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Where to stand when playing darts?
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Abstract. This paper analyzes the question of where one should stand when playing darts. If one
stands at distance d > 0 and aims at a ∈ Rn, then the dart (modelled by a random vector X in
Rn) hits a random point given by a+ dX. Next, given a payoff function f , one considers

sup
a
Ef(a+ dX)

and asks if this is decreasing in d; i.e., whether it is better to stand closer rather than farther from
the target. Perhaps surprisingly, this is not always the case and understanding when this does or
does not occur is the purpose of this paper.

We show that if X has a so-called selfdecomposable distribution, then it is always better to stand
closer for any payoff function. This class includes all stable distributions as well as many more.

On the other hand, if the payoff function is cos(x), then it is always better to stand closer if and
only if the characteristic function |φX(t)| is decreasing on [0,∞). We will then show that if there
are at least two point masses, then it is not always better to stand closer using cos(x). If there is a
single point mass, one can find a different payoff function to obtain this phenomenon.

Another large class of darts X for which there are bounded continuous payoff functions for which
it is not always better to stand closer are distributions with compact support. This will be obtained
by using the fact that the Fourier transform of such distributions has a zero in the complex plane.
This argument will work whenever there is a complex zero of the Fourier transform.

Finally, we analyze if the property of it being better to stand closer is closed under convolution
and/or limits.

1. Introduction

1.1. Model and Main Results. We begin immediately by formalizing the notion of a general dart
game in Rn.

Definition 1.1. A dart is a random vector X taking values in Rn. It represents the distribution
of where you hit the target (Rn) when you stand at distance one and aim at the origin.
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Definition 1.2. A payoff function f is a measurable function from Rn to R which is bounded
from above.

Given a dart X and a player standing at distance d aiming at a ∈ R, the distribution of where
she hits the target is modelled by a+dX. Assuming you want to maximize the expected payoff with
respect to a given payoff function f from a certain distance, it is natural to consider the function

Definition 1.3.
g
X,f

(d) := sup
a∈Rn

Ef(a+ dX)

defined for d > 0.

So g
X,f

(d) is the best you can achieve with dart X, standing at distance d with payoff function
f . Note that the supremum is not always assumed.

Question: Is it always better to stand closer to the target? In other words, is g
X,f

(d) a decreasing
function of d?

Perhaps surprisingly, the answer is no. We start off by quickly giving a simple example showing
that this is not necessarily the case. In one dimension, let X be uniform on [0, 2] and f be 1
on intervals of the form [2k, 2k + 1] and 0 on intervals of the form (2k − 1, 2k) where k is an
integer. It is then immediate to check that g

X,f
(1) = 1/2 (and it doesn’t matter where you aim)

but g
X,f

(3/2) = 2/3 (by aiming e.g. at 1.5). We will later see how this is related to a more general
phenomenon where the behavior of the characteristic function of X will play a central role, see
Theorem 1.8.

We introduce the following concepts which capture those situations where standing closer is
better.

Definition 1.4. The pair (X, f) is reasonable if g
X,f

(d) is decreasing in d. The dart X is reason-
able with respect to a family F of payoff functions if (X, f) is reasonable for all f ∈ F . If (X, f)
is reasonable for all payoff functions f , then X is said to be reasonable. The payoff function f is
reasonable with respect to a family X of darts if (X, f) is reasonable for all X ∈ X . If (X, f)
is reasonable for all darts X, then f is said to be reasonable.

We will often use the expression that “X is reasonable with respect to f ” to mean that (X, f)
is reasonable. One of the central goals of this paper is to try to determine which darts X are
reasonable, either against a given payoff function f or a family of payoff functions.

We now wish to introduce a large collection of darts which turn out to be reasonable, and to do
this we recall the notion of a selfdecomposable probability measure (see Sato, 1999). However, we
first need to recall what it means for one random vector to divide another random vector.

Definition 1.5. We say a random vector X divides a random vector Y , written X|Y if there
exists a random vector Z so that if Z and X are independent, then X + Z and Y have the same
distribution.

Definition 1.6. A random vector X is selfdecomposable if for all d > 1, X|dX.

We mention that the set of selfdecomposable distributions sits properly between the set of stable
distributions and the set of infinitely divisible distributions. In addition, an independent sum of
selfdecomposable random vectors is also selfdecomposable. Later on, we will give a large number
of known examples of selfdecomposable distributions which are not stable. This notion of selfde-
composability, while not as well known as other more standard notions, was in fact already studied
by Lévy (1954) but not under this name. (Actually, the present authors came up with this notion
in conjunction with this project before learning that the concept already existed.) Very loosely
speaking, in this reference, Lévy characterized selfdecomposable distributions as those distributions
which arise as limits of normalized sums of a sequence of independent (not necessarily identically
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distributed) random variables. See Sato (1999, Theorem 15.3, p. 91). Khintchine also referred to
these distributions as “class L” (presumably named after Lévy).

Our first theorem, to be proved in Section 4, tells us that being selfdecomposable is a sufficient
condition for being reasonable.

Theorem 1.7. If X|dX, where d > 1, then g
X,f

(s) ≥ g
X,f

(ds) for all f and for all s. In particular,
if X is selfdecomposable, then X is reasonable.

While we have already proved that the uniform distribution is not reasonable, we now study
which darts X are such that (X, cos(x)) is reasonable in 1-dimension. It turns out that by just
using the payoff function cos(x), we will be able to reveal that a number of distributions are not
reasonable. We will extend the following result to any dimension and also strengthen the statement
in Section 5.

Theorem 1.8. Let X be any dart taking values in R with characteristic function φX . Then
(X, cos(x)) is reasonable if and only if |φX(t)| is decreasing in t on [0,∞).

Corollary 1.9. If X is a 1-dimensional dart, whose characteristic function is analytic and has a
(real) zero, then (X, cosx) is not reasonable.

Remark 1.10. Analyticity in Corollary 1.9 is necessary since there is a symmetric dart whose charac-
teristic function has a zero but such that (X, cosx) is reasonable. Namely, it is known (see Durrett,
2019) that if X has density function 1−cosx

πx2
, then its characteristic function is given by the tent

function max{1− |t|, 0}. By Theorem 1.8, (X, cosx) is reasonable.

Theorem 1.8 gives us a powerful tool to study the behavior of g
X,f

(d), and we can immediately
find several examples of common distributions that are not reasonable with respect to cos(x). For
example, the following distributions all have characteristic functions φX such that |φX(d)| is not
decreasing for d ∈ (0,∞), and thus by Theorem 1.8 are not reasonable with respect to cos(x):
Binomial distribution, Negative binomial distribution, Poisson distribution, Uniform distribution
and Geometric distribution.

We give two further examples of absolutely continuous distributions which are not reasonable
with respect to cos(x). These are the semi-circle distribution whose probability density function on
[−1, 1] is

2

π
·
√
1− x2

and the arcsine law whose probability density function on [−1, 1] is
1

π ·
√
(1 + x)(1− x)

.

For the semi-circle distribution, it is not hard to verify that the characteristic function is positive
at 3 and negative at 4 and hence must have a zero in between. By Corollary 1.9, we conclude that
the distribution function is not reasonable against cos(x). It is interesting to also point out that
this characteristic function is equal to 2J1(d)

d where J1 is the so-called Bessel function of the first
kind of order 1 which is known to have its first zero at ≈ 3.8317.

For the arcsine distribution, the characteristic function is J0(d) where J0 is the so-called Bessel
function of the first kind of order 0 which is known to have its first zero at ≈ 2.4. Therefore
Corollary 1.9 again implies it is not reasonable against cos(x).

We note that the uniform distribution, the semi-circle distribution and the arcsine distribution
are all special cases of the symmetric Beta distribution. The characteristic function of a Beta
distribution is something which is called a confluent hypergeometric function. It seems that the
literature on confluent hypergeometric functions could supply answers to what happens for the
general (symmetric) Beta distribution (with regard to being reasonable against cos(x)) but we have



1564 Björn G. Franzén, Jeffrey E. Steif and Johan Wästlund

chosen not to investigate this. (In any case, none of the Beta distributions will be reasonable by
Theorem 1.14 since they are compactly supported.)

Finally, concerning the semi-circle distribution, since this is the projection onto the x-axis of the
uniform distribution on the disc in R2, it follows from Proposition 2.9 that the latter distribution
is not reasonable against f(x, y) = cos(x). We will in fact see later on that this latter distribution
is also not reasonable against the standard dart board.

We will now give two applications of Theorem 1.8 which will also be proved in Section 5.

Theorem 1.11. If X is a random variable with at least two point masses, then (X, cos(x)) is not
reasonable. Moreover, if X is a random vector with at least two point masses, then, for some j,
(X, cos(πj(x))) is not reasonable where πj is the projection onto the jth coordinate.

Proposition 1.12. Let X be a continuous dart (i.e., no point masses) taking values in R, with
characteristic function φX . If φX(t) does not go to zero as t→∞, then (X, cos(x)) is not reasonable.
(There is also some version of this in higher dimensions.)

Note that by the Riemann-Lebesgue Lemma, any dart satisfying this assumption necessarily
has a nontrivial continuous singular component. However, (see Lyons, 1995) a continuous singular
distribution may in fact have φX(t) going to zero as t → ∞. Such measures are called Rajchman
measures and the first example was constructed by Menshov (see Menshov, 1916).

While the payoff function cos(x) will in a number of cases reveal nonreasonableness, it will not
always succeed; i.e. there are nonreasonable darts X so that (X, cosx) is reasonable.

For example, it is easy to check using Theorem 1.8 that a convex combination of a point mass
at 0 and a normal distribution is reasonable against cosine, but it will follow from Theorem 1.16
below that it is not reasonable.

More interestingly, there are also absolutely continuous distributions with this property. In
Tlas (2020), a function f ∈ C∞(R) which is real, nonnegative, symmetric, supported on [−1, 1], not
identically equal to zero and such that its (real-valued) Fourier transform f̂(t) is monotone decreasing
for t ≥ 0 (and hence nonnegative) is constructed. After possibly rescaling, any such f is the
probability density function of some absolutely continuous random variable, which by Theorem 1.8
is reasonable with respect to cos(x). However it is not reasonable according to Theorem 1.14 below.

A third such example is covered by the next result which will also be proved in Section 5. We
know from either Theorem 1.8 or Theorem 1.11 that a Bern(p) distributed random variable with
distribution pδ1 + (1 − p)δ0 is not reasonable with respect to cos(x). One can ask if one could
“smooth out” this distribution so that it becomes reasonable with respect to cos(x). The following
result yields a phase transition where the answer to the question depends on both the parameter p
and the degree of “smoothing out”. Note that it also yields two darts X,Y taking values in R such
that (X, cos(x)) is reasonable, (Y, cos(x)) is not reasonable, but the independent sum of X and Y
is such that (X + Y, cos(x)) is reasonable.

Theorem 1.13. Let X1 be Bern(p) distributed and X2 be N(0,σ2) distributed. If they are indepen-
dent, then X := X1 +X2 is reasonable with respect to cos(x) if and only if

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d ≥ 0.

This implies that for p = 1/2, (X, cos(x)) is not reasonable for any σ, and that for any p 6= 1/2
there exists σp ∈ (0,∞) such that for all σ ≥ σp, (X, cos(x)) is reasonable, and for any σ < σp,
(X, cos(x)) is not reasonable. In addition, for p 6= 1/2, σp ≤ (1− p)p/(π|1− 2p|2).

Finally for all σ > 0 and p ∈ (0, 1), X is not reasonable.

Our next four theorems identify further classes of nonreasonable darts. The first two of these
results will be proved in Section 6.
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Theorem 1.14. If X is a nondegenerate dart in R which is compactly supported, then X is not
reasonable with respect to some nonnegative continuous payoff function with compact support. Fur-
thermore, if X is a dart in Rn for which some projection is nondegenerate and compactly supported,
then X is not reasonable with respect to some nonnegative continuous payoff function with compact
support.

The proof of this result will in fact prove the following result.

Theorem 1.15. If X is a nondegenerate dart in R whose Fourier transform in the complex plane
is entire and contains a zero, then X is not reasonable against some continuous payoff function.
Moreover, this is still true if the characteristic function is analytic at 0 and has a zero in its strip
of regularity.

An illustrative example here are the family of probability density functions on R indexed by α > 1
given by

fα(x) := Cαe
−|x|α ;

the Fourier transforms of all of these are clearly entire since α > 1. For α = 2, we have the
normal density which is stable and hence selfdecomposable and therefore reasonable. However, for
α 6= 2, Pólya (1923) showed that the Fourier transform has zeroes in the complex plane and hence
Theorem 1.15 tells us that they are not reasonable.

Another illustrative example is X = |Z| where Z is a standard normal random variable. The
Fourier transform of X is (essentially) the Mittag-Leffler function E1/2(z) which is known to have
zeroes and hence Theorem 1.15 tells us that X is not reasonable. It is interesting to contrast this
with Y = |C| where C is a standard Cauchy random variable which is known to be selfdecomposable
and therefore reasonable.

The next two results are proved in Sections 7 and 8 respectively.

Theorem 1.16. If X is a nondegenerate dart taking values in Rn which has a single point mass,
then there exists a nonnegative continuous payoff function f with compact support such that (X, f)
is not reasonable.

Theorem 1.17. Given any dart X in R which is not absolutely continuous and whose singular part
(in the Lebesgue decomposition) is compactly supported, then there exists a nonnegative bounded
payoff function f with compact support such that (X, f) is not reasonable.

Note that in this last result, we only claim that f is bounded, not that it is necessarily continuous.
This naturally then raises the question of whether the existence of f ’s for which (X, f) is not
reasonable implies the existence of “nice” payoff functions g for which (X, g) is not reasonable.
Section 3 will provide a number of results of this type but doesn’t allow us to determine whether f
can be taken to be continuous in Theorem 1.17. One such result of this type is the following.

Theorem 1.18. Assume that X is a dart taking values in Rn with an absolutely continuous law
µX and f is a bounded payoff function on Rn such that (X, f) is not reasonable. Then there exists
a nonnegative continuous payoff function h with compact support on Rn such that (X,h) is not
reasonable.

Remark 1.19. Without absolute continuity of X, we can still, by Proposition 3.1, modify f to be
bounded and have compact support but not necessarily be continuous.

Our next two results, which will be proved in Section 9, concern operations which leave us within
the class of reasonable distributions.

Let F be some set of payoff functions, and let XF be the set of darts which are reasonable with
respect to F . It is natural to ask whether X,Y ∈ XF implies that X + Y ∈ XF (X and Y being
independent of course). The next result gives a positive answer for some classes F .
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Theorem 1.20. Assume F is a family of payoff functions and assume that X1, ..., Xm are in-
dependent darts taking values in Rn, each of which belongs to XF . If F is any of the following
sets

(1) The set of all payoff functions
(2) The set of all continuous payoff functions
(3) The set of all bounded payoff functions
(4) The set of all bounded continuous payoff functions
(5) The set of all payoff functions of the same type as cos(

∑n
j=1 xj),

then for any d1, ..., dm, D1, ..., Dm ≥ 0 such that dj ≤ Dj for all j we have that

sup
a
Ef(a+

m∑
j=1

djXj) ≥ sup
a
Ef(a+

m∑
j=1

DjXj), ∀f ∈ F

and in particular
∑m

j=1Xj ∈ XF .

Next, one would expect that the set of reasonable darts is closed with respect to convergence in
distribution. The following theorem provides a result of this type. See (2.1) for some notation used
here.

Theorem 1.21. Let {Xj}∞j=1 be a sequence of darts taking values in Rn which converges in distri-
bution to some dart X.
(i) For any f ∈ C0(Rn), d > 0, limj gXj,f (d) = g

X,f
(d). As a consequence, for any f ∈ C0(Rn) for

which (Xj , f) is reasonable for all j, we have that (X, f) is reasonable.
(ii) The first statement in (i) is false if f ∈ C0(Rn) is replaced by f ∈ Cb(Rn).
(iii) If, in addition, Xj approaches X in total variation, then (i) is still true if C0(Rn) is replaced
by Cb(Rn).
(iv) If each Xj is reasonable with respect to Cb(Rn), then X is reasonable with respect to Cb(Rn).

Note that in (iv) we are not claiming that (Xj , f) being reasonable for a fixed f ∈ Cb(Rn) implies
that (X, f) is reasonable.

We are mostly concerned about whether darts are reasonable rather than whether payoff functions
are reasonable. Nonetheless, we give one result of the latter type.

Definition 1.22. A function f : Rn → R is called weakly unimodal if for all x ∈ Rn, f(rx) is
decreasing in r on [0,∞).

In Section 10, we prove

Proposition 1.23. If f is a weakly unimodal payoff function, then f is reasonable.

The rest of the paper is organized as follows. In the second part of the present section, we discuss
what happens with a standard dartboard. In Section 2, we simply give some elementary background,
some notation and a couple of elementary results. The theorems in the introduction are proved in
the relevant sections as stated. Finally, in Section 11, we list some questions.

1.2. What happens for standard darts? We have computed numerically what happens for the stan-
dard dartboard f in R2 assuming that the dart distribution X is uniform distribution on a disc.
We have looked at both the best place to aim and how the function g

X,f
(d) behaves. We will see in

particular that (X, f) is not reasonable.
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Figure 1.1. The dartboard is divided into 20 sectors with an irregular but stan-
dardized numbering. The black and white regions give a single score (the plain
number of the sector), while the outer red-green double ring and the similar treble
ring half-way between the center and the rim give twice and three times the number
of the sector respectively. In the middle of the board, the green bull’s ring gives 25
points, and the red bull’s eye 50 points.

gX,f (d)

Radius (mm)
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Figure 1.2. Two of the at least seven places where this function increases are
circled in red.

When the disc is small enough to fit completely inside the treble 20 region, this is of course
where to aim, and the expected payoff is 60 points. When the radius increases beyond 4 mm this
is no longer possible, but the best place to aim is still at treble 20. At radius about 16 mm, we
can no longer keep the disc completely inside the 20 sector while at the same time maximizing its
intersection with the treble ring. Here the best place to aim is somewhere in the “fat 20”, a bit
above the treble 20, making a compromise between including as much as possible of the treble 20
region while not having too much of the disc sticking out into the 5- and 1-sectors.
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At radius 33.6 mm, something interesting happens: The average score starts to increase as the
radius of the disc increases further! This is because as the radius goes from about 33.6 to 35.7 mm,
we can suddenly fit most of both treble 20 and the double 20 into the disc. At radius 33.6 mm we
score an average of 18.45 points, but with the larger radius 35.7 mm, the score increases to 18.60!

A little later, at radius 39 mm, the best place to aim suddenly jumps from the 20-sector to the
19-sector. At 43 mm there is another jump after which we should aim near treble 7, with fair
chances of scoring 16 or 19 or even a high treble.

As the radius increases, there are (at least!) five more places where g
X,f

(d) increases. The most
clear-cut of them is when the radius increases from 104.8 mm to 107 mm, which is where we can fit
the entire treble ring into the disc. The last one occurs from radius 164 mm, when we only get half
the double ring into the disc, to 170 mm, which is the radius of the whole dartboard.

Lastly, we mention that there have been some studies for the standard dartboard with the dart
being the normal distribution concerning what g

X,f
(d) looks like and how one should play optimally

(i.e., where one should aim). See Tibshirani et al. (2011) and http://datagenetics.com/blog/
january12012/index.html

2. Background, Notation and some elementary results

2.1. Various background. First, the term nondegenerate will refer to any distribution which is not
a single point mass.

Definition 2.1. We say that the random vectors X and Y have the same type if there exist a > 0
and b ∈ Rn such that Y and aX + b have the same distribution. We say that the functions f and
h have the same type if there exist a, c > 0, b ∈ Rn, and d ∈ R such that h(x) = cf(ax+ b) + d for
all x.

If X and Y have the same type and f and h have the same type, then it will follow from
Proposition 2.8 below that (X, f) is reasonable if and only if (Y, h) is.

Remark 2.2. It is easy to check that X|dX only depends on X’s type and hence being selfdecom-
posable also only depends on the type of X.

Definition 2.3. Let X be a random vector taking values in Rn. The characteristic function of
X is the function φX : Rn → C defined by

φX(t) = Eexp(i(t ·X)).

Next we will recall the concepts of stable and infinitely divisible distributions.

Definition 2.4. A random vector X has a stable distribution if for independent copies X1 and
X2 of X, and any a, b > 0, there exist constants c > 0 and d ∈ Rn such that aX1 + bX2 is equal to
cX + d in distribution.

Definition 2.5. A random vector X has an infinitely divisible distribution if for all positive
m ∈ N, there exist m independent identically distributed random vectors Y1, ..., Ym such that∑n

j=1 Yj has the same distribution as X.

As we stated earlier, it is known that all stable distributions are selfdecomposable (see Sato, 1999,
p. 91) and that all selfdecomposable distributions are infinitely divisible (see Sato, 1999, p. 93). It
is also known that on R all nondegenerate selfdecomposable distributions are absolutely continuous
(see Sato, 1999, p. 177) and unimodal (Sato, 1999, p. 404).

The following is a concept which is used to construct examples of darts with desired properties.

Definition 2.6. Let X and Y be darts taking values in Rn with laws µX and µY . A dart Z taking
values in Rn is a convex combination of X and Y if its law is given by µZ = pµX + (1 − p)µY
for some p ∈ [0, 1]. If p ∈ (0, 1), then Z is called a nontrivial convex combination of X and Y .

http://datagenetics.com/blog/january12012/index.html
http://datagenetics.com/blog/january12012/index.html
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Finally, let us define three function spaces which will be used in some of our theorems. We define
Cc(Rn) ⊆ C0(Rn) ⊆ Cb(Rn) by

Cc(Rn) :=
{
f : Rn → R| f is continuous and has compact support}

C0(Rn) :=
{
f : Rn → R| f is continuous and lim

||x||→∞
f(x) = 0

}
Cb(Rn) :=

{
f : Rn → R| f is continuous and bounded

} (2.1)

The following lemma, whose proof is easy and left to the reader, will be used twice.

Lemma 2.7. For any finite continuous measure µ on Rn, one has

lim
δ→0

sup
x∈R

µ({y : ‖x− y‖ < δ}) = 0.

2.2. Basic properties of gX,f. We next give a few very simple observations concerning our functions
g
X,f

(d).

Proposition 2.8. Let X and Y be two independent darts taking values in Rn, and let f and h be
two payoff functions on Rn. If ad, ap, cp > 0, dp ∈ R, and bd, bp ∈ Rn, then the following statements
hold

(1) g
adX+bd,cpf(apx+bp)+dp

(d) = cpgX,f (adapd) + dp
(2) g

X+Y,f
(d) ≤ g

X,f
(d)

(3) g
X,f+h

(d) ≤ g
X,f

(d) + g
X,h

(d)
(4) infx(f(x)) ≤ gX,f (d) ≤ supx(f(x))

Proof : This proof only requires some simple straightforward computations.
(1) We compute

g
adX+bd,cpf(apx+bp)+dp

(d) = sup
a
E[cpf(ap(a+ d(adX + bd)) + bp) + dp]

= cp(sup
a
E[f((apa+ apdbd + bp) + adapdX)]) + dp

= cp(sup
a
E[f(a+ adapdX)]) + dp = cpgX,f (adapd) + dp.

(2) Due to the independence of X and Y we have that for any a ∈ Rn

Ef(a+ dX + dY ) =

∫
Ef(a+ dy + dX)dµY (y)

≤
∫

sup
a
Ef(a+ dX)dµY (y)

= sup
a
Ef(a+ dX) = g

X,f
(d)

and thus
g
X+Y,f

(d) = sup
a
Ef(a+ dX + dY ) ≤ g

X,f
(d).

(3) and (4) are easily shown. �

2.3. Behavior of reasonableness under projections. In this subsection, we prove a fairly straightfor-
ward result concerning the relationship between the behavior of a dart in Rn and the behavior of
its various projections with respect to our questions.

Proposition 2.9. Let X be a dart taking values in Rn, and let h be a nonzero linear function from
Rn to R. If f is a payoff function on R, then g

h(X),f
(d) = g

X,f◦h(d) so that (h(X), f) is reasonable
if and only if (X, f ◦ h) is reasonable. Hence if X is reasonable, then h(X) is reasonable.
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Proof : We have

g
h(X),f

(d) = sup
a∈R

Ef(a+ dh(X)) = sup
b∈Rn

Ef(h(b) + dh(X)) =

sup
b∈Rn

Ef(h(b+ dX)) = sup
b∈Rn

E(f ◦ h)(b+ dX)) = g
X,f◦h(d)

where h being onto was used in the second equality. The second statement follows immediately. �

3. Improvement of payoff functions

In this section, we will obtain a number of results showing that if a dart is not reasonable against
a certain payoff function, then it will be not reasonable against a payoff function with perhaps nicer
properties. Some of these will be used later in the paper.

3.1. From nonreasonable bounded payoff functions to nonnegative compact support.

Proposition 3.1. Let X be a dart taking values in Rn, and let f be a bounded payoff function
on Rn. If (X, f) is not reasonable, then there exists a bounded nonnegative payoff function f ′ with
compact support such that (X, f ′) is not reasonable. If f is continuous, then f ′ can be taken to be
continuous.

Proof : As f is bounded from below, we may assume that f ≥ 0. For any B > 0 we can define a
function hB : [0,∞) → [0,∞) to be 1 for x ≤ B, 0 for x ≥ B + 1 and linearly in between, making
it continuous. From this we define a payoff function fB by

fB(x) := f(x) · hB(||x||).

Note that f ≥ fB ≥ 0, and that if f is continuous, then so is fB. By the monotone convergence
theorem we have that

lim
B→∞

EfB(a+ dX) = Ef(a+ dX), ∀a ∈ Rn, d > 0

which easily yields
lim
B→∞

g
X,fB

(d) ≥ g
X,f

(d)

for all d. Since the reverse inequality is trivial, we obtain

lim
B→∞

g
X,fB

(d) = g
X,f

(d), ∀d > 0.

Some (X, fB) must not be reasonable since otherwise g
X,fB

would be decreasing in d for all B
implying that g

X,f
is decreasing, a contradiction. �

A variant of the proof of Proposition 3.1 explains why we have defined our payoff functions to be
bounded from above.

Proposition 3.2. Let X be a dart taking values in Rn. Let f : Rn → R. (Note f is not assumed
to be bounded above and so it is not necessarily a payoff function.) Assume that Ef(a+ dX) is well
defined and finite for all a ∈ Rn, d > 0. Letting, as we do for payoff functions,

g
X,f

(d) := sup
a∈Rn

Ef(a+ dX),

assume that there exist d1 < d2 so that g
X,f

(d1) < g
X,f

(d2). Then there exists a payoff function f ′

(hence bounded from above by definition) so that (X, f ′) is not reasonable. If f is continuous, then
f ′ may be taken to be continuous.
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Proof : For M > 0, let fM (x) = max{f(x),M} which is continuous if f is. By the Lebesgue
dominated convergence theorem,

lim
M→∞

EfM (a+ dX) = Ef(a+ dX), ∀a ∈ Rn, d > 0

easily leading to
lim
M→∞

g
X,fM

(d) = g
X,f

(d), ∀d > 0.

Exactly as in the proof of 3.1, we have that for some M , (X, fM ) is not reasonable. �

3.2. Absolutely continuous darts: making noncontinuous payoff functions continuous.

Proof of Theorem 1.18: By Proposition 3.1, we can replace f by a nonnegative bounded function
with compact support which is nonreasonable. Lettingm denote Lebesgue measure, by Lusin’s The-
orem (see Folland, 1999), for any ε > 0 there exists a measurable set A ⊆ Rn and a continuous non-
negative function hε ∈ Cc(Rn), such that f = hε on A, m(Ac) < ε, and supx |hε(x)| ≤ supx |f(x)|.

For any d ≥ 0 we have that

|Ef(a+ dX)− Ehε(a+ dX)| ≤
∫
{x:a+dx∈Ac}

|f(a+ dx)− hε(a+ dx)|dµX(x)

≤ 2 sup
y
|f(y)|µX({x : a+ dx ∈ Ac})

and thus
g
X,hε

(d) ≤ sup
a

(
Ef(a+ dX) + 2 sup

y
|f(y)|µX({x : a+ dx ∈ Ac})

)
g
X,hε

(d) ≥ sup
a

(
Ef(a+ dX)− 2 sup

y
|f(y)|µX({x : a+ dx ∈ Ac})

)
If (X, f) is not reasonable, then there exists d1, d2 ≥ 0 such that d1 < d2 and g

X,f
(d1) < g

X,f
(d2).

As µX is an absolutely continuous finite measure there exists a δ > 0 such that for any measurable
set E with m(E) < δ, we have that

µX(E) <
g
X,f

(d2)− gX,f (d1)
8 supy |f(y)|

.

Now note that by the properties of Lebesgue measure, m({x : a + dx ∈ Ac}) = m((Ac − a)/d) =
m(Ac)/dn < ε/dn, and now choose ε > 0 so that ε/dn1 < δ. For all d ≥ d1 we now get

g
X,hε

(d) ≤ sup
a

(
Ef(a+ dX) + 2 sup

y
|f(y)|

g
X,f

(d2)− gX,f (d1)
8 supy |f(y)|

)
= g

X,f
(d) +

g
X,f

(d2)− gX,f (d1)
4

and

g
X,hε

(d) ≥ sup
a

(
Ef(a+ dX)− 2 sup

y
|f(y)|

g
X,f

(d2)− gX,f (d1)
8 supy |f(y)|

)
= g

X,f
(d)−

g
X,f

(d2)− gX,f (d1)
4

We now get that

g
X,hε

(d2)− gX,hε (d1) ≥ gX,f (d2)− gX,f (d1)−
g
X,f

(d2)− gX,f (d1)
2

=
g
X,f

(d2)− gX,f (d1)
2

> 0

and thus (X,hε) is not reasonable. �
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3.3. Making payoff functions with a countable number of discontinuities continuous.

Theorem 3.3. Assume that X is a continuous dart taking values in Rn and f is a bounded payoff
function on Rn such that (X, f) is not reasonable. Then if f has at most a countable number of
discontinuities, then there exists a continuous nonnegative payoff function h with compact support
on Rn such that (X,h) is not reasonable.

Proof : In view of Proposition 3.1, it suffices to find an h which is bounded and continuous which
we now do.

If (X, f) is not reasonable, there exist d1, d2 ≥ 0 such that d1 < d2 and g
X,f

(d1) < g
X,f

(d2). Let
{xk}∞k=1 be the discontinuity points of f .

By Lemma 2.7, we have that for any ε > 0 there exists a sequence of positive numbers {δk}∞k=1
such that for all k we have

µX
({
y ∈ Rn : ||x− y|| < δk

d1

})
<

ε

2k
, ∀x ∈ Rn. (3.1)

Now define the set, which depends upon ε

A =

∞⋃
k=1

{z ∈ Rn : ||xk − z|| < δk}.

Note that A is an open set which contains all of the discontinuities of f . Thus f is continuous on the
closed set Ac, and therefore by the Tietze Extension Theorem, there exists a continuous function
hε on Rn such that hε is equal to f on Ac and supx |hε(x)| ≤ supx |f(x)|. We now have

|Ef(a+ dX)− Ehε(a+ dX)| ≤
∫
{x:a+dx∈A}

|f(a+ dx)− hε(a+ dx)|dµX(x)

≤ 2 sup
y
|f(y)|µX({x : a+ dx ∈ A})

≤ 2 sup
y
|f(y)|

∞∑
k=1

µX({x : a+ dx ∈ {z ∈ Rn : ||xk − z|| < δk}})

≤ 2 sup
y
|f(y)|

∞∑
k=1

µX

({
x ∈ Rn : ||xk − a

d
− x|| < δk

d

})
.

Equation (3.1) now gives us that for all d ≥ d1

|Ef(a+ dX)− Ehε(a+ dX)| ≤ 2 sup
y
|f(y)|ε.

From this we get that for all d ≥ d1
g
X,hε

(d) ≤ g
X,f

(d) + 2 sup
y
|f(y)|ε

g
X,hε

(d) ≥ g
X,f

(d)− 2 sup
y
|f(y)|ε

which implies
g
X,hε

(d2)− gX,hε (d1) ≥ gX,f (d2)− gX,f (d1)− 4 sup
y
|f(y)|ε.

Thus if we choose

ε <
g
X,f

(d2)− gX,f (d1)
4 supy |f(y)|

then we see that (X,hε) is not reasonable. �
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4. Selfdecomposable distributions are reasonable

We begin this section with proving Theorem 1.7.

Proof of Theorem 1.7: Fix f and s > 0. From X|dX it follows that sX|dsX. Choose a random
variable Z so that if Z and X are independent, then sX + Z and dsX have the same distribution.
By Proposition 2.8 we have that

g
X,f

(s) = g
sX,f

(1) ≥ g
sX+Z,f

(1) = g
dsX,f

(1) = g
X,f

(ds).

�

Remark 4.1. The point of X|dX is that you can then simulate being at distance ds when you are
standing at distance s by randomizing your target. Hence you can do at least as well at distance s
as at distance ds with respect to any payoff function.

As all selfdecomposable distributions are infinitely divisible (see Sato, 1999, p. 93), it is natural
to ask whether all darts that have infinitely divisible distributions are reasonable. However, it is
immediate from either Theorem 1.8 or Theorem 1.11 that the Poisson distribution (the building
block of almost all infinitely divisible distributions) is not reasonable.

We end this section by listing some examples of selfdecomposable distributions which are not
stable. We won’t list the original papers where these were proved but by looking at Sato (1999)
and Steutel and van Harn (2004) one obtains almost all of these as well as others.

The list is as follows: all gamma distributions, Laplace distribution, Pareto distribution, Gumbel
distribution, logistic distribution, log-normal distribution, F-distribution, t-distribution, hyperbolic-
sine and hyperbolic-cosine distributions, the Beta distribution of the second kind (sometimes called
the beta prime distribution, not to be confused with the ordinary Beta distribution), so-called
“generalized Gamma convolutions” (see Bondesson, 1992) and the half Cauchy distribution (which
is interesting in light of the known fact that the half normal distribution is not even infinitely divisible
and hence not selfdecomposable, as well as not being reasonable as we saw in the introduction).

5. Reasonableness with respect to cosine

In this section, we will prove Theorem 5.1 (which is a strengthening of Theorem 1.8), Theo-
rem 1.11, Proposition 1.12 and Theorem 1.13.

5.1. The Cosine payoff function. We now state and prove an extension of Theorem 1.8. It will be
an extension since it will deal with darts in Rn and because we will obtain an explicit formula for
g
X,f

(d) which will lead to a necessary and sufficient condition for reasonableness with respect to our
“cosine function”.

Theorem 5.1. Let X be any dart taking values in Rn with characteristic function φX , and let
f(x) := cos

(∑n
j=1 xj

)
. Then for any d > 0 we have that

Ef(a+ dX) = |φX(d~1)| cos
( n∑
j=1

aj + Arg(φX(d~1))
)
, (5.1)

where ~1 = (1, 1, ..., 1).
In particular this implies that if f(x) = cos

(∑n
j=1 xj

)
, then g

X,f
(d) = |φX(d~1)|, and hence

(X, f) is reasonable if and only if |φX(d~1)| is decreasing in d on (0,∞).
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Proof : We have that

Ef(a+ dX) = E cos
( n∑
j=1

aj + d~1 ·X
)
= Re

(
Eexp

(
i

n∑
j=1

aj + id~1 ·X
))

= Re
(
ei

∑n
j=1 ajEeid

~1·X
)
= Re

(
ei

∑n
j=1 ajφX(d~1)

)
= Re

(
ei

∑n
j=1 aj |φX(d~1)|eiArg(φX(d~1))

)
= |φX(d~1)| cos

( n∑
j=1

aj +Arg(φX(d~1))
)

and thus
g
X,f

(d) = |φX(d~1)|.

�

Besides giving us the means to investigate reasonableness, Theorem 5.1 also implicitly tells us in
one dimension which a’s maximize E cos(a+ dX). Note that the points of maximization can move
around in a discontinuous way, as the following example demonstrates.

Example 5.2. Let X be a dart taking values in R such that P (X = 1) = P (X = −1) = 1/2. The
characteristic function of X is φX(t) = cos(t), and by Theorem 5.1 we see that X is not reasonable.
Furthermore, by the same theorem, E(cos(a+dX)) is always optimized at a = −Arg(φX(d))+2kπ,
k ∈ Z, and so as d changes, the optimal place to aim switches back and forth between 2kπ and
π + 2kπ.

Remark 5.3. (i) Note that when d ≥ 2 the set of a’s which maximizes (5.1) is very large. For any
fixed a1, ..., an−1, there are infinitely many an such that a = (a1, ..., an) maximizes Ef(a+ dX).
(ii) Theorem 5.1 implies that if φX(d~1) = 0, then it does not matter where we aim when we are at
distance d.

There are two simple ways of combining random variables, adding independent copies or taking
convex combinations. Using Theorem 5.1 and elementary properties of characteristic functions
(including the fact that the characteristic function of a symmetric random vector is real-valued) one
easily obtains the following two corollaries.

Corollary 5.4. Let X and Y be two independent darts taking values in Rn and let f(x) :=

cos
(∑n

j=1 xj

)
. If (X, f) and (Y, f) are both reasonable, then (X + Y, f) is also reasonable.

Corollary 5.5. Let X and Y be two independent darts taking values in Rn which are symmetric
about the origin and let f(x) := cos

(∑n
j=1 xj

)
. If (X, f) and (Y, f) are both reasonable, then (Z, f)

is also reasonable, where Z is any convex combination of X and Y .

Remark 5.6. A special case would be if X is a point mass of weight 1 at 0 and Y is a standard
normal distribution. Then any convex combination of them would be reasonable with respect to
cos(x). However, one can check (by computing the characteristic function) that if we modify Y by
adding a constant but leave X as is, then any nontrivial convex combination will not be reasonable
with respect to cos(x).

5.2. Two point masses and almost periodicity. We now move on to the proof of Theorem 1.11 and
Proposition 1.12.
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Proof of Theorem 1.11: We first prove the first statement concerning random variables.
We begin by giving the idea of the proof. The characteristic function φd(t) for the (normalized)

discrete component of the distribution is what is called almost periodic. This means it is periodic
up to a small error. Since there is at least two point masses, |φd(t)| becomes less than 1. Therefore,
by almost periodicity, |φd(t)| is not monotone. We now need to make sure, in view of Theorem 1.8,
that the contribution of the continuous part of the characteristic function, |φc(t)|, does not destroy
this nonmonotonicity. However, it is known that |φc(t)| goes to 0 in a Cesaro sense. Finally, the
almost periodicity gives us that the nonmonotonicity of |φd(t)| occurs on a periodic basis and hence
can be shown to occur when |φc(t)| is small, thereby not destroying the nonmonotonicity.

We now begin the proof. Partition the distribution of X, µX , into its atomic and continuous
pieces

µX = pµd + (1− p)µc
where µd and µc are then probability measures. We then have

φX(t) = pφd(t) + (1− p)φc(t)

where φd and φc are the characteristic functions corresponding to µd and µc.
First, we know from Chung (2001, Theorem 6.2.5, p. 164) that

lim
T→∞

1

T

∫ T

0
|φc(t)|2dt = 0.

Since φc(t) is also uniformly continuous, it follows that for every ε > 0, L and M , there exists
x = x(ε, L,M) ≥M so that

|φc(t)| ≤ ε on [x, x+ L].

Next, since there are at least two point masses, µd is nondegenerate and hence |φd(t)| is not
constant. In particular, there exists t0 > 0 and ε0 > 0 so that

|φd(t0)| < 1− ε0.

Next it is known (see Bisgaard and Sasvári, 2000) that φd(t) is an almost periodic function. This
implies (see Bisgaard and Sasvári, 2000) that there exists L so that every interval of length L in R
contains a τ so that

‖φd(t+ τ)− φd(t)‖∞ <
ε0
10
. (5.2)

With this L, by the above, choose x = x(pε010 , L, t0) ≥ t0 so that

|φc(t)| ≤
pε0
10

on [x, x+ L]. (5.3)

Choosing now τ ≥ 0 as above in the interval [x− t0, x− t0 + L], we have by (5.2) that

|φd(t0 + τ)| < 1− 3ε0
4
.

This implies, using (5.3), that

|φX(t0 + τ)| < p(1− 3ε0
4

) +
(1− p)pε0

10
≤ p(1− ε0

2
).

Next, choose y = y(pε010 , L, t0 + τ) ≥ t0 + τ so that

|φc(t)| ≤
pε0
10

on [y, y + L]. (5.4)

Choosing now τ ′ as above in the interval [y, y + L], we have by (5.2) that

|φd(τ ′)| > 1− ε0
10
.
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This implies, using (5.4) that

|φX(τ ′)| > p(1− ε0
10

)− (1− p)pε0
10

≥ p(1− ε0
5
).

We therefore have that τ ′ ≥ t0 + τ > 0 but

|φX(τ ′)| ≥ p(1−
ε0
5
) > p(1− ε0

2
) ≥ |φX(t0 + τ)|.

This implies that |φX(t)| is not decreasing in t and hence by Theorem 5.1, (X, cos(x)) is not
reasonable.

The random vector case easily follows from the 1-dimensional case just proved, the fact that
if X has at least two point masses, then at least one of the marginals has two point masses and
Proposition 2.9. �

Proof of Proposition 1.12: Assume that X is reasonable with respect to cos(x). Then, by Theo-
rem 1.8, |φX(t)| must be decreasing in t on [0,∞). However, by Chung (2001) (Theorem 6.2.5, p.
164) we have, since the distribution is continuous, that

lim
T→∞

1

T

∫ T

0
|φX(t)|2dt = 0.

Together these imply that φX(t) goes to zero as t→∞, which gives a contradiction. Thus X is not
reasonable with respect to cos(x). �

5.3. An example with a phase transition. We now move on to the proof of Theorem 1.13.

Proof of Theorem 1.13: By Theorem 5.1 X is reasonable with respect to cos(x) if and only if |φX(d)|
is decreasing in d, d > 0. Due to independence, the characteristic function of X is

φX(d) = φX1(d)φX2(d) = (1− p+ peid)exp(−σ2d2/2).
The absolute value of this is decreasing if and only if

|φX(d)|2 =
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
exp(−σ2d2)

is decreasing. This in turn is decreasing if and only if its derivative with respect to d is nonpositive
on [0,∞). We have that

d
dd
(
|φX(d)|2

)
= −2exp(−σ2d2)

[
σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d)

]
and thus X is reasonable with respect to cos(x) if and only if

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d ≥ 0.

Note that if p = 1/2, then it is easy to see that |φX(π + 2mπ)| = 0 for all m ∈ N, but the
characteristic function is still not identically zero, and is thus not decreasing. Now assume that
p 6= 1/2. We have that

p2 + (1− p)2 + 2(1− p)p cos(d) = |1− p+ peid|2 ≥ |1− 2p|2 > 0, ∀d.
Thus

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ σ2d|1− 2p|2 + (1− p)p sin(d).

As sin(d) ≥ 0 for d ∈ [0, π], it is easy to see that if σ2π|1− 2p|2 ≥ (1− p)p then

σ2d
(
p2 + (1− p)2 + 2(1− p)p cos(d)

)
+ (1− p)p sin(d) ≥ 0, ∀d ≥ 0.

Thus p 6= 1/2 and σ2 ≥ (1 − p)p/(π|1 − 2p|2) is a sufficient condition for X to be reasonable with
respect to cos(x).
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Since, for all p ∈ (0, 1), the Fourier transform of Bern(p) has a zero in the complex plane, the
final claim follows from Theorem 1.15. �

6. Compactly supported darts

In this section, we prove Theorems 1.14 and 1.15.

Proof of Theorem 1.14: In view of Proposition 3.1, it is sufficient to find a bounded continuous
payoff function with respect to which X is not reasonable. Next, by Proposition 2.9, it then suffices
to show that this holds in one dimension.

By Lukacs (1970) (see Theorem 7.2.3, p. 202) we have that the characteristic function of X, φX ,
is an entire function with infinitely many zeros, none of which of course lie on the imaginary axis.
Let z0 be any zero of φX . As the characteristic function is entire, all of its zeros are isolated, and
thus there exists a d0 > 1 such that φX(d0z0) 6= 0.

Now let c, ω ∈ R be defined so that

z0 = ω − ic, ω 6= 0

and define the function f : R→ R by

f(x) := ecx cos(ωx) = Re
(
e(c+iω)x

)
= Re

(
eiz0x

)
.

Note that f is not bounded. For any d > 0 and a ∈ R we have that

Ef(a+ dX) = ecaRe
(
eiωaEeiz0dX

)
= ecaRe

(
eiωaφX(dz0)

)
(6.1)

and so by taking d = 1 we get
Ef(a+X) = 0, ∀a.

Furthermore, for a0 := −Arg(φX(d0z0))/ω this gives us

Ef(a0 + d0X) = exp
(
− cArg(φX(d0z0))

ω

)
|φX(d0z0)| > 0

Since d0 > 1, this gives us the type of nonreasonable behavior we are after. We now however have
to modify f so that it is bounded while maintaining this behavior.

As X is bounded, there is a B > 0 such that P (d0|X| ≤ B) = 1. Now let us define the payoff
function h by h(x) := f(x) for |x| ≤ |a0|+B, h(x) := − sup|y|≤|a0|+10B(|f(y)|) for |a0|+ 2B ≤ |x|,
and for |a0|+B ≤ |x| ≤ |a0|+ 2B it is defined as

h(x) :=
|x| − (|a0|+B)

B

(
− f(x)− sup

|y|≤|a0|+10B
(|f(y)|)

)
+ f(x).

Note that h is continuous and bounded and that
h(x) ≤ f(x), |x| ≤ |a0|+ 10B

h(x) ≤ 0, |a0|+ 2B ≤ |x|.

To see the first of these inequalities, note that for |a0|+B ≤ |x| ≤ |a0|+ 2B, h(x) is equal to f(x)
plus a nonpositive term.

With this definition we have that

Eh(a0 + d0X) = Ef(a0 + d0X) > 0

and
Eh(a+X) ≤ Ef(a+X) = 0, 0 ≤ |a| ≤ |a0|+ 9B

Eh(a+X) ≤ 0, |a0|+ 9B ≤ |a|.
Thus g

X,h
(1) ≤ 0 but g

X,h
(d0) > 0 implying that (X,h) is not reasonable. �
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Remark 6.1. 1. Note that in (6.1), if c and φX(dz0) are nonzero, then one can make Ef(a + dX)
arbitrarily large by choosing a appropriately. Thus if we allowed for unbounded payoff functions,
we would have that g

X,f
(d) ∈ {0,∞} for all d > 0.

2. The second half of the proof applies more generally and shows that if one has a compact dart
and a continuous function which is “nonreasonable”, then f can be modfied to be bounded and
continuous.

Proof of Theorem 1.15: The same proof works for both statements. By the proof of Theorem 1.14,
we have that if z0 = ω − ic, ω 6= 0 is a zero of the Fourier transform within its strip of analyticity
and

f(x) := ecx cos(ωx) = Re
(
e(c+iω)x

)
= Re(eiz0x),

then
sup
a∈R

Ef(a+X) = 0

and for d slightly larger than 1,
sup
a∈R

Ef(a+ dX) > 0.

We can now apply Proposition 3.2 to conclude that X is not reasonable against some continuous
payoff function. �

7. Having a point mass implies not reasonable

In this section, we prove Theorem 1.16.

Proof of Theorem 1.16: In view of Proposition 3.1, it is sufficient to find a bounded continuous
payoff function with respect to which X is not reasonable.

We assume without loss of generality that P (X = 0) > 0. Since X = (X1, ..., Xn) is nonde-
generate, at least one of X1, ..., Xn must be nondegenerate which we assume to be X1. Let h be
defined by h(x) = x1. If we find a payoff function k for X1 so that (X1, k) is not reasonable, then by
Proposition 2.9, we will have that (X, k◦h) is not reasonable. Also, k being bounded and continuous
implies that k ◦ h is also. Hence it suffices to consider the 1-dimensional case.

If X1 has two or more point masses, then Theorem 1.11 yields our function k. Otherwise, we
may assume that X1 has only 0 as a point mass. In view of Proposition 3.1, we need only find a
continuous bounded payoff function with respect to which X1 is not reasonable.

In this case, for all δ ∈ (0, 1/2) we define

kδ(x) =


1− |x|δ , |x| ≤ δ
0, δ < |x| < 1− δ
P (X1=0)

2 · ( |x|δ + 1− 1
δ ), 1− δ ≤ |x| ≤ 1

P (X1=0)
2 , |x| ≥ 1.

Note that kδ is continuous and bounded by 1 in absolute value for all δ. It is easy to show that for
any fixed δ

lim
d→∞

g
X,kδ

(d) ≥ P (X1 = 0) +
P (X1 = 0)

2
,

and so we only need to show that there exist d > 0 and δ such that g
X1,kδ

(d) < P (X1 = 0)+ P (X1=0)
2 .

We will do this by showing that we can find d > 0 and δ so that g
X1,kδ

(d) is arbitrarily close to
P (X1 = 0).

For any ε > 0 we can choose a d0 > 0 such that

P
(
|d0X| >

1

2

)
< ε.
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Next, using Lemma 2.7, it can easily be shown that

lim
δ→0

(
g
X1,kδ

(d0)
)
≤ P (X1 = 0) +

P (X1 = 0)

2
ε.

Thus there exist d > 0, δ ∈ (0, 1/2) such that

g
X1,kδ

(d) < P (X1 = 0) +
P (X1 = 0)

2
as desired. �

The following example demonstrates other interesting things which can occur with a single point
mass. Namely, there is a pair (X, f) with f bounded such that g

X,f
(d) is strictly increasing in d.

Let X have law
µX =

δ0
2

+
µZ
2

where Z is N(0, 1). Let f be a payoff function on R defined by

f(x) =


1, x = 0

0, 0 < |x| < 1
1
2 , |x| > 1.

It is elementary and left to the reader to check that

g
X,f

(d) =
1

2
+

1

4
P (|Z| > 1

d
).

Note that it is impossible to construct an example of a strictly increasing g
X,f

(d) where f is bounded
and continuous, as it can be shown that for any dart X and bounded continuous payoff function f

lim
d→0

g
X,f

(d) = sup
x
f(x) = sup

d>0
g
X,f

(d).

8. Singular measures and reasonableness

In this section, we prove Theorem 1.17. We mention that the proof is similar to the proof of
Theorem 1.16.

Proof of Theorem 1.17: In view of Proposition 3.1, it is sufficient to find a bounded payoff function
with respect to which X is not reasonable.

Write the distribution of X as pµs+(1−p)µac where p > 0, µs is a singular probability measure,
µac is an absolutely continuous probability measure and N is a Lebesgue null set on which µs is
concentrated. Without loss of generality N ⊆ [−1, 1]. We can assume that p < 1 and µac is not
compactly supported since otherwise the result would follow from Theorem 1.14.

We consider the payoff function f which is 2/p on N , 1 on [−2, 2]c and 0 otherwise.
From distance 1, we can get payoff 2 + P(|X| > 2) by aiming at the origin. Assume now that

we are at distance t < 1. If we aim at some point in [−1− t, 1 + t]c, then we cannot hit the set N
noting that any translate and scaling of µac gives probability 0 to N . Therefore, in this case, our
expected payoff would be at most 1. On the other hand, if we aim at some point in [−1− t, 1 + t],
our payoff would be at most 2+ P(|X| > 1

t − 1). For t sufficiently small, 1
t − 1 > 2 and X will have

some mass between distance 2 and distance 1
t − 1. For such t we will score worse at distance t than

at the larger distance 1, and therefore (X, f) is not reasonable. �

9. Closure properties

In this section, we prove Theorems 1.20 and 1.21.
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9.1. Independent sum of reasonable darts.

Proof of Theorem 1.20: The theorem in fact is true for any class F satisfying the following property.{
h : Rn → R | h(x) := Ef(x+

m∑
i=1

diXi), di ≥ 0 ∀i, f ∈ F ,
}
⊆ F ,

for any independent darts X1, ...., Xm. One easily checks that the classes of payoff functions listed
in the statement of the theorem all satisfy this property. We now prove the theorem for any class
F satisfying this property.

It is easily seen by induction that it suffices to prove the m = 2 case. Let X,Y ∈ XF . Fix an
f ∈ F , and choose d1, d2, D1, D2 ≥ 0 such that d1 ≤ D1, d2 ≤ D2 and define the function

h(x) = Ef(x+ d1X).

Since h ∈ F by assumption, we have that Y is reasonable with respect to h, and thus

sup
a
Eh(a+ d2Y ) ≥ sup

a
Eh(a+D2Y )

and from this we get, using the independence of X and Y , that

sup
a
Ef(a+ d1X + d2Y ) = sup

a

∫
Ef(a+ d1X + d2y)dµY (y)

= sup
a

∫
h(a+ d2y)dµY (y) = sup

a
Eh(a+ d2Y )

≥ sup
a
Eh(a+D2Y ) = sup

a

∫
h(a+D2y)dµY (y)

= sup
a

∫
Ef(a+ d1X +D2y)dµY (y)

= sup
a
Ef(a+ d1X +D2Y ).

And by using the same argument again with X and Y reversed, it follows that

sup
a
Ef(a+ d1X + d2Y ) ≥ sup

a
Ef(a+D1X +D2Y )

as desired. This clearly implies that X + Y ∈ XF . �

9.2. Convergence in distribution.

Proof of Theorem 1.21: (i) Let f ∈ C0(Rn) and fix d > 0. We will begin by showing that

lim inf
j→∞

g
Xj,f

(d) ≥ g
X,f

(d)

which holds even if f is only bounded. To see this, one fixes a ∈ Rn, notes that

lim inf
j→∞

g
Xj,f

(d) ≥ lim inf
j→∞

Ef(a+ dXj) = Ef(a+ dX)

and then takes a supremum over a.
The other direction requires a little more work and uses the fact that f ∈ C0(Rn). One first notes

(by aiming near infinity) that for any dart Y , g
Y,f

(d) ≥ 0. One also easily notes that if g
Y,f

(d) > 0,
then the supremum in the definition of g

Y,f
(d) is obtained.

Now if g
Xj,f

(d) does not go to g
X,f

(d), then there exists ε0 > 0 and some subsequence {jk} such
that

lim
k→∞

g
Xjk

,f
(d) = g

X,f
(d) + ε0.
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By the above statements, the supremum in the definition of g
Xjk

,f
(d) is obtained for large k; let

ajk be some such point. Using tightness of {Xn}∞n=1, one has that

lim
a→∞

Ef(a+ dXj) = 0

uniformly in j from which it easily follows that {ajk} is contained in a bounded set. One can
therefore extract a further subsequence which converges to some a∞. We may assume to simplify
the notation that the whole sequence converges.

We now have that ajk +Xjk converges to a∞ +X in distribution and hence

lim
k→∞

g
Xjk

,f
(d) = lim

k→∞
Ef(ajk + dXjkt

) = Ef(a∞ + dX) ≤ g
X,f

(d)

giving a contradiction.

(ii) Let Xk be uniform distribution on {0, 1/k, 2/k, . . . , 1} and X be uniform distribution on [0, 1].
Let f be the following bounded continuous function. It will be zero on

(⋃∞
m=0[2m−

1
10 , 2m+1+ 1

10 ]
)c

and on [2m − 1
10 , 2m + 1 + 1

10 ] it will be any bounded continuous function satisfying (1) it takes
values in [0, 1], (2) it takes the value 1 at each of the points {2m, 2m+1/m, 2m+2/m, . . . , 2m+1},
(3) it takes the value 0 at the two endpoints of the interval and (4) the set of points in the interval
where f is zero, has Lebesgue measure at least .9. We will then have that for every k, g

Xk,f
(1) = 1

(by aiming at 2k) while it is clear that g
X,f

(1) ≤ 1/2.

(iii) is very easy and left to the reader.

(iv) By (i), it follows that X is reasonable with respect to C0(Rn). It follows now from Proposi-
tion 3.1 that X is reasonable with respect to Cb(Rn) as desired. �

10. Reasonable payoff functions

In this section, we prove Proposition 1.23

Proof of Proposition 1.23: Fix a dart X taking values in Rn. For any 0 < d1 < d2 we have by the
weak unimodality of f that

g
X,f

(d1) = sup
a
Ef(a+ d1X) = sup

a
Ef
(d1a
d2

+ d1X
)

= sup
a
Ef
(d1
d2

(a+ d2X)
)
≥ sup

a
Ef(a+ d2X) = g

X,f
(d2).

�

Remark 10.1. If f : Rn → R has the property that there exists y in Rn such that f(rx + y) is
decreasing in r, where r in [0,∞), for all x in Rn, then f is of the same type as a weakly unimodal
function, and is thus reasonable.

Note also that if f(x) = arctan(||x||), then it is easy to check that for any dart X, g
X,f

(d) =
supx f(x) for all d implying that (X, f) is reasonable. The example can be extended by noting that
any payoff function f with the property that there exist arbitrarily large balls in Rn where f(x)
is arbitrarily close to supx∈Rn f(x) would also be reasonable for any dart X and that g

X,f
(d) =

supx f(x) for all d.
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11. Questions

Question 11.1. Is there a dart which is reasonable w.r.t. all bounded payoff functions, but not all
payoff functions?

Question 11.2. Is there a dart which is reasonable w.r.t. all (bounded) continuous payoff functions,
but not all (bounded) payoff functions?

Question 11.3. If (X, f) and (Y, f) are reasonable, does it follow that (X+Y, f) is reasonable (where
of course X and Y are independent)?

Question 11.4. Are there reasonable payoff functions which are not of the same type as a weakly
unimodal function nor have the behavior exemplified by arctan(x)?

Question 11.5. Is the second statement in Theorem 1.21(i) true if the payoff function is only assumed
to be continuous and bounded?

Question 11.6. Is there an example of a reasonable dart which is not selfdecomposable?

Question 11.7. Is there an example of a reasonable one-dimensional dart which is not unimodal?

Question 11.8. Is there an example of a reasonable dart which is not infinitely divisible?

Question 11.9. Is there an example of a reasonable nondegenerate one-dimensional dart which is
not absolutely continuous?

Note that if the answer to Question 11.7, 11.8, or 11.9 is yes, then this would imply that the answer
to Question 11.6 is also yes.
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