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Abstract. We propose a new definition of the interface in the context of the Bernoulli percolation
model. We construct a coupling between two percolation configurations, one which is a standard
percolation configuration, and one which is a percolation configuration conditioned on a disconnec-
tion event. We define the interface as the random set of the edges where these two configurations
differ. We prove that, inside a cubic box Λ, the interface between the top and the bottom of the
box is typically localised within a distance of order (ln |Λ|)2 of the set of the pivotal edges.

1. Introduction

At the macroscopic level, the interface between two pure phases seems to be deterministic. In
fact, such an interface obeys a minimal action principle: it minimizes the surface tension between
the two phases and it is close to the solution of a variational problem. This can be seen as an
empirical law, derived from the observation at the macroscopic level. This law has been justified
from a microscopic point of view in the context of the Ising model by Dobrushin, Kotecky and
Shlosman (see Dobrushin et al., 1992). One starts with a simple model of particles located on a
discrete lattice. There are two types of particles, which have a slight tendency to repel each other.
In the limit where the number of particles tends to ∞, at low temperatures, the system presents a
phenomenon of phase segregation, with the formation of interfaces between two pure phases. On a
suitable scale, these interfaces converge towards deterministic shapes, a prominent example being
the Wulff crystal of the Ising model, which is the typical shape of the Ising droplets. Although the
limit is deterministic on the macroscopic level, the interfaces are intrinsically random objects and
their structure is extremely complex. In two dimensions, the fluctuations of the Ising interfaces were
precisely analysed in the DKS theory, with the help of cluster expansions in Dobrushin and Hryniv
(1997); Dobrushin et al. (1992). A non–perturbative analysis of Ising interfaces was subsequently
developed, using completely different techniques, see Ioffe (1994, 1995); Ioffe and Schonmann (1998);
Greenberg and Ioffe (2005); Campanino et al. (2003).
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In higher dimensions, there is essentially one result on the fluctuations of the interfaces, due to
Dobrushin (1972), which says that horizontal interfaces stay localised at low temperatures. When
dealing with interfaces in the Ising model, the first difficulty is to get a proper definition of the
interface itself. The usual way is to start with the Dobrushin type boundary conditions, that
is a box with pluses on its upper half boundary and minuses on its lower half boundary. This
automatically creates an Ising configuration in the box with a microscopic interface between the
pluses and the minuses which separates the upper half and the lower half of the box. Yet it is
still not obvious how one should define the interface in this case, because several such microscopic
interfaces exist, and a lot of different choices are possible. Dobrushin, Kotecky and Shlosman (see
Dobrushin et al., 1992) introduced a splitting rule between contours, which leads to pick up one
particular microscopic interface. The potential problem with this approach is that the outcome is
likely to include microscopic interfaces which are not necessarily relevant, for instance interfaces
between opposite signs which would have been present anyway, and which are not induced by the
Dobrushin boundary conditions. Ultimately, we would like to have a definition of the interface
which is not limited to low temperatures and which allows to derive results until the critical point.

Our goal here is to propose a new way to look at the random interfaces, in any dimension d ≥ 2.
We start our investigation in the framework of the Bernoulli percolation model, for several reasons.
First, the probabilistic structure of the percolation model is simpler than the one of the Ising model.
Another reason is that the Wulff Theorem in dimensions three was first derived for the percolation
model (see Cerf, 2000) and then extended to the Ising model in Bodineau (1999); Cerf and Pisztora
(2000). A key fact was that the definition of the surface tension is much simpler for the percolation
model than for the Ising model. This leads naturally to hope that the probabilistic structure of the
interfaces should be easier to apprehend as well in the percolation model. Finally, in the context of
percolation, one sees directly which edges are essential or not in an interface: these are the pivotal
edges. There is no corresponding notion in the Ising model. For all these reasons, it seems wise
to try to develop a probabilistic description of random interfaces in the framework of Bernoulli
percolation.

In this paper, we consider the Bernoulli bond percolation model with a parameter p close to 1.
Interfaces in a cubic box Λ are naturally created when the configuration is conditioned on the event
that the top side T and the bottom side B of the box are disconnected. From now onwards, this
event is denoted by {

T ←→X B
}
.

Our goal is to gain some understanding on the typical configurations realizing such a disconnection
event. To do so, we build a coupling between two percolation configurations X,Y in the box Λ such
that:
• The edges in X are i.i.d., open with probability p and closed with probability 1− p.
• The distribution of Y is the distribution of the Bernoulli percolation conditioned on

{
T ←→X B

}
.

• Every edge open in Y is also open in X.
We define then the random interface between the top side T and the bottom side B of the box Λ
as the random set I of the edges where X and Y differ:

I =
{
e ⊂ Λ : X(e) is open, Y (e) is closed

}
.

Among these edges, some are essential for the disconnection between T and B to occur. These
edges are called pivotal and they are denoted by P:

P =

{
e ∈ I :

the opening of e in Y would create
an open connection between T and B

}
.

When conditioning on the disconnection between T and B, a lot of pivotal edges are created. Yet
another collection of edges which are not essential for the disconnection event turn out to be closed
as well. Therefore it becomes extremely difficult to understand the effect of the conditioning on
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the distribution by looking at the conditioned probability measure alone. This is why we build a
coupling and we define the interface as the set of the edges where the two percolation configurations
differ. The set P of the pivotal edges can be detected by a direct inspection of the conditioned
configuration, but not the interface I. Our main result provides a quantitative control on the
interface I with respect to the set P of the pivotal edges. We denote by µp the coupling probability
measure between the configurations X and Y . The precise construction of µp is done in Section 2.
We denote by d the usual Euclidean distance on Rd, by Λ a cubic box with sides parallel to the axis
of Zd, and by |Λ| the cardinality of Λ ∩ Zd.

Theorem 1.1. There exists p̃ < 1 and κ > 0, such that, for p > p̃, any c > 1 and any box Λ

satisfying |Λ| > max
{

(cd)cd
2
, 36d

}
,

µp

(
∃e ∈ P ∪ I, d (e,Λc ∪ P \ {e}) > κc2 ln2 |Λ|

)
6

1

|Λ|c
.

The typical picture which emerges from Theorem 1.1 is the following. In the configuration condi-
tioned on the event

{
T ←→X B

}
, there is a set P of pivotal edges. These are the edges having

one extremity connected by an open path to the top T and the other extremity connected by an
open path to the bottom B. Because of the conditioning, compared to the i.i.d. configuration,
some additional edges are closed, but they are typically within a distance of order (ln |Λ|)2 of the
set P of the pivotal edges. The edges which are further away from P behave as in the ordinary
unconditioned percolation. Therefore the interface I is strongly localised around the set P of the
pivotal edges. The interface is a dust of closed edges pinned around the pivotal edges.

Our next endeavour was to obtain a conditional version of Theorem 1.1. More precisely, we would
like to estimate the conditional probability

µp

(
e ∈ P ∪ I

∣∣∣ d(e,P \ {e}) > κ(ln |Λ|)2
)
.

We did not really succeed so far, however we are able to control the interface conditionally on the
distance to a cut. Before stating our result, let us recall the definition of a cut.

Definition 1.2. A set S of edges separates the top T and the bottom B in Λ if every deterministic
path of edges from T to B in Λ intersects S. A cut C between T and B in Λ is a set of edges which
separates T and B in Λ and which is minimal for the inclusion.

A cut C is closed in the configuration Y if all the edges of C are closed in Y . We denote by C the
collection of the closed cuts present in Y . Since Y realizes the event

{
T ←→X B

}
, the collection C

is not empty.

Theorem 1.3. We have the following inequality:

∃p̃ < 1 ∃κ > 0 ∀p > p̃ ∀c > 2 ∀Λ ln |Λ| > 4 + c+ 2dc2 + 12(2κd)d

∀e ∈ Λ d(e,Λc) > κc2 ln2 |Λ|

µp

(
e ∈ I

∣∣∣∃C ∈ C, d(e, C) > κc2 ln2 |Λ|
)
6

1

|Λ|c
.

Let us explain briefly how we build the coupling probability measure µp, as well as the strategy
for proving Theorem 1.1. Conditioning on the event

{
T ←→X B

}
creates non trivial correlations

between the edges, and there is no simple tractable formula giving for instance the conditional
distribution of a finite set of edges. Yet a standard application of the FKG inequality yields that,
for any increasing event A, we have

Pp
(
A
∣∣T ←→X B

)
≤ Pp(A) .



1398 Raphaël Cerf and Wei Zhou

Thus the product measure Pp stochastically dominates the conditional measure Pp(·
∣∣T ←→X B

)
.

Strassen’s Theorem tells us that there exists a monotone coupling between these two probability
measures. In order to derive quantitative estimates on the differences between the coupled con-
figurations, we build our coupling measure as the invariant measure of a dynamical process. This
method of coupling is standard, for instance it is used in the proof of Holley inequality (see Chap-
ter 2 of Grimmett, 1995). Our contribution is to study some specific properties of this coupling in
the context of percolation, and to relate it to the geometry of the interfaces. To do so, we consider
the classical dynamical percolation process in the box Λ, see Steif (2009). Since we always work
in a finite box, we use the following discrete time version. We start with an initial configuration
X0. At each step, we choose one edge uniformly at random, and we update its state with a coin of
parameter p. Of course all the random choices are independent. The resulting process is denoted
by (Xt)t∈N. Obviously the invariant probability measure of (Xt)t∈N is the product measure Pp and
the process (Xt)t∈N is reversible with respect to Pp. Next, we duplicate the initial configuration X0,
thereby getting a second configuration Y0. We use the same random variables as before to update
this second configuration, with one essential difference. In the second configuration, we prohibit the
opening of an edge if this opening creates a connection between the top T and the bottom B. This
mechanism ensures that Xt is always above Yt. Moreover, a classical result on reversible Markov
chains ensures that the invariant probability measure of the process (Yt)t∈N is the conditional prob-
ability measure Pp(·

∣∣T ←→X B
)
. Our coupling probability measure µp is defined as the invariant

probability measure of the process (Xt, Yt)t∈N. In the case of the Ising model, where one has access
to an explicit formula for the equilibrium measure, one usually derives results on the dynamics
(for instance the Glauber dynamics) from results on the Ising Gibbs measure. We go here in the
reverse direction: we use our dynamical construction to derive results on the equilibrium measure
µp. Along the way, we obtain several results on the evolution of the pivotal edges in the dynamical
percolation process, which are of independent interest, and which do not rely on equilibrium results
(see Section 4).

For the proof, we consider the stationary process (Xt, Yt)t∈N starting from its equilibrium distri-
bution µp. We fix a time t and we estimate the probability that the configuration (Xt, Yt) realizes
the event appearing in the statement of Theorem 1.1. We distinguish the case of edges in the
interface which are pivotal or not. For pivotal edges, we shall prove the following slightly stronger
result.

Proposition 1.4. There exists p̃ < 1 and κ > 1 such that, for p > p̃, and for any c > 1 and any
box Λ satisfying |Λ| > 36d, we have

Pp

(
∃e ∈ P, d(e,Λc ∪ P \ {e}) > κc ln |Λ|

∣∣∣T ←→X B
)
6

1

|Λ|c
.

The proof of this proposition relies on the BK inequality. We consider next the case of an edge e in
the interface which is not pivotal. Such an edge e can be opened at any time in the configuration
Y . Therefore, unless it becomes pivotal again, it cannot stay for a long time in the interface. In
addition, before becoming part of the interface I, the edge e must have been pivotal. Indeed, non–
pivotal edges in the process (Yt)t∈N evolve exactly as in the process (Xt)t∈N. We look backwards in
the past at the last time when the edge e was still pivotal. As said before, this time must be quite
close from t. However, at time t, it turns out that the set of the pivotal edges is quite far from e.
We conclude that the set of the pivotal edges must have moved away from e very fast. To estimate
the probability of a fast movement of the set P, we derive an estimate on the speed of the set of
the pivotal edges, which is stated in Proposition 4.1. This estimate is at the heart of the argument.
It relies on the construction of specific space–time paths, which describe how the influence of the
conditioning propagates in the box. If a space–time path travels over a long distance in a short
time, then this implies that a certain sequence of closing events has occurred, and we estimate the
corresponding probability. This estimate is delicate, because the closed space–time path can take
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advantage of the pivotal edges which remain closed thanks to the conditioning. The computation
relies again on the BK inequality, this time applied to the space–time paths.

The statement of Theorem 1.1 naturally prompts several questions. First, the results presented
here hold only for values of p sufficiently close to 1, because the proofs rely on Peierls arguments.
Question 1. Is it possible to prove an analogous result throughout the supercritical regime p > pc?

Proposition 1.4 shows that, typically, each pivotal edge is within a distance of order ln |Λ| of another
pivotal edge. Of course, we would like to understand better the random set P.
Question 2. What else can be said about the structure of the set P?
This question is essential to understand the fluctuation of the interfaces. For p close to 1, and
for boxes whose sides are parallel to the axis, it follows from Gielis and Grimmett (2002) (which
is the percolation analog of Dobrushin’s result, see Dobrushin, 1972) that the set P is flat with
exponentially bounded local fluctuations. In this paper, we present a partial result on the speed of
the pivotal edges.

Theorem 1.5. There exists p̃ < 1 such that for p > p̃, c > 1 and any box Λ satisfying |Λ| > e2d2c,
we have

Pµ

d2dc ln |Λ|
H

( ⋃
r∈[t−c|Λ| ln Λ,t]

Pr,
⋃

s∈[t,t+c|Λ| ln Λ]

Ps
)
> 2dc ln |Λ|

 6 1

|Λ|c−3
.

To control the distance between pivotal edges at two different times, we need to control the speed
of the pivotal edges. In order to prove Theorem 1.5, we control the speed of these edges during a
time interval of order |Λ|. When we study the pivotal edges on a time interval of length 2dc|Λ| ln |Λ|,
the previous results give us a control of the distance of order ln2 |Λ| instead of ln |Λ|. To remove
the square, we need a new ingredient compared to the previous argument. Here we obtain a speed
estimate on a time interval of order |Λ| ln |Λ| by studying a new type of space-time path which
connects a pivotal edge at time t to an edge of Ps ∪Is at a time s < t. The length of this new type
of space-time paths has an exponential decay property during a time interval of order |Λ| ln |Λ|. As
a drawback, we have to replace P by P ∪I due to the construction of this new space-time path. As
a consequence, we can only study the distance between a pivotal edge and the union of the pivotal
edges on a time interval in the past.
Question 3. Is it possible to replace (ln |Λ|)2 by ln |Λ| in the statement of Theorem 1.1?
Since there is no square in the logarithm appearing in Proposition 1.4, we suspect that it should also
be the case in the statement of Theorem 1.1. Ultimately, we would like to gain some understanding
on the Ising interfaces. The natural road to transfer percolation results towards the Ising model is to
use the FK percolation model. However, there are several difficulties to overcome in order to adapt
the proof to FK percolation. First, we use the BK inequality twice in the proof, and this inequality
is not available in the FK model. Second, the dynamics for the FK model is more complicated.
Question 4. Does Theorem 1.1 extend to the FK percolation model?
Suppose that the answer to question 4 is positive. It is not obvious to transcribe Theorem 1.1 in
the Ising context. For instance, the pivotal edges, which can be detected by visual inspection of a
percolation configuration, are hidden inside the associated Ising configuration.
Question 5. What is the counterpart of Theorem 1.1 for Ising interfaces?
We hope to attack successfully these questions in future works. The question 4 and 5 are tackled
in Zhou (2019).

The paper is organized as follows. In Section 2, we define precisely the model and the notations.
Beyond the classical percolation definitions, this section contains the definition of the space–time
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paths and the graphical construction of the coupling. Section 3 is devoted to the proof of Propo-
sition 1.4. In Section 4, we prove the central result on the control of the speed of the set of the
pivotal edges. Then, the Theorem 1.1 is proved in Section 5. In Section 6, we improve the results
obtained in Section 4 and we prove the Theorem 1.3 in Section 7. Then we continue our study to
prove Theorem 1.5. In Section 8, we construct the new space-time path which will be used in the
proof. In section 9, we control the distance between Pt∪It and Pt+s for s 6 |Λ| ln |Λ| with the help
of this space-time path. Finally, the proof of Theorem 1.5 is presented in the Section 10.

2. The model and notations

2.1. Geometric definitions. We give standard geometric definitions.
The edges Ed. The set of edges Ed is the set of the pairs {x, y} of points of Zd which are at
Euclidean distance 1.
The box Λ. We will mostly work in a closed box Λ centred at the origin. We denote by T the top
side of Λ and by B its bottom side.
The separating sets. Let A,B be two subsets of Λ. We say that a set of edges S ⊂ Λ separates
A and B if no connected subset of Λ ∩ Ed \ S intersects both A and B. Such a set S is called a
separating set for A and B. We say that a separating set is minimal if there does not exist a strict
subset of S which separates A and B.
The cuts. We say that S is a cut if S separates T and B, and S is minimal for the inclusion.
The usual paths. We say that two edges e and f are neighbours if they have one endpoint in
common. A usual path is a sequence of edges (e, . . . , en) such that for 1 6 i < n, the edge ei and
ei+1 are neighbours.
The ∗-paths. In order to study the cuts in any dimension d > 2, we use ∗-connectedness on the
edges as in Deuschel and Pisztora (1996). We consider the supremum norm on Rd:

∀x = (x1, . . . , xd) ∈ Rd ‖ x ‖∞= max
i=1,...,d

|xi|.

For e an edge in Ed, we denote by me the center of the unit segment associated to e. We say that
two edges e and f of Ed are ∗-neighbours if ‖ me −mf ‖∞6 1. A ∗-path is a sequence of edges
(e1, . . . , en) such that, for 1 6 i < n, the edge ei and ei+1 are ∗-neighbours.

2.2. The dynamical percolation. We define the dynamical percolation and the space-time paths.
Percolation configurations. A percolation configuration in Λ is a map from the set of the edges
included in Λ to {0, 1}. An edge e ⊂ Λ is said to be open in a configuration ω if ω(e) = 1 and closed
if ω(e) = 0. For two subsets A,B of Λ and a configuration ω ∈ Ω, we denote by A ω←→ B the event
that there is an open path between a vertex of A and a vertex of B in the configuration ω.
Probability measures. We denote by Pp the law of the Bernoulli bond percolation in the box Λ
with parameter p. The probability Pp is the probability measure on the set of bond configurations
which is the product of the Bernoulli distribution (1− p)δ0 + pδ1 over the edges included in Λ. We
define PD as the probability measure Pp conditioned on the event

{
T ←→X B

}
, i.e.,

PD(·) = Pp
(
·
∣∣T ←→X B

)
.

Probability space. Throughout the paper, we assume that all the random variables used in the
proofs are defined on the same probability space Ω. For instance, this space contains the random
variables used in the graphical construction presented below, as well as the random variables gen-
erating the initial configurations of the Markov chains. We denote simply by P the probability
measure on Ω.
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Graphical construction. We now present a graphical construction of the dynamical percolation
in the box Λ. This graphical construction is a discrete time analog of the graphical construction
introduced by Schonmann to study the Glauber dynamics of the Ising model (see Schonmann, 1994).
We build a sequence of triplets (Xt, Et, Bt)t∈N, where Xt is the percolation configuration in Λ at
time t, Et is a random edge in the box Λ and Bt is a Bernoulli random variable. The sequence
(Et)t∈N is an i.i.d. sequence of edges, with uniform distribution over the edges included in Λ. The
sequence (Bt)t∈N is an i.i.d. sequence of Bernoulli random variables with parameter p. The sequence
(Et)t∈N and (Bt)t∈N are independent. The process (Xt)t∈N is built iteratively as follows. At time
0, we start from the configuration X0, which might be random. At time t, we change the state of
Et to Bt and we set

∀t > 1 Xt(e) =

{
Xt−1(e) if Et 6= e
Bt if Et = e

.

The process (Xt)t∈N is the dynamical percolation process in the box Λ.
The space-time paths. We introduce the space-time paths which generalise both the usual paths
and the ∗-paths to the dynamical percolation. A space-time path is a sequence of pairs, called
time-edges, (ei, ti)16i6n, such that, for 1 6 i 6 n − 1, we have either ei = ei+1, or (ei, ei+1 are
neighbours and ti = ti+1). We say that a space-time path (ei, ti)16i6n is during a time interval [s, t]
if for all 1 6 i 6 n, we have ti ∈ [s, t]. We define also space-time ∗-paths, by using edges which are
∗-neighbours in the above definition. For s, t two integers, we define

s ∧ t = min(s, t), s ∨ t = max(s, t).

A space-time path (ei, ti)16i6n is open in the dynamical percolation process (Xt)t∈N if

∀i ∈
{

1, . . . , n
}

Xti(ei) = 1

and
∀i ∈

{
1, . . . , n− 1

}
ei = ei+1 =⇒ ∀t ∈ [ti ∧ ti+1, ti ∨ ti+1] Xt(ei) = 1.

In the same way, we can define a closed space-time path by changing 1 to 0 in the previous definition.
In the remaining of the article, we use the abbreviation STP to design a space-time path. Moreover,
unless otherwise specified, the closed paths (and the closed STPs) are defined with the relation ∗
and the open paths (and the open STPs) are defined with the usual relation. This is because the
closed paths come from the cuts, while the open paths come from existing connexions.

2.3. The interfaces by coupling. We propose a new way of defining the interfaces by coupling two
processes of dynamical percolation. We start with the graphical construction (Xt, Et, Bt)t∈N of the
dynamical percolation. We define a further process (Yt)t∈N as follows: at time 0, we set X0 = Y0,
and for all t > 1, we set

∀e ⊂ Λ Yt(e) =



Yt−1(e) if e 6= Et

0 if e = Et and Bt = 0

1 if e = Et, Bt = 1 and T
Y
Et
t−1←→X B

0 if e = Et, Bt = 1 and T
Y
Et
t−1←→ B

,

where, for a configuration ω and an edge e, the notation ωe means the configuration obtained by
opening e in ω. Typically, we start with a configuration Y0 realizing the event

{
T ←→X B

}
, but this

is not mandatory in the above definition. An illustration of this dynamics is given in the Figure 2.1.
We denote by PD the equilibrium distribution of the process (Yt)t∈N. Before opening a closed edge
e at time t, we verify whether this will create a connexion between T and B. If it is the case,
the edge e stays closed in the process (Yt)t∈N but can be opened in the process (Xt)t∈N, otherwise
the edge e is opened in both processes (Xt)t∈N and (Yt)t∈N. On the contrary, the two processes
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Figure 2.1. A coupling of the process (Xt, Yt)t∈N. At time t+ 1 we try to open the
blue edge and at time t+ 2, we try to open the red edge.

behave similarly for the edge closing events since we cannot create a new connexion by closing an
edge. The set of the configurations satisfying

{
T ←→X B

}
is irreducible and the process (Xt)t∈N

is reversible. Therefore, the process (Yt)t∈N is the dynamical percolation conditioned to satisfy the
event

{
T ←→X B

}
. According to the Lemma 1.9 of Kelly (2011), the invariant probability measure

of (Yt)t∈N is PD, the probability Pp conditioned by the event
{
T ←→X B

}
, i.e.,

PD(·) = Pp(· |T ←→X B).

Suppose that we start from a configuration (X0, Y0) belonging to the set

E =
{

(ω1, ω2) ∈ {0, 1}Ed∩Λ × {T ←→X B} : ∀e ⊂ Λ ω1(e) > ω2(e)
}
.

The set E is irreducible and aperiodic. In fact, each configuration of E communicates with the
configuration where all edges are closed. The state space E is finite, therefore the Markov chain
(Xt, Yt)t∈N admits a unique equilibrium distribution µp. We denote by Pµ the law of the process
(Xt, Yt)t∈N starting from a random initial configuration (X0, Y0) with distribution µp. We now
present a definition of the interface between T and B based on the previous coupling.

Definition 2.1. The interface at time t between T and B, denoted by It, is the set of the edges in
Λ that differ in the configurations Xt and Yt, i.e.,

It =
{
e ⊂ Λ : Xt(e) 6= Yt(e)

}
.

The edges of It are open in Xt but closed in Yt and the configuration Xt is above the configuration
Yt. We define next the set Pt of the pivotal edges for the event {T ←→X B} in the configuration Yt.

Definition 2.2. The set Pt of the pivotal edges in Yt is the collection of the edges in Λ whose
opening would create a connection between T and B, i.e.,

Pt =
{
e ⊂ Λ : T

Y et←→ B
}
.

We define finally the set Ct of the cuts in Yt.

Definition 2.3. The set Ct of the cuts in Yt is the collection of the cuts in Λ at time t.

3. The isolated pivotal edges

In this section, we will show the Proposition 1.4. We first investigate the structure of the set of
the cuts. In a configuration ω realizing the event {T ←→X B}, we will identify two separating sets
S+ and S−. We construct S+ by considering the open cluster

O(T ) =
{
x ∈ Zd ∩ Λ : x

ω←→ T
}
.
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We consider the set O(T )c = Zd \ O(T ). As Zd \ Λ is ∗-connected, there exists only finitely many
∗-connected components of O(T )c and exactly one of them is of infinite size. We denote these
components by G,H1, . . . ,Hk where G is the unique infinite component. We set

O′(T ) = O(T ) ∪H1 ∪ · · · ∪Hk.

The set O′(T ) is ∗-connected and has no holes. For a ∗-connected set A ⊂ Zd, we define the external
boundary of A, denoted by ∂extA, as

∂extA =
{
{x, y} ∈ Ed : x ∈ A, y /∈ A

}
.

We then define S+ as the subset of ∂extO′(T ) consisting of the edges of ∂extO′(T ) which are included
in Λ. In a similar way, we define S− by replacing T by B in the previous construction. Each of the
two sets contains a cut. An illustration of these two separating sets can be found in the Figure 3.2.

B

T

H2

H1
S+

S−

Figure 3.2. The sets S+ (red) and the set S− (blue).

Lemma 3.1. The sets ∂extO′(T ) and ∂extO′(B) are ∗-connected.

This result is a direct consequence of the first point in Lemma 2.1 in Deuschel and Pisztora (1996).
We also mention the Lemma 2.23 in Kesten (1986) for a similar result on the set of vertices and
a shorter argument presented in Timár (2013). We explain next the relation between the sets S+,
S− and P.

Lemma 3.2. The set P of the pivotal edges is the intersection between S+ and S−.

Proof : We have the inclusion P ⊂ S+ ∩ S− since all the pivotal edges are in all the cuts. Both S+

and S− contain a cut. We consider next an edge e in S+ ∩ S−. Since S+ consists of the boundary
edges of O(T ), there is an open path between T and e. The same result holds for S−. Therefore,
there is a path between T and B whose edges other than e are open. By opening e, we realise the
event {T ←→ B}. In other words, the edge e is included in P. We conclude that S+∩S− ⊂ P. �

We also need a combinatorial result on the ∗-connectedness in dimension d.

Lemma 3.3. In the d-dimensional lattice, the number of ∗-neighbours of an edge e is

α(d) = 3d + 4(d− 1)3d−2 − 1.

Proof : An ∗-neighbour edge f of e is either parallel to e or belongs to the (d − 1)-cube centred
at a vertex of e and of side-length 2 perpendicular to e. For the edges that are parallel to e, the
distance between their centres is 1 and there are 3d − 1 such edges. A (d− 1)-cube of side-length 2
has 2(d− 1)3d−2 edges. Hence there are 3d + 4(d− 1)3d−2 − 1 ∗-neighbours of e. �
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We now prove the Proposition 1.4. The main idea of the proof is to observe a long closed path
outside of a cut whenever a pivotal edge is isolated. We use then the BK inequality and we conclude
with the help of classical arguments of exponential decay.

Proof of Proposition 1.4: Since there is a pivotal edge which is at distance more than 1 from the
others, there is a cut which contains at least one non pivotal edge. By Lemma 3.2, this cut is not
included in S− ∩S+, thus there are at least two distinct cuts in the configuration. Let e be an edge
of P which is at distance at least κc ln |Λ| from Λc ∪ P \ {e}. Let e′ be the pivotal edge which is
nearest to e or one of them if there are several. By Lemma 3.1, there is a closed ∗-path included in
∂extO(T ) between e and e′. This path might exit from the box Λ, since ∂extO(T ) is defined as the
external boundary of O′(T ), where O′(T ) is seen as a subset of Zd, not of Λ. However, since e is at
distance at least κc ln |Λ| from P \ {e} and from Λc, the initial portion of the closed ∗-path from its
origin until it has travelled a distance κc ln |Λ| is inside the box Λ, it consists of closed edges which
are not pivotal, and therefore, by Lemma 3.2, it is also disjoint from the set S−. Let us denote by
E(e) the event:

E(e) =

{
there exists a closed ∗ -path starting at one ∗ -neighbour of e

which travels a distance at least κc ln |Λ| − 2d

}
.

From the previous discussion, we conclude that{
e ∈ P, d(e,Λc ∪ P \ {e}) > κc ln |Λ|

}
∩
{
T ←→X B

}
⊂ E(e) ◦

{
T ←→X B

}
,

where ◦ means the disjoint occurrence. Therefore, we have the following inequality:

PD

(
e ∈ P, d(e,Λc ∪ P \ {e}) > κc ln |Λ|

)
6 PD

(
E(e) ◦ {T ←→X B}

)
.

By the definition of PD, we have

PD

(
E(e) ◦ {T ←→X B}

)
=
Pp

(
E(e) ◦ {T ←→X B}

)
Pp

(
T ←→X B

) .

Note that the event E(e) and
{
T ←→X B

}
are both decreasing. Applying the BK inequality

(see Grimmett, 1999), we get

PD

(
e ∈ P, d(e,Λc ∪ P \ {e}) > κc ln |Λ|

)
6 Pp

(
E(e)

)
.

The closed ∗-path in the event E(e) starts at a neighbour of e and travels a distance at least
κc ln |Λ| − 2d. By this, we mean that there is an Euclidean distance at least κc ln |Λ| − 2d from one
endpoint of the first edge of the path to one endpoint of the last edge of the path. The distance
between the centres of two ∗-neighbouring edges is at most d, therefore the number of edges in such
a path is at least

1

d
(κc ln |Λ| − 2d− 1).

We assume that |Λ| > 36d and we choose κ > 1, whence, for c > 1,

κc ln |Λ| − 2d− 1 >
κc

2
ln |Λ|.

Hence

Pp
(
E(e)

)
6 (1− p)

κc

2d
ln |Λ|

α(d)

κc

2d
ln |Λ|

.

We then sum the probability over all the edges e in Λ. We obtain

PD

(
∃e ∈ P, d(e,Λc ∪ P \ {e}) > κc ln |Λ|

)
6 d|Λ|

1 +
κc

2d
ln
(

(1− p)α(d)
)
.
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We choose p̃ < 1 such that (1− p̃)α(d) < 1. There exists a κ > 0 such that, for any p > p̃ and any
c > 0, we have

d|Λ|
1 +

κc

2d
ln
(

(1− p)α(d)
)
6

1

|Λ|c
,

and we obtain the desired inequality. �

We state now a corollary of the Proposition 1.4 which controls the distance between any cut
present in the configuration and the set P.

Corollary 3.4. There exists p̃ < 1 and κ > 1 such that, for p > p̃, for any constant c > 1 and any
box Λ satisfying |Λ| > 36d, the following inequality holds:

PD

(
∃C ∈ C,∃e ∈ C, d(e,P ∪ Λc) > κc ln |Λ|

)
6

1

|Λ|c
.

Proof : Let C be a cut and let e be an edge of C such that d(e,P ∪ Λc) > κc ln |Λ|. There exists
a closed ∗-path included in C which connects e to a pivotal edge f . Within a distance less than
κc ln |Λ| from e, there is no pivotal edge. By stopping the path at the first pivotal edge that it
encounters or at the first edge intersecting the boundary of Λ, we obtain a path (e1, . . . , en) without
pivotal edge. Suppose that this path encounters the set S+ or the set S−. Let ej be the first edge
of the path which is in S+ ∪ S−. By Lemma 3.2, the edge ej doesn’t belong to S+ ∩ S−. Without
loss of generality, we can suppose that ej ∈ S+ \S−. We concatenate (e1, . . . , ej) and a closed path
in ∂extO′(T ) from ej to a pivotal edge or to an edge on the boundary of Λ. We obtain a closed path
disjoint from S−. We reuse the same techniques as in the proof of 1.4 and we obtain the desired
result. �

We shall also study the case where there is no pivotal edge in a configuration.

Proposition 3.5. There exists a constant p̃ < 1, such that,

∀p > p̃ ∀Λ PD (P = ∅) 6 d|Λ| exp (−D) ,

where D is the diameter of T (or B).

Proof : Suppose that P is empty. By Lemma 3.2, the set S+ and the set S− are then disjoint. Each
of them contains a cut. Therefore, there are two disjoint closed ∗-paths travelling a distance at least
|Λ|1/d. By the same reasoning as in the proof of Proposition 1.4, the PD probability of this event
can be bounded by

Pp (∃γ closed path ⊂ Λ, γ travels a distance at least D) .

Since there are at least D/d edges in such a path γ, this probability is less than

d|Λ|
(
α(d)(1− p)

)D
d .

There exists p̃ < 1 such that, for all Λ, we have

∀p > p̃ d|Λ|
(
α(d)(1− p)

)D
d 6 d|Λ| exp (−D) .

This yields the desired inequality. �
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4. Speed of the cuts

We state now the crucial proposition which gives a control on the speed of the cuts.

Proposition 4.1. There exists p̃ < 1, such that for p > p̃, for any ` > 2, t ∈ N, s ∈
{

0, . . . , |Λ|
}

and any edge e ⊂ Λ at distance more than ` from Λc,

Pµ

(
e ∈ Pt+s

∀r ∈ [t, t+ s] Pr 6= ∅
∃ct ∈ Ct, d(e, ct) > `

)
6 exp(−`).

To prove this result, we will construct a STP associated to the movement of the pivotal edges and
then show that the probability to have such a long STP decreases exponentially fast as the length
of the path grows.

4.1. Construction of the STP. We start by defining some properties of a STP. In the rest of the
paper, unless otherwise specified, all the closed paths (and the closed STPs) are defined with the
relation ∗ and the open paths (and the open STPs) are defined with the usual relation.

Definition 4.2. A STP (e1, t1), . . . , (en, tn) is increasing (respectively decreasing) if

t1 6 · · · 6 tn (resp. t1 > · · · > tn).

If a STP is increasing or decreasing, we say that it is monotone.

Figure 4.3. An increasing STP with its time change intervals in gray

Definition 4.3. A closed STP (e1, t1), . . . , (en, tn) in X (respectively Y ) is called simple if each
edge is visited only once or it is opened at least once between any two consecutive visits, i.e., for
any i, j in

{
1, . . . , n

}
such that |i− j| 6= 1,

(ei = ej ti < tj) =⇒ ∃s ∈]ti, tj ] Xs(ei) = 1 (resp. Ys(ei) = 1).

We show next that two pivotal edges occurring at different times are connected through a monotone
simple STP closed in Y .

Proposition 4.4. Let s and t be two times such that s < t. We suppose that Pr is not empty for
all r ∈ [s, t]. Let f ∈ Ps and e ∈ Pt. Then there exists a decreasing simple STP γ closed in Y
from (e, t) to (f, s) or a decreasing simple STP closed in Y from (e, t) to (g, α) where g is an edge
meeting the boundary ∂Λ of Λ and α ∈ [s, t].
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Figure 4.4. A simple STP, intervals of closure of the edge e in gray

Proof : By Lemma 3.1, the edges of Pt are connected by a ∗-path which might possibly exit from
Λ, but whose edges included in Λ are closed in Yt. We consider the function θ(t) giving the time
when the oldest edge of Pt appeared, i.e.,

θ(t) = min
ε∈Pt

min
{
r 6 t : ε ∈ Pr, ε /∈ Pr−1, ∀α ∈ [r, t], ε ∈ Pα

}
.

We denote by e1 one of the edges realizing the minimum θ(t). We claim that θ(t) < t. Indeed,
suppose first that an edge closes at time t. Then a pivotal edge cannot be created at time t and
all the pivotal edges present at time t were also pivotal at time t − 1. Therefore θ(t) 6 t − 1 < t.
Suppose next that an edge opens at time t. Let us consider an edge ε of Pt−1, which is assumed to
be not empty. At time t− 1, there is one open path which connects ε to T and another one which
connects ε to B. Since one edge opens at time t, these two paths remain open at time t. Therefore
ε is still pivotal at time t. We have thus Pt−1 ⊂ Pt and it follows that θ(t) 6 t − 1 < t. We have
proved that θ(t) < t.

If θ(t) 6 s, we consider the STP obtained by connecting the path between (e, t), (e1, t) and the
path between (e1, s), (f, s) with a time change from t to s on the edge e1. If this STP does not
encounter ∂Λ then it answers the question. If it encounters ∂Λ, then we stop the STP at the first edge
intersecting ∂Λ, we obtain a STP satisfying the second condition of the proposition. Suppose now
that θ(t) > s. We consider the edge e1 at time θ(t). By construction, the edge e1 belongs to Pθ(t).
Moreover, using Lemma 3.1, (e1, θ(t)) is connected to (e, t) by a STP consisting of a closed path at
time t and a time change from t to θ(t) on the edge e1. We take (e1, θ(t)) as the new starting point.
We repeat the procedure above and we obtain a sequence of times (θ(t), θ(θ(t)), . . . , θ(i)(t), . . . ) by
defining iteratively

θi+1(t) = min
ε∈Pθi(t)

{
r 6 θi(t) : ε ∈ Pr, ε /∈ Pr−1,∀α ∈ [r, θi(t)], ε ∈ Pα

}
.

For each index i, we choose an edge ei ∈ Pθi−1(t) which becomes pivotal at time θ(i)(t). From the
argument above, we obtain a strictly decreasing sequence

t > θ(t) > · · · > θi(t).

Therefore, there exists an index k such that

θk+1(t) 6 s < θk(t).

For i ∈ {0, . . . , k − 1}, the edge-time (ei, θ
i(t)) is connected to (ei+1, θ

i+1(t)) by a decreasing STP
γi which is closed in Y . By concatenating these STPs, we obtain a decreasing STP between (e, t)
and (ek, θ

k(t)). At time θk(t), there exists also a closed path ρ between ek and ek+1. We stop the
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time change at s on the edge ek+1 in order to arrive at an edge of Ps. By Lemma 3.1, there is a
closed path ρ between ek+1 and f at time s. Therefore, the STP

(e, t), γ0, (e1, θ(t)), γ1, . . . , γk−1, (ek, θ
k(t)), ρ, (ek+1, θ

k(t)), (ek+1, s), ρ, (f, s)

is decreasing, closed in Y and it connects (e, t) and (f, s). If this STP exits the box Λ, then the
initial portion starting from e until the first edge intersecting ∂Λ satisfies the second condition of
the proposition.

In order to obtain a STP which is simple in Y , we consider the following iterative procedure to
modify a path. Let us denote by (ei, ti)06i6N the STP obtained previously. Starting with the edge
e0, we examine the rest of the edges one by one. Let i ∈

{
0, . . . , N

}
. Suppose that the edges

e0, . . . , ei−1 have been examined and let us focus on ei. We encounter three cases:
• For every index j ∈ {i + 1, . . . , N}, we have ej 6= ei. Then, we don’t modify anything and we
start examining the edge ei+1.
• There is an index j ∈ {i+ 1, . . . , N} such that ei = ej , but for the first index k > i+ 1 such that
ei = ek, there is a time α ∈]tk, ti[ when Yα(ei) = 1. Then we don’t modify anything and we start
examining the next edge ei+1.
• There is an index j ∈ {i+ 1, . . . , N} such that ei = ej and for the first index k > i+ 1 such that
ei = ek, we have Yα(ei) = 0 for all α ∈]tk, ti[. In this case, we remove all the time-edges whose
indices are strictly between i and k. We then have a simple time change between ti and tk on the
edge ei. We continue the procedure from the index ek.

The STP becomes strictly shorter after every modification, and the procedure will end after a finite
number of modifications. We obtain in the end a simple path in Y . Since the procedure doesn’t
change the order of the times ti, we still have a decreasing path. �

4.2. The BK inequality applied to a STP. Before embarking in technicalities, let us discuss the
differences between the processes (Xt)t∈N and (Yt)t∈N. Let (e, t) be a closed time-edge in Y . Since
there is no constraint in the process X, the edge e can be open in the configuration Xt. If the edge
e is open in Xt, then it belongs to It. Now let us consider a time t for which Et = e and Bt = 0.
Closing an edge doesn’t create an open path between T and B, thus the edge e will be closed in
both Xt and Yt. On the contrary, for a time t such that Bt = 1 and Et = e is pivotal at time t− 1,
the edge e can be opened in the process (Xt)t∈N but it remains closed in the process (Yt)t∈N. Now
let us consider the STP constructed in Proposition 4.4. Since the STP is closed in Y , each edge e
visited by the path is either closed at time s or there is a time r ∈ ]s, t] when Er = e and Br = 0. In
fact, since the STP is simple, then each edge is reopened and closed between two successive visits
of the STP. Our first goal is to introduce the necessary notation in order to keep track of all the
closing events implied by the STP.

We shall define the space projection of a STP. Given k ∈ N∗ and a sequence Γ = (ei)16i6k of
edges, we say that it has length k, which we denote by length(Γ) = k, and we define its support

support(Γ) =
{
e ⊂ Λ : ∃i ∈ {1, . . . , k} ei = e

}
.

Let γ = (ei, ti)16i6n be a simple STP, the space projection of γ is obtained by removing one edge in
every time change in the sequence (ei)16i6n. More precisely, let m be the number of time changes
in γ. We define the function φ : {1, . . . , n−m} → N by setting φ(1) = 1 and

∀i ∈ { 1, . . . , n−m } φ(i+ 1) =

{
φ(i) + 1 if eφ(i) 6= eφ(i)+1

φ(i) + 2 if eφ(i) = eφ(i)+1
.

The sequence (eφ(i))16i6n−m is called the space projection of γ, it is denoted by Space(γ). We say
that length(Space(γ)) is the length of the STP γ, denoted also by length(γ). We shall distinguish
Space(γ) from the support of γ, denoted by support(γ), which we define as:

support(γ) = support(Space(γ)).
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We say that a sequence of edges Γ = (ei)16i6k is visitable if there exists a STP γ such that
Space(γ) = Γ.

We prove next a key inequality to control the number of closing events along a simple STP.

Proposition 4.5. Let Γ be a visitable sequence of edges and [s, t] a time interval. For any k ∈{
0, . . . , |support(Γ)|

}
and any percolation configuration y such that there are exactly k closed edges

in support(Γ), we have the following inequality:

P

 ∃γ decreasing closed
simple STP in Y during [s, t]
such that Space(γ) = Γ

Ys = y

 6 ((t− s)(1− p)
|Λ|

)length(Γ)−k
.

Proof : We denote by n the length of Γ and (e1, . . . , en) the sequence Γ. We consider a STP γ such
that Space(γ) = Γ. Since γ is closed, all the edges of Γ are closed at time s or become closed after
s. For an edge e ∈ support(Γ), we denote by v(e) the number of times that Γ visits e:

v(e) =
∣∣{ j ∈ {1, . . . , n} : ej = e

}∣∣ .
Since γ is simple, between two consecutive visits, there exists a time when the edge e is open, as
illustrated in the Figure 4.5.

Figure 4.5. The edges f1, f2 are closed at time s. The edges g1, g2, g3 and g4 closes
after s. We see that g1 = g2 = g3 and the simplicity of the path implies that the
edge opens and closes between two consecutive visits.

For each edge e visited by γ, we distinguish two cases according to the configuration Ys. If Ys(e) = 1,
there is a time between s and the first visit when e becomes closed and the edge e closes at least
v(e) times during the time interval ]s, t]. If Ys(e) = 0, then, between the time s and the first visit
of e, it can remain closed and the edge e becomes closed at least v(e)− 1 times during ]s, t]. Notice
that the numbers v(e) depend on the sequence Γ. The probability in the proposition is therefore
less than or equal to

P


{

∀e ∈ support(Γ) y(e) = 1
e closes at least v(e) times during ]s, t]

}⋂{
∀f ∈ support(Γ) y(f) = 0

f closes at least v(f)− 1 times during ]s, t]

} Ys = y

 . (4.1)

Notice that for any edge e such that y(e) = 1 (respectively y(e) = 0), the event{
e closes at least v(e) (resp. v(e)− 1) times during ]s, t]

}
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depends on the collection of random variables

F (e) =
{

(Er, Br) : s < r 6 t, Er = e, Br = 0
}
.

Therefore these events are independent of the event
{
Ys = y

}
which depends on (X0, Y0) and{

(Er, Br) : r 6 s
}
. The probability in (4.1) is thus equal to

P


{

∀e ∈ support(Γ) y(e) = 1
e closes at least v(e) times during ]s, t]

}⋂{
∀f ∈ support(Γ) y(f) = 0

f closes at least v(f)− 1 times during ]s, t]

}
 .

For any edge e ∈ support(Γ), we define J(e) as the set of indices

J(e) =
{
s < j 6 t : Ej = e,Bj = 0

}
.

We notice that the sets
(
J(e), e ∈ support(Γ)

)
are pairwise disjoint subsets of N∗. By the BK

inequality applied to the random variables (Et, Bt)t∈N, the probability in (4.1) is less than∏
e∈support(Γ),y(e)=1

P
(
e closes at least v(e) times during ]s, t]

)
×

∏
f∈support(Γ),y(f)=0

P
(
f closes at least v(f)− 1 times during ]s, t]

)
.

We obtain therefore

P

(
∃γ decreasing closed simple STP
in Y during [s, t] Space(γ) = Γ

Ys = y

)
6

∏
e∈support(Γ),y(e)=1

P (e closes v(e) times during ]s, t])

×
∏

f∈support(Γ),y(f)=0

P (f closes v(f)− 1 times during ]s, t]) . (4.2)

For any edge e ∈ support(Γ) and any m ∈ N, we have

P
(
e closes at least m times during ]s, t]

)
6 P

(
∃J ⊂

{
s+ 1, . . . , t

}
|J | = m

∀j ∈ J Ej = e Bj = 0

)
6

(
(t− s)(1− p)

|Λ|

)m
.

We use this inequality in (4.2) and we obtain

P

(
∃γ decreasing closed simple STP
in Y during [s, t] Space(γ) = Γ

Ys = y

)

6

(
(t− s)(1− p)

|Λ|

) ∑
e∈support(Γ),y(e)=1

v(e) +
∑

f∈support(Γ),y(f)=0

v(f)− 1

=

(
(t− s)(1− p)

|Λ|

)n−k
.

This is the desired result. �
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4.3. Proof of Proposition 4.1. Our goal is to study the speed of a cut during a time interval of size
|Λ|. We start by using the results in the previous section to control the length of a STP far from a
cut.

Proposition 4.6. Let ` be a positive constant, Γ be a visitable sequence of edges starting from an
edge e such that Γ travels a distance less than ` and t be a time. For s ∈ N, we have the following
inequality:

Pµ

 ∃γ decreasing closed
simple STP in Y during [t, t+ s]

such that Space(γ) = Γ

∃ct ∈ Ct
d(e, ct) > `

 6 ((1 +
s

|Λ|

)
(1− p)

)length(Γ)

.

Proof : We start by rewriting the conditional probability in the proposition as

Pµ

 ∃γ decreasing closed
simple STP in Y during [t, t+ s]

such that Space(γ) = Γ
∃ct ∈ Ct, d(e, ct) > `

 =

Pµ

 ∃γ decreasing closed
simple STP in Y during [t, t+ s]

such that Space(γ) = Γ

 ⋂ {
∃ct ∈ Ct

d(e, ct) > `

}
Pµ

(
∃ct ∈ Ct

d(e, ct) > `

) .

We denote by (ei, ti)16i6N the time-edges of γ. Let n be the length of γ. We consider the case where
there are exactly k edges of support(γ) that are closed at time t. We shall estimate the following
probability:

Pµ




∃γ simple decreasing STP
closed in Y of length n

γ starts at (e, t+ s) and ends after t
Space(γ) = Γ


⋂

 ∃F ⊂ support(γ) |F | = k
∀f ∈ F Yt(f) = 0

∀f ∈ support(γ) \ F Yt(f) = 1

⋂{
∃ct ∈ Ct, d(e, ct) > `

}


. (4.3)

We consider the set M(k) of the configurations defined as

M(k) =

 ω :

∃F ⊂ support(Γ), |F | = k
∀f ∈ F ω(f) = 0
∀f ∈ support(Γ) \ F ω(f) = 1
∃C ∈ C d(e, C) > `

 .

The probability in (4.3) is bounded from above by

∑
y∈M(k)

Pµ

 ∃γ decreasing simple closed STP,
length(γ) = n, Space(γ) = Γ,

γ starts at (e, t+ s) and ends after t
Yt = y

Pµ(Yt = y).

By Proposition 4.5, for any y ∈M(k), we have

Pµ

 ∃γ decreasing simple closed STP,
length(γ) = n, Space(γ) = Γ,

γ starts at (e, t+ s) and ends after t
Yt = y

 6 ( s

|Λ|
(1− p)

)n−k
. (4.4)
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We compute now the probability Pµ
(
Yt ∈M(k)

)
. Notice that

Pµ(Yt ∈M(k)) 6 Pµ

 ∃F ⊂ support(Γ) |F | = k
∀f ∈ F Yt(f) = 0
∃ct ∈ Ct d(e, ct) > `

 .

The event in the last probability depends only on the configuration Yt. Since the initial configuration
(X0, Y0) is distributed according to µp, so is the couple (Xt, Yt). The configuration Yt is distributed
according to the second marginal distribution PD. We have therefore

Pµ

 ∃F ⊂ support(Γ) |F | = k
∀f ∈ F Yt(f) = 0
∃ct ∈ Ct d(e, ct) > `

 = PD

 ∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed
∃C ∈ C d(e, C) > `

 .

By the definition of PD, we have

PD

 ∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed
∃C ∈ C d(e, C) > `


= Pp

 ∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed
∃C ∈ C d(e, C) > `

T ←→X B



=

Pp

({
∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed

}⋂{ ∃C ∈ C
d(e, C) > `

}⋂{
T ←→X B

})
Pp

(
T ←→X B

) . (4.5)

The existence of a cut implies the event
{
T ←→X B

}
, thus we can rewrite the numerator as

Pp

({
∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed

}⋂{
∃C ∈ C, d(e, C) > `

})
.

The edges of support(Γ) are at distance less than ` from the edge e and the event
{
∃C ∈ C, d(e, C) >

`
}
depends on the edges at distance more than ` from e. It follows that the two events in the previous

probability are independent and we have

Pp

({
∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed

}⋂{
∃C ∈ C, d(e, C) > `

})
= Pp

(
∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed

)
Pp

(
∃C ∈ C, d(e, C) > `

)
.

Replacing the numerator in (4.5) by this product, we obtain

Pp

({
∃F ⊂ support(Γ) |F | = k

∀f ∈ F f closed

}⋂{
∃C ∈ C, d(e, C) > `

}
T ←→X B

)

=

Pp

(
∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed

)
Pp

(
∃C ∈ C, d(e, C) > `

)
Pp

(
T ←→X B

)
= Pp

(
∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed

)
PD

(
∃C ∈ C, d(e, C) > `

)
.

Since the edges of F are distinct, we have

Pp

(
∃F ⊂ support(Γ) |F | = k
∀f ∈ F f closed

)
6

(
|support(Γ)|

k

)
(1− p)k.
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Combined with (4.4), we obtain that, for Γ and k fixed, the probability in (4.3) is bounded from
above by (

|support(Γ)|
k

)(
s

|Λ|

)n−k
(1− p)nPD

(
∃C ∈ C, d(e, C) > `

)
.

We sum on the number k from 0 to |support(Γ)|, and we recall that

|support(Γ)| 6 n.
We have therefore

Pµ

 ∃γ simple closed decreasing STP,
length(γ) = n, Space(γ) = Γ,

γ starts at (e, t+ s) and ends after t

 ⋂ {
∃ct ∈ Ct
d(e, ct) > `

}
6

∑
06k6`/2d

(
n

k

)(
s

|Λ|

)n−k
(1− p)nPD

(
∃C ∈ C, d(e, C) > `

)
=

((
1 +

s

|Λ|

)
(1− p)

)n
PD

(
∃C ∈ C, d(e, C) > `

)
.

Since the second marginal of Pµ is PD, we have

Pµ

(
∃ct ∈ Ct

d(e, ct) > `

)
= PD

(
∃C ∈ C, d(e, C) > `

)
.

This yields the inequality in the proposition. �

We can now estimate the probability that the set of the pivotal edges moves fast. To do so, we
study the STP constructed in Proposition 4.4 and we use the previous results.

Proof of Proposition 4.1: We rewrite the conditional probability appearing in the proposition as

Pµ

(
{e ∈ Pt+s} ∩ {∀r ∈ [t, t+ s] Pr 6= ∅} ∩ {∃ct ∈ Ct, d(e, ct) > `}

)
Pµ

(
∃ct ∈ Ct, d(e, ct) > `

) .

Let us estimate the probability in the numerator. By Proposition 4.4, there exists a closed decreasing
simple STP γ inside of Λ which connects (e, t + s) to either an edge of Pt at time t or to an edge
intersecting the boundary of Λ after time t. In both cases, this STP travels a distance at least `
because all the edges of Pt are included in the cuts and e is at distance more than ` from Λc. Since
the STP is a ∗-STP, the distance between two consecutive edges is at most d, and the length of the
STP is at least (`− 1)/d. We denote by (ei, ti)16i6N the time-edges of γ. Let n be the first index
such that the STP

(e1, t1), . . . , (en, tn)

is longer than `/2d, i.e.,

n = inf

{
k > 1 : length

(
(e1, t1), . . . , (ek, tk)

)
>

`

2d

}
.

We set Γ = Space((ei, ti)16i6n) and we denote Γ = (fi)i∈I . We have the following inequality:

Pµ

(
e ∈ Pt+s

∀r ∈ [t, t+ s] Pr 6= ∅
∃ct ∈ Ct, d(e, ct) > `

)

6
∑

Γ

Pµ

 ∃γ simple closed decreasing STP,
length(γ) = `/2d, Space(γ) = Γ,
γ starts at (e, t+ s) and ends after t

∃ct ∈ Ct,
d(e, ct) > `

 .
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By Proposition 4.6, each term in the sum is less than((
1 +

s

|Λ|

)
(1− p)

)`/2d
.

We sum next on all the possible choices of Γ. By Lemma 3.3, we have

Pµ

(
e ∈ Pt+s

∀r ∈ [t, t+ s] Pr 6= ∅
∃ct ∈ Ct, d(e, ct) > `

)
6

(
α(d)

(
1 +

s

|Λ|

)
(1− p)

)`/2d
.

There is a constant p̃ < 1 such that, for all p > p̃, s 6 |Λ| and ` > 2,(
α(d)

(
1 +

s

|Λ|

)
(1− p)

)`/2d
6 e−`.

We have obtained the result stated in the Proposition 4.1. �

5. The localisation around pivotal edges

We start by stating a corollary of Proposition 4.1. Recall at first that the Hausdorff distance
between two subsets A and B of Rd, denoted by dH(A,B), is

dH(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
.

For A a subset of Rd and r > 0, we define the neighbourhood

V(A, r) =
{
x ∈ Rd : d(x,A) < r

}
.

The Hausdorff distance is also equal to

inf
{
r > 0 : A ⊂ V(B, r), B ⊂ V(A, r)

}
.

For ` > 0, we consider two subsets A,B of Λ and we define a semi-distance between two such
subsets, denoted by d`H(A,B), adapted to our study, by

d`H(A,B) = inf

{
r > 0 :

A \ V(Λc, `) ⊂ V(B, r)
B \ V(Λc, `) ⊂ V(A, r)

}
.

Notice that d`H is a semi-distance, in fact the triangle inequality is not satisfied. However, the
following lemma allow us to compare d`H with the Hausforff distance and provides us an alternative
to the triangle inequality.

Lemma 5.1. For two subsets A,B of Λ and for all ` > 0, we have

d`H(A,B) ∨ ` > dH(A ∪ Λc, B ∪ Λc).

Proof : Let A,B be two subsets of Λ, and let us set d1 = d`H(A,B). We claim that

A ∪ Λc ⊂ V
(
B ∪ Λc, d1 ∨ `

)
.

Let x ∈ A ∪ Λc, we will show that x belongs to V
(
B ∪ Λc, d1 ∨ `

)
. We distinguish two cases. If

x ∈ V(Λc, `), then we have

x ∈ V
(
B ∪ Λc, `

)
⊂ V

(
B ∪ Λc, d1 ∨ `

)
.

In the other case, if x ∈ A \ V(Λc, `) and by the definition of d`H , we have

x ∈ V(B, d1) ⊂ V(B ∪ Λc, d1) ⊂ V(B ∪ Λc, d1 ∨ `).
By exchanging A and B, we have

B ∪ Λc ⊂ V
(
A ∪ Λc, d1 ∨ `

)
.

By the definition of dH , we obtain the desired claim, which in turn proves the lemma. �
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Proposition 5.2. We have the following result:

∃p̃ < 1 ∃κ > 1 ∀p > p̃ ∀c > 1 ∀Λ |Λ| > (cd)cd
2 ∀t > 0

Pµ

(
∃s 6 |Λ| d

κc ln |Λ|
H (Pt,Pt+s) > κc ln |Λ|

)
6

10d

|Λ|c
.

Proof : We fix s ∈
{

1, . . . , |Λ|
}
. By the definition of the distance d`H , we have, for any κ > 1,

Pµ

(
d
κc ln |Λ|
H (Pt,Pt+s) > κc ln |Λ|

)
6

Pµ

(
Pt+s \ V(Λc, κc ln |Λ|) * V(Pt, κc ln |Λ|)

)
+ Pµ

(
Pt \ V(Λc, κc ln |Λ|) * V(Pt+s, κc ln |Λ|)

)
. (5.1)

Since the two probabilities in the sum depend only on the process Y , which is reversible, they are
in fact equal to each other. We shall estimate the first probability. We discuss first the case where
there is a time r ∈

{
t, . . . , t+ s

}
when Pr = ∅. By Proposition 3.5, there is a p̃ < 1 such that, for

p > p̃ and all Λ,
∀r ∈ N PD (Pr = ∅) 6 d|Λ| exp (−D) ,

where D is the diameter of T . By summing over the time r, we have

PD (∃r ∈ [t, t+ s] Pr = ∅) 6 d|Λ|2 exp (−D) . (5.2)

We now consider the case where there exists always at least one pivotal edge during the time interval
[t, t+ s]. We can then apply Proposition 4.1 with an ` which will be determined later. There exists
p̃ < 1 such that for p > p̃, for t > 0, and for any s 6 |Λ| and e an edge such that d(e,Λc) > `,

Pµ

(
e ∈ Pt+s

∀r ∈ [t, t+ s] Pr 6= ∅
∃ct ∈ Ct, d(e, ct) > `

)
6 e−`.

Let us fix t > 0, s 6 |Λ| and e an edge such that d(e,Λc) > `. The previous inequality implies that

Pµ

 e ∈ Pt+s
∀r ∈ [t, t+ s],Pr 6= ∅
∃ct ∈ Ct d(e, ct) > `

 6 e−`.
In order to replace ct by Pt in the last probability, we use the Corollary 3.4. At the time t, the
configuration Yt follows the distribution PD. Therefore, there exists p̃ < 1 and a κ′ > 1 such that
for p > p̃, for all c > 1 and all Λ such that |Λ| > 36d, we have

Pµ

 ∃C ∈ Ct ∃f ∈ C
d(f,Λc ∪ Pt \ {f}) > κ′c ln |Λ|
∀r ∈ [t, t+ s] Pr 6= ∅

 6 1

|Λ|c
.

From now onwards, we suppose that p is larger than the three previous p̃. Let c > 0 be fixed and
let κ′ be associated to c as above. We distinguish two cases to control the following probability:

Pµ
(
e ∈ Pt+s, d(e,Pt) > κc ln |Λ|,∀r ∈ [t, t+ s] Pr 6= ∅

)
6

Pµ


e ∈ Pt+s, d(e,Pt) > κc ln |Λ|,
∀C ∈ Ct ∀f ∈ C \ V(Λc, κ′c ln |Λ|)

d(f,Pt) < κ′c ln |Λ|,
∀r ∈ [t, t+ s] Pr 6= ∅


+ Pµ

(
∃C ∈ Ct,∃f ∈ C, d(f,Λc ∪ Pt \ {f}) > κ′c ln |Λ|

)
.

The second probability is less than 1/|Λ|c. Let us study the first probability. Since all the edges of
a cut at time t are either at distance less than κ′c ln |Λ| from Λc or at distance less than κ′c ln |Λ|
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from Pt and the distance between e and Pt ∪ Λc is larger than κc ln |Λ|, then all the cuts at time t
are at distance more than (κ− κ′)c ln |Λ| from e. Hence, for κ > κ′,

Pµ


e ∈ Pt+s d(e,Λc ∪ Pt) > κc ln |Λ|
∀C ∈ Ct ∀f ∈ C \ V(Λc, κ′c ln |Λ|)

d(f,Pt) < κ′c ln |Λ|
∀r ∈ [t, t+ s] Pr 6= ∅

 6

Pµ


e ∈ Pt+s d(e,Λc) > κc ln |Λ|

∀C ∈ Ct ∀f ∈ C \ V(Λc, κ′c ln |Λ|)
d(f, e) > (κ− κ′)c ln |Λ|
∀r ∈ [t, t+ s] Pr 6= ∅

 6
Pµ

 e ∈ Pt+s
∃ct ∈ Ct d(e, ct) > (κ− κ′)c ln |Λ|

∀r ∈ [t, t+ s] Pr 6= ∅

 6 1

|Λ|(κ−κ′)c
.

We choose now κ = κ′ + 1, and we get

Pµ
(
e ∈ Pt+s, d(e,Pt) > κc ln |Λ|, ∀r ∈ [t, t+ s] Pr 6= ∅

)
6

2

|Λ|c
.

We sum over e in Λ and s ∈
{

1, . . . , |Λ|
}
to get

Pµ

 ∃s 6 |Λ|, ∃e ∈ Pt+s
d(e,Λc ∪ Pt) > κc ln |Λ|
∀r ∈ [t, t+ s] Pr 6= ∅

 6 4d

|Λ|c−2
.

We add the probability in (5.2) and we obtain

Pµ

(
∃s 6 |Λ|, ∃e ∈ Pt+s

d(e,Λc ∪ Pt) > κc ln |Λ|

)
6

4d

|Λ|c−2
+ d|Λ|2 exp (−D) .

This is the first probability in (5.1) and we conclude that

Pµ

(
∃s 6 |Λ|

dΛ
H(Pt,Pt+s) > κc ln |Λ|

)
6

8d

|Λ|c−2
+ 2d|Λ|2 exp (−D) .

For all box Λ such that |Λ| > (cd)cd
2 , we have

exp (−D) 6
1

|Λ|c
.

Therefore, for all Λ such that |Λ| > (cd)cd
2 , we have

8d

|Λ|c−2
+ 2d|Λ|2 exp (−D) 6

10d

|Λ|c−2
.

In order to obtain 1/|Λ|c, we replace c by c + 2, since (c + 2)/c 6 3 for c > 1, we have, for
|Λ| > max

{
(cd)cd

2
, 36d

}
,

Pµ

(
∃s 6 |Λ|

dΛ
H(Pt,Pt+s) > 3κc ln |Λ|

)
6 Pµ

(
∃s 6 |Λ|

dΛ
H(Pt,Pt+s) > κ(c+ 2) ln |Λ|

)
6

10d

|Λ|c
.

This yields the desired inequality. �

We now complete the proof of the Theorem 1.1.
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Proof of Theorem 1.1: Let us fix an edge e in Λ and a time t. We distinguish the cases where
e ∈ It \ Pt and e ∈ Pt. If e ∈ Pt, then we use the Proposition 1.4. We consider now the case where
e ∈ It \ Pt. We consider the last time τ when e was pivotal,

τ = max
{

0 6 s < t : e ∈ Ps, e /∈ Ps+1

}
.

The edge e has not been modified between τ and t. Let c > 1. We have

Pµ(t− τ > c|Λ| ln |Λ|) 6 Pµ
(
∀r ∈ [t− c|Λ| ln |Λ|, t]

Er 6= e

)
6

1

|Λ|c
.

We consider now the case where t − τ < c|Λ| ln |Λ|. We split the interval [τ, t] into subintervals of
length |Λ| and we set

ti = τ + i|Λ|, 0 6 i <
t− τ
|Λ|

and tb(t−τ)/|Λ|c+1 = t.

According to Proposition 5.2, there exists p̃ < 1 and κ′ > 1, such that

Figure 5.6. The cut Ci at time ti is at distance less than ln |Λ| from Ci−1 and the
cut Ci+1 is at distance more than ln |Λ| from Ci.

∀p > p̃ ∀c > 1 ∀|Λ| > (cd)cd
2 ∀j > 0 Pµ

(
d
κ′c ln |Λ|
H (Ptj ,Ptj+1) > κ′c ln |Λ|

)
6

10d

|Λ|c
.

Let c > 1. We suppose that

d(e,Pt ∪ Λc) > 2κ′c2(ln |Λ|)2 > (c ln |Λ|+ 1)κ′c ln |Λ|.

We have by Lemma 5.1, as illustrated in the Figure 5.6,∑
06i<(t−τ)/|Λ|

d
κ′c ln |Λ|
H (Pti ,Pti+1) ∨ κ′c ln |Λ|

>
∑

06i<(t−τ)/|Λ|

dH(Pti ∪ Λc,Pti+1 ∪ Λc)

> dH(Pτ ∪ Λc,Pt ∪ Λc) > d(e,Pt ∪ Λc) > 2κ′c2(ln |Λ|)2.

Necessarily, there is an index 0 6 j < c ln |Λ| such that

d
κ′c ln |Λ|
H (Ptj ,Ptj+1) ∨ κ′c ln |Λ| > 2κ′c ln |Λ|.
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Therefore, we have
d
κ′c ln |Λ|
H (Ptj ,Ptj+1) > κ′c ln |Λ|.

By summing over j from 0 to bc ln |Λ|c, we have

Pµ

(
e ∈ It, d(e,Pt) > 2κ′c2(ln |Λ|)2, t− τ < c|Λ| ln |Λ|

)
6

10d(c ln |Λ|+ 1)

|Λ|c
.

We set κ = 2κ′ and we obtain

Pµ

(
e ∈ Pt ∪ It, d(e,Pt \ {e}) > κc2(ln |Λ|)2

)
6 Pµ

(
e ∈ Pt, d(e,Pt \ {e}) > κ(c ln |Λ|)2

)
+ Pµ

(
t− τ > c|Λ| ln |Λ|

)
+ Pµ

(
e ∈ It, d(e,Pt) > κ(c ln |Λ|)2, t− τ 6 c ln |Λ|

)
6

2

|Λ|c
+

10d(c ln |Λ|+ 1)

|Λ|c
.

We sum over the edge e. For Λ such that |Λ| > (cd)cd
2 , we have

Pµ

(
∃e ∈ Pt ∪ It, d (e,Pt \ {e}) > κ(c ln |Λ|)2

)
6

4d+ 20d2(c ln |Λ|+ 1)

|Λ|c−1
6

1

|Λ|c−2
.

We apply this result with c+ 2 instead of c, since for c > 1, (c+ 2)2/c2 6 9, we have

9κc2 > κ(c+ 2)2.

Therefore, we have

Pµ

(
∃e ∈ Pt ∪ It, d (e,Pt \ {e}) > 9κ(c ln |Λ|)2

)
6

1

|Λ|c
.

This proves the statement of Theorem 1.1. �

6. Speed estimations conditioned by the past

We derive further estimates on the speed of the pivotal edges which will be used in the proof of
the Theorem 1.3. First, we give a corollary of the Proposition 4.1, which provides a control on the
cuts, rather than the pivotal edges.

Corollary 6.1. We have the following inequality:

∃p̃ < 1 ∀p > p̃ ∀Λ
∀` > 1 ∀e ∈ Λ d(e,Λc) > ` ∀t > 0 ∀s ∈ {0, . . . , |Λ|}

Pµ

(
∃C ∈ Ct+s, e ∈ C

∣∣ ∃ct ∈ Ct, d(e, ct) > `
)
6 exp(−`).

Proof : We adapt the construction of the STP done in the Proposition 4.4. We cannot use directly
the STP constructed in Proposition 4.4 because between the times t and t+ s, the set of the pivotal
edges can be empty. Therefore, we consider τ the last time before t+ s when P is empty, i.e.,

τ = sup
{
r 6 t+ s : Pr = ∅

}
.

If τ 6 t, the conditions of Proposition 4.4 are satisfied and there exists a closed decreasing simple
STP starting from (e, t+ s) and ending after t which travels a distance at least `. If τ = t+ s, since
the edge e is in a cut, there exists a closed ∗-path in Yt+s which connects e to an edge intersecting
the boundary of Λ. This path travels a distance at least `. If t < τ < t + s, then we have Pr 6= ∅
for τ < r 6 t + s. According to Proposition 4.4, there exists a STP from (e, t + s) to an edge of
Pτ+1 at time τ + 1 or an edge intersecting the boundary of Λ after time τ + 1. If the STP ends
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at an edge intersecting the boundary, then it travels a distance at least `. If it ends at an edge of
Pτ+1 at time τ + 1, then, at time τ + 1, there must be an edge which becomes open and creates the
pivotal edges of Pτ+1 which are on a cut C at time τ + 1. Notice that the cut C existed already at
time τ because all the edges of C are closed. Therefore, there exists a decreasing closed STP which
connects (e, t + s) to an edge intersecting the boundary of Λ at time τ . We reapply the algorithm
of modification described in the proof of Proposition 4.4 to obtain a simple STP. In all the cases
above, we obtain a decreasing closed simple STP starting at (e, t + s) which travels a distance at
least `. We apply the same arguments as in the proof of Proposition 4.1 in order to obtain the
desired estimate. �

We wish to control the movement of the set of the cuts over a time interval. To achieve this
goal, we will derive estimates for the appearance of a pivotal edge conditionally on the presence of
a cut far away during a whole interval. In Proposition 4.1, the conditioning gave information on
one instant, not a whole interval. In the next lemma, we deal with a time interval of length |Λ|.

Lemma 6.2. There exist p̃ < 1 and κ > 0 such that for p > p̃, any c > 1, any integer m > 1, any
Λ such that |Λ| > 2d, any edge e at distance more than κc ln |Λ| from Λc and for 0 < s 6 |Λ| 6 t,
we have

Pµ

 ∃C ∈ Ct+s
d(e, C) 6 (m− 1)κc ln |Λ|

∀r ∈]t− |Λ|, t]
∃Cr ∈ Cr d(e, Cr) > mκc ln |Λ|

∃C ′ ∈ Ct−|Λ| d(e, C ′) > (m+ 1)κc ln |Λ|

 6 1

|Λ|c
.

Proof : Let κ be a positive constant which will be chosen at the end of the proof. We reuse the
construction of the STP in Corollary 6.1: there exists a decreasing closed simple STP which connects
(e, t+ s) to a pivotal edge at time t or to an edge intersecting the boundary of Λ at a time after t.
Since the edge e is at distance at least κc ln |Λ| from Pt∪Λc, in both cases, there exists a decreasing
closed simple STP γ of length (κc ln |Λ|)/2d starting from the time-edge (e, t+ s) and ending after
t which is strictly included in the box Λ. Let Γ be the space projection of γ, i.e.,

Γ = Space(γ) = (e1, . . . , em).

We introduce the following events:

D1 =
{
∀r ∈]t− |Λ|, t],∃Cr ∈ Cr, d(e, Cr) > mκc ln |Λ|

}
,

D1 =
{
∃C ∈ Ct−|Λ|, d(e, C) > (m+ 1)κc ln |Λ|

}
,

and

E(t, s,Γ) =


∃γ simple closed decreasing STP

length(γ) = (κc ln |Λ|)/2d,Space(γ) = Γ
γ starts at an edge (e′, t+ s)
d(e′, e) 6 (m− 1)κc ln |Λ|

and ends after t

 .

As in the proof of Proposition 4.1, the probability appearing in the proposition is less than∑
Γ

Pµ
(
E(t, s,Γ) D1, D1

)
, (6.1)

where the sum is over the possible choices for Γ. We fix a path Γ and we condition each probability
in the sum by the configuration at time t. Let A be a subset of support(Γ), we denote by M(A)
the following set of configurations:

M(A) =

{
ω :

∀f ∈ A ω(f) = 0
∀f ∈ support(Γ) \A ω(f) = 1

}
.

Let y be a configuration in M(A) and let us start by estimating the probability

Pµ
(
E(t, s,Γ) Yt = y,D1, D1

)
.
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By the Markov property, this probability is equal to

Pµ
(
E(t, s,Γ) Yt = y

)
,

and by Proposition 4.5, it is less than(
s

|Λ|
(1− p)

)(κc ln |Λ|)/2d−|A|
. (6.2)

Each term of the sum in (6.1) can be written as

∑
06k6|support(Γ)|

∑
A ⊂ support(Γ)

|A| = k

∑
y∈M(A)

Pµ
(
E(t, s,Γ) Yt = y,D1, D1

)
× Pµ

(
Yt = y D1, D1

)
.

Using (6.2), we see that each term in (6.1) is less than

∑
06k6|support(Γ)|

(
s

|Λ|
(1− p)

)(κc ln |Λ|)/2d−k ∑
A ⊂ support(Γ)
|A| = k

Pµ
(
Yt ∈M(A) D1, D1

)
. (6.3)

In the rest of the proof, we will calculate an upper bound of∑
A ⊂ support(Γ)
|A| = k

Pµ
(
Yt ∈M(A) D1, D1

)
. (6.4)

Notice that, for an edge f ∈ Γ, if there is a time r ∈ [t − |Λ|, t] such that Er = f , then, under the
probability Pp, conditioned on D1, D1, the state of f at time t is independent of the other edges of
Γ and it follows a Bernoulli variable of parameter p. On the contrary, if Er 6= f for all r ∈ [t−|Λ|, t],
then the state of f at time t is the same as at time t− |Λ|. For A a subset of support(Γ) and B a
subset of A, we define the event reset(B,A) as

reset(B,A) =

{
∀e ∈ B, ∃r ∈ [t− |Λ|, t], Er = e
∀r ∈ [t− |Λ|, t], Er /∈ A \B

}
.

For each subset A, we partition the probability in (6.4) according to the subset B of A for which
the event reset(B,A) occurs, and we get

∑
A ⊂ support(Γ)

|A| = k,B ⊂ A

Pµ
(
Yt ∈M(A), reset(B,A)

∣∣D1, D1

)

=
∑

A ⊂ support(Γ)
|A| = k,B ⊂ A

Pµ

 ∀f ∈ B, Yt(f) = 0
∀f ∈ A \B, Yt−|Λ|(f) = 0

reset(B,A)
D1, D1

 . (6.5)

We write

Pµ(·) =
∑
x0,y0

Px0,y0
(
·
)
µ
(
(x0, y0)

)
,
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where Px0,y0 is the law of the process (Xt, Yt)t∈N starting from the initial configuration (x0, y0). For
each term we rewrite the conditioned probability as follows:

Px0,y0

 ∀f ∈ B, Yt(f) = 0
∀f ∈ A \B, Yt−|Λ|(f) = 0

reset(B,A)
D1, D1



=

Px0,y0

 ∀f ∈ B, Yt(f) = 0
∀f ∈ A \B, Yt−|Λ|(f) = 0

reset(B,A)

⋂D1
⋂
D1


Px0,y0(D1, D1)

. (6.6)

Starting from an initial configuration (x0, y0), the process (Yt)t∈N is obtained by conditioning to
stay in the configurations with disconnexion. We can replace Pµ by Pp in the previous fraction and
the numerator can be written as

Pp

 ∀f ∈ B, Xt(f) = 0
∀f ∈ A \B,Xt−|Λ|(f) = 0

reset(B,A)

⋂D1

⋂
D1


= Pp


∀f ∈ B, Bτ(f) = 0

∀f ∈ A \B,Xt−|Λ|(f) = 0
reset(B,A)

⋂D1

⋂
D1

 ,

where the time τ(f) is the last time before t when the edge f is chosen, i.e.,

τ(f) = sup
{
s 6 t : Es = f

}
.

Let us fix a sequence of edges e = (e1, . . . , et) and let us condition this last probability by the event

(E1, . . . , Et) = e.

We have

Pp


∀f ∈ B, Bτ(f) = 0

∀f ∈ A \B,Xt−|Λ|(f) = 0
reset(B,A)

⋂D1

⋂
D1


=
∑

e∈reset(B,A)

Pp

({
∀f ∈ B, Bτ(f) = 0

∀f ∈ A \B,Xt−|Λ|(f) = 0

}⋂
D1
⋂
D1 (E1, . . . , Et) = e

)
× Pp

(
(E1, . . . , Et) = e

)
. (6.7)

Notice that on the event reset(B,A), for an edge f ∈ B, we have necessarily τ(f) > t−|Λ|. Therefore
the event

{
∀f ∈ B, Bτ(f) = 0

}
depends on the set of variables

{
Bs : es ∈ B, s > t − |Λ|

}
. The

events {
∀f ∈ A \B,Xt−|Λ|(f) = 0

}
and D1 depend on the variables

{
Bs : s 6 t − |Λ|

}
and the event D1 does not depend on the

variables
{
Bs : Es ∈ B

}
. All the events above are decreasing, by the BK inequality applied to the
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random variables (Bs)s∈N, we have

Pp

({
∀f ∈ B, Bτ(f) = 0

∀f ∈ A \B,Xt−|Λ|(f) = 0

}⋂
D1
⋂
D1 (E1, . . . , Et) = e

)
6 Pp

(
∀f ∈ B, Bτ(f) = 0

∣∣ (E1, . . . , Et) = e
)

× Pp
(
∀f ∈ A \B,Xt−|Λ|(f) = 0

D1
⋂
D1

(E1, . . . , Et) = e

)
6 (1− p)|B|Pp

(
∀f ∈ A \B,Xt−|Λ|(f) = 0

D1
⋂
D1

(E1, . . . , Et) = e

)
.

We use this inequality in (6.7) and we obtain

Pp


∀f ∈ B, Bτ(f) = 0

∀f ∈ A \B,Xt−|Λ|(f) = 0
reset(B,A)

⋂D1

⋂
D1


6 (1− p)|B|Pp

({
∀f ∈ A \B,Xt−|Λ|(f) = 0

reset(B,A)

}⋂
D1

⋂
D1

)
.

We replace the numerator in (6.6) and we sum over the initial configurations, we have

Pµ

 ∀f ∈ B, Yt(f) = 0
∀f ∈ A \B, Yt−|Λ|(f) = 0

reset(B,A)
D1, D1


6 (1− p)|B|Pµ

(
∀f ∈ A \B,Xt−|Λ|(f) = 0

reset(B,A)
D1, D1

)
.

This last probability is less than

Pµ

(
∀f ∈ A \B Yt−|Λ|(f) = 0

reset(B,A)
D1

)
Pµ(D1|D1)

. (6.8)

Let us estimate separately the numerator and the denominator. In order to calculate the numerator,
we use the notation M(A) defined as follows:

M(A) =
{
ω : ∀f ∈ A ω(f) = 0

}
.

We obtain

Pµ

(
∀f ∈ A \B Yt−|Λ|(f) = 0

reset(B,A)
D1

)
=

∑
y∈M(A\B)

Pµ

(
reset(B,A), Yt−|Λ| = y

∣∣D1

)
.

As in the proof of Proposition 4.1, we write

Pµ

(
reset(B,A), Yt−|Λ| = y

∣∣D1

)
= Pµ

(
reset(B,A)

∣∣Yt−|Λ| = y,D1

)
Pµ

(
Yt−|Λ| = y

∣∣D1

)
.

Since the event reset(B,A) depends only on the variables{
(Er, Br) : t− |Λ| < r 6 t

}
,

it is independent from Yt−|Λ| (and also from the event D1, as D1 is entirely determined by Yt−|Λ|).
We obtain∑

y∈M(A\B)

Pµ

(
reset(B,A), Yt−|Λ| = y

∣∣D1

)
= Pµ

(
reset(B,A)

)
Pµ

(
Yt−|Λ| ∈ M(A \ B)

∣∣D1

)
.
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Let us estimate the last probability. Since the second marginal of Pµ is PD and PD(·) = Pp(·|T ←→X
B), we have

Pµ

(
Yt−|Λ| ∈ M(A \ B)

∣∣D1

)
=

Pp

(
∀f ∈ A \B f closed

∃C ∈ C, d(e, C) > (m+ 1)κc ln |Λ|

)
PD

(
∃C ∈ C, d(e, C) > (m+ 1)κc ln |Λ|

)
Pp

(
T ←→X B

) .
The event {

∀f ∈ A \B f closed
}

depends only on the edges at distance less than (m− 1/2)κc ln |Λ| from the edge e, while the event{
∃C ∈ C, d(e, C) > (m+ 1)κc ln |Λ|

}
depends on the edges at distance larger than (m+ 1)κc ln |Λ| from e. By independence, we have

Pp

(
∀f ∈ A \B f closed

∃C ∈ C, d(e, C) > (m+ 1)κc ln |Λ|

)
=

Pp

(
∀f ∈ A \B f closed

)
Pp

(
∃C ∈ C, d(e, C) > (m+ 1)κc ln |Λ|

)
.

We obtain therefore

Pµ

(
Yt−|Λ| ∈M(A \B)

∣∣D1

)
6 Pp

(
∀f ∈ A \B f closed

)
= (1− p)|A\B|.

We conclude that the numerator of (6.8) is less than

(1− p)|A\B|Pµ
(

reset(B,A)
)
.

Now, we estimate the denominator in (6.8). In fact, this probability is equal to

1− Pµ
(
∃s ∈]t− |Λ|, t], ∀C ∈ Cs, d(e, C) < mκc ln |Λ|

∣∣D1

)
.

By Corollary 6.1, there exists a p̃ < 1 such that for p > p̃, for any c, κ1 > 1 and for any edge e at
distance more than κ1c ln |Λ| from Λc, we have

Pµ

(
∃C ∈ Ct+s, e ∈ C

∣∣ ∃ct ∈ Ct, d(e, ct) > κ1c ln |Λ|
)
6

1

|Λ|κ1c
.

Since (c+ 3)/c 6 4 for c > 1, there exists a κ1 > 1, such that for any c > 1,

1

|Λ|κ1c
6

1

|Λ|c+3
.

We have therefore, as illustrated in the Figure 6.7, for |Λ| > 2d:

Pµ

(
∃s ∈]t− |Λ|, t],∀C ′ ∈ Cs
d(e, C ′) < κ1c ln |Λ| D1

)
6∑

s∈]t−|Λ|,t]

∑
f :d(e,f)<κ1c ln |Λ|

Pµ
(
∃Cs ∈ Cs, f ∈ Cs D1

)
6

∑
s∈]t−|Λ|,t]

∑
f :d(e,f)<κ1c ln |Λ|

1

|Λ|c+3
6

1

|Λ|c
6

1

2
.

Let κ > κ1, the probability (6.8) is less than

2(1− p)|A\B|Pµ
(

reset(B,A)
)
.
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Figure 6.7. The edge f ∈ Ps is at distance less than κ′c ln |Λ| from e and the cut
C ∈ Ct−|Λ| is at distance larger than 2κ′c ln |Λ| from e.

We bound from above each term of (6.5) and we obtain an upper bound for (6.4):∑
A ⊂ support(Γ)

|A| = k

Pµ
(
Yt ∈M(A) D1, D1

)
6

∑
A ⊂ support(Γ)

|A| = k,B ⊂ A

2(1− p)kPµ
(

reset(B,A)
)
.

For each set A fixed, we have ∑
B⊂A

Pµ

(
reset(B,A)

)
= 1.

Therefore, we obtain
Pµ
(
Yt ∈M(A) D1, D1

)
6 2(1− p)|A| (6.9)∑

A ⊂ support(Γ)

|A| = k

Pµ
(
Yt ∈M(A) D1, D1

)
6 2

(
|support(Γ)|

k

)
(1− p)k.

Finally, combined with (6.3), we obtain an upper bound for (6.1) which is

2(1− p)(κc ln |Λ|)/2d
∑

06k6(κc ln |Λ|)/2d

(
|support(Γ)|

k

)(
s

|Λ|

)(κc ln |Λ|)/2d−k

6 2

(
(1− p)

(
1 +

s

|Λ|

))(κc ln |Λ|)/2d
.

We sum over the possible choices for the path Γ, by the Lemma 3.3, the sum in (6.1) is less than

2|Λ| (α(d)(1− p) (1 + s/|Λ|))(κc ln |Λ|)/2d .

There is a κ > 0, such that for p > p̃, such that this term is less than
1

|Λ|c
.

We obtain the result stated in the lemma. �

We next show a generalisation of Proposition 4.1 and Corollary 6.1 which is an essential ingredient
for the proof of Theorem 1.3.



A new look at the interfaces in percolation 1425

Proposition 6.3. We have the following estimate:

∃p̃ < 1 ∃κ > 1 ∀p > p̃ ∀c > 2 ∀Λ |Λ| > 12(2κd)d

∀e ⊂ Λ d(e,Λc) > κc2 ln2 |Λ|
∀n > 1 n 6 c ln |Λ| ∀m > 0 n+m 6 c ln |Λ|

∀s ∈ {1, . . . , |Λ|} ∀t > n|Λ|

Pµ

 ∃C ∈ Ct+s
d(e, C) 6 mκc ln |Λ|

∀k ∈
{

1, . . . , n
}

∀r ∈]t− k|Λ|, t− (k − 1)|Λ|]
∃Cr ∈ Cr d(e, Cr) > (k +m)κc ln |Λ|

∃C ′ ∈ Ct−n|Λ| d(e, C ′) > (n+m+ 1)κc ln |Λ|

 6 1

|Λ|c
.

Proof : Notice that for the case n = 1, this proposition corresponds to Lemma 6.2. Let κ be a
constant which will be determined at the end of the proof. We start by introducing some notations.
For m ∈ N and k > 1, we define Dk,m to be the event

Dk,m =

{
∀r ∈]t− k|Λ|, t− (k − 1)|Λ|]

∃Cr ∈ Cr d(e, Cr) > (k +m)κc ln |Λ|

}
and Dk,m the event

Dk,m =
{
∃C ∈ Ct−k|Λ| d(e, C) > (k +m+ 1)κc ln |Λ|

}
.

For κ > 1, c > 2, k ∈ N∗, e ⊂ Λ and t, s ∈ N∗, we denote by (Hk,m) the following inequality:

(Hk,m) : Pµ

(
∃C ∈ Ct+s

d(e, C) 6 mκc ln |Λ| D1,m, . . . , Dk,m, Dk,m

)
6 1
|Λ|c .

Our goal is to show that there exist p̃ < 1 and κ > 1 such that for p > p̃, c > 2, e ⊂ Λ
at distance larger than κc2 ln2 |Λ| from Λc, s ∈

{
1, . . . , |Λ|

}
, the inequality (Hk,m) holds for any

1 6 k + m 6 c ln |Λ| and t > (k + m)|Λ|. In particular, the inequality stated in the proposition
corresponds to the case (k,m) = (n, 0). In order to show this proposition by induction on k, we
introduce an auxiliary inequality (Gk,m) for A ⊂ Λ, d(e,A) 6 (κc ln |Λ|)/2:

(Gk,m) :Pµ

(
∀f ∈ A Yt(f) = 0 D1,m, . . . , Dk+m, Dk+m

)
6 2k(1− p)|A|.

By Lemma 6.2, there exist p̃ < 1 and κ > 1 such that for p > p̃, c > 2, e ⊂ Λ at distance larger
than κc2 ln2 |Λ| from Λc and t > c|Λ| ln |Λ|, s ∈

{
1, . . . , |Λ|

}
, the inequalities (H1,m) hold for all

m 6 c ln |Λ|−1, meanwhile, the inequalities (G1,m) was also proved in (6.9). For this p̃, there exists
a κ > 0 such that, for any c > 2, we have(

α(d)21+2d/κ(1− p̃)
)(κc ln |Λ|)/2d

6
1

|Λ|c
.

Notice that for this κ, the inequality in Lemma 6.2 is also satisfied. Let us fix c > 2 and let us show
the inequalities by induction on the integer k. Let k < c ln |Λ|, we suppose that the inequalities
(Hk,m) and (Gk,m) hold for all m ∈ N such that k + m 6 c ln |Λ|. Let us prove first the inequality
(Gk+1,m) for a m ∈ {0, . . . , bc ln |Λ|c − k − 1}. We reuse the notations reset(I, A,B) and M(A)
defined for a subset B of A and a time interval I:

reset(I, A,B) =

{
∀e ∈ B, ∃r ∈ I, Er = e
∀r ∈ I, Er /∈ A \B

}
,

M(A) =
{
ω : ∀f ∈ A ω(f) = 0

}
.
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We denote by I1 the interval ]t − |Λ|, t]. We rewrite the probability (Gk+1,m) as in the proof of
Lemma 6.2:

Pµ

(
∀f ∈ A Yt(f) = 0 D1,m, . . . , Dk+1,m, Dk+1,m

)
=
∑
B⊂A

Pµ

(
∀f ∈ A Yt(f) = 0, reset(I1, A,B) D1,m, . . . , Dk+1,m, Dk+1,m

)
.

For each B ⊂ A, we have

Pµ

(
∀f ∈ A Yt(f) = 0, reset(I1, A,B) D1,m, . . . , Dk+1,m, Dk+1,m

)
= Pµ

 ∀f ∈ B, Yt(f) = 0
∀f ∈ A \B, Yt−|Λ|(f) = 0

reset(I1, A,B)
D1,m, . . . , Dk+1,m, Dk+1,m

 .

We use the same arguments as in the inequality (6.6) of the Lemma 6.2 to obtain a factor 1− p for
each edge where the event reset is realised. We have

Pµ

 ∀f ∈ B, Yt(f) = 0
∀f ∈ A \B, Yt−|Λ|(f) = 0

reset(I1, A,B)
D1,m, . . . , Dk+1,m, Dk+1,m


6 (1− p)|B|Pµ

(
Yt−|Λ| ∈M(A \B), reset(I1, A,B)

∣∣D1,m, . . . , Dk+1,m, Dk+1,m

)
.

The event reset(I1, A,B) is independent of what happens before and until t − |Λ| and of
D2,m, . . . , Dk+1,m, Dk+1,m. Therefore, this last probability is less than or equal to

Pµ

(
Yt−|Λ| ∈M(A \B), reset(I1, A,B)

∣∣D2,m, . . . , Dk+1,mDk+1,m

)
Pµ

(
D1,m

∣∣D2,m, . . . , Dk+1,m, Dk+1,m

) =

Pµ

(
reset(I1, A,B)

)
Pµ

(
D1,m

∣∣D2,m, . . . , Dk+1,m, Dk+1,m

)
× Pµ

(
Yt−|Λ| ∈M(A \B)

∣∣D2,m, . . . , Dk+1,m, Dk+1,m

)
.

We apply the inequality (Gk,m+1), at time t− |Λ|. The last probability is less or equal than

2k(1− p)|A\B|.

For the denominator, we apply (Hk,m+1) at time t− 1 and we obtain

Pµ

(
D1,m

∣∣D2,m, . . . , Dk+1,m, Dk+1,m

)
> 1− Pµ

(
∃r ∈]t− |Λ|, t] ∃Cr ∈ Cr
d(e, Cr) 6 mκc ln |Λ| D2,m, . . . , Dk+1,m, Dk+1,m

)
> 1− |Λ|

|Λ|c
.

Therefore, for |Λ| > 2, we have
1

|Λ|c−1
6

1

2
.

Therefore, we have for the denominator

Pµ

(
D1,m

∣∣D2,m, . . . , Dk+1,m, Dk+1,m

)
>

1

2
.
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We obtain (Gk+1,m) by summing over the choices of B:

Pµ

(
∀f ∈ A Yt(f) = 0 D1,m, . . . , Dk+1,m, Dk+1,m

)
6

2k(1− p)|A|

1/2

∑
B⊂A

Pµ

(
reset(I1, A,B)

)
= 2k+1(1− p)|A|.

In order to obtain (Hk+1,m), we will study the STP obtained as in the Corollary 6.1. We recall that
this STP is of length at least (κc ln |Λ|)/2d. We fix first the space projection of the STP, which
we denote by Γ. As in the proof of Lemma 6.2 and Proposition 4.1, we study separately the edges
that close after the time t and the edges which are closed at time t by conditioning the probability
by the configuration Yt. For the edges which become closed after t, we apply Proposition 4.5 and
we obtain that the probability for obtaining a simple closed decreasing STP γ between t and t+ s
satisfying Space(γ) = Γ is less than

∑
06j6support(Γ)

∑
A⊂support(Γ):|A|=j

(
s

|Λ|
(1− p)

)(κc ln |Λ|)/2d−j
×

P
(
Yt ∈M(A) |D1,m, . . . , Dk+1,m, Dk+1,m

)
. (6.10)

We apply the inequality (Gk+1,m) for the last probability and we have

P
(
Yt ∈M(A) |D1,m, . . . , Dk+1,m, Dk+1,m

)
6 2k+1(1− p)j .

Therefore, the sum in (6.10) is less than

∑
06j6support(Γ)

(
support(Γ)

j

)(
s

|Λ|

)j
2k+1(1− p)(κc ln |Λ|)/2d 6

2k+1
(

(1 + s/|Λ|) (1− p)
)(κc ln |Λ|)/2d

.

For |Λ| > 2d, k + 1 6 c ln |Λ| and s 6 |Λ|, we have

2k+1
(

(1 + s/|Λ|) (1− p)
)(κc ln |Λ|)/2d

6
(

21+2d/κ(1− p)
)(κc ln |Λ|)/2d

.

We sum over the choices for Γ by using the Lemma 3.3, and we have

Pµ

(
∃C ∈ Ct+s

d(e, C) 6 mκc ln |Λ| D1,m, . . . , Dk+1,m, Dk+1,m

)
6 |Λ|

(
α(d)21+2d/κ(1− p)

)(κc ln |Λ|)/2d
.

For p > p̃ and the κ chosen at the beginning of the proof, for any c > 2, we have

|Λ|
(
α(d)21+2d/κ(1− p)

)(κc ln |Λ|)/2d
6

1

|Λ|c
.

Notice that the constant κ doesn’t depend on k. Therefore, the inequalities{
(Hk,m), (Gk,m) : 1 6 k +m 6 c ln |Λ|

}
are all satisfied for p > p̃ and this κ. This concludes the induction. �
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7. The law of an edge far from a cut

We now show the Theorem 1.3 with the help of Proposition 6.3.

Proof of Theorem 1.3: Since µ is the stationary distribution of (Xt, Yt)t∈N, we can choose a time
t and show the result for the configuration (Xt, Yt). For a time r ∈ N and a distance ` > 0, we
introduce the events

D(r, `) =
{
∃C ∈ Cr, d(e, C) > `

}
and

D(r, `) =
{
∀θ ∈]r, r + |Λ|], ∃Cθ ∈ Cθ, d(e, Cθ) > `

}
.

We have to estimate the probability

Pµ

(
e ∈ It

∣∣∣D(t, κ′c2 ln2 |Λ|)
)
, (7.1)

where κ′ is a constant which will be determined later. For the moment, we can simply consider a
large κ′. We notice first that, on the event D(t, κ′c2 ln2 |Λ|), there is a cut which is disjoint from e,
so the edge e cannot be pivotal, thus

Pµ

(
e ∈ It

∣∣∣D(t, κ′c2 ln2 |Λ|)
)

= Pµ

(
e ∈ It \ Pt

∣∣∣D(t, κ′c2 ln2 |Λ|)
)
.

We consider the last time when e is pivotal, i.e., the time t− s defined by

s = inf
{
r > 0 : e ∈ Pt−r

}
.

On the interval ]t − s, t], the edge e is not pivotal and it remains in the interface. Therefore, this
edge is not modified during this interval, so we have

Pµ

(
e ∈ It

∣∣∣D(t, κ′c2 ln2 |Λ|)
)
6 Pµ

∃s > 0, e ∈ Pt−s
∀r ∈]t− s, t]
e /∈ Pr, Er 6= e

D(t, κ′c2 ln2 |Λ|)

 .

The events appearing in this probability concern only the process (Et)t∈N and the process (Yt)t∈N.
These processes are both reversible. By reversing the time, we obtain that

Pµ

 ∃s > 0, e ∈ Pt−s
∀r ∈]t− s, t]
e /∈ Pr, Er 6= e

D(t, κ′c2 ln2 |Λ|)

 =

Pµ

 ∃s > 0, e ∈ Pt+s
∀r ∈]t, t+ s]
e /∈ Pr, Er 6= e

D(t, κ′c2 ln2 |Λ|)

 .

Notice that the sequence (Er)t<r6t+s is independent of the configuration Yt. We estimate first the
probability that the interval ]t, t+ s] is too large. More precisely, we will show that s is at most of
order |Λ| ln |Λ|. Let c > 1 be a constant. We have

Pµ

 ∃s > c|Λ| ln |Λ|, e ∈ Pt+s
∀r ∈]t, t+ s]
e /∈ Pr, Er 6= e

D(t, κ′c2 ln2 |Λ|)

 6
Pµ

(
∀r ∈]t, t+ c|Λ| ln |Λ|]

Er 6= e

)
6

(
1− 1

|Λ|

)c|Λ| ln |Λ|
6

1

|Λ|c
. (7.2)

We now consider the case where s < c|Λ| ln |Λ|. We split the interval [t, t + s] into subintervals of
length |Λ|. We set, for 0 6 i < s/|Λ|,

ti = t+ i|Λ|.
Let us distinguish two cases according to the positions of the cuts during the time interval ]t, t1].
We consider a constant κ > 0 which will be chosen later. If the event D(t, κ′c2 ln2 |Λ| − κc ln |Λ|)
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doesn’t occur, then there exists a time τ ∈]t, t1] and a cut of Cτ which visits at least an edge f at
distance less than κ′c2 ln2 |Λ| − κc ln |Λ| from e. Therefore, for a s < c|Λ| ln |Λ| fixed, we have

Pµ
(
e ∈ Pt+s D(t, κ′c2 ln2 |Λ|)

)
6

Pµ

(
∃τ ∈]t, t1], ∃Cτ ∈ Cτ ,∃f ∈ Cτ
d(e, f) 6 κ′c2 ln2 |Λ| − κc ln |Λ| D

(
t, κ′c2 ln2 |Λ|

) )
+

Pµ

(
e ∈ Pt+s

D
(
t, κ′c2 ln2 |Λ| − κc ln |Λ|

) D
(
t, κ′c2 ln2 |Λ|

))
.

We estimate the first probability with the help of Corollary 6.1. This case is illustrated in Figure 6.7
but this time with the radius of the circles taken to be κ′c2 ln2 |Λ| and κ′c2 ln2 |Λ| −κc ln |Λ|. There
is a p̃ < 1, such that, for p > p̃ and κ > 0, for any c > 2, 0 < τ 6 |Λ| and an edge f at distance less
than κ′c2 ln2 |Λ| − κc ln |Λ| from e, we have

Pµ
(
∃Cτ ∈ Cτ , f ∈ Cτ D(t, κ′c2 ln2 |Λ|)

)
6

1

|Λ|c+2
.

Therefore, the following inequality holds:

Pµ

(
∃τ ∈]t, t1], ∃Cτ ∈ Cτ ,∃f ∈ Cτ
d(e, f) 6 κ′c2 ln2 |Λ| − κc ln |Λ| D

(
t, κ′c2 ln2 |Λ|

) )
6∑

τ∈]t,t1]

Pµ
(
∃Cτ ∈ Cτ , d(e, Cτ ) 6 κ′c2 ln2 |Λ| − κc ln |Λ| D(t, κ′c2 ln2 |Λ|)

)
6

2d

|Λ|c
.

We then obtain

Pµ
(
e ∈ Pt+s D(t, κ′ ln2 |Λ|)

)
6

2d

|Λ|c
+ Pµ

(
e ∈ Pt+s

D
(
t, κ′ ln2 |Λ| − κ ln |Λ|

)
D
(
t, κ′ ln2 |Λ|

) )
.

Starting from this inequality, we apply Proposition 6.3 and repeat the previous argument at the
times ti, 0 6 i < s/|Λ|. By iteration, we obtain that, for any n < s/|Λ| and |Λ| > 12(2κd)d,

Pµ
(
e ∈ Pt+s D(t, κ′c2 ln2 |Λ|)

)
6

2dn

|Λ|c
+ Pµ

(
e ∈ Pt+s

⋂
16i6nD

(
ti, κ

′c2 ln2 |Λ| − iκc ln |Λ|
)

D
(
t, κ′c2 ln2 |Λ|

) )
. (7.3)

We consider this inequality with n = bs/|Λ|c < c ln |Λ|:

Pµ
(
e ∈ Pt+s D(t, κ′c2 ln2 |Λ|)

)
6

2dc ln |Λ|
|Λ|c

+ Pµ

(
e ∈ Pt+s

⋂
16i<s/|Λ|D

(
ti, κ

′c2 ln2 |Λ| − iκc ln |Λ|
)

D
(
t, κ′c2 ln2 |Λ|

) )
.

We notice that s− |Λ|bs/|Λ|c < |Λ| and there exists a κ′ > 0 such that

κ′c2 ln2 |Λ| − κc ln |Λ|bs/|Λ|c > κc ln |Λ|.

We can apply again Proposition 6.3 at time tn and we get

Pµ

(
e ∈ Pt+s

⋂
16i<c ln |Λ|D

(
ti, κ

′c2 ln2 |Λ| − iκc ln |Λ|
)

D
(
t, κ′c2 ln2 |Λ|

) )
6

1

|Λ|c
.

Finally, we obtain the following upper bound for (7.3):

Pµ
(
e ∈ Pt+s D(t, κ′c2 ln2 |Λ|)

)
6

2dc ln |Λ|+ 1

|Λ|c
.
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We sum over the choices of s < c|Λ| ln |Λ| and we combine with (7.2). We obtain

Pµ

 ∃s > 0, e ∈ Pt+s
∀r ∈]t, t+ s]
e /∈ Pr, Er 6= e

D(t, κ′c2 ln2 |Λ|)

 6 1 + c|Λ| ln |Λ|+ 2d|Λ|c2 ln2 |Λ|
|Λ|c

.

For |Λ| > 4 + c+ 2dc2 + 12(2κd)d, we have ln |Λ| 6 |Λ| and thus

1 + c|Λ| ln |Λ|+ 2|Λ|dc2 ln2 |Λ|
|Λ|c

6
1 + c+ 2dc2

|Λ|c−3
6

1

|Λ|c−4
.

Therefore, there exists a p̃ < 1 and a κ′ > 0 such that for p > p̃, for any c > 2, we have

Pµ

(
e ∈ It \ Pt

∣∣∣D(t, κ′c2 ln2 |Λ|)
)
6

1

|Λ|c−4
.

Since (c+ 4)2/c2 6 25 for c > 1, by replacing κ′ by 25κ′ in the probability, we can replace 1/|Λ|c−4

by 1/|Λ|c. Hence the desired result. �

8. The construction of the impatient STP

We will construct a STP which connects an edge e ∈ Pt at time t and the set Ps ∪ Is at time
s < t. Before starting the construction, we define first some relevant properties of a STP, which will
be enjoyed by our construction.

Definition 8.1. A STP (e1, t1), . . . , (en, tn) is impatient if every time-change is ended by an edge
which is updated, i.e.,

∀i ∈ {1, . . . , n− 2} ei = ei+1 ⇒ Eti+1+1 = ei+1.

Definition 8.2. A STP (e1, t1), . . . , (en, tn) is called X-closed-moving (resp. Y -closed-moving) if
all the edges which are not time-change edges are closed in X (resp. in Y ), i.e.,

∀i ∈ {1, . . . , n− 1} ei 6= ei+1 ⇒ Xti(ei) = 0 (resp. Yti(ei) = 0).

We now construct a specific STP satisfying some of these properties.

Proposition 8.3. Let s < t be two times and e ∈ Pt. There exists a decreasing simple impatient
STP which connects the time-edge (e, t) to an edge of the set Ps ∪ Is \ {e} at time s or an edge f
intersecting the boundary of Λ after time s. Moreover this STP is X-closed-moving except on the
edge e.

Proof : The proof of this proposition is done in two steps. The first step is to construct a STP which
connects certain edges. In the second step, we modify the STP obtained in the first step to get a
simple and impatient STP.
Step 1. At time t, the edge e belongs to a cut. Therefore, there exists a path γ1 which connects e
to the boundary of Λ. We start at the edge e and we follow the path γ1. If the path γ1 does not
encounter an edge f ∈ It ∪ Pt−1 \ {e} then the STP

(e, t), (γ1, t)

connects e to the boundary of Λ, where the notation (ρ, t), for a path ρ = (ei)16i6n and a time t,
means the sequence of time-edges (ei, t)16i6n. Suppose next that there exists an edge of It∪Pt−1\{e}
in γ1. We enumerate the edges of γ1 in the order they are visited when starting from e and we
consider the first edge e1 in γ1 which belongs to the set It ∪Pt−1. We denote by ρ1 the sub-path of
γ1 visited between e and e1. We then consider the time η(t) defined as follows:

η(t) = max
{
r < t : Xr(e1) = Yr(e1)

}
.
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Since e1 ∈ It, the time η(t) when it becomes an edge of the interface is strictly less than t and if
e1 ∈ Pt−1 \ It, we have η(t) 6 t − 1. In both cases, we have η(t) < t and the edge e1 is closed in
Xη(t). If the time η(t) is before the time s then, at time s, the edge e1 belongs to the set Is∪Ps\{e}.
Therefore the STP

(e, t), (ρ, t), (e1, t), (e1, s)

satisfies the conditions in the proposition. If we have η(t) > s, then we repeat the above argument
starting from the edge e1 at time η(t). We obtain either a path γ2 which connects e1 to the boundary
of Λ at time η(t) or a path ρ2 which connects e1 to an edge e2 ∈ Iη(t) ∪ Pη(t)−1 \ {e} and a time
η2(t) < η(t). We proceed in this way until we reach a time edge (ek, η

k(t)) with ηk(t) 6 s. Since
η(t) < t, the sequence of times

η(t), η2(t), . . . , ηk(t)

decreases strictly through this procedure and this procedure terminates after a finite number of
iterations. The concatenation of the paths obtained at the end of the procedure,

(e, t), (ρ1, t), (e1, η(t)), . . . , (ρk, ηk−1(t)), (fk, s),

connects e to an edge of Ps ∪ Is \ {e}. Since the sequence (ηi(t))16i6k is decreasing, this is a
decreasing STP. Each time when the STP meets an edge of I which is different from e, there is a
time change to the time before it opened in X, therefore each movement in space except on the
edge e is done through a closed edge in X and the STP is X-closed-moving.
Step 2. We use two iterative procedures to transform the STP in the step 1 into a simple and
impatient STP. To get a simple STP, we use the same procedure as in the proof of Proposition 4.4.
Let us denote by (ei, ti)06i6N the STP obtained previously. Starting with the edge e0, we examine
the rest of the edges one by one. Let i ∈

{
0, . . . , N

}
. Suppose that the edges e0, . . . , ei−1 have

been examined and let us focus on ei. We encounter three cases:
• For every index j ∈ {i + 1, . . . , N}, we have ej 6= ei. Then, we don’t modify anything and we
start examining the edge ei+1.
• There is an index j ∈ {i+ 1, . . . , N} such that ei = ej , but for the first index k > i+ 1 such that
ei = ek, there is a time α ∈]tk, ti[ when Xα(ei) = 1. Then we don’t modify anything and we start
examining the next edge ei+1.
• There is an index j ∈ {i+ 1, . . . , N} such that ei = ej and for the first index k > i+ 1 such that
ei = ek, we have Xα(ei) = 0 for all α ∈]tk, ti[. In this case, we remove all the time-edges whose
indices are strictly between i and k. We then have a simple time change between ti and tk on the
edge ei. We continue the procedure from the index k.

The STP becomes strictly shorter after every modification (we remove systematically the consecutive
time changes if there is any), and the procedure will end after a finite number of modifications. We
obtain in the end a simple path in X. Since the procedure doesn’t change the order of the times
ti, we still have a decreasing path. In order to obtain an impatient STP, we modify the simple
decreasing STP obtained above and we use another iterative procedure as follows. We denote again
by (ei, ti)06i6n the simple STP obtained above. We start by examining the time-edge (e0, t0) and
then the rest of the time edges of the STP one by one as illustrated in the Figure 8.8. Suppose that
we have examined the indices i < k and that we are checking the index k. If the edge ek+1 is different
from ek, we don’t modify the STP at this stage and we continue the procedure from (ek+1, tk+1).
If the edge ek+1 is equal to ek, then the time-edge (ek, tk) belongs to a time change. Since the STP
is X-closed-moving, then the edge ek+1 is closed at time tk+1. Let [α, β] be the biggest interval
containing tk+1 during which the edge ek+1 is closed in X. If β > tk and ek+2 6= ek+3, we replace
the sub-sequence

(ek, tk), (ek+1, tk+1), (ek+2, tk+2)

by
(ek, tk), (ek+2, tk), (ek+2, tk+2),
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Figure 8.8. An impatient modification (in red) of a STP (in black) according to
the intervals when each edge is closed (in gray)

and we continue the modification from the time-edge (ek+2, tk). If β > tk and ek+2 = ek+3 we
replace the sequence

(ek, tk), (ek+1, tk+1), (ek+2, tk+2), (ek+3, tk+3)

by

(ek, tk), (ek+2, tk), (ek+2, tk+3),

and we continue the modification from the time-edge (ek+2, tk). If β < tk and ek+2 6= ek+3, we
replace (ek, tk), (ek+1, tk+1) by

(ek, tk), (ek, β), (ek+2, β).

If β < tk and ek+2 = ek+3, we replace (ek, tk), (ek+1, tk+1), (ek+2, tk+2) by

(ek, tk), (ek, β), (ek+2, β),

and we continue the STP at the time-edge (ek+2, β). The STP obtained after the modification
procedure is decreasing, X-closed-moving and impatient. Moreover, between two consecutive visits
of an edge f of the STP, there exists a time when the edge f is open. Therefore, this STP is also
simple. �

9. Exponential decay of the new STP

We show here that the set P ∪ I cannot move too fast. Typically, during an interval of size
|Λ| ln |Λ|, the set P ∪I can at most move a distance of order ln |Λ|. This result relies on an estimate
for the STP constructed in Proposition 8.3 which we state in the following proposition.
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Lemma 9.1. Let e be an edge in Λ and ` ∈ N∗. Let (ε1, . . . , εn) be a sequence of edges such that
|support(ε1, . . . , εn)| = `. We have the following inequality:

∃p̃ < 1 ∀p > p̃ ∀s, t 0 < t− s 6 `|Λ|

Pµ


∃γ decreasing simple impatient

X-closed-moving STP except on e,
γ starts from (e, t) and ends after s,

space(γ) = (ε1, . . . , εn)

 6 (1 +
1

|Λ|

)`|Λ|
(4− 4p)n.

Proof : Let us fix a STP γ satisfying the conditions stated in the probability. We denote by (ei, ti)i∈I
the sequence of the time-edges of γ. We denote by k the number of the time changes in γ and by
T the set of the indices of the time changes, i.e.,

T =
{
i ∈ I : ei = ei+1, ti 6= ti+1

}
.

We shall obtain an upper bound of the probability

P

(
(ei, ti)i∈I is a decreasing simple impatient

X-closed-moving STP except on e

)
, (9.1)

which depends only upon the integer n and the number of time changes k. In order to bound the
probability appearing in the lemma, we shall sum over the choices of the set of the k times, denoted
by K, in the interval {s, . . . , t}, over the choices of set of the k edges, denoted by A, where the time
changes occur and the number k from 1 to n. The probability appearing in the lemma is less or
equal than ∑

16k6n

∑
A ⊂ {1, . . . , n}
|A| = k

∑
K ⊂ {s, . . . , t}
|K| = k

P

(
(ei, ti)i∈I is a decreasing simple impatient

X-closed-moving STP except on e

)
. (9.2)

Let us obtain an upper bound for this probability. The STP is impatient and X-closed-moving,
therefore for any i ∈ T , the edge ei+1 becomes open at time ti+1 + 1. Moreover, the STP is simple,
thus for any pair of indices (p, q) ∈ I \ T , if ep = eq and tp > tq, there exists a time r ∈]tq, tp[, such
that the edge ep is open at time r. We can rewrite the probability inside the sum as

Pµ


∀i ∈ T Eti+1+1 = ei+1

∀i ∈ I \ T Xti(ei) = 0
∀p, q ∈ I \ T s.t. ep = eq, tp > tq
∃r ∈]tq, tp[ Xr(ep) = 1

 . (9.3)

Since the times ti are fixed, this probability can be factorised as a product over the edges. In fact,
the event in the probability depends only on the process (Xt)t∈N. We introduce, for an edge f ⊂ Λ,
the subset J(f) of I:

J(f) =
{
i ∈ I : ei = f

}
.

Let us denote by S the set support(γ). The previous probability is less or equal than

∏
f∈S\{e}

Pµ


∀i ∈ J(f) ∩ (T + 1) Eti+1 = f
∀i ∈ J(f) \ T Xti(f) = 0
∀p, q ∈ J(f) \ T s.t. p < q
∃r ∈]tq, tp[ Xr(f) = 1

 . (9.4)

Let us consider one term of the product. For a fixed edge f , we can order the set
{
ti : i ∈ J(f)\T

}
in an increasing sequence (τi)16i6mf , where mf = |J(f) \ T |. Let us denote by T (f) the set of the
indices among {1, . . . ,mf} which correspond to the end of a time change, i.e., the set corresponding
to J(f)∩ (T + 1) before the reordering. Since the STP is simple, between two consecutive visits at
times τi and τi+1 of f , there is a time θi when f is open. Moreover the STP is impatient, so for each
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index i ∈ T (f), the edge f becomes open at time τi + 1. Therefore, each term of the product (9.4)
is less or equal than

Pµ

 ∀i ∈ {1, . . . ,mf} Xτi(f) = 0
∀i ∈ T (f) Xτi+1(f) = 1

∀i ∈ {1, . . . ,mf − 1} ∃θi ∈]τi, τi+1[ Xθi(f) = 1

 . (9.5)

In order to simplify the notations, we define, for a time r, the event

E(r) =


∀i ∈ {1, . . . ,mf} such that τi 6 r Xτi(f) = 0
∀i ∈ T (f) such that τi + 1 6 r Xτi+1(f) = 1
∀i ∈ {1, . . . ,mf − 1} such that τi 6 r

∃θi ∈]τi, τi+1[ Xθi(f) = 1

 .

The status of the edge f in the process (Xt)t∈N evolves according to a Markov chain on {0, 1}. The
sequence (τi)16i6mf being fixed, if mf ∈ T (f), we condition 9.5 by the events before time τmf , we
have

Pµ

 ∀i ∈ {1, . . . ,mf} Xτi(f) = 0
∀i ∈ T (f) Xτi+1(f) = 1, mf ∈ T (f)

∀i ∈ {1, . . . ,mf − 1} ∃θi ∈]τi, τi+1[ Xθi(f) = 1

 =

Pµ

(
Xτmf+1(f) = 1 E(τmf )

)
Pµ
(
E(τmf )

)
6
Pµ
(
E(τmf )

)
|Λ|

.

If mf /∈ T (f), the probability

Pµ

 ∀i ∈ {1, . . . ,mf} Xτi(f) = 0
∀i ∈ T (f) Xτi+1(f) = 1, mf /∈ T (f)

∀i ∈ {1, . . . ,mf − 1} ∃θi ∈]τi, τi+1[ Xθi(f) = 1


is equal to Pµ

(
E(τmf )

)
. We then condition Pµ

(
E(τmf )

)
by the events before time τmf−1. We shall

distinguish two cases according to whether mf − 1 belongs to T (f) or not. If mf − 1 ∈ T (f), we
have

Pµ
(
E(τmf )

)
= Pµ

(
Xτmf

(f) = 0

Xτmf−1+1(f) = 1
E(τmf−1)

)
Pµ
(
E(τmf−1)

)
,

and if mf − 1 /∈ T (f), we have

Pµ
(
E(τmf )

)
= Pµ

 Xτmf
(f) = 0

∃θmf ∈]τmf−1, τmf [
Xθmf

(f) = 1
E(τmf−1)

Pµ
(
E(τmf−1)

)
.

We condition successively the event Pµ
(
E(τi)

)
by E(τi−1), we obtain

Pµ
(
E(τmf )

)
= Pµ

(
E(τ1)

) ∏
16i<mf ,i∈T (f)

Pµ

(
Xτi+1(f) = 0
Xτi+1(f) = 1

E(τi)

)

×
∏

16i<mf ,i/∈T (f)

Pµ

 Xτi+1(f) = 0
∃θi+1 ∈]τi, τi+1[
Xθi(f) = 1

E(τi)

 . (9.6)

By the Markov property, each term in the second product is equal to

Pµ

 Xτi+1(f) = 0
∃θi ∈]τi, τi+1[
Xθi+1

(f) = 1
Xτi(f) = 0

 .
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Since this probability is invariant by translation in time, it is equal to

P0

 Xτ ′(f) = 0
∃θ ∈]0, τ ′[
Xθ(f) = 1

 ,

where we have set τ ′ = τi+1 − τi and P0 is the law of the Markov chain (Xt(f))t∈N starting from a
closed edge. By considering the stopping time θ′ defined as the first time after 0 when f is open,
we have by the strong Markov property

P0

 Xτ ′(f) = 0
∃θ ∈]0, τ ′[
Xθ(f) = 1

 6 P0

(
Xτ ′(f) = 0

∣∣Xθ′(f) = 1
)

= P1

(
Xτ ′−θ′(f) = 0

)
.

Notice that for r > 1, we have

P1

(
Xr(f) = 0

)
6 Pµ

(
Xr(f) = 0

)
= 1− p.

Therefore we have

P0

 Xτ ′(f) = 0
∃θ ∈]0, τ ′[
Xθ(f) = 1

 6 1− p.

As for the probabilities in the first product of (9.6), we can also replace E(τi) by {Xτi(f) = 0} in
the conditioning. The difference between the previous case is that we have directly θ′ = 1, since
Xτi+1(f) = 1. We have

Pµ

(
Xτi+1(f) = 0
Xτi+1(f) = 1

E(τi)

)
6 P1

(
Xτ ′−1(f) = 0

)
P0

(
X1(f) = 1

)
6

1− p
|Λ|

.

Combining the upper bounds for each term of the product above, we have the following upper bound
for Pµ

(
E(τmf )

)
:

Pµ
(
E(τmf )

)
6

(1− p)mf
|Λ||T (f)∩{1,...,mf−1}| ,

where

|T (f) ∩ {1, . . . ,mf − 1}| =
{

|J(f) ∩ (T + 1)| if mf /∈ T (f)
|J(f) ∩ (T + 1)| − 1 if mf ∈ T (f)

.

In both cases, we have the following upper bound for (9.5):

Pµ

 ∀i ∈ {1, . . . ,mf} Xτi(f) = 0
∀i ∈ T (f) Xτi+1(f) = 1

∀i ∈ {1, . . . ,mf − 1} ∃θi ∈]τi, τi+1[ Xθi(f) = 1

 6 2(1− p)mf
|Λ||J(f)∩(T+1)| .

We obtain an upper bound for (9.3) by multiplying this inequality over the edges f in support(γ):

Pµ


∀i ∈ T Eti+1 = ei+1

∀i ∈ I \ T Xti(ei) = 0
∀p, q ∈ I \ T s.t. ep = eq, tp > tq
∃r ∈]tq, tp[ Xr(ep) = 1

 6
2|S|(1− p)

∑
f∈Smf

|Λ|
∑
f |J(f)∩(T+1)| 6

2|S|(1− p)|I|−k

|Λ|k
. (9.7)

Since |I| − k > n, and |S| 6 n, for k fixed and (ti)i∈I fixed, we have the following upper bound for
(9.1),

P

(
(ei, ti)i∈I is a decreasing simple impatient

X-closed-moving STP except on e

)
6

(2− 2p)n

|Λ|k
.
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Finally, we use this upper bound in (9.2) and we have

Pµ


∃γ decreasing simple impatient

X-closed-moving STP except on e,
γ starts from (e, t) and ends after s,

space(γ) = (ε1, . . . , εn)


6
∑

16k6n

∑
A⊂{1,...,n},|A|=k

∑
K⊂{s,...,t},|K|=k

(2− 2p)n

|Λ|k

6
∑

16k6n

(
n

k

)(
`|Λ|
k

)
(2− 2p)n

|Λ|k
6
∑

16k6n

(
`|Λ|
k

)
(4− 4p)n

|Λ|k

6

(
1 +

1

|Λ|

)`|Λ|
(4− 4p)n.

This yields the desired result. �

We use next Proposition 8.3 and Lemma 9.1 to show that the pivotal edges cannot move too fast.

Proposition 9.2. There exists p̃ < 1, such that for p > p̃, for ` > 1, t ∈ N, s ∈ N, s 6 `|Λ| and
any edge e at distance at least ` from the boundary of Λ,

Pµ

(
e ∈ Pt+s, d(e,Pt ∪ It \ {e}) > `

)
6 exp(−`).

Proof : By Proposition 8.3, there exists a STP which is decreasing simple impatient and X-closed-
moving except on e which starts from the edge e at time t+ s and ends at an edge of Pt ∪ It \ {e}
or an edge intersecting the boundary of Λ after the time t. In both cases, this STP has a length at
least `. Therefore, we have the inequality

Pµ

(
e ∈ Pt+s, d(e,Pt ∪ It \ {e}) > `

)
6 Pµ


∃γ decreasing simple impatient

X-closed-moving STP except on e
γ starts from (e, t+ s) and ends after t

|length(γ)| > `

 .

Let us fix a path (e1, . . . , en) with n = ` starting from e. By Lemma 9.1, for ` > 1, we have

Pµ


∃γ decreasing simple impatient

X-closed-moving STP except on e,
γ starts from (e, t+ s) and ends after t,

space(γ) = (e1, . . . , e`)

 6 (1 +
1

|Λ|

)`|Λ|
(4− 4p)`.

We sum over the number of the choices for the path (e1, . . . , e`) and we obtain

Pµ


∃γ decreasing simple impatient

X-closed-moving STP except on e
γ starts from (e, t+ s) and ends after t

|length(γ)| > `

 6 (1 +
1

|Λ|

)`|Λ|
α(d)`(4− 4p)`,

where α(d) is the number of the ∗-neighbours of an edge in dimension d. There exists a p̃ < 1 such
that for p > p̃, we have

∀` > 1

(
1 +

1

|Λ|

)`|Λ|
α(d)`(4− 4p)` 6 e−`.

This gives the desired upper bound. �
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10. The proof of Theorem 1.5

We now prove Theorem 1.5 with the help of Proposition 9.2 and the observation that an edge of
the interface cannot survive a time more than O(|Λ| ln |Λ|).

Proof of Theorem 1.5: Let c be a constant bigger than 1. We define two sets P−t and P+
t as

P−t =
⋃

r∈[t−2dc|Λ| ln |Λ|,t]

Pr

P+
t =

⋃
s∈[t,t+2dc|Λ| ln |Λ|]

Ps.

By the definition of d`H , we have

Pµ

(
d

2dc ln |Λ|
H

(
P+
t ,P

−
t

)
> 2dc ln |Λ|

)
= Pµ

(
∃s ∈ [0, 2dc|Λ| ln |Λ|] ∃e ∈ Pt+s
d
(
e,Λc ∪P−t

)
> 2dc ln |Λ|

)

+ Pµ

(
∃s ∈ [0, 2dc|Λ| ln |Λ|] ∃e ∈ Pt−s
d
(
e,Λc ∪P+

t

)
> 2dc ln |Λ|

)
.

Since the probability concerns only the process (Yt)t∈N, which is reversible, we have

Pµ

(
∃s ∈ [0, 2dc|Λ| ln |Λ|] ∃e ∈ Pt+s
d
(
e,Λc ∪P−t

)
> 2dc ln |Λ|

)
= Pµ

(
∃s ∈ [0, 2dc|Λ| ln |Λ|] ∃e ∈ Pt−s
d
(
e,Λc ∪P+

t

)
> 2dc ln |Λ|

)
.

Therefore, we can concentrate on the following probability

Pµ

(
∃s ∈ [0, 2dc|Λ| ln |Λ|] ∃e ∈ Ps
d
(
e,Λc ∪P−t

)
> 2dc ln |Λ|

)
.

Let us fix an edge e in Λ at distance at least 2dc ln |Λ| from P−t and a s ∈ [0, 2dc|Λ| ln |Λ|]. We
distinguish two cases. If the set Pt ∪ It is at distance more than 2dc ln |Λ| from the edge e, then by
Proposition 9.2, there exists a p2 < 1 such that, for p > p2 and c > 1, we have

Pµ
(
e ∈ Pt+s, d(e,Pt ∪ It) > 2dc ln |Λ|

)
6 exp(−2dc ln |Λ|). (10.1)

If there exists an edge f ∈ Pt ∪ It, which is at distance less than 2dc ln |Λ| from e, we consider the
last time when f was pivotal before t and we define the random integer τ such that

τ = inf
{
r > 0 : f ∈ Pt−r

}
.

Since f /∈ P−t , we must have τ > 2dc|Λ| ln |Λ|. The edge f is not pivotal during the time interval
[t−τ+1, t] and it belongs to the interface. Moreover, it cannot be chosen to be modified during this
interval since it must remain different in the two processes. Therefore, for any r ∈ [t−2dc|Λ| ln |Λ|+
1, t], we have Er 6= f . However, this event is unlikely because the sequence (Et)t∈N is a sequence of
i.i.d. random edges chosen uniformly in Λ. More precisely, we have the following inequality:

Pµ
(
τ > 2dc|Λ| ln |Λ|

)
6 P

(
∀r ∈ [t− 2dc|Λ| ln |Λ|+ 1, t], Er 6= f

)
6

(
1− 1

2d|Λ|

)2dc|Λ| ln |Λ|
6

1

|Λ|c
.



1438 Raphaël Cerf and Wei Zhou

We obtain the following inequality:

Pµ

 e ∈ Pt+s ∃f ∈ Pt ∪ It
d(e, f) < 2dc ln |Λ|

d(e,Λ ∪P−t ) > 2dc ln |Λ|

 6 λ(d)(2dc ln |Λ|)d

|Λ|c
, (10.2)

where λ(d) is a constant depending only on the dimension. We combine the two cases (10.1) and
(10.2), we obtain

Pµ
(
e ∈ Pt+s, d(e,Λ ∪P−t ) > 2dc ln |Λ|

)
6
λ(d)(2dc ln |Λ|)d

|Λ|c
+

1

|Λ|2dc
.

We then sum over the number of the choices for the edge e and of the number s from 1 to 2dc|Λ| ln |Λ|.
We obtain

Pµ

(
∃s ∈ [t, t+ 2dc|Λ| ln |Λ|] ∃e ∈ Pt+s

d
(
e,Λc ∪P−t

)
> 2dc ln |Λ|

)
6
λ(d)(2dc ln |Λ|)d+1

|Λ|c−2
+

2dc ln |Λ|
|Λ|2dc−2

. (10.3)

In other words, we have

Pµ
(
P+
t * V

(
Λc ∪P−t , 2dc ln |Λ|

) )
6
λ(d)(2dc ln |Λ|)d+1

|Λ|c−2
+

2dc ln |Λ|
|Λ|2dc−2

.

By the reversibility of the process (Yt)t∈N, we also have

Pµ
(
P−t * V

(
Λc ∪P+

t , 2dc ln |Λ|
) )
6
λ(d)(2dc ln |Λ|)d+1

|Λ|c−2
+

2dc ln |Λ|
|Λ|2dc−2

.

Combining the two previous inequalities, we have

Pµ

(
d

2dc ln |Λ|
H

(
P−t ,P

+
t

)
> 2dc ln |Λ|

)
6

2λ(d)(2dc ln |Λ|)d+1

|Λ|c−2
+

4dc ln |Λ|
|Λ|2dc−2

.

For |Λ| > e2d2c, we have

2λ(d)(2dc ln |Λ|)d+1

|Λ|c−2
+

4dc ln |Λ|
|Λ|2dc−2

6
1

|Λ|c−3
.

This yields the desired result. �
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