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Abstract. Distance covariance is a measure of dependence between two random variables that take
values in two, in general different, metric spaces, see Székely et al. (2007) and Lyons (2013). It is
known that the distance covariance, and its generalization α-distance covariance, can be defined
in several different ways that are equivalent under some moment conditions. The present paper
considers four such definitions and find minimal moment conditions for each of them, together with
some partial results when these conditions are not satisfied.

Another purpose of the present paper is to improve existing results on consistency of distance
covariance, estimated using the empirical distribution of a sample.

The paper also studies the special case when the variables are Hilbert space valued, and shows
under weak moment conditions that two such variables are independent if and only if their (α-)
distance covariance is 0; this extends results by Lyons (2013) and Dehling et al. (2020). The proof
uses a new definition of distance covariance in the Hilbert space case, generalizing the definition for
Euclidean spaces using characteristic functions by Székely et al. (2007).

1. Introduction

Distance covariance is a measure of dependence between two random variables X and Y that take
values in two, in general different, spaces X and Y. This measure appears in Feuerverger (1993) as
a test statistic when X = Y = R; it was more generally introduced by Székely et al. (2007) for the
case of random variables in Euclidean spaces, possibly of different dimensions. (See Definition 2.4
below.) This was extended to general separable measure spaces by Lyons (2013), see also Jakobsen
(2017), and to semimetric spaces (of negative type, see below) by Sejdinovic et al. (2013). (See
Definition 2.3.)

Our setting throughout this paper is the following (see also Remark 2.7): (X,Y) is a pair of
random variables taking values in X ×Y, where X and Y are separable metric spaces, with metrics
dX and dY ; we write just d for both metrics when there is no risk of confusion. (All spaces will be
separable throughout, whether said explicitly or not.)
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We denote the distance covariance by dcovα(X,Y), where α > 0 is a parameter. The standard
choice is α = 1; in this case we may drop the subscript and write dcov(X,Y).

In the first part of the present paper, we consider general separable metric spaces and general α >
0, One purpose is to improve existing result on consistency of dcovα. Székely et al. (2007) showed
that in the Euclidean case and with α ∈ (0, 2), computing dcovα for the empirical distribution of
a sample gives a strongly consistent estimator of dcovα, provided α moments are finite. This was
extended to general metric spaces, with α = 1, by Lyons (2013), who claimed consistency in this
sense assuming only finite first moments; however, the proof is incorrect as noted in the Errata to
Lyons (2013). (For spaces of negative type, the result holds by another proof in Lyons, 2013.) As
also noted in Lyons (2013), there is a simple proof assuming second moments, and Jakobsen (2017)
proved the result when E(‖X‖‖Y‖)5/6 <∞, and thus in particular when X and Y have moments
of order 5/3. We remove this condition and show (Theorem 5.4) consistency assuming only first
moments (as stated in Lyons, 2013). Furthermore, this is extended to all α > 0, now assuming α∗
moments with α∗ defined in (2.1).

One interesting feature of distance covariance is that it can be defined in several ways that
look very different but are equivalent (at least assuming sufficient moment conditions). We will
in Section 2 give several definitions, requiring somewhat different moment conditions. Another
purpose of the present paper is to show that the different definitions agree under the (minimal)
moment conditions assumed in them (Section 4). We also show that dcovα depends continuously
on the distribution of (X,Y), assuming convergence of appropriate moments (Theorem 5.2 and
Remark 5.3).

In the second part of the paper, Sections 6–8, we consider Hilbert spaces. As said above, the
original definition of distance covariance by Székely et al. (2007) is for the case of Euclidean spaces;
their definition (Definition 2.4 below) uses characteristic functions and is thus tied to Rp. For general
separable Hilbert spaces, we give a related definition of dcovα (Definition 7.1), which replaces the
use of characteristic functions (i.e., Fourier transforms) by certain characteristic random variables,
which are Gaussian random variables that can be defined also for variables in infinite-dimensional
Hilbert spaces. We show that this definition is equivalent to the other ones under suitable moment
conditions.

In the Euclidean setting in Feuerverger (1993) and Székely et al. (2007), with α < 2, the original
definition (our Definition 2.4) implies immediately the fundamental property that dcovα(X,Y) ≥ 0
for any X and Y, and furthermore

dcovα(X,Y) = 0 ⇐⇒ X and Y are independent. (1.1)

Hence, dcovα(X,Y) can be regarded as a measure of dependency, and distance covariance can be
used to test independence. (As noted in Székely et al., 2007, (1.1) does not hold for α = 2; see
Section 8.) Lyons (2013) showed that (1.1) does not hold for general metric spaces, but it holds for
α = 1 and metric spaces of strong negative type (see Lyons (2013) for the definition). In particular,
Lyons (2013) showed that a Hilbert space is of strong negative type, and thus (1.1) holds for Hilbert
spaces and α = 1. Dehling et al. (2020, Theorem 4.2) extended this to all α ∈ (0, 2). We use our new
definition of distance covariance for Hilbert spaces to give a new proof, assuming only α moments,
of this theorem by Dehling et al. (2020) (our Theorem 7.6). Our proof (and Definition 7.1) is based
on the ideas in Dehling et al. (2020); however, the proof in Dehling et al. (2020) is formulated for
the Hilbert space L2[0, 1] and uses arguments with Brownian motion. Our proof can be regarded
as a more abstract version of their proof, stated for arbitrary (separable) Hilbert spaces and using
i.i.d. Gaussian sequences instead of Brownian motion; we believe that this makes the proof clearer
since it avoids irrelevant details related to the particular choice L2[0, 1] of the Hilbert space.

Section 8 studies the case α = 2 for Hilbert spaces. This case is rather trivial, and markedly
different from α < 2. In particular, even in one dimension, (1.1) does not hold for α = 2, as is well
known since Székely et al. (2007, §3.1) and Székely and Rizzo (2009a, §4.1). However, this case
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is of special interest because, as said in Remark 2.7, and in more detail in Remark 8.4, arbitrary
(semi)metric spaces of negative type can be embedded into it.

In the third part of the paper, we return to general metric spaces and study whether the moment
conditions in the definitions and results are optimal. Section 9 shows that the exponents in the
conditions cannot be decreased, in general. However, some other weakenings are possible, and in
Section 10 we further study and compare the various definitions when the moment conditions above
fail. We give some results; in particular, we consider Lorentz spaces. We also state some open
problems that we have failed to solve.

The appendices contain some general results on uniform integrability and on integrals in a Hilbert
space used in the paper; for completeness full proofs are given although some or all results are known.

2. Several definitions of distance covariance

We consider (except when stated otherwise) the general setting described in Section 1, with
(X,Y) a pair of random variables taking values in X × Y, where X and Y are separable metric
spaces. We begin with three related definitions of distance covariance that work in this general
setting, assuming only some moment conditions on the variables X and Y.

Let, throughout the paper, (X1,Y1), (X2,Y2), . . . be independent copies of (X,Y). Also, let
xo ∈ X and yo ∈ Y be two fixed points, and write for convenience ‖x‖ := d(x,xo) and ‖y‖ :=
d(y,yo) for x ∈ X and y ∈ Y. (In the case of Euclidean spaces, or Hilbert spaces, we choose
xo = yo = 0, and ‖x‖ is the usual norm.) We use xo and yo for moment conditions of the type
E‖X‖α <∞; note that by the triangle inequality, for this condition the choice of xo does not matter,
and that this condition is equivalent to E d(X1,X2)

α <∞.
Also, define for convenience

α∗ := max(α, 2α− 2) =

{
α, 0 < α ≤ 2,

2α− 2, α > 2.
(2.1)

As will be seen below, the case of main interest is α ∈ (0, 2]; in this case thus simply α∗ = α.
When necessary, we distinguish the versions of distance covariance by different superscripts such

as dcov∗α,dcovα̂,dcov∼α , but usually this is omitted because the choice of definition does not matter,
or is clear from the context.

Definition 2.1. Assume E‖X‖2α <∞ and E‖Y‖2α <∞. Then

dcovα(X,Y) = dcov∗α(X,Y)

:= E
[
d(X1,X2)

αd(Y1,Y2)
α
]

+ E
[
d(X1,X2)

α
]
E
[
d(Y1,Y2)

α
]

− 2E
[
d(X1,X2)

αd(Y1,Y3)
α
]
. (2.2)

Definition 2.2. Assume E‖X‖α∗ <∞ and E‖Y‖α∗ <∞. Then

dcovα(X,Y) = dcovα̂(X,Y) := 1
4 E
[
X̂αŶα

]
, (2.3)

where

X̂α := d(X1,X2)
α − d(X2,X3)

α + d(X3,X4)
α − d(X4,X1)

α (2.4)

and similarly for Ŷα.

Definition 2.3. Assume E‖X‖α∗ <∞ and E‖Y‖α∗ <∞. Then

dcovα(X,Y) = dcov∼α (X,Y) := E
[
X̃αỸα

]
, (2.5)
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where

X̃α := E(X̂α | X1,X2) (2.6)
= d(X1,X2)

α − EX d(X1,X)α − EX d(X2,X)α + E d(X1,X2)
α (2.7)

and similarly for Ỹα, where EX denotes integrating over X only, i.e., the conditional expectation
given all Xj (but not X).

The role of the parameter α is thus to replace the metric d by dα in the definition of dcov = dcov1.
See further Remark 2.7 below.

Note that dcovα(X,Y) only depends on the joint distribution of X and Y; thus distance covari-
ance can be seen as a functional on distributions in X × Y.

The moment condition E‖X‖2α < ∞ and E‖Y‖2α < ∞ in Definition 2.1 is equivalent to
E d(X1,X2)

2α < ∞ and E d(Y1,Y2)
2α < ∞, which implies that all expectations in (2.2) are fi-

nite; it implies also X̂α, Ŷα ∈ L2 and thus X̃α, Ỹα ∈ L2, so the expectations in (2.3) and (2.5) are
also finite. Moreover, in this case, it is easy to see that Definitions 2.1–2.3 are equivalent: by ex-
panding the products X̂αŶα and X̃αỸα in (2.3) and (2.5), we obtain (2.2) after simple calculations
(Lemma 4.1). It is less obvious that the weaker moment condition in Definitions 2.2 and 2.3 is
enough to guarantee that the expectations in (2.3) and (2.5) are finite and equal; we show this, and
in particular that X̂α, Ŷα, X̃α, Ỹα ∈ L2, in Section 4 (Lemma 4.3 and Theorem 4.5). In Section 9 we
show that the exponents 2α and α∗ in the moment conditions are optimal in general; in Section 10
we discuss extensions when the moment conditions fail.

The original definition of distance covariance by Székely et al. (2007), for random variables X
and Y in Euclidean spaces Rp and Rq, see also Feuerverger (1993), is quite different and is based
on characteristic functions. The general version with a α ∈ (0, 2) Székely et al. (2007, Section 3.1)
is as follows.

Let ϕX(t) := E eit·X, ϕY(u) := E eiu·Y and ϕX,Y(t,u) := E ei(t·X+u·Y) be the characteristic
functions of X, Y and (X,Y). Define also the constants

cα,k :=
2αΓ((k + α)/2)

−πk/2Γ(−α/2)
=
α2α−1Γ((k + α)/2)

πk/2Γ(1− α/2)
> 0. (2.8)

(The values of these normalization constants are unimportant; they are chosen to make the definition
agree with the preceding ones.)

Definition 2.4. Let (X,Y) be a pair of random vectors in Rp and Rq, respectively, where p, q ≥ 1,
and let 0 < α < 2. Then

dcovα(X,Y) = dcovE
α(X,Y) :=

cα,pcα,q

∫
t∈Rp

∫
u∈Rq

∣∣ϕX,Y(t,u)− ϕX(t)ϕY(u)
∣∣2 dt du

|t|p+α|u|q+α
. (2.9)

Remark 2.5. No moment condition is needed in Definition 2.4, since the integrand in (2.9) is non-
negative; with this definition (for Euclidean spaces and α < 2), dcovα(X,Y) is always defined,
although it may be ∞. As shown in Székely et al. (2007), dcovα(X,Y) is finite at least when
E‖X‖α < ∞ and E‖Y‖α < ∞; this also follows from the equivalence with Definitions 2.2 and 2.3,
see Theorems 7.2 and 7.4.

In contrast, we have in Definitions 2.1–2.3 imposed moment conditions making dcovα(X,Y)
finite. These definitions can be used somewhat more generally when the expectations in them are
finite, and even when the result is +∞; see Sections 9 and 10. However, without moment conditions,
there are cases, even with X = Y = R, when Definitions 2.1–2.3 yield results of the type ∞−∞
and thus cannot be used at all; see Examples 9.4, 9.7, 9.9 and 9.15.
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Remark 2.6. Definition 2.4 requires α < 2, since typically the integral in (2.9) diverges for α ≥ 2.
For example, if p = q and X = Y ∼ N(0, I), then |ϕX,Y(t,u)−ϕX(t)ϕY(u)| ∼ |〈t,u〉| as t,u→ 0,
and (2.9) diverges for α ≥ 2.

Feuerverger (1993) gave Definition 2.4 with α = 1 for X = Y = R and the special case when
(X,Y) have the empirical distribution of a finite sample from an unknown bivariate distribution,
thus defining a test statistic for independence. He also showed that it has the equivalent forms (2.3)
and (2.2). More generally, for arbitrary random (X,Y) in Euclidean spaces and 0 < α < 2, Székely
et al. (2007) gave Definition 2.4; they also showed that it is equivalent to Definition 2.1 when the
moment condition in the latter holds Székely et al. (2007, Remark 3 for α = 1; implicit in §3.1
for α ∈ (0, 2)); see also Székely and Rizzo (2009a, (3.7), (4.1) and Theorem 8). Furthermore, (2.5)
was used for finite samples in Székely et al. (2007, (2.8) and §3.1) and Székely and Rizzo (2009a,
(2.8) and §4.1). The name distance covariance was introduced by Székely et al. (2007) (for the case
α = 1, and α-distance covariance in general). (Actually, Székely et al., 2007 and Székely and Rizzo,
2009a define the distance covariance as the square root of dcov(X,Y); we ignore this difference in
terminology.)

Lyons (2013) extended the theory to general (separable) metric spaces, with α = 1, using Defini-
tion 2.3 as his definition. (This was also suggested in Székely and Rizzo, 2009b, §3.) Lyons (2013)
showed also that, although the definition works for arbitrary metrics, dcov is useful as a measure of
dependence mainly in the case when X and Y are metric spaces of negative type (see Lyons (2013)
for a definition; see also Sejdinovic et al. (2013), Berg et al. (1984) and Remark 2.7 below), because
in this case, but not otherwise, dcov(X,Y) ≥ 0 for any X and Y such that dcov(X,Y) is defined;
as said in the introduction, if furthermore the spaces are of strong negative type, then also (1.1)
holds for α = 1. (The implication that dcovα(X,Y) = 0 for independent variables is trivial, for any
α, but not the converse.) Hence, for metric spaces of strong negative type, dcov can be regarded as
a measure of dependence and for tests of independence just as in the Euclidean case.

Dehling et al. (2020) studied dcovα in the infinite-dimensional Hilbert space L2[0, 1] for α ∈ (0, 2),
using Definition 2.1. Since all separable infinite-dimensional Hilbert spaces are isomorphic; this is
equivalent to considering arbitrary separable Hilbert spaces.

2.1. Further comments and extensions. We have here, as Lyons (2013), assumed that dX and dY are
metrics. However, we can formally use Definitions 2.1–2.3 for any symmetric measurable functions
dX : X × X → [0,∞) and dY : Y × Y → [0,∞). (For X and Y such that the expectations exist,
and still assuming X and Y to be separable metric spaces, to avoid technical problems.) It seems
natural to assume at least that dX and dY are semimetrics; a semimetric on a space X is a symmetric
function d : X ×X → [0,∞) such that d(x1,x2) = 0 ⇐⇒ x1 = x2. (Thus, the triangle inequality is
not assumed. Note that the term semimetric also is used in other context with a different meaning.)
This extension was made by Sejdinovic et al. (2013); they considered semimetrics of negative type
and showed that much of the theory extends to this case.

Remark 2.7. If 0 < α ≤ 1, then dα is also a metric for any metric d, and dcovα is just dcov applied
to the spaces X and Y equipped with the metrics dαX and dαY . (From an abstract point of view, the
case α ≤ 1 thus does not add anything new.)

If we allow general semimetrics, there is no such restriction; dα is a semimetric for every α > 0,
and dcovα is just dcov applied to the semimetrics dαX and dαY for any α > 0.

On the other hand, see Lyons (2013) and Schoenberg (1938), a semimetric d on a space X is of
negative type if and only there exists an embedding ϕ : X → H into a Hilbert space such that

d(x1,x2) = ‖ϕ(x1)− ϕ(x2)‖2. (2.10)

In particular, (2.10) implies that d1/2 is a metric. (We assume that balls for the semimetric define
the topology, and thus the metric d1/2 defines the topology of X .) Hence, for semimetrics of negative
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type, dcovα is the same as dcov2α for the metrics d1/2X and d1/2Y ; in particular, dcov equals dcov2

for these metrics. Consequently, our setting with metrics but arbitrary α includes also semimetrics
of negative type. Furthermore, using the embedding ϕ, we see that dcov for semimetric spaces
of negative type can be reduced to dcov2 for Hilbert spaces, see Remark 8.4. (This is implicit
in Sejdinovic et al., 2013, where this embedding is used to give another interpretation of distance
covariance, see Remarks 2.10 and 8.5.)

We will in the sequel assume that dX and dY are metrics (without assuming negative type), but
note that as just said, by changing α, this really includes the case of semimetrics of negative type.

In this context we note that if X is a Euclidean space Rq, or more generally a Hilbert space, then
the semimetric ‖x1 − x2‖α is of negative type if and only if 0 < α ≤ 2, see Schoenberg (1938). (It
is thus a metric of negative type if and only if 0 < α ≤ 1.) Consequently, for Hilbert spaces, if
0 < α ≤ 2, we can conversely regard dcovα as dcov for the semimetric of negative type ‖x1 − x2‖α.

Remark 2.8. Another version of the definitions above is obtained if we denote the right-hand side
of (2.4) by X̂α(X1,X2,X3,X4) and then define

dcovα(X,Y) = dcov=
α (X,Y)

:= E
(
X̂α(X1,X2,X3,X4)Ŷα(Y1,Y2,Y5,Y6)

)
. (2.11)

This version is used in proofs in Lyons (2013) and Jakobsen (2017).
It is obvious that if X̂α, Ŷα ∈ L2, then the expectation in (2.11) is finite, and, using Fubini’s

theorem to integrate first over X3,X4,Y5,Y6, it equals E
(
X̃αỸα

)
; thus, at least in this case,

(2.11) agrees with (2.5). In particular, by Lemma 4.3 below, this holds when E‖X‖α∗ < ∞ and
E‖Y‖α∗ <∞. We will not consider this definition further, and we leave the case when the moment
condition just stated fails to the reader. (We conjecture results similar to those in Sections 9 and 10).

Remark 2.9. We have defined X̃α as a conditional expectation of X̂α; this can be regarded as an
orthogonal projection in the Hilbert space L2(P).

If E‖X‖2α <∞, so d(X1,X2)
α ∈ L2, then, as noted by Jakobsen (2017), X̃α can also be regarded

as a projection in another way, viz. as the orthogonal projection of d(X1,X2)
α onto the subspace

of L2(P) consisting of functions g(X1,X2) with E
(
g(X1,X2) | X1

)
= E

(
g(X1,X2) | X2

)
= 0 a.s.

Remark 2.10. For semimetrics of negative type, another interpretation of distance covariance is
given by Sejdinovic et al. (2013, Theorem 24), showing that it coincides with the Hilbert-Schmidt
independence criterion, a distance measure between the distributions L(X,Y) and L(X1,Y2) =
L(X)×L(Y) that is defined using reproducing Hilbert spaces given by some kernels on the spaces,
provided one chooses the kernels to be defined in a specific way by the metrics dX and dY . See also
Remark 8.5.

Remark 2.11. Yet another interpretation (or definition) of distance covariance was given by Székely
and Rizzo (2009a) for Euclidean spaces; it was called Brownian covariance distance. In the one-
dimensional case X = Y = R, and with α = 1, let W and W ′ be two two-sided Brownian motions,
independent of each other and of X and Y; then

dcov(X,Y) = E
[
Cov

(
W (X),W ′(Y)

∣∣W,W ′)2] (2.12)

This was extended, also in Székely and Rizzo (2009a), to arbitrary dimension by using Brownian
fields on Rk, and to α ∈ (0, 2) by using fractional Brownian fields.

This approach was further generalized to arbitrary spaces with semimetrics of negative type by
Kanagawa et al. (2018, Section 6.4), letting W and W ′ be Gaussian stochastic processes on X and
Y, with suitable covariance kernels.

Remark 2.12. Definitions 2.2–2.4 show immediately that dcovα(X,X) ≥ 0 whenever the definition
applies (even in the extended sense discussed in Remark 2.5). Moreover, dcovα(X,X) > 0 unless
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X is degenerate (i.e., is concentrated at a single value); this is immediate for Definition 2.4; it was
shown by Lyons (2013) for Definition 2.3 (for α = 1), and his proof extends to general α, and to
Definition 2.2, for the latter even without any moment assumption (allowing +∞).

Remark 2.13. Distance correlation is defined by Székely et al. (2007) as

dcovα(X,Y)

dcovα(X,X)1/2 dcovα(Y,Y)1/2
, (2.13)

provided X and Y are non-degenerate so the denominator is strictly positive (see Remark 2.12).
Various properties of distance correlation follow from properties of distance covariance; we leave

this to the reader.

3. Some notation

As said above, (X,Y) is a pair of random variables taking values in separable metric spaces X
and Y, and (Xi,Yi), i ≥ 1, are independent copies of (X,Y). α is a fixed parameter, and α∗ is given
by (2.1). Unless stated otherwise, we assume only α > 0. (This condition is sometimes repeated for
emphasis.)
P(X ) denotes the set of all Borel probability measures in X .
Convergence almost surely, in probability, in distribution and in Lp are denoted by a.s.−→, p−→,

d−→, Lp−→.
We use the standard definition of covariance

Cov(Z,W ) := E[ZW ]− EZ EW (3.1)

not only for real random variables, but also more generally for any complex random variables Z
and W with E |Z|2,E |W |2 <∞; we further extend this notation to conditional covariance.

For real x, y, x ∧ y := min{x, y} and x ∨ y := max{x, y}; also x+ := x ∨ 0 and x− := (−x)+ =
−(x ∧ 0), so x = x+ − x−.

The inner product in a Hilbert space is denoted by 〈x, y〉; for finite-dimensional Rq we also use
x · y. All Hilbert spaces have real scalars, so the inner product is real-valued.
C and c will denote some unimportant positive constants that depend only on α (and may be

taken as universal constants for α ≤ 2). Their value may differ from one occurence to the next.

4. Existence and continuity

We begin by recording the simple fact that with enough moments, Definitions 2.1–2.3 agree.

Lemma 4.1. Let α > 0. If E‖X‖2α <∞ and E‖Y‖2α <∞, then all expectations in (2.2), (2.3) and
(2.5) are finite, and the three definitions of dcovα(X,Y) agree, i.e., dcov∗α(X,Y) = dcovα̂(X,Y) =
dcov∼α (X,Y).

Proof : As said in Section 2, this is elementary; we omit the details. �

We will extend this to the weaker moment conditions used in Definitions 2.2 and 2.3. We ar-
gue similarly to Lyons (2013), who showed the case α = 1 (and thus implicitly 0 < α ≤ 1, see
Remark 2.7). We first show some useful estimates of the variable X̂α defined in (2.4). Note the
symmetry up to sign under cyclic permutations of the indices 1, . . . , 4.

Although we state the next lemma for the random variables Xi, it is really a pointwise inequality
that could have been stated for four non-random points x1, . . . ,x4. In sums such as (4.2) and
(4.3), the indices are interpreted modulo 4; moreover, a term containing an index i ± 1 should be
interpreted as two terms, with i+ 1 and i− 1; the sum in (4.3) is thus really a sum of 8 terms.
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Lemma 4.2. Let X be a metric space.
(i) If 0 < α ≤ 1, then

|X̂α| ≤ 2

4∑
i=1

(
‖Xi‖α ∧ ‖Xi+1‖α

)
. (4.1)

(ii) If 0 < α ≤ 2, then

|X̂α| ≤ C
4∑
i=1

‖Xi‖α/2‖Xi+1‖α/2. (4.2)

(iii) If α ≥ 1, then

|X̂α| ≤ C
4∑
i=1

‖Xi‖α−1‖Xi±1‖. (4.3)

Proof : Write dij := d(Xi,Xj). Thus X̂α = dα12 − dα23 + dα34 − dα41. Note the triangle inequality

dij ≤ ‖Xi‖+ ‖Xj‖. (4.4)

Case 1: α ≤ 1. Since dα is a metric when α ≤ 1, it suffices to consider the case α = 1. The triangle
inequality yields ∣∣X̂∣∣ ≤ ∣∣d12 − d41∣∣+

∣∣d23 − d34∣∣ ≤ d24 + d24 = 2d24. (4.5)

Similarly, by shifting the indices, ∣∣X̂∣∣ ≤ 2d13. (4.6)

Hence, using (4.5)–(4.6) and (4.4),

|X̂| ≤ 2 min
(
d13, d24

)
≤ 2 min

(
‖X1‖+ ‖X3‖, ‖X2‖+ ‖X4‖

)
. (4.7)

We claim that for any real x1, . . . , x4 ≥ 0,

(x1 + x3) ∧ (x2 + x4) ≤
4∑
i=1

(
xi ∧ xi+1

)
. (4.8)

In fact, by cyclic symmetry, we may without loss of generality assume that x1 is the largest of
x1, . . . , x4, and in this case

x2 + x4 = x1 ∧ x2 + x4 ∧ x1 ≤
4∑
i=1

(
xi ∧ xi+1

)
, (4.9)

and (4.8) follows. Hence (4.8) holds, and (4.7) implies (4.1) for α = 1. As said above, this shows
(4.1) in general.

Furthermore, for α ≤ 1, (4.2) follows from (4.1) since x ∧ y ≤ x1/2y1/2 when x, y ≥ 0.
Case 2: α > 1. By the cyclic symmetry we may assume that ‖X1‖ is the largest of ‖X1‖, . . . , ‖X4‖.
Then, (4.4) implies

dij ≤ 2‖X1‖, i, j = 1, . . . , 4. (4.10)

As above, the triangle inequality yields ∣∣d12 − d41∣∣ ≤ d24 (4.11)

and thus, by the mean value theorem, for some θ ∈ [0, 1],∣∣dα12 − dα41∣∣ ≤ d24α(θd12 + (1− θ)d41
)α−1

. (4.12)
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Using (4.10), this yields ∣∣dα12 − dα41∣∣ ≤ d24α2α−1‖X1‖α−1. (4.13)

Similarly, ∣∣dα23 − dα34∣∣ ≤ d24α(θ′d23 + (1− θ′)d34
)α−1 ≤ d24α2α−1‖X1‖α−1. (4.14)

Summing (4.13) and (4.14) yields, using again (4.4),∣∣X̂α

∣∣ ≤ ∣∣dα12 − dα41∣∣+
∣∣dα23 − dα34∣∣ ≤ α2α‖X1‖α−1d24

≤ α2α‖X1‖α−1(‖X2‖+ ‖X4‖). (4.15)

This proves (4.3) for any α ≥ 1.
If 1 ≤ α ≤ 2, we further note that our assumption ‖Xj‖ ≤ ‖X1‖ implies

‖X1‖α−1‖Xj‖ ≤ ‖X1‖α/2‖Xj‖α/2, j = 1, . . . , 4, (4.16)

and thus (4.15) also yields (4.2). �

Lemma 4.3. If E‖X‖α∗ <∞, then E X̂2
α <∞ and E X̃2

α <∞.

For α = 1, this is shown by Lyons (2013, Errata).

Proof : Case 1: α ≤ 2. In this case α∗ = α. Recall that, by definition, Xi and Xi±1 are independent.
Hence,

E
(
‖Xi‖α/2‖Xi+1‖α/2

)2
= E‖Xi‖α E‖Xi+1‖α <∞, (4.17)

so each term in the sum in (4.2) belongs to L2, and thus (4.2) implies X̂α ∈ L2. Since X̃α is defined
by (2.6) as a conditional expectation of X̂α, this further implies X̃α ∈ L2.
Case 2: α ≥ 2. In this case α∗ = 2(α−1) ≥ 2, and the result follows in the same way from (4.3). �

In the following lemma, we consider together with X also a sequences (X(n))n≥1 of random
variables in X . We then define X

(n)
i for i ≥ 1 such that the random variables

(
Xi, (X

(n)
i )n

)
in

X∞ are independent copies of
(
X, (X(n))n

)
. This extends in the obvious way when we consider

sequences
(
(X(n),Y(n))

)
n
. We use the superscript (n) in the natural way and let e.g. X̂(n)

α be defined
as in (2.4) using X

(n)
i .

Lemma 4.4. Let X and X(n), n ≥ 1, be random variables in X , and assume that E‖X‖α∗ < ∞
and E d(X(n),X)α

∗ → 0 as n→∞. Then E
(
X̂

(n)
α − X̂α

)2 → 0 and E
(
X̃

(n)
α − X̃α

)2 → 0.

Proof : We use without further comments some elementary facts about uniform integrability, see
e.g. Gut (2013, Theorems 5.5.4, 5.4.5 and 5.4.6).

Since E d(X(n),X)α
∗ → 0, the sequence d(X(n),X)α

∗ of random variables is uniformly integrable.
The triangle inequality yields ‖X(n)‖ ≤ d(X(n),X) + ‖X‖, and thus

‖X(n)‖α∗ ≤ C
(
d(X(n),X)α

∗
+ ‖X‖α∗

)
, (4.18)

and it follows that the sequence ‖X(n)‖α∗ is uniformly integrable. Lemma 4.2 and the argument
in the proof of Lemma 4.3, using Lemma A.1 in the appendix, show that the sequence (X̂

(n)
α )2 is

uniformly integrable.
Furthermore, we have d(X(n),X)

p−→ 0, and thus d(X
(n)
i ,Xi)

p−→ 0 for every i. The triangle
inequality then implies d(X

(n)
i ,X

(n)
j )

p−→ d(Xi,Xj) for every i and j, and thus the definition (2.4)

implies X̂(n)
α

p−→ X̂α.
This and the uniform square integrability just established yield E

(
X̂

(n)
α − X̂α

)2 → 0.
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Furthermore, by (2.6), if F is the σ-field generated by all Xj and X
(n)
j with j ∈ {1, 2}, then

X̃α = E(X̂α | F) and X̃(n)
α = E(X̂

(n)
α | F). Consequently,

E
∣∣X̃(n)

α − X̃α

∣∣2 = E
∣∣E(X̂(n)

α − X̂α | F)
∣∣2 ≤ E

∣∣X̂(n)
α − X̂α

∣∣2 → 0. (4.19)

�

Theorem 4.5. Definitions 2.1–2.3 are well-defined; more precisely, for any α > 0, assuming the
stated moment conditions, the expectations in (2.2), (2.3) and (2.5) are finite. Furthermore, any
two of these definitions yield the same result, whenever the moment conditions in both are satisfied.

Proof : Lemma 4.1 shows that all three definitions are valid and agree under the condition of Defi-
nition 2.1, i.e., when E‖X‖2α <∞ and E‖Y‖2α <∞.

It remains to show that (2.3) and (2.5) are finite and agree under the weaker assumption
E‖X‖α∗ <∞ and E‖Y‖α∗ <∞. In this case, Lemma 4.3 shows that X̂α, Ŷα, X̃α, Ỹα ∈ L2, and thus
(2.3) and (2.5) are finite.

We do not know a simple direct argument to show the equality of the two expressions, so we use
truncations as follows. Let, for n ≥ 1,

X(n) :=

{
X, ‖X‖ ≤ n,
xo, otherwise,

(4.20)

and define Y(n) similarly. Then

E d(X(n),X)α
∗

= E
[
‖X‖α∗1{‖X‖ > n}

] a.s.−→ 0, as n→∞. (4.21)

Thus, Lemma 4.4 yields ‖X̂(n)
α − X̂α‖L2 → 0 and ‖X̃(n)

α − X̃α‖L2 → 0. Similarly, ‖Ŷ (n)
α − Ŷα‖L2 → 0

and ‖Ỹ (n)
α − Ỹα‖L2 → 0.

The L2-convergence just shown implies that, as n→∞,

dcovα̂(X(n),Y(n)) = 1
4 E
[
X̂(n)
α Ŷ (n)

α

]
→ 1

4 E
[
X̂αŶα

]
= dcovα̂(X,Y) (4.22)

and similarly

dcov∼α (X(n),Y(n)) = E
[
X̂(n)
α Ŷ (n)

α

]
→ E

[
X̂αŶα

]
= dcov∼α (X,Y), (4.23)

Furthermore, for each n, ‖X(n)‖ and ‖Y(n)‖ are bounded, and thus Lemma 4.1 applies and shows
dcovα̂(X(n),Y(n)) = dcov∼α (X(n),Y(n)). Consequently, (4.22)–(4.23) imply dcovα̂(X,Y) =
dcov∼α (X,Y). �

We return in Section 9 to the case when the moment conditions fail.

5. Continuity and consistency

The lemmas in Section 4 yield also continuity results. Unspecified convergence is as n→∞.

Theorem 5.1. Let α > 0. Let (X,Y) and (X(n),Y(n)), n ≥ 1, be pairs of random variables in
X × Y, and assume that E‖X‖α∗ < ∞, E‖Y‖α∗ < ∞ and, as n→∞, E d(X(n),X)α

∗ → 0 and
E d(Y(n),Y)α

∗ → 0. Then,

dcovα(X(n),Y(n))→ dcovα(X,Y). (5.1)

Proof : Lemma 4.4 yields X̂(n)
α

L2

−→ X̂α and Ŷ (n)
α

L2

−→ Ŷα, and thus

dcovα(X(n),Y(n)) =
1

4
E
[
X̂(n)
α Ŷ (n)

α

]
→ 1

4
E
[
X̂αŶα

]
= dcovα(X,Y). (5.2)

�
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We can extend this result and assume only convergence in distribution of (X(n),Y(n)) together
with a moment condition.

Theorem 5.2. Let α > 0. Let (X,Y) and (X(n),Y(n)), n ≥ 1, be pairs of random variables in
X ×Y, and assume that, as n→∞, (X(n),Y(n))

d−→ (X,Y). Assume further one of the following
two conditions.
(i) The sequences ‖X(n)‖α∗ and ‖Y(n)‖α∗ are uniformly integrable.
(ii) E‖X(n)‖α∗ → E‖X‖α∗ <∞ and E‖Y(n)‖α∗ → E‖Y‖α∗ <∞.

Then,

dcovα(X(n),Y(n))→ dcovα(X,Y). (5.3)

Proof : (i): Since X × Y is a separable metric space, we may by the Skorohod coupling theorem
Kallenberg (2002, Theorem 4.30) without loss of generality assume that (X(n),Y(n))

a.s.−→ (X,Y).
Furthermore, the assumption in (i) implies that supn E‖X(n)‖α∗ < ∞, and thus E‖X‖α∗ < ∞
by Fatou’s lemma. Since d(X(n),X) ≤ ‖X(n)‖ + ‖X‖, it follows, similarly to (4.18), that the
sequence d(X(n),X)α

∗ is uniformly integrable. Since we have assumed d(X(n),X)
a.s.−→ 0, this

implies E d(X(n),X)α
∗ → 0. Similarly, E d(Y(n),Y)α

∗ → 0. Thus Theorem 5.1 applies and yields
(5.3).

(ii): We have X(n) d−→ X and thus ‖X(n)‖ d−→ ‖X‖. This and our assumption E‖X(n)‖α∗ →
E‖X‖α∗ imply that the sequence ‖X(n)‖α∗ is uniformly integrable Gut (2013, Theorem 5.5.9). The
same holds for Y(n), and thus part (i) applies. �

Remark 5.3. Suppose that the metric spaces X and Y are complete. (This ensures that all proba-
bility measures are tight; see e.g. Billingsley, 1968.) Give X × Y the metric (for example)

d
(
(x1,y1), (x2,y2)

)
:= dX (x1,x2) + dY(y1,y2). (5.4)

Let Pα(X × Y) be the space of all Borel probability measures µ on X × Y such that∫
X×Y‖(x,y)‖α dµ(x,y) < ∞. In other words, Pα(X × Y) is the space of all distributions of pairs
of random variables (X,Y) ∈ X × Y such that E‖X‖α <∞ and E‖Y‖α <∞.

Define a metric in Pα(X × Y) by

dα(µ, µ′) :=

{
inf
{
E
[
d
(
(X,Y), (X′,Y′)

)α]}
, 0 < α ≤ 1,

inf
{
E
[
d
(
(X,Y), (X′,Y′)

)α]1/α}
, α > 1.

(5.5)

taking the infimum over all pairs of random variables (X,Y) and (X′,Y′) in X × Y such that
(X,Y) ∼ µ and (X′,Y′) ∼ µ′; see e.g. Bogachev and Kolesnikov (2012, pp. 796–799 (in the Eng-
lish translation)). (This is known under various names, including Kantorovich distance, Wasser-
stein distance and minimal Lα distance, see also Rüschendorf, 2020). Convergence of a sequence
L(X(n),Y(n)) of distributions to L(X,Y) in this metric is equivalent to convergence in distribu-
tion (X(n),Y(n))

d−→ (X,Y) (i.e., weak convergence of the distributions) together with uniform
integrability of ‖X(n),Y(n))‖α∗ (or, equivalently, convergence of moments E‖(X(n),Y(n))‖α∗ →
E‖(X,Y)‖α∗).

Theorem 5.1 then says that dcovα is a continuous functional on Pα∗(X × Y), for every α > 0.

5.1. Consistency. Let µ ∈ P(X × Y) be the distribution of (X,Y). Then, (X1,Y1), . . . can be
regarded as a sequence of independent samples from µ. Let νn be the empirical distribution of the
first n samples, i.e.,

νn :=
1

n

n∑
i=1

δ(Xi,Yi) ∈ P(X × Y). (5.6)
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Note that νn is a random probability measure. Hence, its distance covariance dcovα(νn) is a random
variable. The following theorem shows that this random variable converges to dcovα(µ) a.s.; in other
words, the distance covariance of the empirical distribution is a consistent estimator of the covariance
distance of µ. As said in the introduction, this was proved by Székely et al. (2007) for the Euclidean
case with α ∈ (0, 2); for general metric spaces, with α = 1, the result was stated by Lyons (2013),
but his proof requires a stronger moment condition. Second moments are enough for α = 1, see
Székely et al. (2007, Remark 3); Jakobsen (2017) improved this and showed that 5/3 moments are
enough. The proof in Székely et al. (2007, Remark 3) generalizes to arbitrary α > 0, assuming 2α
moments.

We can now show consistency assuming only α∗ moments, as required by our definitions. In
particular, this shows that for α = 1, first moments suffice, as stated in Lyons (2013). (The
proofs in Lyons (2013) and Jakobsen (2017) use results for V -statistics which require extra moment
assumptions; our proof uses another method.)

Theorem 5.4. Let µ be the distribution of (X,Y) ∈ X ×Y and assume that E‖X‖α∗ ,E‖Y‖α∗ <∞.
If νn is the empirical distribution (5.6), then

dcovα(νn)
a.s.−→ dcovα(µ). (5.7)

Proof : Conditionally on the sequence (νn)n of empirical measures, let (X(n),Y(n)) be a random
variable with distribution νn. Since X ×Y is a separable metric space, the distribution νn converges
a.s. to µ (in the usual weak topology); see Varadarajan (1958) or Billingsley (1968, Problem 4.4).
In other words, a.s., conditionally on (νn)n, (X(n),Y(n))

d−→ (X,Y).
Furthermore, by the definition (5.6) of νn, conditioning on the sequence (νk)k,

E
(
‖X(n)‖α∗ | (νk)k

)
=

1

n

n∑
i=1

‖Xi‖α
∗
. (5.8)

Hence, the strong law of large numbers (in R) shows that a.s., conditioned on (νk)k, E‖X(n)‖α∗ a.s.−→
E‖X‖α∗ , and similarly also E‖Y(n)‖α∗ a.s.−→ E‖Y‖α∗ . Consequently, Theorem 5.2(ii) applies a.s.
to the sequence (νn)n and the corresponding random variables (X(n),Y(n)); hence dcovα(νn)

a.s.−→
dcovα(µ). �

Our proofs of Theorems 5.2 and 5.4 give no information on the rate of convergence, leading to
the following problems.
Problem 5.5. What is the rate of convergence in (5.3), under suitable hypotheses on (Xn,Yn)?
Problem 5.6. What is the rate of convergence in (5.7), under suitable hypotheses on (X,Y)?

6. Hilbert spaces, preliminaries

In this and the next two sections we assume that X and Y are separable Hilbert spaces; we
therefore change notation and write X = H and Y = H′.

We give our extension of Definition 2.4 of covariance distance in Section 7, but we first need some
preliminaries.

6.1. Characteristic random variables. Let H be a separable Hilbert space, of finite or infinite di-
mension dimH.

Fix an ON-basis (ei)
dimH
1 in H, and let ξi, i = 1, 2, . . . , be i.i.d. N(0, 1) random variables. Let

ξ := (ξi)
dimH
1 , a random vector of length dimH (finite or infinite). Define for any x ∈ H,

ξ · x = x · ξ :=
dimH∑
i=1

〈x, ei〉ξi. (6.1)
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Note that in the finite-dimensional case, ξ ∈ H and this is the usual inner product. In the infinite-
dimensional case ξ /∈ H a.s., but the sum in (6.1) converges a.s. since

∑
i |〈x, ei〉|2 = ‖x‖2 < ∞.

Hence, ξ · x is defined a.s. in any case. Note also that ξ · x is a real-valued random variable, and
that

ξ · x ∼ N
(
0, ‖x‖2

)
. (6.2)

Let X be an H-valued random variable, and assume that ξ is independent of X. Then ξ ·X exists
a.s.; thus ξ ·X is a well-defined real-valued random variable. Consider the conditional expectation

ΦX(ξ) := E
(
eiξ·X

∣∣ ξ). (6.3)

This is a complex-valued random variable (determined a.s.), which can be written as a (determin-
istic) function of ξ.

In the finite-dimensional case dimH <∞, we may identify H with Rq, with (ej)
q
1 as the standard

basis. Then (6.1) and (6.3) show that

ΦX(ξ) = ϕX(ξ) a.s., (6.4)

where ϕX(t) := E eit·X is the usual characteristic function. For this reason, we say, for a general
Hilbert space H, that ΦX(ξ) is the characteristic random variable of X.

Note that ΦX(ξ) is a complex random variable, with∣∣ΦX(ξ)
∣∣ ≤ 1 a.s. (6.5)

ΦX(ξ) depends on the choices of (ej)j and (ξj)j , but these choices are regarded as fixed. Moreover,
the following theorem says that ΦX(ξ) has the same fundamental property as the usual character-
istic function: it depends on X only through its distribution, and conversely, it characterizes the
distribution.

Theorem 6.1. Let H be a separable Hilbert space, and let X and Y be H-valued random variables.
Fix as above an ON-basis (ei)

dimH
1 in H, and a random vector ξ := (ξi)1 of i.i.d. standard normal

random variables ξi, i = 1, 2, . . . , and assume further that these are independent of X and Y. Then

X
d
= Y ⇐⇒ ΦX(ξ) = ΦY(ξ) a.s. (6.6)

We prove first a lemma that will help to reduce to the finite-dimensional case.

Lemma 6.2. Let X be an H-valued random variable and let ξ = (ξi)i be as above, and in particular
independent of X. Then, for any ε > 0, the event

{
E
(
1 ∧ |ξ ·X|

∣∣ ξ) < ε
}
has positive probability.

More generally, for any finite set of random variables X(1), . . . ,X(m) in H, all independent of ξ,
the events

{
E
(
1 ∧ |ξ ·X(j)|

∣∣ ξ) < ε
}
hold simultaneously with positive probability.

Proof : For finite N ≤ dimH, let ΠN be the orthogonal projection of H onto the subspace HN
spanned by e1, . . . , eN . Let X≤N := ΠNX and X>N := X −X≤N , and define ξN := (ξ1, . . . , ξN )
and ξ>N := (ξN+1, ξN+2, . . . ). Then we can write, interpreting the dot products in the obvious way
in analogy with (6.1),

ξ ·X = ξN ·X≤N + ξ>N ·X>N . (6.7)

Assume in the remainder of the proof that dimH = ∞; the case dimH < ∞ is similar but
simpler, taking N := dimH below so X>N = 0.

Since the sum in (6.1) converges a.s., and ξ>N · X>N is the tail of this sum, it follows that
ξ>N ·X>N

a.s.−→ 0 as N →∞. Consequently, by dominated convergence,

E
(
1 ∧ |ξ>N ·X>N |

)
→ 0 as N →∞. (6.8)

Let

WN := E
(
1 ∧ |ξ>N ·X>N |

∣∣ ξ). (6.9)
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Then (6.8) shows EWN → 0; hence we may choose N <∞ such that EWN < ε/4. Then Markov’s
inequality yields

P
(
WN < ε/2

)
≥ 1− EWN

ε/2
>

1

2
. (6.10)

Moreover, for each i ≤ N , again by dominated convergence,

E
(
1 ∧ |s〈X, ei〉|

)
→ 0 as s→ 0, (6.11)

and thus there exists δi > 0 such that if |s| < δi, then

E
(
1 ∧ |s〈X, ei〉|

)
<

ε

2N
. (6.12)

Recalling (6.7) and (6.1), we see that

|ξ ·X| ≤
N∑
i=1

|ξi〈X, ei〉|+ |ξ>N ·X>N | (6.13)

and thus

1 ∧ |ξ ·X| ≤
N∑
i=1

(
1 ∧ |ξi〈X, ei〉|

)
+
(
1 ∧ |ξ>N ·X>N |

)
. (6.14)

Hence, recalling (6.9),

E
(
1 ∧ |ξ ·X|

∣∣ ξ) ≤ N∑
i=1

E
(
1 ∧ |ξi〈X, ei〉|

∣∣ ξi)+WN . (6.15)

Consequently, if ξ is such that WN < ε/2 and |ξi| < δi for i = 1, . . . , N , then (6.12) implies

E
(
1 ∧ |ξ ·X|

∣∣ ξ) < N∑
i=1

ε

2N
+
ε

2
= ε. (6.16)

Since the events {WN < ε/2} and {|ξi| < δi} are independent and each has positive probability,
they occur together with positive probability, and thus (6.16) holds with positive probability.

This proves the first part of the lemma. The second is proved in the same way, choosing N so
large that (6.10) holds with WN replaced by

∑m
j=1W

(j)
N , where W (j)

N is defined by (6.9) but using
X(j) instead of X, and then choosing δi so small that (6.12) holds for each X(j) �

Proof of Theorem 6.1: =⇒ : If X d
= Y, then (X, ξ)

d
= (Y, ξ) and (6.1) implies (ξ ·X, ξ)

d
= (ξ ·Y, ξ)

which by (6.3) implies ΦX(ξ) = ΦY(ξ) a.s.
⇐= : We let N ≤ dimH be finite and use the notation in the proof of Lemma 6.2. Then (6.7)

holds, and thus ∣∣eiξ·X − eiξN ·X≤N ∣∣ =
∣∣eiξ>N ·X>N − 1

∣∣ ≤ 2 ∧ |ξ>N ·X>N |. (6.17)

Hence, ∣∣E(eiξ·X ∣∣ ξ)− E
(
eiξN ·X≤N

∣∣ ξ)∣∣ ≤ E
(
2 ∧ |ξ>N ·X>N |

∣∣ ξ) a.s. (6.18)

Using (6.3), (6.18) can be written, since ξN and ξ>N are independent,∣∣ΦX(ξ)− ΦX≤N (ξN )
∣∣ ≤ E

(
2 ∧ |ξ>N ·X>N |

∣∣ ξ>N) a.s. (6.19)

Similarly, with analoguous notation,∣∣ΦY(ξ)− ΦY≤N (ξN )
∣∣ ≤ E

(
2 ∧ |ξ>N ·Y>N |

∣∣ ξ>N) a.s. (6.20)
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The assumption ΦX(ξ) = ΦY(ξ) a.s. thus implies∣∣ΦX≤N (ξN )− ΦY≤N (ξN )
∣∣
≤ E

(
2 ∧ |ξ>N ·X>N |

∣∣ ξ>N)+ E
(
2 ∧ |ξ>N ·Y>N |

∣∣ ξ>N) a.s. (6.21)

Lemma 6.2 (applied to X>N and Y>N ) implies that for any ε > 0, the right-hand side of (6.21) is
less than 4ε with positive probability. Furthermore, the left-hand side of (6.21) is a function of ξN ,
and the right-hand side is a function of ξ>N ; thus the two sides are independent. Consequently,
(6.21) implies ∣∣ΦX≤N (ξN )− ΦY≤N (ξN )

∣∣ < 4ε a.s. (6.22)

Since ε is arbitrary, this shows

ΦX≤N (ξN ) = ΦY≤N (ξN ) a.s. (6.23)

Since X≤N and Y≤N live in the finite-dimensional space HN , (6.4) applies and shows

ϕX≤N (ξN ) = ΦX≤N (ξN ) = ΦY≤N (ξN ) = ϕY≤N (ξN ) a.s., (6.24)

where ϕX≤N (t) and ϕY≤N (t) are the ordinary characteristic functions in RN (identified with HN ).
Hence,

ϕX≤N (t) = ϕY≤N (t) (6.25)

for a.e. t ∈ RN , and since characteristic functions are continuous, (6.25) holds for all t ∈ RN , and
thus

X≤N
d
= Y≤N . (6.26)

If dimH <∞, we may choose N = dimH and the result X d
= Y follows. (Much of the argument

above is not needed in this case.)
If dimH =∞, then (6.26) holds for every finiteN . Furthermore, asN →∞, we haveX≤N

a.s.−→ X

and thus X≤N
d−→ X and similarly Y≤N

d−→ Y. Consequently, X
d
= Y, which completes the

proof. �

Remark 6.3. The mapping x 7→ ξ · x is an isometry of H onto the Gaussian Hilbert space spanned
by the random variables ξi, and it can be regarded as an abstract stochastic integral, cf. Janson
(1997, Chapter VII.2). It replaces the Itô integrals used in Dehling et al. (2020).

Remark 6.4. The arguments above are related to the proof of Lyons (2013, Theorem 3.16). We
sketch the connection: That proof uses an embedding φ of the Hilbert space into L2(R∞ × R); if
we compose φ with the Fourier transform f 7→

∫
e2πitxf(x) dx acting on the last variable (which is

an isometry), we obtain an equivalent embedding φ̂, which in our notation equals

φ̂ : x→ i

2πt

(
eic
′tξ·x − 1

)
∈ L2(P×dt) (6.27)

for a constant c′ > 0. Hence, if µ = L(X), the distribution of X, then, combining the notation of
Lyons (2013) and ours,

βφ̂(µ) := E
(
φ′(X) | ξ

)
=

i

2πt

(
Φc′tX(ξ)− 1

)
. (6.28)

Hence, the result in Lyons (2013, Theorem 3.16) that βφ(µ) characterises µ is closely related to,
and follows from, Theorem 6.1. Furthermore, the two proofs are similar; both are based on approx-
imating with the finite-dimensional case which is easy.
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6.2. Independence and characteristic random variables. Now consider a pair of random variables
(X,Y) taking values in two, possibly different, separable Hilbert spaces H and H′. Fix, as above,
an ON-basis (ei)

dimH
1 in H, and i.i.d. N(0, 1) random variables ξi, i = 1, 2, . . . . Similarly, fix an

ON-basis (e′j)
dimH′
1 in H′, and i.i.d. N(0, 1) random variables ηj , j = 1, 2, . . . . Assume that all ξi

and ηj are independent of each other and of (X,Y).
Then (X,Y) is a random variable in the Hilbert space H⊕H′ = H×H′, and e1, e

′
1, e2, e

′
2, . . . is

an ON-basis in this space. Let ξ = (ξi)
dimH
1 , η := (ηi)

dimH′
1 , and ζ := (ξ1, η1, ξ2, η2, . . . ).

Theorem 6.5. Let (X,Y) be a pair of random variables taking values in separable Hilbert spaces
H and H′. Then, with notation as above, X and Y are independent if and only if

E
(
eiξ·X+iη·Y ∣∣ ξ,η) = E

(
eiξ·X

∣∣ ξ)E(eiη·Y ∣∣ η) a.s. (6.29)

Proof : Let Y′ be a copy of Y, independent of X, ξ,η. Then, X and Y are independent if and only
if (X,Y)

d
= (X,Y′), and the result follows from Theorem 6.1, applied to the Hilbert space H×H′,

noting that with the bases and Gaussian variables above, ζ · (X,Y) = ξ ·X + η ·Y a.s., and thus

Φ(X,Y)(ζ) = E
(
eiζ·(X,Y)

∣∣ ξ,η) = E
(
eiξ·X+iη·Y ∣∣ ξ,η), (6.30)

while, by independence and Y
d
= Y′,

Φ(X,Y′)(ζ) = E
(
eiξ·X+iη·Y′ ∣∣ ξ,η) = E

(
eiξ·X

∣∣ ξ)E(eiη·Y′ ∣∣ η)
= E

(
eiξ·X

∣∣ ξ)E(eiη·Y ∣∣ η) a.s. (6.31)

�

Note that, by (3.1), (6.29) may be written

Cov
(
eiξ·X, eiη·Y

∣∣ ξ,η) = 0 a.s. (6.32)

7. Covariance distance in Hilbert space

We give a new definition of covariance distance for Hilbert spaces; it can be seen as a version of
Definition 2.4 for Euclidean spaces, where we replace the characteristic functions there by the char-
acteristic random variables defined in Section 6, which makes the extension to infinite-dimensional
Hilbert spaces possible. (The definition is inspired by Dehling et al., 2020, Lemma 4.1; see Re-
mark 6.3.)

Define, for 0 < α < 2,

cα :=
21+α/2

−Γ(−α/2)
=

α2α/2

Γ(1− α/2)
. (7.1)

Definition 7.1. Let (X,Y) be a pair of random vectors in separable Hilbert spaces, and let 0 <
α < 2. Then, with notation as in Section 6,

dcovα(X,Y) = dcovH
α(X,Y)

:= c2α

∫ ∞
0

∫ ∞
0

E
∣∣Φ(rX,sY)(ξ,η)− ΦrX(ξ)ΦsY(η)

∣∣2 dr ds

rα+1sα+1
(7.2)

= c2α

∫ ∞
0

∫ ∞
0

E
∣∣∣E(eirξ·X+isη·Y | ξ,η

)
− E

(
eirξ·X | ξ

)
E
(
eisη·Y | η

)∣∣∣2 dr ds

rα+1sα+1
(7.3)

= c2α

∫ ∞
0

∫ ∞
0

E
∣∣Cov

(
eirξ·X, eisη·Y | ξ,η

)∣∣2 dr ds

rα+1sα+1
. (7.4)
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The expressions (7.2)–(7.4) are equal by the definitions (6.3) and (3.1) above, cf. (6.30) and
(6.32). Note that no moment assumptions are made; as for Definition 2.4, the definition works for
any (X,Y) in these spaces, but dcovα(X,Y) may be infinite. Furthermore, as shown in the next
theorem, for the special case of Euclidean spaces, Definition 7.1 agrees with Definition 2.4, again
without moment conditions.

Theorem 7.2. Let 0 < α < 2. If (X,Y) is a pair of random vectors in Euclidean spaces Rp and
Rq, then Definitions 2.4 and 7.1 agree, i.e., dcovE

α(X,Y) = dcovH
α(X,Y).

Proof : Assume that H = Rp and H′ = Rq. Then (6.4) implies

Φ(rX,sY)(ξ,η) = ϕ(rX,sY)(ξ,η) = ϕ(X,Y)(rξ, sη) (7.5)

and thus, since rξ ∼ N(0, r2Ip) and sη ∼ N(0, s2Iq), where Ik is the identity matrix in Rk,

E
∣∣Φ(rX,sY)(ξ,η)− ΦrX(ξ)ΦsY(η)

∣∣2 = E
∣∣ϕ(X,Y)(rξ, sη)− ϕX(rξ)ϕY(sη)

∣∣2
=

∫
t∈Rp

∫
u∈Rq

∣∣ϕ(X,Y)(t,u)− ϕX(t)ϕY(u)
∣∣2 e−|t|2/2r2

(2πr2)p/2
e−|u|

2/2s2

(2πs2)q/2
dt du. (7.6)

Substituting this in (7.2), we obtain (2.9) by interchanging the order of integration, because, by
elementary calculations,∫ ∞

0

e−|t|
2/2r2

(2πr2)p/2
dr

rα+1
=

2α/2−1Γ((p+ α)/2)

πp/2
|t|−p−α =

cα,p
cα
|t|−p−α, (7.7)

see (2.8) and (7.1), and similarly for the integral over s. �

Remark 7.3. The proof of Theorem 7.2 together with Remark 2.6 shows that the restriction α < 2
in Definition 7.1 is necessary; for α ≥ 2, the integrals diverge typically, for example for H = H′ = R
and X = Y ∼ N(0, 1). (We conjecture that for α ≥ 2, the integrals always diverge except when X
and Y are independent, but we have not verified that.)

We return to the general Hilbert space case, and show that Definition 7.1 agrees with the earlier
ones; this is an abstract version of Dehling et al. (2020, Lemma 4.1), where the Hilbert spaces are
L2[0, 1], see Remark 6.3.

Theorem 7.4. Let 0 < α < 2. If (X,Y) is a pair of random vectors in Hilbert spaces H and H′,
and E‖X‖α < ∞ and E‖Y‖α < ∞, then Definitions 2.2, 2.3 and 7.1 agree, i.e., dcovH

α(X,Y) =
dcovα̂(X,Y) = dcov∼α (X,Y), and this value is finite.

Proof : Let again (X1,Y1), . . . be i.i.d. copies of (X,Y), and assume that ξ and η are independent
of all of them. Then, using (6.30)–(6.31) and (6.2),

E
∣∣Φ(rX,sY)(ξ,η)− ΦrX(ξ)ΦsY(η)

∣∣2
= EE

[(
eirξ·X1+isη·Y1 − eirξ·X1+isη·Y2

)(
e−irξ·X3−isη·Y3 − e−irξ·X3−isη·Y4

) ∣∣ ξ,η]
= E

[(
eirξ·X1+isη·Y1 − eirξ·X1+isη·Y2

)(
e−irξ·X3−isη·Y3 − e−irξ·X3−isη·Y4

)]
= E eirξ·(X1−X3)+isη·(Y1−Y3) − E eirξ·(X1−X3)+isη·(Y1−Y4)

− E eirξ·(X1−X3)+isη·(Y2−Y3) + E eirξ·(X1−X3)+isη·(Y2−Y4)

= E e−
r2

2
‖X1−X3‖2− s

2

2
‖Y1−Y3‖2 − E e−

r2

2
‖X1−X3‖2− s

2

2
‖Y1−Y4‖2

− E e−
r2

2
‖X1−X3‖2− s

2

2
‖Y2−Y3‖2 + E e−

r2

2
‖X1−X3‖2− s

2

2
‖Y2−Y4‖2 . (7.8)
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Define the real-valued random variable

ΛX(u) := E e−u‖X1−X2‖2 − E e−u‖X2−X3‖2 + E e−u‖X3−X4‖2 − E e−u‖X4−X1‖2 (7.9)

and define ΛY (u) similarly. Then, by expanding the product and using symmetry,

E
[
ΛX(u)ΛY (v)

]
= 4
(
E e−u‖X1−X3‖2−v‖Y1−Y3‖2 − E e−u‖X1−X3‖2−v‖Y1−Y4‖2

− E e−u‖X1−X3‖2−v‖Y2−Y3‖2 + E e−u‖X1−X3‖2−v‖Y2−Y4‖2
)
. (7.10)

Consequently, (7.8) yields

E
∣∣Φ(rX,sY)(ξ,η)− ΦrX(ξ)ΦsY(η)

∣∣2 =
1

4
E
[
ΛX

(r2
2

)
ΛY
(s2

2

)]
(7.11)

and the definition (7.3) yields, with a change of variables,

dcovH
α(X,Y) =

c2α
4

∫ ∞
0

∫ ∞
0

E
[
ΛX

(r2
2

)
ΛY
(s2

2

)] dr ds

rα+1sα+1

=
c2α

24+α

∫ ∞
0

∫ ∞
0

E
[
ΛX(u)ΛY (v)

] dudv

uα/2+1vα/2+1
. (7.12)

We rewrite (7.9) as, with indices interpreted modulo 4,

ΛX(u) =
4∑
i=1

(−1)i−1e−u‖Xi−Xi+1‖2 =
4∑
i=1

(−1)i
(
1− e−u‖Xi−Xi+1‖2

)
. (7.13)

Recall that for 0 < γ < 1, see Olver et al. (2010, (5.9.5)),∫ ∞
0

(
1− e−x

)
x−γ−1 dx = −Γ(−γ). (7.14)

Hence, (7.13) and a change of variables yield∫ ∞
0

ΛX(u)
du

uα/2+1
=

4∑
i=1

(−1)i
∫ ∞
0

(
1− e−u‖Xi−Xi+1‖2

) du

uα/2+1

= −Γ(−α/2)

4∑
i=1

(−1)i‖Xi −Xi+1‖α

= Γ(−α/2)X̂α. (7.15)

If we naively interchange order of integrations and expectation in (7.12), and use (7.15), we obtain
(2.3) and thus dcovH

α(X,Y) = dcovα̂(X,Y), since cα is defined in (7.1) so that constant factors
cancel. However, this interchange requires justification; indeed it is not always allowed, since the
expectation in (2.3) does not always exist, not even as an extended real number, see Example 9.7,
while (7.2)–(7.4) always exist in [0,∞].

Hence, we introduce an integrating factor. Let M > 0; we will later let M →∞. Similarly to
(7.15), we have∫ ∞

0
e−MuΛX(u)

du

uα/2+1
=

4∑
i=1

(−1)i
∫ ∞
0

(
e−Mu − e−u(‖Xi−Xi+1‖2+M)

) du

uα/2+1

= −Γ(−α/2)

4∑
i=1

(−1)i
((
‖Xi −Xi+1‖2 +M

)α/2 −Mα/2
)
. (7.16)
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Let α ∈ (0, 2) be given and define, for x ≥ 0,

hM (x) := xα/2 +Mα/2 − (x+M)α/2. (7.17)

Then, (7.15) and (7.16) yield∫ ∞
0

(
1− e−Mu

)
ΛX(u)

du

uα/2+1
= Γ(−α/2)

4∑
i=1

(−1)i−1hM
(
‖Xi −Xi+1‖2

)
=: Γ(−α/2)X̂α;M , (7.18)

where thus we define

X̂α;M :=

4∑
i=1

(−1)i−1hM
(
‖Xi −Xi+1‖2

)
. (7.19)

Note also that the integrand in (7.12) is non-negative by (7.11). Hence, (7.12) and monotone
convergence yield

dcovH
α(X,Y)

= lim
M→∞

c2α
24+α

∫ ∞
0

∫ ∞
0

(
1− e−Mu

)(
1− e−Mv

)
E
[
ΛX(u)ΛY (v)

] dudv

uα/2+1vα/2+1
. (7.20)

Furthermore, |ΛX(u)| and |ΛY (v)| are bounded (by 4) by (7.13), and thus Fubini applies so we may
interchange expectation and integrations in (7.20), which by (7.18) yields, recalling (7.1),

dcovH
α(X,Y) = lim

M→∞
1
4 E[X̂α;M Ŷα;M ]. (7.21)

Since α/2 ∈ (0, 1), the function hM in (7.17) is increasing, with hM (0) = 0 and hM (x) ↗ Mα/2

as x→∞. Similarly, hM (x) = hx(M) ↗ xα/2 as M →∞; hence, the definitions (7.19) and (2.4)
yield

X̂α;M → X̂α as M →∞. (7.22)

Furthermore, if 0 ≤ x ≤ y, then
0 ≤ hM (y)− hM (x) ≤ yα/2 − xα/2, (7.23)

and it follows that for any Z1,Z2 ∈ H,∣∣hM(‖Z1‖2
)
− hM

(
‖Z2‖2

)∣∣ ≤ ∣∣‖Z1‖α − ‖Z2‖α
∣∣. (7.24)

We claim that Lemma 4.2 holds for X̂α;M too, so that, in particular,

|X̂α;M | ≤ C
4∑
i=1

‖Xi‖α/2‖Xi+1‖α/2, (7.25)

where the constant C does not depend on M . This is seen by repeating the proof of Lemma 4.2,
recalling the definition (7.19) of X̂α;M and using (7.24); we omit the details.

Let X̂∗ be the right-hand side of (7.25). We now use the assumption E‖X‖α <∞, which implies
that X̂∗ ∈ L2. Similarly, |Ŷα;M | ≤ Ŷ ∗ with Ŷ ∗ ∈ L2. Consequently, |X̂α;M Ŷα;M | ≤ X̂∗Ŷ ∗ ∈ L1, so
dominated convergence applies to (7.21) and we obtain, by (7.22),

dcovH
α(X,Y) = 1

4 E[ lim
M→∞

X̂α;M Ŷα;M ] = 1
4 E[X̂αŶα] = dcovα̂(X,Y), (7.26)

using (2.3). Hence, Definitions 7.1 and 2.2 agree (under the given moment condition). By Theo-
rem 4.5, they agree with Definition 2.3 too; furthermore, the value is finite. �

Remark 7.5. Note that the proof shows that (7.21) holds for any random variables in Hilbert spaces,
without any moment condition. (With the result possibly +∞.)
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7.1. Independence and distance covariance. For (separable) Hilbert spaces, as said in the introduc-
tion, Lyons (2013, Theorem 3.16) showed that (1.1) holds for α = 1, and Dehling et al. (2020,
Theorem 4.2) extended this to all α ∈ (0, 2). That is, they proved (a version of) the following,
which we now easily can prove using the results above.

Theorem 7.6 (Dehling et al., 2020, Theorem 4.2). Let X = H and Y = H′ be separable Hilbert
spaces and let α ∈ (0, 2). Use Definition 2.1, 2.2, 2.3 or 7.1, and assume (for the first three) the
moment condition there. Then dcovα(X,Y) = 0 if and only if X and Y are independent.

Proof : For Definitions 2.1–2.3, the moment condition there and Theorems 4.5 and 7.2 show that
dcovα(X,Y) equals dcovH

α(X,Y) given by Definition 7.1. Hence, we may in all cases use dcovH
α .

It follows from (7.3) that dcovH
α(X,Y) = 0 if and only if (6.29) holds, and the result follows by

Theorem 6.5. �

Remark 7.7. This theorem is stated in Dehling et al. (2020) for the case X = Y = L2[0, 1] (so X
and Y are stochastic processes on [0, 1]), but since all infinite-dimensional separable Hilbert spaces
are isomorphic; the result can be stated as above. (Only stochastic processes X,Y that satisfy some
smoothness conditions are considered in Dehling et al. (2020), but this is for other reasons and is
not needed for Theorem 7.6.)

The theorem in Dehling et al. (2020) is stated assuming only finite α moments, as we do above for
Definitions 2.2 and 2.3; however, Dehling et al. (2020) uses Definition 2.1 which in general requires
somewhat more for existence, see Theorem 9.1 below.

Remark 7.8. Theorem 7.6 includes the case when X or Y has finite dimension, i.e., is a Euclidean
space.

Furthermore, although the theorem is stated for separable Hilbert spaces, it extends also to non-
separable spaces, provided we assume that X and Y are Bochner measurable, for the trivial reason
that this implies that X and Y a.s. take values in some separable subspaces H1 and H′1.

Remark 7.9. The proof of Theorem 7.6 would be much simpler if distance covariance was monotone
under orthogonal projections, so that we would have dcovα(ΠNX,ΠNY) ≤ dcovα(X,Y). However,
this is not always the case, even in finite dimension, as is seen by the following example.

Example 7.10. Let X = Y = R2 and let X = (X ′, X ′′) and Y = (Y ′, Y ′′), where X ′ = Y ′, but
X ′, X ′′, Y ′′ are independent and non-degenerate. (For definiteness, we may take X ′, X ′′, Y ′′ ∼
Be(1/2), or N(0, 1).) Let Π : R2 → R be the standard projection onto the first coordinate, so
(ΠX,ΠY) = (X ′, Y ′).

For a ∈ R, let X(a) := (X ′, aX ′′) and Y(a) := (Y ′, aY ′′); thus (X(1),Y(1)) = (X,Y) and
(X(0),Y(0)) = (X ′, Y ′) (regarding R as a subspace of R2). For t = (t′, t′′) and u = (u′, u′′), we
have

ϕX(a),Y(a)(t,u) = E ei(t
′X′+u′X′+t′′aX′′+u′′aY ′′)

= ϕX′(t
′ + u′)ϕX′′(at

′′)ϕY ′′(au
′′) (7.27)

and similarly (or by taking t = 0 or u = 0 in (7.27))

ϕX(a)(t) = ϕX′(t
′)ϕX′′(at

′′), ϕY(a)(u) = ϕX′(u
′)ϕY ′′(au

′′). (7.28)

Hence, (2.9) yields

dcovα(X(a),Y(a))

= cα,2cα,2

∫
t∈R2

∫
u∈R2

∣∣ϕX′(t′ + u′)− ϕX′(t′)ϕX′(u′)
∣∣2∣∣ϕX′′(at′′)ϕY ′′(au′′)∣∣2 dt du

|t|2+α|u|2+α
(7.29)
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and it is obvious that

dcovα(X,Y) = dcovα(X(1),Y(1))

< dcovα(X(0),Y(0)) = dcovα(X ′, Y ′) = dcovα(ΠX,ΠY). (7.30)

Thus, an orthogonal projection might increase distance covariance.
It can obviously also decrease it; for example the projection onto the second coordinate above

yields (X ′′, Y ′′) with dcovα(X ′′, Y ′′) = 0.

8. Hilbert spaces and α = 2

We continue to assume that X and Y are Hilbert spaces; we now consider the case α = 2. Note
that Definition 7.1 does not apply (it requires α < 2, see Remark 7.3), so we return to the general
Definitions 2.1–2.3.

In this case, (2.4) yields, by expanding all ‖Xi −Xj‖2,

X̂2 = −2〈X1,X2〉+ 2〈X2,X3〉 − 2〈X3,X4〉+ 2〈X4,X1〉
= 2〈X1 −X3,X4 −X2〉. (8.1)

Assume, as in Definitions 2.2 and 2.3, that E‖X‖2 < ∞. Then EX exists, in Bochner sense (see
Appendix B), and (2.6) together with (8.1) yield

X̃2 = E
(
X̂2 | X1,X2

)
= −2〈X1 − EX,X2 − EX〉. (8.2)

We thus see directly that (4.2) and (4.3) hold, and thus X̂2, X̃2 ∈ L2 if E‖X‖2 <∞, as asserted by
Lemma 4.3.

In particular, in the 1-dimensional case X = R,

X̂2 = 2(X1 −X3)(X4 −X2), X̃2 = −2(X1 − EX)(X2 − EX), (8.3)

with the latter assuming E |X|2 < ∞. Consequently, if X = Y = R and E |X|2,E |Y|2 < ∞, then
Definition 2.3 yields, using (8.3) and independence,

dcov2(X,Y) = E
[
X̃2Ỹ2

]
= 4Cov(X,Y)2, (8.4)

as noted by Székely et al. (2007). (Definitions 2.1–2.2 agree by Theorems 4.5.) This extends to
higher dimensional Euclidean spaces and, more generally, Hilbert spaces as follows. Let H ⊗ H′
denote the Hilbert space tensor product of H and H′, see e.g. Janson (1997, Appendix E); recall
that this is a Hilbert space such that there is a bilinear map ⊗ : H×H′ → H⊗H′ with

〈x1 ⊗ y1,x2 ⊗ y2〉H⊗H′ = 〈x1,x2〉H〈y1,y2〉H′ ; (8.5)

furthermore, if {ei}i and {e′j}j are ON-bases in H and H′, then {ei ⊗ e′j}i,j is an ON-basis in
H ⊗ H′. (Note that the mapping ⊗ is neither injective nor surjective, but the set of finite linear
combinations

∑
i xi ⊗ yj is dense in H⊗H′.) Hence, X⊗Y is a random variable in H⊗H′ with

‖X⊗Y‖ = ‖X‖ ‖Y‖.

Theorem 8.1. Let X = H and Y = H′ be separable Hilbert spaces, and assume E‖X‖2 < ∞ and
E‖Y‖2 <∞. Let (ei)i and (e′j)j be ON-bases in H and H′. Then,

dcov2(X,Y) = 4
∑
i,j

Cov
(
〈X, ei〉, 〈Y, e′j〉

)2 (8.6)

= 4
∥∥E(X⊗Y)− EX⊗ EY

∥∥2
H⊗H′ (8.7)
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Proof : Since dcovα(X,Y) and the expressions in (8.6)–(8.7) are invariant under (deterministic)
shifts of X and Y, we may for convenience assume EX = EY = 0. Then, by (8.2),

X̃2Ỹ2 = 4〈X1,X2〉〈Y1,Y2〉 = 4
∑
i,j

〈X1, ei〉〈X2, ei〉〈Y1, e
′
j〉〈Y2, e

′
j〉. (8.8)

We have, by the Cauchy–Schwarz inequality,∑
i

∣∣〈X1, ei〉〈X2, ei〉
∣∣ ≤ (∑

i

〈X1, ei〉2
)1/2(∑

i

〈X2, ei〉2
)1/2

= ‖X1‖ ‖X2‖ (8.9)

and thus, by independence and the Cauchy–Schwarz inequality again,

E
∑
i,j

∣∣〈X1, ei〉〈X2, ei〉〈Y1, e
′
j〉〈Y2, e

′
j〉
∣∣ ≤ E

[
‖X1‖ ‖X2‖ ‖Y1‖ ‖Y2‖

]
=
(
E
[
‖X1‖ ‖Y1‖

])2 ≤ E‖X1‖2 E‖Y1‖2 <∞. (8.10)

Hence, (8.8) yields by Fubini’s theorem, justified by (8.10),

E
[
X̃2Ỹ2

]
= 4

∑
i,j

E
[
〈X1, ei〉〈X2, ei〉〈Y1, e

′
j〉〈Y2, e

′
j〉
]

= 4
∑
i,j

(
E
[
〈X, ei〉〈Y, e′j〉

])2 (8.11)

which yields (8.6).
Moreover, {ei ⊗ e′j}i,j is an ON-basis in H⊗H′, and thus∥∥E(X⊗Y)

∥∥2 =
∑
i,j

〈E(X⊗Y), ei ⊗ e′j〉2 =
∑
i,j

(
E〈X⊗Y, ei ⊗ e′j〉

)2
=
∑
i,j

(
E
[
〈X, ei〉〈Y, e′j〉

])2 (8.12)

which together with (8.11) yields (8.7). �

Corollary 8.2. Let X = H and Y = H′ be separable Hilbert spaces, and assume E‖X‖2 < ∞ and
E‖Y‖2 <∞. Then, the following are equivalent:
(i) dcov2(X,Y) = 0.
(ii) Cov

(
〈X,x〉, 〈Y,y〉

)
= 0 for every x ∈ H, y ∈ H′.

(iii) E(X⊗Y)− EX⊗ EY = 0.

Proof : For (i) =⇒ (ii), and x,y 6= 0, choose ON-bases such that e1 = x/‖x‖ and e′1 = y/‖y‖. The
rest is immediate from Theorem 8.1. �

Székely et al. (2007) observed that for α = 2 and real-valued variables, dcov2(X,Y) = 0 does
not characterize independence but instead that X and Y are uncorrelated; Corollary 8.2 extends
this to Hilbert spaces, in the sense (ii) or (iii) above.

Remark 8.3. E(X⊗Y)−EX⊗EY ∈ H⊗H′ can be regarded as the covariance of the vector-valued
variables X and Y; cf. the general theory of higher moments of Banach space valued variables in
Janson and Kaijser (2015), where the moment lives in a suitable tensor product. (The general theory
in Janson and Kaijser (2015) focusses on a single variable and on the projective and injective tensor
products, but see Janson and Kaijser (2015, Remarks 3.24 and 3.25). Since we assume separable
spaces and E‖X‖2,E‖Y‖2 < ∞, there are no problems with integrability; cf. Janson and Kaijser
(2015, Theorem 5.14).)
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Remark 8.4. Let X and Y both be metric spaces such that dα is a semimetric of negative type.
Then, see Remark 2.7, there are embeddings ϕ : X → H and ϕ′ : Y → H′ into Hilbert spaces such
that

dX (x1,x2)
α = ‖ϕ(x1)− ϕ(x2)‖2, dY(y1,y2)

α = ‖ϕ′(y1)− ϕ′(y2)‖2. (8.13)

It follows immediately that, for any of Definitions 2.1–2.3,

dcovα(X,Y) = dcov2

(
ϕ(X), ϕ′(Y)

)
. (8.14)

Hence, dcovα(X,Y) can be interpreted as in Theorem 8.1 for the embedded variables, as shown
(for α = 1) in Lyons (2013, Proposition 3.7).

Remark 8.5. The Hilbert space tensor product H⊗H′ can be identified with the space of Hilbert–
Schmidt operators H → H′ (see (B.18) and the proof of Lemma B.7); then E(X⊗Y)−EX⊗EY =
E[(X− EX)⊗ (Y − EY)] corresponds to the operator x 7→ E[〈x,X− EX〉(Y − EY)], known as
the covariance operator (or cross-covariance operator, Baker, 1973). Thus Theorem 8.1 says that
dcov2(X,Y) is 4 times the squared Hilbert–Schmidt norm of the covariance operator.

More generally, if X and Y both are metric spaces such that dα is a semimetric of negative type,
then (8.14) shows that dcovα(X,Y) equals dcov2(ϕ(X), ϕ′(Y)) for some embeddings ϕ : X → H and
ϕ′ : Y → H′ into Hilbert spaces. Hence, dcovα(X,Y) equals 4 times the squared Hilbert–Schmidt
norm of the covariance operator corresponding to the embedded variables, as shown in Sejdinovic
et al. (2013, Theorem 24); this Hilbert–Schmidt norm (or its square) is called the Hilbert–Schmidt
independence criterion (HSIC) Gretton et al. (2005), Sejdinovic et al. (2013, §3.3); cf. Remark 2.10.

Remark 8.6. If α is an even integer larger than 2, we can similarly express dcovα in moments of
X and Y, but the resulting formulas are complicated and do not seem to be of any interest. For
example, for α = 4, for X = Y = R, and taking for simplicity X = Y with EX = 0,

dcov4(X,X) = 32E[X2]E[X6]− 96E[X3]E[X5] + 68(E[X4])2

−72(E[X2])2 E[X4] + 64E[X2](E[X3])2 + 36(E[X2])4. (8.15)

We do not know any application or interesting properties of dcovα with α > 2.

9. Optimality of moment conditions

We have so far assumed the moment conditions stated in Definitions 2.1–2.3; these seem natural
and convenient for applications. Nevertheless, it is of interest to study whether they really are
required for the definitions, and what happens when we try to extend one of the definitions to cases
when the moment condition fails. Definitions 2.4 and 7.1 are stated without moment conditions, but
we similarly can ask when the results are finite and whether they agree with the other definitions.

In this section, we will give examples showing that the moment conditions in Definitions 2.1–2.3
are optimal in general, in the sense that if we reduce the exponent in the moment condition, then
there exist counterexamples where the definition either yields an infinite value or is meaningless. On
the other hand, there are also cases where the moment conditions do not hold but the definitions
yield a finite value. We explore these possibilities in the next section, but our results are incomplete,
and we leave a number of (explicit or implicit) open problems.

In general, if we try to define dcovα(X,Y) by (2.2) or (2.3) for some X and Y, there are three
possibilities:
(dc1) The expression yields a finite value; this may then be taken to be dcovα(X,Y). This happens

when all expectations in (2.2) or (2.3), respectively, are finite. (For (2.2), it also includes
the trivial case when X or Y is degenerate, so d(Xi,Xj) = 0 a.s. or d(Yi,Yj) = 0 a.s.; then
all terms in (2.2) are 0, if necessary interpreting 0 · ∞ = 0.)
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(dc2) The expression makes sense as either +∞ or −∞. We may then take it as defining
dcovα(X,Y), now with an infinite value in {−∞,∞}. (We do not know whether −∞
can happen, see Problem 10.20.) Thus, at least one expectation is infinite. Furthermore, for
(2.2), where all expectations are of non-negative variables and thus defined in [0,∞], this
means that either the two first expectations are finite, or the third expectation is finite; for
(2.3) this means that one of E

[
(X̂αŶα)+

]
and E

[
(X̂αŶα)−

]
is finite and the other infinite,

so the expectation E
[
X̂αŶα

]
is defined as +∞ or −∞.

(dc3) The expression (2.2) or (2.3) is of the type∞−∞. Then it is meaningless, and dcovα(X,Y)
is undefined (by this definition).

For Definition 2.3, we have the same possibilities as for Definition 2.2, but also the complication
that X̃α and Ỹα have to be defined, see (2.6)–(2.7). We thus have another bad case:

(dc4) X̃α or Ỹα is not defined. Then dcov∼α (X,Y) is undefined.

For Euclidean spaces, we also have Definition 2.4, and for Hilbert spaces we have Definition 7.1.
Since (2.9) and (7.2)–(7.4) are integrals of non-negative functions, Definitions 2.4 and 7.1 are always
meaningful, but may yield +∞. In other words, we have only the cases (dc1) and (dc2). Again
we may ask when the definition yields a finite value, and when it agrees with other definitions; in
particular whether the moment conditions in Theorem 7.4 are best possible.

The moment conditions assumed in Definitions 2.1–2.3 guarantee, as seen in Theorem 4.5, that
the good case (dc1) occurs. In the following subsections we investigate more generally when the
cases (dc1)–(dc4) occur, and whether the different definitions still agree when more than one of
them applies.

9.1. Optimality in Definition 2.1. We begin with Definition 2.1, where we have a simple necessary
and sufficient condition.

Theorem 9.1. (i) If E‖X‖α + E‖Y‖α + E[‖X‖α‖Y‖α] < ∞, then all expectations in (2.2) are
finite, so (2.2) defines dcov∗α(X,Y) as a finite number.

Moreover, in this case also the definitions (2.3) and (2.5) yield the same result, i.e.,
dcov∗α(X,Y) = dcovα̂(X,Y) = dcov∼α (X,Y).

(ii) Conversely, if E‖X‖α + E‖Y‖α + E[‖X‖α‖Y‖α] = ∞, and X and Y are non-degenerate,
then (2.2) is of the type ∞−∞ and thus meaningless.

In particular, Case (dc2), i.e., a well-defined infinite value of dcov∗α, never occurs for Definition 2.1.

Proof : (i): This follows by minor modifications of the argument used under slightly stronger as-
sumptions in Section 2 and Lemma 4.1. Note that the assumption implies that E[‖Xi‖α‖Yj‖α] <∞
for all i and j, and thus it follows from the triangle inequality (4.4) that all expectations in (2.2)
are finite. Moreover, the assumption implies, using (4.4) again, that X̂α, Ŷα ∈ L1, and thus X̃α and
Ỹα are defined by (2.6)–(2.7), and also that X̂αŶα ∈ L1 and X̃αỸα ∈ L1. We omit the details.

(ii): If E‖X‖α =∞, then E d(x,X2)
α =∞ for any x, and thus, by first conditioning on (X1,Y1)

and (X3,Y3) and integrating over X2 only, both E
[
d(X1,X2)

α
]

= ∞ and
E
[
d(X1,X2)

αd(Y1,Y3)
α
]

= ∞; hence, since E
[
d(Y1,Y2)

α
]
> 0, we see that (2.2) is of the type

∞−∞.
By symmetry, the same holds if E‖Y‖α =∞.
Finally, suppose that E[‖X‖α‖Y‖α] = ∞. By the cases just treated, we may assume that also

E‖X‖α < ∞ and E‖Y‖α < ∞. Then, using the triangle inequality and integrating only over the
event {‖X2‖, ‖Y2‖, ‖Y3‖ ≤ M}, for an M so large that this event has positive probability, we see
that both the first and last expectations in (2.2) are ∞, and thus (2.2) is ∞−∞. �
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Remark 9.2. If Theorem 9.1(i) applies and dcovE
α(X,Y) or dcovH

α(X,Y) is defined, i.e., if α < 2
and the spaces are Euclidean spaces or Hilbert spaces, respectively, then it too equals dcov∗α(X,Y).
This follows by Theorem 9.1 together with Theorems 7.2 and 7.4.

Example 9.3. If X and Y are independent with E‖X‖α <∞ and E‖Y‖α <∞, then Theorem 9.1(i)
applies and (2.2) makes perfect sense; Definitions 2.1–2.3 all can be used, and all yield 0.

Example 9.4. Let X be arbitrary with E‖X‖2α =∞, and let Y = X. Then, Theorem 9.1(ii) shows
that dcov∗α(X,X) is of the type ∞−∞ and does not make sense. Consequently, in general, the
moment condition in Definition 2.1 is necessary. (In particular, for every (X,Y) with Y = X.)

9.2. Optimality in Definition 2.2. We have already seen in Example 9.4 that the moment condition
in Definition 2.1 is necessary, in a strong sense. We next show that the moment conditions in
Definitions 2.2 and 2.3 also are optimal, in the sense that if we reduce the exponent, there are coun-
terexamples. However, there are also examples where these definitions yield finite values although
the moment condition fails.

Consider first Definition 2.2. X̂α and Ŷα are always defined by (2.4), so the question is whether
E[X̂αŶα] exists or not, and whether its value is finite of not. Note, in particular, that dcovα̂(X,X) :=
1
4 E X̂

2
α always is defined, although it may be +∞; we have

dcovα̂(X,X) <∞ ⇐⇒ X̂α ∈ L2. (9.1)

Note also that, by rotational symmetry in the indices in (2.4), X̂α has a symmetric distribution.
Thus E X̂α = 0 whenever the expectation exists.

Example 9.5. Let X = Y = R, and suppose that X ≥ 0 with P(X = 0) > 0. On the event
X3 = X4 = 0, we have

−X̂α = Xα
1 + Xα

2 − |X1 −X2|α ≥ Xα
1 ∧Xα

2 . (9.2)

Hence, if E |X̂α|2 <∞, then

∞ > E
[(
Xα

1 ∧Xα
2

)2]
= E

[
X2α

1 ∧X2α
2

]
=

∫ ∞
0

P
[
X2α

1 ∧X2α
2 > t

]
dt =

∫ ∞
0

P
[
X2α > t

]2
dt

= 2α

∫ ∞
0

P
[
X > x

]2
x2α−1 dx. (9.3)

If we choose X such that, for x ≥ 2 say,

P(X > x) = x−α, (9.4)

then E |X|γ < ∞ for every γ < α, but the integral in (9.3) diverges and thus E |X̂α|2 = ∞; hence
(2.3) yields dcovα̂(X,X) = ∞ by (9.1). (Case (dc2).) Consequently, when α ≤ 2, the exponent
α∗ = α is optimal in Definition 2.2 (in order to yield a finite value).

Example 9.6. Let α > 1 and X = Y = R, and suppose, for simplicity, that X ≥ 0 with P(X = 0) =
P(X = 1) = 1/4. On the event X2 = X3 = 0, X4 = 1, we have for some c > 0, assuming that
X1 ≥ 2, say,

X̂α = Xα
1 − |X1 − 1|α + 1 ≥ cXα−1

1 . (9.5)

Hence, for these values of X2,X3,X4, we have X̂α ≥ cXα−1
1 − C. Consequently, E |X̂α|2 <∞ =⇒

EX2(α−1) <∞.
We can choose X as above such that EXγ < ∞ for every γ < 2α − 2, but EX2α−2 = ∞ and

consequently E |X̂α|2 =∞; thus, (2.3) yields dcovα(X,X) =∞. (Case (dc2).) Hence, when α ≥ 2,
the exponent α∗ = 2α− 2 is optimal in Definition 2.2.
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Example 9.7. We have here given examples with E |X̂α|2 = ∞, so that (2.3) gives dcovα̂(X,X) =
+∞.

Similarly, (9.2) and a calculation as in (9.3) show that if, say, P(X > x) = x−α/2 for x > 2,
then E |X̂α| = ∞. Since X̂α has a symmetric distribution by (2.3), it follows that if Y is any
non-degenerate random variable such that X and Y are independent, then the expectation in (2.3)
is of the type∞−∞ and thus undefined (Case (dc3) above); hence Definition 2.2 cannot be applied
at all (even allowing ±∞ as a result).

Example 9.8. Let X = Y = R and consider the special (and rather exceptional) case α = 2, cf.
Section 8. Then X̂2 is given by (8.3), and it follows easily that

X̂2 ∈ L2 ⇐⇒ E |X|2 <∞, (9.6)

and that for X = Y, (8.4) holds in the form

dcov2̂(X,X) = 1
4 E[X̂2

2 ] = 4
(
VarX

)2 (9.7)

for any X, where the expressions all are infinite when E |X|2 =∞. This shows again that the condi-
tion of finite α∗ moment in Definition 2.2 cannot be improved when α = 2, if we want dcov2(X,X)
to be finite. Furthermore, if we take Y = ζX where X and ζ are independent with EX = 0,
E[X2] =∞, ζ ∈ {±1} and E ζ = 0, then E[X̂2Ŷ2] is of the type∞−∞; hence, even allowing infinite
values, dcov2̂(X,Y) cannot be defined by Definition 2.2 without assuming second moments.

9.3. Optimality in Definition 2.3. We now turn to Definition 2.3. As noted above, X̃α is only
defined for some X. If we use the conditional expectation definition in (2.6), then we have to
require X̂α ∈ L1, i.e., E |X̂α| <∞. On the other hand, the explicit formula (2.7) makes sense only if
E d(X1,X2)

α < ∞, or equivalently E‖X‖α < ∞, since otherwise also the conditional expectations
in (2.7) are +∞ a.s., and thus (2.7) is ∞−∞. Moreover, if E‖X‖α < ∞, then X̂α ∈ L1 by (2.4),
and (2.6) agrees with (2.7). Hence we may take (2.6) as the primary definition of X̃α, and say that
X̃α is defined when X̂α ∈ L1. This holds in particular when E‖X‖α <∞, and then (2.7) holds too,
but note that Lemma 4.2 shows that E‖X‖α∗/2 <∞ suffices for X̂α ∈ L1.

Hence, X̃α is defined if and only if X̂α ∈ L1, and then X̃α ∈ L1; furthermore

E X̃α = EE
(
X̂α | X1,X2

)
= E X̂α = 0. (9.8)

Moreover, in this case, also

E
(
X̃α | X1

)
= E

(
E
(
X̂α | X1,X2

)
| X1

)
= E

(
X̂α | X1

)
= 0, (9.9)

since X̂α has a symmetric distribution also when conditioned on X1, by symmetry in (2.4).

Example 9.9. Recall that Example 9.7 gives an example where X̂α /∈ L1; hence, X̃α is not defined
and thus dcov∼α (X,X) is undefined.

We note a general result relating X̃α and X̂α. By (2.6), X̃α is (a.s.) a function of X1 and X2; let
us (temporarily) write X̃α as X̃α(X1,X2), so that we can substitute other Xi as arguments. The
following lemma shows that X̂α can be recovered from X̃α.

Lemma 9.10. Suppose that X̂α ∈ L1. Then, a.s.,

X̂α = X̃α(X1,X2)− X̃α(X2,X3) + X̃α(X3,X4)− X̃α(X4,X1). (9.10)

Consequently, for any p ≥ 1,

X̃α exists and X̃α ∈ Lp ⇐⇒ X̂α ∈ Lp. (9.11)
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Proof : If E‖X‖α <∞, this is obvious from (2.7) and cancellations. In general, we use truncations.
Let, for M > 0, IM := 1{|X| ≤ M}, IMi := 1{|Xi| ≤ M}, and let pM := E IM = P

(
|Xi| ≤ M

)
.

Then,

E
(
IM3 IM4 X̂α | X1,X2

)
= p2Md(X1,X2)

α − pM EX

(
IMd(X2,X)α

)
+ p2M E

(
IM3 IM4 d(X3,X4)

α
)
− pM EX

(
IMd(X1,X)α

)
(9.12)

and consequently, by rotational symmetry and cancellations, interpreting all indices modulo 4,
4∑
i=1

(−1)i−1 E
(
IMi+2I

M
i+3X̂α | Xi,Xi+1

)
= p2M

4∑
i=1

(−1)i−1d(Xi,Xi+1)
α = p2MX̂α. (9.13)

Since we assume X̂α ∈ L1, we have IMi+2I
M
i+3X̂α

L1

−→ X̂α as M →∞, and thus

E
(
IMi+2I

M
i+3X̂α | Xi,Xi+1

) L1

−→ E
(
X̂α | Xi,Xi+1

)
= X̃α(Xi,Xi+1). (9.14)

Hence, as M →∞, the left-hand side of (9.13) converges in L1 to the right-hand side of (9.10),
while the right-hand side of (9.13) obviously converges to X̂α. Hence, (9.10) follows.

Finally, (9.11) is an immediate consequence of (9.10) and (2.6). �

In particular, this leads to the following for the case Y = X. Note that dcov∼α (X,X) := E X̃2
α is

defined whenever X̃α is, although it may be +∞; cf. dcovα̂(X,X) discussed above.

Theorem 9.11. Let X be a random variable in a metric space. Then the following are equivalent:
(i) dcovα̂(X,X) <∞.
(ii) dcov∼α (X,X) <∞ (which includes that X̃α is defined).
(iii) X̂α ∈ L2.
(iv) X̃α is defined and X̃α ∈ L2.
Furthermore, if these hold, then dcovα̂(X,X) = dcov∼α (X,X).

Proof : (i) ⇐⇒ (iii): This follows directly from the definition (2.3), as noted in (9.1).
(ii) ⇐⇒ (iv): Follows similarly from the definition (2.5).
(iii) ⇐⇒ (iv): By Lemma 9.10.
Finally, suppose that (i)–(iv) hold. Use (9.10) and expand (X̂α)2 as a sum of products. Since

X̃α ∈ L2, each product is in L1, so we may take their expectations separately. Furthermore, (9.9)
implies that all off-diagonal terms such as E[X̃α(X1,X2)X̃α(X2,X3)] = 0, and we obtain

E
[
X̂2
α

]
=

4∑
i=1

E
[
X̃α(Xi,Xi+1)

2
]

= 4E
[
X̃2
α

]
. (9.15)

Hence, dcovα̂(X,X) = 1
4 E
[
X̂2
α

]
= E

[
X̃2
α

]
= dcov∼α (X,X). �

Corollary 9.12. (i) If X̂α ∈ L1, so X̃α is defined, then dcovα̂(X,X) = dcov∼α (X,X) (finite or
infinite).

(ii) If X̂α /∈ L1, then dcovα̂(X,X) =∞ and dcov∼α (X,X) is undefined.

Proof : Follows from Theorem 9.11, considering the three cases X̂α ∈ L2, X̂α ∈ L1 \L2 and X̂α /∈ L1

separately. �

If we only care about finite values and regard ∞ as ’undefined’, we thus see that dcov∼α (X,X) =
dcovα̂(X,X) for all X.
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Example 9.13. Let α ≤ 2 and let X ∈ R be as in Example 9.5; thus X ≥ 0 and (9.4) holds. We
have E |X|γ < ∞ for every γ < α, and in particular E|X|α/2 < ∞; hence Lemma 4.2(ii) implies
that X̂α ∈ L1. Thus, X̃α exists, but X̂α /∈ L2 by Example 9.5; hence Theorem 9.11 shows that
dcov∼α (X,X) =∞. Consequently, the exponent α∗ = α is optimal in Definition 2.3 when α ≤ 2.

Example 9.14. Similarly, let α > 2 and let X ∈ R be as in Example 9.6. Then, E|X|γ < ∞ for
every γ < 2α − 2, and in particular E|X|α−1 < ∞; hence Lemma 4.2(iii) implies that X̂α ∈ L1.
Thus, X̃α exists, but X̂α /∈ L2 by Example 9.6; hence Theorem 9.11 shows that dcov∼α (X,X) =∞.
Consequently, the exponent α∗ = 2α− 2 is optimal in Definition 2.3 when α > 2.

Hence, the exponent α∗ is optimal in Definition 2.3 too.

Example 9.15. Let α = 2 and X = Y = R as in Example 9.8, and assume that EX = 0. Then,
by (8.3), X̃2 exists and X̃2 = −2X1X2. Hence, we find directly the same conclusions for dcov∼α
as found for dcovα̂ in Example 9.8. In particular, with X and Y = ζX as in the final part of
Example 9.8, E

[
X̃2Ỹ2

]
is of the type ∞−∞ and thus undefined. (Case (dc3).)

9.4. Optimality for dcovE
α and dcovH

α . Definitions 2.4 and 7.1 do not require any moment conditions;
if X and Y are Euclidean spaces or Hilbert spaces, respectively, then dcovE

α(X,Y) and dcovH
α(X,Y)

are always defined, but may be +∞. (Recall also that Theorem 7.2 shows that for spaces where both
are defined, we always have dcovE

α(X,Y) = dcovH
α(X,Y), finite or not.) Theorem 7.4 shows that the

moment condition E‖X‖α,E‖Y‖α <∞ is sufficient to guarantee that dcovE
α(X,Y) = dcovH

α(X,Y)
is finite. (Recall that this is the same moment condition as in Definitions 2.2 and 2.3.) The following
example shows that the exponent α in this moment condition is optimal, even for random variables
in R.

Example 9.16. Let 0 < α < 2, and let X be a symmetric stable random variable in R with the
characteristic function ϕX(t) = e−|t|

α . Then E|X|α =∞, but E |X|γ <∞ for every γ < α.
Take Y = X. Then, for 0 ≤ t ≤ 1 and t ≤ u ≤ 2t,

ϕX,X(t,−u)− ϕX(t)ϕX(−u) = e−|t−u|
α − e−|t|α−|u|α

≥ e−tα − e−2tα ≥ ctα, (9.16)

for some c > 0. Consequently, (2.9) yields, changing the sign of u,

dcovE
α(X,X) ≥ c

∫ 1

t=0

∫ 2t

u=t
t2α

dtdu

t1+αu1+α
= c

∫ 1

t=0

t2α

t1+2α
dt =∞. (9.17)

Hence, using Theorem 7.2, dcovH
α(X,X) = dcovE

α(X,X) = ∞. The condition in Theorem 7.4 on
finite α moments thus cannot be replaced by any lower moments in order to guarantee finite values.

10. Beyond the moment conditions

We continue to investigate cases when the moment condition in Definitions 2.2–2.3 fails; now
with the aim of obtaining positive results.

10.1. A weaker condition. We begin with dcovα̂ in Definition 2.2, and show first that the counterex-
ample in Example 9.5 is optimal, at least when α ≤ 1.

Theorem 10.1. Let X be any separable metric space, and let 0 < α ≤ 1. If∫ ∞
0

P
[
‖X‖ > x

]2
x2α−1 dx <∞, (10.1)

then E |X̂α|2 <∞ and thus dcovα̂(X,X) <∞.
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Proof : The calculation in (9.3) shows that (10.1) is equivalent to

E
[(
‖X1‖α ∧ ‖X2‖α

)2]
<∞. (10.2)

In other words, ‖X1‖α ∧ ‖X2‖α ∈ L2. Hence, Lemma 4.2(i) shows that X̂α ∈ L2. �

Remark 10.2. Let 0 < α ≤ 1. Then, e.g. using Lemma 10.4 below, the argument in Example 9.5
is easily extended to show that if X = R, then (10.1) is also necessary for E |X̂α|2 < ∞. Thus, at
least for α ≤ 1 and X = R, (10.1) is both necessary and sufficient for dcovα̂(X,X) <∞.

Remark 10.3. It is easy to see directly that the condition (10.1) follows from the condition E‖X‖α <
∞ in Lemma 4.3. (We omit the details.) Furthermore, (10.1) is a strictly weaker condition, and
thus, for α ≤ 1, Theorem 10.1 is stronger than Lemma 4.3. For example, if we instead of (9.4)
choose, for x ≥ e,

P(X > x) = x−α/ log x, (10.3)

then EXα =∞, but the integral in (9.3) converges and Theorem 10.1 shows that E |X̂α|2 <∞ and
dcovα̂(X,X) <∞.

Hence, although we have seen that the exponent in the moment condition in Definition 2.2 is
best possible, Theorem 10.1 shows that for α ≤ 1, the moment condition can be weakened to the
condition (10.1) (together with the same for Y); we postpone the details to Theorem 10.6, where
we also extend it to dcovE

α and dcovH
α .

Before proceeding, we note that when α ≤ 1, we may simplify the condition X̂α ∈ L2 by the
following lemma.

Lemma 10.4. Let p > 0. If 0 < α ≤ 1, then

X̂α ∈ Lp ⇐⇒ ‖X1‖α + ‖X2‖α − d(X1,X2)
α ∈ Lp. (10.4)

Note that (for α ≤ 1) the right-hand side is non-negative by the triangle inequality.

Proof : =⇒ : Since E |X̂α|p < ∞, the conditional expectation E
(
|X̂α|p | X3, X4

)
∈ L1. Hence,

there exist some x3 and x4 such that E
(
|X̂α|p | X3 = x3, X4 = x4

)
∈ L1, which by the definition

(2.4) means

d(X1,X2)
α − d(X1,x4)

α − d(X2,x3)
α ∈ Lp. (10.5)

The triangle inequality yields, for j = 3, 4,∣∣d(X,xj)− ‖X‖
∣∣ ≤ d(xj ,xo) = O(1), (10.6)

and thus, since α ≤ 1, ∣∣d(X,xj)
α − ‖X‖α

∣∣ = O(1), (10.7)

and the result follows.
⇐= : Immediate (for any α), since the definition (2.4) can be written

X̂α =

4∑
i=1

(−1)i
(
‖Xi‖α + ‖Xi+1‖α − d(Xi,Xi+1)

α
)
. (10.8)

�

Remark 10.5. We do not know (even for X = R) whether Lemma 10.4 holds also for α > 1, and
leave that as an open problem. (It holds, by a minor modification of the proof above, for α > 1

under the additional assumption E‖X‖p(α−1) <∞, but that seems less useful.)

We next introduce a class of function spaces.
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10.2. Lorentz spaces. The condition (10.1) can be expressed as follows using Lorentz spaces, a gen-
eralization of the Lebesgue spaces Lp; see e.g. Bennett and Sharpley (1988); Bergh and Löfström
(1976). Let X∗ be the decreasing rearrangement of ‖X‖; this is the (weakly) decreasing function
(0, 1)→ [0,∞) defined by

X∗(t) := inf
{
x : P(‖X‖ > x) ≤ t

}
. (10.9)

In probabilistic terms, X∗ is characterized as the decreasing function on (0, 1) that, regarded as a
random variable when (0, 1) is equipped with the Lebesgue measure, has the same distribution as
‖X‖.

For a given probability space (Ω,F , P ), and p, q ∈ (0,∞), the Lorentz space Lp,q(Ω,F , P ) is
defined as the linear space of all real-valued random variables X such that∫ 1

0

(
t1/pX∗(t)

)q dt

t
<∞. (10.10)

It is well-known that Lp,p = Lp, and that if q1 < q2 then Lp,q1 ⊂ Lp,q2 , with strict inequality
provided the probability space is large enough.

A standard Fubini argument shows that∫ 1

0

(
t1/pX∗(t)

)q dt

t
= q

∫ 1

0

∫ ∞
0

1{X∗(t) > x}xq−1tq/p−1 dx dt

= q

∫ 1

0

∫ ∞
0

1
{
P(‖X‖ > x) > t

}
xq−1tq/p−1 dx dt

= p

∫ ∞
0

P
[
‖X‖ > x

]q/p
xq−1 dx. (10.11)

In particular, taking p = α and q = 2α, we see that (10.1) is equivalent to ‖X‖ ∈ Lα,2α.
Consequently, for α ≤ 1, Theorem 10.1 says that if ‖X‖ ∈ Lα,2α, then X̂α ∈ L2, which weakens

the condition ‖X‖ ∈ Lα in Lemma 4.3 to Lα,2α. Hence, we can extend the use of Definition 2.2;
moreover, as shown below, also Definitions 2.3, 2.4 and 7.1 yield the same result in this case.

Theorem 10.6. Let 0 < α ≤ 1, and assume that ‖X‖, ‖Y‖ ∈ Lα,2α. Then:
(i) Definition 2.2 yields a finite value dcovα̂(X,Y).
(ii) Definition 2.3 yields a finite value dcov∼α (X,Y), and dcov∼α (X,Y) = dcovα̂(X,Y).
(iii) If X and Y are Euclidean spaces, then Definition 2.4 yields a finite value dcovE

α(X,Y), and
dcovE

α(X,Y) = dcovα̂(X,Y).
(iv) If X and Y are Hilbert spaces, then Definition 7.1 yields a finite value dcovH

α(X,Y), and
dcovH

α(X,Y) = dcovα̂(X,Y).
Thus, the values that are defined are all equal (and finite).

The proof is postponed to the following subsections.
Note also that by Remark 10.2, the Lorentz space Lα,2α is optimal in the strong sense that, for

α ≤ 1 and X = R,

dcovα̂(X,X) <∞ ⇐⇒ X̂α ∈ L2 ⇐⇒ ‖X‖ ∈ Lα,2α. (10.12)

The proofs of the results above assume α ≤ 1. We leave the case α > 1 as open problems. For
example:

Problem 10.7. For α > 1, what is the optimal Lorentz space condition that guarantees E |X̂α|2 <∞
and thus dcovα̂(X,X) <∞?

By Theorem 9.11, the answer for dcov∼α (X,X) is the same.
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Remark 10.8. Example 9.8 shows that in the special case α = 2, the condition ‖X‖ ∈ L2 in
Definition 2.2 cannot be improved; it is actually necessary for X̂α ∈ L2 and dcov2̂(X,X) < ∞ in
the case X = R. Hence, for α = 2, the answer to Problem 10.7 is L2 = L2,2.

A naive interpolation with (10.12) yields the conjecture that for 1 < α < 2, the answer is Lα,2.

Remark 10.9. The equivalence (10.12) does not hold for all metric spaces X , not even for α = 1.
For a counterexample, let X = `1 with the standard basis (en)∞1 , let 0 < γ ≤ 1/2, and let N be an
integer-valued random variable with P(N = n) = pn := cn−1−γ , n ≥ 1, where c is a normalization
constant. Finally, let X := N1/2eN . It is easily seen that, with Xi defined in the same way by Ni,

X̂ ≤ 2
4∑
i=1

N
1/2
i 1{Ni = Ni+1}, (10.13)

and thus, using Cauchy–Schwarz’s (or Minkowski’s) inequality,

E X̂2 ≤ C E
[
N11{N1 = N2}

]
= C

∞∑
n=1

np2n = C
∞∑
n=1

n−1−2γ <∞, (10.14)

while for x ≥ 1,

P
(
‖X‖ > x

)
= P(N > x2) =

∑
n>x2

cn−1−γ ≥ cx−2γ ≥ cx−1, (10.15)

so (10.1) fails, and thus ‖X‖ /∈ L1,2.

Problem 10.10. Does the equivalence (10.12) hold in Euclidean spaces? In infinite-dimensional
Hilbert spaces?

We have not investigated whether the results on continuity and consistency in Section 5 can be
extended (for α ≤ 1) by replacing the moment conditions with the corresponding Lorentz space
condition. In particular:

Problem 10.11. Let α ≤ 1. Does Theorem 5.4 hold if the moment condition is replaced by X,Y ∈
Lα,2α?

10.3. More on dcovα̂ and dcov∼α . Theorem 9.11 considers only the case X = Y. We do not know
whether it extends to dcovα(X,Y) in general, without further conditions. We give a partial result.

Theorem 10.12. Suppose that X̂α, Ŷα ∈ L1, so X̃α and Ỹα exist. Suppose further that X̃αỸα ∈ L1

and X̃α(X1,X2)Ỹα(Y1,Y3) ∈ L1. Then X̂αŶα ∈ L1, and dcovα̂(X,Y) = dcov∼α (X,Y); futhermore,
this value is finite.

In particular, this holds if X̂α, Ŷα ∈ L2.

Proof : This is similar to the proof of Theorem 9.11. We have X̃α, Ỹα ∈ L1 by (2.6), and thus
X̃α(X1,X2)Ỹα(Y3,Y4) ∈ L1 by independence. Express X̂α and Ŷα by (9.10) and expand X̂αŶα as
a sum of 16 terms. By the assumptions (and symmetry), every term is in L1, so we may take their
expectations separately. Furthermore, (9.9) implies that e.g. E[X̃α(X1,X2)Ỹα(Y1,Y3)] = 0, and
we obtain

E
[
X̂αŶα

]
=

4∑
i=1

E
[
X̃α(Xi,Xi+1)Ỹα(Yi,Yi+1)

]
= 4E

[
X̃αỸα

]
. (10.16)

If X̂α, Ŷα ∈ L2, then X̃α, Ỹα ∈ L2 and the assumptions above follow by the Cauchy–Schwarz
inequality. �

Proof of Theorem 10.6(i)(ii): By the comments before Theorem 10.6, the assumptions imply
X̂α, Ŷα ∈ L2, and thus Theorem 10.12 shows (i) and (ii). �
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Problem 10.13. Let either X and Y be arbitrary, or consider only X = Y = R.
(i) Is it true for arbitrary random X ∈ X and Y ∈ Y that dcovα̂(X,Y) is defined and finite ⇐⇒

dcov∼α (X,Y) is defined and finite?
(ii) If this holds, is furthermore always dcovα̂(X,Y) = dcov∼α (X,Y)?

10.4. More on dcovE
α and dcovH

α . Consider now the case of Euclidean or, more generally, Hilbert
spaces and Definitions 2.4 and 7.1. We complete the proof of Theorem 10.6; recall that this assumes
α ≤ 1.

Proof of Theorem 10.6(iii)(iv): (iv): This follows by essentially the same proof as for Theorem 7.4.
As noted in Remark 7.5, (7.21) holds without any moment condition. Moreover, as said in the
proof of Theorem 7.4, Lemma 4.2 holds for X̂α;M defined in (7.19) too, uniformly in M ; we now
use Lemma 4.2(i), and denote the right-hand side by X̂∗∗. Hence, |X̂α;M | ≤ X̂∗∗, and similarly
|Ŷα;M | ≤ Ŷ ∗∗.

As noted above, X ∈ Lα,2α is equivalent to (10.1) and to (10.2). Consequently, X̂∗∗ ∈ L2 and,
similarly, Ŷ ∗∗ ∈ L2. Hence, X̂∗∗Ŷ ∗∗ ∈ L1 and dominated convergence applies to (7.21), just as in
the proof of Theorem 7.4, yielding dcovH

α(X,Y) = dcovα̂(X,Y) <∞.
(iii): Theorem 7.2 shows the general equality dcovE

α(X,Y) = dcovH
α(X,Y), and thus (iii) follows

from (iv).
This completes the proof of Theorem 10.6. �

Problem 10.14. For 1 < α < 2, what is the optimal Lorentz space condition that guaran-
tees dcovH

α(X,X) < ∞ (for variables in a Hilbert space)? Does this also imply dcovH
α(X,X) =

dcovα̂(X,X)? Does this condition imply dcovH
α(X,Y) = dcovα̂(X,Y) for two variables X and Y?

Problem 10.15. Let either X and Y be arbitrary Hilbert spaces, or consider only X = Y = R. Let
0 < α < 2.
(i) Is it true for arbitrary random X ∈ X and Y ∈ Y that dcovα̂(X,Y) is defined and finite ⇐⇒

dcovH
α(X,Y) is finite?

(ii) If this holds, is furthermore always dcovα̂(X,Y) = dcovH
α(X,Y)?

10.5. Hilbert spaces, α = 2. Consider now the case when X = H and Y = H′ are Hilbert spaces,
as in the preceding subsection, but take α = 2. Then dcovH

α(X,Y) is not defined, so we consider
dcov2̂(X,Y) and dcov∼2 (X,Y). In Section 8, we did this assuming second moments; we now remove
that assumption and generalise the results. (This is partly for its own sake, but mainly for the
application in the next subsection.)

In this subsection, expectations EX of Hilbert space valued random variables are always inter-
preted in Pettis sense, see Appendix B. (This is sometimes said explicitly for emphasis.) We use
some technical results stated and proved in Appendix B.

Recall that X̂2 = 2〈X1−X3,X4−X2〉 by (8.1), for any X. We next show that (8.2) holds under
weaker conditions than assumed in Section 8.

Lemma 10.16. Let X = H be a Hilbert space. If X̃2 exists, then EX exists in Pettis sense, and

X̃2 = −2〈X1 − EX,X2 − EX〉. (10.17)

Proof : By (8.1), we have X̂2 = 2〈Z,Z′〉 where Z := X1 − X3 and Z′ := X4 − X2. Assume that
X̃2 exists, which by our definition means that E |X̂2| < ∞. Thus E |〈Z,Z′〉| < ∞. Lemma B.1(ii)
applies and shows that Z = X1 −X3 is Pettis integrable. Hence, for every x ∈ H,

〈X1,x〉 − 〈X3,x〉 = 〈X1 −X3,x〉 = 〈Z,x〉 ∈ L1. (10.18)
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Since 〈X1,x〉 and 〈X3,x〉 are independent random variables, this implies E |〈X1,x〉| < ∞, for any
x ∈ H, and thus EX1 exists in Pettis sense.

Using (8.1), we may now integrate over first X4 and then X3 and obtain

E
(
X̂2 | X1,X2,X3

)
= 2〈X1 −X3,EX−X2〉, (10.19)

X̃2 = E
(
X̂2 | X1,X2

)
= 2〈X1 − EX,EX−X2〉. (10.20)

showing (10.17). �

Theorem 10.17. Let X = H and Y = H′ be Hilbert spaces.
(i) If dcov2̂(X,Y) is defined, i.e., E

[
X̂2Ŷ2

]
is defined as an extended real number, then

dcov2̂(X,Y) ∈ [0,∞].
(ii) If dcov2̂(X,Y) <∞, then

dcov2̂(X,Y) =
∥∥E[(X1 −X2)⊗ (Y1 −Y2)

]∥∥2
H⊗H′ , (10.21)

where the expectation exists in Pettis sense.
(iii) If dcov∼2 (X,Y) is defined, i.e., X̃2 and Ỹ2 are defined and E

[
X̃2Ỹ2

]
is defined as an extended

real number, then dcov∼2 (X,Y) ∈ [0,∞].
(iv) If furthermore dcov∼2 (X,Y) <∞, then

dcov∼2 (X,Y) = 4
∥∥E[X⊗Y]− EX⊗ EY

∥∥2
H⊗H′ , (10.22)

where the expectations exist in Pettis sense.
(v) If dcov2̂(X,Y) and dcov∼2 (X,Y) both are defined, as in (i) and (iii), and furthermore

dcov2̂(X,Y) and dcov∼2 (X,Y) both are finite, then

dcov2̂(X,Y) = dcov∼2 (X,Y). (10.23)

Proof : (i),(ii): By (8.1) and (8.5),

X̂2Ŷ2 = 4〈X1 −X3,X4 −X2〉〈Y1 −Y3,Y4 −Y2〉
= 4
〈
(X1 −X3)⊗ (Y1 −Y3), (X4 −X2)⊗ (Y4 −Y2)

〉
H⊗H′ . (10.24)

This is an example of 〈Z,Z′〉 as in Lemma B.1, with Z := (X1 −X3)⊗ (Y1 −Y3)
d
= (X1 −X2)⊗

(Y1 −Y2). Thus, (i) follows from Lemma B.1(iii), and (ii) from Lemma B.1(ii).
(iii),(iv): Similarly, if X̃2 and Ỹ2 exist, then Lemma 10.16 shows that EX and EY exist in Pettis

sense, and furthermore, using (8.5),

X̃2Ỹ2 = 4〈X1 − EX,X2 − EX〉〈Y1 − EY,Y2 − EY〉
= 4〈(X1 − EX)⊗ (Y1 − EY), (X2 − EX)⊗ (Y2 − EY)〉. (10.25)

This is another example of 〈Z,Z′〉 as in Lemma B.1, now with Z := (X1 − EX) ⊗ (Y1 − EY).
Thus, (iii) follows from Lemma B.1(iii).

Finally, assume dcov∼2 (X,Y) <∞, i.e., X̃2Ỹ2 ∈ L1. Then (10.25) and Lemma B.1(ii) show that
EZ exists in Pettis sense, and that

dcov∼2 (X,Y) = E[X̃2Ỹ2] = 4‖EZ‖2 = 4‖E
[
(X− EX)⊗ (Y − EY)

]
‖2. (10.26)

We have

X1 ⊗Y1 = Z + (EX)⊗ (Y1 − EY) + X1 ⊗ EY. (10.27)

Furthermore, since EX and EY are constant vectors, it is easy to see that E[X1⊗EY] = EX⊗EY
and E[(EX) ⊗ (Y1 − EY)] = EX ⊗ E[Y1 − EY] = 0. (This also follows from the more general
Lemma B.7.) Hence, (10.27) shows that E[X⊗Y] exists, and

E[X⊗Y] = E[X1 ⊗Y1] = EZ + EX⊗ EY. (10.28)
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Thus (10.22) follows from (10.26).
(v): In this case, (i)–(iv) all hold. By (iv), the expectations EX, EY and E[X⊗Y] exist. Hence,

E[Xi ⊗Yi] = E[X ⊗Y] exists for every i. Furthermore, if i 6= j so Xi and Yj are independent,
E[Xi ⊗Yj ] exists by Lemma B.7 and equals E[Xi] ⊗ E[Yj ]. Hence, E[Xi ⊗Yj ] exists for every i
and j, and thus

E
[
(X1 −X2)⊗ (Y1 −Y2)

]
= E[X1 ⊗Y1] + E[X2 ⊗Y2]− E[X1 ⊗Y2]− E[X2 ⊗Y1]

= 2
(
E[X⊗Y]− E[X]⊗ E[Y]

)
. (10.29)

Consequently, (10.23) follows from (10.21) and (10.22). �

10.6. Metric spaces of negative type. In this subsection we assume that X and Y are metric spaces
such that dαX and dαY both are of negative type, see Remark 2.7. We then can embed the spaces
into Hilbert spaces as in Remark 8.4 and transfer the results in Section 10.5.

Theorem 10.18. Let α > 0 and let X and Y be metric spaces such that dαX and dαY both are of
negative type.
(i) If dcovα̂(X,Y) is defined, i.e., E

[
X̂αŶα

]
is defined as an extended real number, then

dcovα̂(X,Y) ∈ [0,∞].
(ii) If dcov∼α (X,Y) is defined, i.e., X̃α and Ỹα are defined and E

[
X̃αỸα

]
is defined as an extended

real number, then dcov∼α (X,Y) ∈ [0,∞].
(iii) If dcovα̂(X,Y) and dcov∼α (X,Y) both are defined, as in (i) and (ii), and furthermore both are

finite, then

dcovα̂(X,Y) = dcov∼α (X,Y). (10.30)

Proof : Immediate by Remark 8.4 and Theorem 10.17(i)(iii)(v). �

This gives a partial (but not complete) answer to Problem 10.13 for spaces with dα of negative
type; recall from Remark 2.7 that when 0 < α ≤ 2, this includes Hilbert spaces, in particular R.

Remark 10.19. If d is a metric of negative type, then so is dα for every α ≤ 1. Hence, if X and Y
are metric spaces of negative type, then Theorem 10.18 applies at least with 0 < α ≤ 1.

10.7. Negative values? If X and Y are metric spaces such that dα is of negative type, then The-
orem 10.18 shows that dcovα̂(X,Y) and dcov∼α (X,Y) may not be negative and finite, nor −∞.
Theorem 9.1 then shows the same for dcov∗α(X,Y). The same is also, trivially, true for dcovE

α(X,Y)

and dcovH
α(X,Y) when they are applicable. More precisely, we have the possibilities shown in Ta-

ble 10.1, by Theorems 4.5, 7.4, 9.1 and 10.18; Examples 9.5, 9.7, 9.9, 9.13, 9.16; (2.9) and (7.2).

[0,∞) +∞ (−∞, 0) −∞ undefined
dcov∗α(X,Y) + − − − +
dcovα̂(X,Y) + + − − +
dcov∼α (X,Y) + + − − +
dcovE

α(X,Y) + + − − −
dcovH

α(X,Y) + + − − −
Table 10.1. Possibilities when dα is of negative type

Conversely, if X or Y is a metric space that is not of negative type then dcov(X,Y) < 0 is
possible (as soon as both spaces have at least two points), see Lyons (2013, Proposition 3.15); by
Theorem 4.5, this holds for any of dcov∗α(X,Y), dcovα̂(X,Y), dcov∼α (X,Y). Theorem 9.1 still rules
out ±∞ for dcov∗α(X,Y), and we find the possibilities shown in Table 10.2.
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[0,∞) +∞ (−∞, 0) −∞ undefined
dcov∗α(X,Y) + − + − +
dcovα̂(X,Y) + + + ? +
dcov∼α (X,Y) + + + ? +

Table 10.2. Possibilities when dα is not of negative type

For dcovα̂(X,Y) and dcov∼α (X,Y), we do not know whether −∞ is possible (in Case (dc2) in
Section 9):

Problem 10.20. Is dcovα̂(X,Y) = −∞ or dcov∼α (X,Y) = −∞ possible?
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Appendix A. A uniform integrability lemma

We use above some well-known standard results on uniform integrability, see e.g. Gut (2013, §5.4
and §5.5). We use also the following simple result which perhaps is less well-known; since we have
not found a good reference, we provide a proof for completeness.

In this section, all random variables are real-valued. We state the lemmas below for sequences
of random variables (the case that we use), but they are valid (with the same proofs) for families
(Xι)ι∈I and (Yι)ι∈I with an arbitrary index set I.

Lemma A.1. Let (Xn)n and (Yn)n be uniformly integrable sequences of random variables, and
suppose that for each n, Xn and Yn are independent. Then the sequence (XnYn)n is also uniformly
integrable.

To prove this, we use another simple result that perhaps is less well-known than it deserves.

Lemma A.2. Let (Xn)n be a sequence of random variables. Then (Xn)n is uniformly integrable if
and only if for every ε > 0 there exists Kε < ∞ and a sequence (Xε

n)n of random variables such
that for every n,

|Xε
n| ≤ Kε a.s., (A.1)

E
∣∣Xn −Xε

n

∣∣ < ε. (A.2)

Proof : This is a simple exercise, using your favourite definition of uniform integrability. (See e.g.
Gut, 2013, Definition 5.4.1 and Theorem 5.4.1.) �

Proof of Lemma A.1: The uniform integrability implies the existence of constants B and B′ such
that E |Xn| ≤ B and E |Yn| ≤ B′ for all n.

Let 0 < ε < 1. Lemma A.2 shows that there exists Kε < ∞ and random variables Xε
n and Y ε

n

such that both (A.1)–(A.2) and the corresponding inequalities with Y hold. Then |Xε
nY

ε
n | ≤ K2

ε

a.s. Since Xn and Yn are independent, we may also assume that the pairs (Xn, X
ε
n) and (Yn, Y

ε
n )

are independent, and then

E
∣∣XnYn −Xε

nY
ε
n

∣∣ ≤ E
∣∣Xn(Yn − Y ε

n )
∣∣+ E

∣∣(Xn −Xε
n)Yn

∣∣
+ E

∣∣(Xn −Xε
n)(Yn − Y ε

n )
∣∣

≤ Bε+B′ε+ ε2 = (B +B′ + 1)ε. (A.3)

Lemma A.2 in the opposite direction shows that the sequence (XnYn)n is uniformly integrable. �
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Appendix B. Bochner and Pettis integrals

The expectation EX of an H-valued random variable X, where H is a separable Hilbert space,
can be defined using either the Bochner integral or the Pettis integral; see e.g. the summary in
Janson and Kaijser (2015, §2.4) and the references given there. Both integrals are defined for
general Banach spaces, but in this paper we need them only for separable Hilbert spaces. In this
case, EX exists in Bochner sense if and only if E‖X‖ < ∞, and EX exists in Pettis sense if and
only if E |〈X,x〉| <∞ for every x ∈ H, and then EX is the element of H determined by

〈EX,x〉 = E〈X,x〉, x ∈ H. (B.1)

If EX exists in Bochner sense, then it exists in Pettis sense, and the value is the same. (Hence, the
reader may choose to always interpret EX in Pettis sense. However, the Bochner integral is more
convenient when applicable.) The converse is not true; there are X such that EX exists in Pettis
sense but not Bochner sense. (See e.g. Example B.3.)

It is well-known, and easy to see, that if EX exists in Pettis sense, then there exists C < ∞
(depending on X) such that

E|〈X,x〉| ≤ C‖x‖, x ∈ H. (B.2)

We use in Section 10.5 some results on Pettis integrals in (separable) Hilbert spaces, stated in
the lemmas below. We believe that at least some of these are known, but since we have not found
references, we give complete proofs.

Lemma B.1. Let Z be random variable in a separable Hilbert space H, and let Z′ be an independent
copy of Z.
(i) If Z is Bochner integrable, i.e., if E‖Z‖ <∞, then

E |〈Z,Z′〉| <∞. (B.3)

(ii) If (B.3) holds, then Z is Pettis integrable, i.e., EZ exists in Pettis sense. Moreover,

E〈Z,Z′〉 = ‖EZ‖2 ≥ 0. (B.4)

(iii) If E〈Z,Z′〉+ <∞, then (B.3) holds. In other words, E〈Z,Z′〉 may be finite (and then ≥ 0 by
(B.4)), +∞ or undefined, but never −∞.

Remark B.2. We show in Examples B.3 and B.4 that the implications in (i) and (ii) are strict, i.e.,
their converses do not hold.

Furthermore, it is easy find examples, even with H = R, where E〈Z,Z′〉 is +∞ or undefined (i.e.,
∞−∞); take any real-valued random Z with Z ≥ 0 or with a symmetric distribution, respectively,
and further E |Z| =∞.

Proof of Lemma B.1: (i): By the Cauchy–Schwarz inequality, |〈Z,Z′〉| ≤ ‖Z‖‖Z′‖, and (B.3) follows
by the independence of Z and Z′.

(ii): Let A := E |〈Z,Z′〉| and let u ∈ H with ‖u‖ = 1. Furthermore, let W := sgn〈Z,u〉 and
W ′ := sgn〈Z′,u〉, and let for M > 0, IM := 1{‖Z‖ ≤ M} and I ′M := 1{‖Z′‖ ≤ M}. Since
IMWZ

d
= I ′MW

′Z′ is measurable and bounded, E[IMWZ] = E[I ′MW
′Z′] exists, even in Bochner

sense, and we have, for any finite M ,

A ≥ E
[
IMWI ′MW

′〈Z,Z′〉
]

= E 〈IMWZ, I ′MW
′Z′〉

= E
[
E
(
〈IMWZ, I ′MW

′Z′〉 | Z
)]

= E 〈IMWZ,E[I ′MW
′Z′]〉

= 〈E[IMWZ],E[I ′MW
′Z′]〉 = ‖E[IMWZ]‖2. (B.5)
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Hence, by the Cauchy–Schwarz inequality, ‖u‖ = 1, and (B.5),

E
[
IM |〈u,Z〉|

]
= E

[
IMW 〈u,Z〉

]
= E 〈u, IMWZ〉 = 〈u,E[IMWZ]〉

≤ ‖E[IMWZ]‖ ≤ A1/2. (B.6)

Letting M →∞ yields, by monotone convergence,

E
∣∣〈u,Z〉∣∣ ≤ A1/2 (B.7)

for every u with ‖u‖ = 1, which (since H is reflexive) shows that Z is Pettis integrable.
Finally, the Pettis integrability yields first

E
(
〈Z,Z′〉 | Z

)
= 〈Z,EZ′〉 (B.8)

and then, taking the expectation of (B.8),

E 〈Z,Z′〉 = E〈Z,EZ′〉 = 〈EZ,EZ′〉 = 〈EZ,EZ〉, (B.9)

which is (B.4).
(iii): We have, similarly to (B.5),

E
[
IMI

′
M 〈Z,Z′〉

]
= E 〈IMZ, I ′MZ′〉 = E

[
E
(
〈IMZ, I ′MZ′〉 | Z

)]
= E 〈IMZ,E[I ′MZ′]〉 = 〈E[IMZ],E[I ′MZ′]〉
= ‖E[IMZ]‖2 ≥ 0. (B.10)

Hence,

E
[
IMI

′
M 〈Z,Z′〉−

]
≤ E

[
IMI

′
M 〈Z,Z′〉+

]
≤ E

[
〈Z,Z′〉+

]
<∞, (B.11)

and letting M →∞ yields E〈Z,Z′〉− < ∞ by monotone convergence. Hence, (B.3) holds, and the
result follows. �

We give counterexamples to converses of the statements in Lemma B.1.

Example B.3. Let N be a positive integer-valued random variable and let pn := P(N = n), let
(an)∞1 be a sequence of positive numbers, and let (ei)i be an ON-basis in H. Define Z := aNeN .
Then

E‖Z‖ = E aN =
∞∑
n=1

anpn. (B.12)

If N ′ is an independent copy of N , and Z′ := aN ′eN ′ , then 〈Z,Z′〉 = a2N1{N = N ′}, and thus

E
∣∣〈Z,Z′〉∣∣ = E〈Z,Z′〉 =

∞∑
n=1

a2np
2
n. (B.13)

Consequently, choosing pn = c/n2 and an = n, E|〈Z,Z′〉| < ∞ but E‖Z‖ = ∞, so EZ does not
exist in Bochner sense. Hence the converse to Lemma B.1(i) does not hold.

In this example, as is easily seen, EZ exists in Pettis sense if and only if
∑∞

n=1 a
2
np

2
n < ∞, and

then EZ =
∑

n anpnen.

Example B.4. Let (ei)i be an ON-basis in H, let ξi ∼ N(0, 1), i ≥ 1, be independent, and let N be
a positive integer-valued random variable, independent of (ξi)i. Define Z :=

∑N
i=1 ξiei. Then, for

any x ∈ H,

〈Z,x〉 =
N∑
i=1

〈ei,x〉ξi. (B.14)
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Conditioned on N , this has a normal distribution with variance
∑N

1 〈ei,x〉2 ≤ ‖x‖2. Hence,

E
(
|〈Z,x〉|

∣∣ N) =

√
2

π

( N∑
i=1

〈ei,x〉2
)1/2

≤ ‖x‖ (B.15)

and thus E
∣∣〈Z,x〉∣∣ ≤ ‖x‖ < ∞. Consequently, EZ exists in Pettis sense. (With EZ = 0, by

symmetry.)
On the other hand, if N ′ d

= N and ξ′i ∼ N(0, 1) are independent of each other and of N and
(ξi)i, so Z′ :=

∑N ′

i=1 ξ
′
iei is an independent copy of Z, then 〈Z,Z′〉 =

∑N∧N ′
1 ξiξ

′
i. The sequence

(ξiξ
′
i)i is i.i.d. with mean 0 and variance E[(ξiξ

′
i)
2] = E[ξ2i ]E[(ξ′i)

2] = 1, and thus by the central limit
theorem, for some c > 0 and every n ≥ 0,

E
(
|〈Z,Z′〉|

∣∣ N ∧N ′ = n
)

= E
∣∣∣ n∑

1

ξiξ
′
i

∣∣∣ ≥ c√n. (B.16)

Hence,

E|〈Z,Z′〉| ≥ cE
√
N ∧N ′ = c

∫ ∞
0

P
(√
N ∧N ′ > t

)
dt

= c

∫ ∞
0

P
(
N > t2, N ′ > t2

)
dt = c

∫ ∞
0

P
(
N > t2

)2
dt. (B.17)

Choose N with P(N > n) = n−γ for n ≥ 1, where 0 < γ ≤ 1
4 . Then P(N > t) ≥ t−γ for t ≥ 1, and

(B.17) yields E|〈Z,Z′〉| ≥ c
∫∞
1 t−4γ dt = ∞. Consequently, EZ exists in Pettis sense, but (B.3)

does not hold. Hence, the converse to Lemma B.1(ii) does not hold.
Note also that (B.16) and (B.17) hold in the opposite direction with another c; hence, in this

example, (B.3) holds if we take γ > 1
4 . Moreover, ‖Z‖ =

(∑N
1 ξ2i

)1/2, and it follows from the
law of large numbers that E

(
‖Z‖ | N = n

)
∼
√
n as n→∞, and thus, if γ ≤ 1

2 , we have
E‖Z‖ ≥ cEN1/2 = ∞. Consequently, taking γ ∈ (14 ,

1
2 ] gives another example showing that the

converse to (i) does not hold.

Recall that a Hilbert–Schmidt operator T : H → H′, where H and H′ are Hilbert spaces, is a
linear operator such that if (ei)i is an ON-basis in H, then

‖T‖2HS :=
∑
i

‖Tei‖2 <∞. (B.18)

(This is independent of the choice of basis (ei)i.) See e.g. Lax (2002, §30.8) or Conway (1990,
Exercise IX.2.19). The following lemma is a version of the fact that a Hilbert–Schmidt operator is
absolutely 1-summing Pietsch (1965, Theorem 2.5.5).

Lemma B.5. Let H and H′ be separable Hilbert spaces, let X be random variable in H such that
EX exists in Pettis sense, and let T : H → H′ be a Hilbert–Schmidt operator. Then E‖TX‖ <∞.

Proof : Since T is a Hilbert–Schmidt operator, T ∗T is a positive self-adjoint trace class operator in
H, and thus there exists an ON-basis (ei)i in H consisting of eigenvectors, so T ∗Tei = λiei, where
λi ≥ 0 and ∑

i

λi = ‖T‖2HS <∞. (B.19)
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(See again e.g. Lax, 2002, §30 and Conway, 1990, Exercise IX.2.19.) Let si := λ1/2. (These are
known as the singular values of T .) Then, for any x ∈ H,

‖Tx‖2 = 〈T ∗Tx,x〉 =
∑
i

〈T ∗Tx, ei〉〈x, ei〉 =
∑
i

〈x, T ∗Tei〉〈x, ei〉

=
∑
i

λi〈x, ei〉〈x, ei〉 =
∑
i

s2i 〈x, ei〉2. (B.20)

Let (εi)i be i.i.d. random variables with P(εi = 1) = P(εi = −1) = 1
2 , and let them also be

independent of X. Let

Z :=
∑
i

siεiei, (B.21)

where the sum converges in H (surely) since
∑

i s
2
i <∞ by (B.19). Let x ∈ H and note that

〈x,Z〉 =
∑
i

si〈x, ei〉εi. (B.22)

Hence, using (B.20),

E|〈x,Z〉|2 = E
∣∣∣∑
i

si〈x, ei〉εi
∣∣∣2 =

∑
i

s2i 〈x, ei〉2 = ‖Tx‖2. (B.23)

Moreover, Khintchine’s inequality Gut (2013, Lemma 3.8.1) applies to (B.22) and yields(
E|〈x,Z〉|2

)1/2 ≤ C E|〈x,Z〉|. (B.24)

Combining (B.23) and (B.24) we find

‖Tx‖ ≤ C E|〈x,Z〉|. (B.25)

Let EX and Eε denote integration over X and (εi), respectively. Then (B.25) yields ‖TX‖ ≤
C Eε|〈X,Z〉| and thus

E‖TX‖ ≤ C EX Eε|〈X,Z〉| = C E|〈X,Z〉|. (B.26)

On the other hand, (B.2) yields, using also the definition (B.21) and (B.19),

EX|〈X,Z〉| ≤ C‖Z‖ = C
(∑

i

s2i

)1/2
= C‖T‖HS. (B.27)

Thus,

E|〈X,Z〉| = EEX|〈X,Z〉| ≤ C‖T‖HS <∞. (B.28)

The result follows by (B.26) and (B.28). �

Remark B.6. Example B.3 shows that the result in Lemma B.5 does not hold for T = I, the
identity operator (if dimH = ∞). In fact, the result holds if and only if T is Hilbert–Schmidt: if
T is a bounded operator that is not Hilbert–Schmidt, then there exists X such that EX exists but
E‖TX‖ =∞; this can be seen by a modification of Example B.3. (We omit the details.)

Lemma B.7. Let X and Y be independent random variables with values in separable Hilbert spaces
H and H′. If EX and EY exist in Pettis sense, then E[X⊗Y] exists in Pettis sense, in H⊗H′,
and E[X⊗Y] = (EX)⊗ (EY).

Proof : Let z ∈ H ⊗H′, and define a linear operator Tz : H → H′ by

〈Tzx,y〉 = 〈x⊗ y, z〉. (B.29)
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Let (ei)i and (e′j)j be ON-bases in H and H′. Then (ei⊗ e′j)i,j is an ON-basis in H⊗H′, and thus,
using (B.18) and (B.29),

‖Tz‖2HS =
∑
i

‖Tzei‖2 =
∑
i

∑
j

〈Tzei, e′j〉2 =
∑
i

∑
j

〈ei ⊗ e′j , z〉2

= ‖z‖2 <∞, (B.30)

and thus Tz is a Hilbert–Schmidt operator. (In fact, as is well-known, it is easy to see that z 7→ Tz
yields an isometry between H ⊗H′ and the space of Hilbert–Schmidt operators H → H′.) Hence,
Lemma B.5 applies and shows E‖TzX‖ <∞.

Furthermore, since Y is Pettis integrable, (B.29) and (B.2) show that for every x ∈ H,
E |〈x⊗Y, z〉| = E|〈Tzx,Y〉| ≤ C‖Tzx‖. (B.31)

Consequently, with EY denoting the integral over Y,

E |〈X⊗Y, z〉| = EEY |〈X⊗Y, z〉| ≤ C E‖TzX‖ <∞. (B.32)

Since z ∈ H⊗H′ is arbitrary, this shows that X⊗Y is Pettis integrable, i.e., that E[X⊗Y] exists
in Pettis sense.

Finally, by (B.1), (8.5) and independence, for any ei and e′j in the bases,

〈E[X⊗Y], ei ⊗ e′j〉 = E〈X⊗Y, ei ⊗ e′j〉 = E
[
〈X, ei〉〈Y, e′j〉

]
= E[〈X, ei〉]E[〈Y, e′j〉] = 〈EX, ei〉〈EY, e′j〉
= 〈(EX)⊗ (EY), ei ⊗ e′j〉. (B.33)

Since the set of such ei ⊗ e′j is a basis, E[X⊗Y] = (EX)⊗ (EY) follows. �

Remark B.8. In this paper we consider only the Hilbert space tensor product defined in Section 8.
Nevertheless, we note that Lemma B.7 a fortiori holds also for the injective tensor product H⊗̌H′,
since there is a natural continuous mapping H ⊗ H′ → H⊗̌H′ mapping x ⊗ y 7→ x ⊗ y. On the
other hand, the result does not hold for the projective tensor product H⊗̂H′, which can be seen as
follows: Let H = H′ and note that then x ⊗ y 7→ 〈x,y〉 extends to a continuous linear functional
on H⊗̂H′. Hence, if E[X ⊗Y] exists in H⊗̂H′, then E〈X,Y〉 exists in R, so E |〈X,Y〉| < ∞, but
Example B.4 shows that this does not always hold for independent Pettis integrable X and Y.
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