q. Specifically, there exist

η > 0 and a finite set K̂ ⊂ Ŵ such that ∆̂Φ̂
µ̂Q(ŵ) < −η for all ŵ 6∈ K̂. Thus, in view of Proposition

8.1, we have that ∆Φ
µQ(w) < −η for any w that lies outside the finite subset K = K̂ ∩W. We

conclude by applying the Foster-Lyapunov Theorem to the mapping Q and the compact set K. �

Proof of Theorem 4.9: (i) Fix µ ∈ Ncond(G). First, if G is a graph (V1 = ∅) and G = Ǧ is p-partite
complete for p ≥ 3, then the result follows from Theorem 2, Assertion (16) in Mairesse and Moyal
(2016): specifically, we have that for some η > 0, for any w ∈W \ {ε},

∆Φ
µL(w) < −η, (8.12)

and the Foster-Lyapunov criterion applies. Now, if G is not a graph, i.e. V1 6= ∅, then let

δ = min {µ(E(I))− µ(I) : I ∈ I(G)} ,

which is strictly positive since µ ∈ Ncond(G), and the mapping

Lδ :


W −→ R+

w 7−→
∑
i∈V1

δ

2µ(V1)
|w|i +

∑
i∈V2

|w|i.

Then, for any w ∈ W the set Iw = {i ∈ V : |w|i > 0} is an independent set of Ǧ, so by the very
definition of a complete p-partite graph, there exists a unique maximal independent set Ǐ of Ǧ such
that Iw ⊂ Ǐ. Then, for all w ∈W such that Iw ∩V2 6= ∅, for any n, if {Wn = w} the Markov chain
can make two types of moves upon the arrival of Vn+1:

• either one coordinate of Wn decreases from 1 if Vn+1 is of a class in Ǐc = Ě
(
Ǐ
)
, or of a class

in Iw ∩ V1;
• or one coordinate of Wn increases from 1, if Vn+1 is of a class in Ǐ ∩ ((Iw)c ∪ V2).

Therefore, for any V2-favorable matching policy Φ we have that

∆Φ
µLδ(w)

= − δ

2µ(V1)
µ (V1 ∩ Iw) 1l{V1∩Iw 6=∅} +

δ

2µ(V1)
µ
(
V1 ∩ Ǐ ∩ (Iw)c

)
+ µ

(
Ǐ ∩ V2

)
− µ

(
Ǐc
)
. (8.13)

Observe that Ǐ ∩ V2 is an independent set of G, and that Ǐc = E
(
Ǐ ∩ V2

)
. Hence (8.13) implies

that

∆Φ
µLδ(w) ≤ δ

2µ(V1)
µ
(
V1 ∩ Ǐ ∩ (Iw)c

)
+ µ

(
Ǐ ∩ V2

)
− µ

(
E
(
Ǐ ∩ V2

))
≤ δ

2
− δ = −δ

2
.

As this is true for any w outside the finite set {w ∈W : Iw ∩V2 = ∅}, we conclude again using the
Lyapunov-Foster Theorem that stab(G,Φ) = Ncond(G).

(ii) Fix µ ∈ Ncond(Ǧ), and an admissible matching policy Φ. Applying (8.12) to Ǧ, we obtain
that for any Φ̌ that reduces Φ, for some η > 0 we have ∆̌Φ̌

µL(w̌) < −η for all w̌ ∈ W̌\{ε}. Combining
this with (8.9), and recalling that W ⊂ W̌ we obtain that ∆Φ

µL(w) < −η for all w ∈W \ {ε}, which
concludes the proof. �
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Proof of Proposition 4.12: (i) Remark that for any ŵ ∈ Ŵ, the set {i ∈ V : |ŵ|i > 0} is again an
independent set of Ǧ. So we can apply, for any µ̂ ∈ Ncond(Ĝ), the exact same argument as for
assertion (i) in Theorem 4.9, by replacing V1 by V1 ∪ V1.

(ii) Let µ̂ be an element of M (V̂) whose reduced measure µ belongs to Ncond(Ǧ). Let Φ̂ be an
admissible policy on V̂, Φ be a policy on V such that Φ̂ extends Φ, and Φ̌ be a policy reducing Φ
on Ǧ.

First, as in (8.12) there exists η > 0 such that ∆̌Φ̌
µL(w) < −η for any w ∈W \ {ε}.

Fix ŵ in Ŵ \ {ε}. Then define the permutation γ of V̂ by{
γ(i) = i and γ(i) = i if |ŵ|i > 0 and |ŵ|i = 0, i ∈ V1,

γ(j) = j else, for any j ∈ V̂.

Let us also denote by γ(ŵ), the word obtained from w by replacing the letters of ŵ by their image
through γ, in other words for all i ∈ J1, |ŵ|K, γ(ŵ)i = γ(ŵi). Observe that γ(ŵ) is clearly an element
of W \ {ε}, so in view of the above observation we have that

∆̌Φ̌
µL(γ(ŵ)) < −η. (8.14)

Now, as i and i have the same connectivity in Ĝ for any i ∈ V1, for all n the conditional distribution
of Ŵn+1 given {Ŵn = ŵ} in the (Ĝ, Φ̂, µ̂) system equals that of Ŵn+1 given {Ŵn = γ(ŵ)} in the
(Ĝ, Φ̂, µ̂ ◦ γ) system. In particular, we have that

∆Φ̂
µ̂ (ŵ) = ∆Φ̂

µ̂◦γ(γ(ŵ)). (8.15)

On the other hand, as γ(ŵ) is an element of W and the measure µ̂ ◦ γ ∈M (V̂) clearly extends the
measure µ, the right inequality of (8.9) implies that

∆̂Φ̂
µ̂◦γL(γ(ŵ)) ≤ ∆̌Φ̌

µL(γ(ŵ)),

and it follows from (8.14-8.15) that ∆Φ̂
µ̂ (ŵ) < −η. As this is true for any ŵ in Ŵ \ {ε}, the proof is

complete. �
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