
ALEA, Lat. Am. J. Probab. Math. Stat. 18, 1773–1799 (2021)
DOI: 10.30757/ALEA.v18-66

A combinatorial representation for the invariant measure
of diffusion processes on metric graphs

Michele Aleandri, Matteo Colangeli and Davide Gabrielli

Università LUISS Guido Carli, Viale Romania, 32, 00197 Roma, Italia.
E-mail address: maleandri@luiss.it

Università dell’Aquila, Via Vetoio, Loc. Coppito, 67010 L’Aquila, Italia.
E-mail address: matteo.colangeli1@univaq.it

Università dell’Aquila, Via Vetoio, Loc. Coppito, 67010 L’Aquila, Italia.
E-mail address: davide.gabrielli@univaq.it

Abstract. We study a generalization to a continuous setting of the classical Markov chain tree
theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique
invariant measure has an atomic component on the vertices and an absolutely continuous part
on the edges. We show that the corresponding density at x can be represented by a normalized
superposition of the weights associated to metric arborescences oriented toward the point x. A
metric arborescence is a metric tree oriented towards its root. The weight of each oriented metric
arborescence is obtained by the product of the exponential of integrals of the form

∫
b
σ2 , where b

is the drift and σ2 is the diffusion coefficient, along the oriented edges, for a weight for each node
determined by the local orientation of the arborescence around the node and for the inverse of the
diffusion coefficient at x. The metric arborescences are obtained by cutting the original metric
graph along some edges.

1. Introduction

A powerful construction for finite state Markov chains is the so-called Markov Chain Matrix Tree
Theorem (Anantharam and Tsoucas, 1989; Freidlin and Wentzell, 2012; Pitman and Tang, 2018).
In the case of an irreducible continuous time finite state Markov chain the unique invariant measure
is obtained as a normalized superposition of weights associated to some combinatorial structures.
The combinatorial structures considered are the rooted arborescences of the transition graph. A
rooted arborescence of a directed graph is a directed spanning tree-like subgraph oriented towards a
single vertex x, called the root (see the precise definition 2.1). The transition graph of the chain is
a directed graph with vertices corresponding to the states and directed edges corresponding to the
possible transitions. For an irreducible chain the graph is strongly connected. The weight of each
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arboresence is the product of the rates of all the edges that it contains. The invariant measure at
x coincides with the normalized sum of the weights of all arborescences rooted at x.

A classical result in probability theory is the diffusive rescaling of a class of random walks with
convergence to a diffusion process. The prototype of this class of results is the celebrated Donsker’s
Theorem. A diffusive random walk is obtained, generically, by weakly perturbing a reversible random
walk. The most general reversible random walk on a graph is determined by some positive weights
associated to vertices and symmetric positive weights associated to the edges. In the scaling limit,
we consider a grid of mesh (i.e. the distance between nearest neighbors vertices) 1/N embedded
into Rd and consider the weights on the vertices and edges as discretized versions of smooth positive
functions that we call α and Q respectively. Likewise, the weak perturbation is obtained by the
discretization of a smooth vector field F . The family of diffusive walks is therefore parameterized
by the triple (α,Q, F ). Correspondingly, the family of limiting processes, which are the diffusion
processes, are parameterized by the pair (b, σ) (see equation (3.1)) where the vector field b is called
the drift and the matrix σ is called the diffusion coefficient. The correspondence between (α,Q, F )
and (b, σ) is not one-to-one and a whole class of microscopic models converge to the same diffusion
process.

A very natural question is whether the combinatorial representation of the invariant measure for
the random walks has a corresponding continuous version for the diffusion processes. We answer
this question positively in the case of diffusions on metric graphs. A metric graph is a metric space
that is obtained by gluing the extrema of a finite number of bounded segments to some vertices.
A diffusion process on a metric graph is a process that evolves like a diffusion along each edge and
then, when reaching a vertex, it evolves by possibly spending some random time therein and by
then picking up at random a new edge upon which the evolution continues.

We prove in this paper that the invariant measure of a diffusion process on a metric graph has a
representation that is the continuous counterpart of the combinatorial representation of the matrix
tree theorem. More precisely we have that the density of the invariant measure at a point x belonging
to an edge is obtained as follows. Given the metric graph we can obtain a metric tree by cutting
some edges. Each edge can be cut in different ways at a point parameterized by a real parameter.
From the metric tree we obtain a metric arborescence rooted at x by simply orienting all the edges
towards x. To each metric arborescence we associate a weight. The weight is obtained as the product
of several terms, one for each edge and one for each vertex. The weight on an edge is given by the
exponential of

∫
se where the integral is an integral along the edge e according to its orientation

on the arborescence and se := be
σ2
e
, where be and σ2

e are the drift and the diffusion coefficients on
the metric edge e. The weight associated to each node depends on the local orientation of the
arborescence around the vertex (all apart one edge are oriented entering into the vertex) and the
parameters describing the stochastic evolution at the node. In the continuous setting there is an
extra factor, associated with the root x, that appears in the weight of each arborescence and is
given by σ−2

e (x). The value of the invariant measure at each node is then adjusted depending again
on the behaviour of the model on the vertices.

The strategy of the proof is the following. Before we compute the scaling limit of the combinatorial
construction of the matrix tree theorem for one dimensional diffusive random walks on a ring. We
obtain that, for any triple (α,Q, F ) that correspond to the same (b, σ), the limit is the same and
coincides with the continuous construction above described. In this case a metric arborescence is
obtained from the ring by just one single cut. The proof of this universal scaling limit is short and
informal. For a general metric graph we obtain a generalization of this formula involving integrations
over a finite number of cut points. The number of cuts depends on the geometric structure of the
graph. The proof in the general case is instead obtained extending in a natural way the formula for
the ring to a general metric graph and then using the characterization of the invariant measure in
terms of the generator of the process.
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There is a large literature concerning stochastic processes on metric graphs, see for example
Freidlin and Sheu (2000); Freidlin and Wentzell (1993); Hajri and Raimond (2014); Kostrykin et al.
(2012). Models with equations and processes defined on metric graphs are used in several different
applicative frameworks, like quantum mechanics (Berkolaiko et al., 2006), traffic flow (Garavello and
Piccoli, 2006) and many others (Berkolaiko et al., 2006). Our representation could be very useful in
studying weak noise asymptotics (Freidlin and Wentzell, 2012) of diffusions on metric graphs and
in this limit it is very strongly connected with Hamilton Jacobi equations on metric graphs (Camilli
and Marchi, 2013).

We discuss the problem in a geometric framework that consists of several one dimensional spaces
non-trivially glued. We believe that a continuous version of the combinatorial construction exists
in much more general frameworks, as for example for domains in Rd with d ≥ 2. In this sense this
paper is a first step towards a proof of an equation of the form

µ(x) =
1

σ2(x)Z

∫
Ω
D(τx)e

∫
Ω

(
b(y),σ−2(y)v(y)

)
.

In the above equation Ω is a domain of Rd and x ∈ Ω;
∫
D(τx) is an integration over arborescenses

rooted at x, the vector v(y) denotes the direction at y of the arborescence τx and (·, ·) denotes
the Euclidean scalar product. A challenge here is to give a meaning to all these objects. The
generalization to different state spaces and different Markov processes is also interesting and even
more challenging.

There are also other natural and interesting issues to be discussed in the framework of metric
graphs. These are for example: a determinantal representation and interpretation of the formulas,
like in the discrete case; the relationship with the discrete time Markov chain obtained observing
just the sequence of vertices visited, see e.g. Fitzsimmons and Kuter (2015), Jehring (2009); the
connection with the theory of electrical networks and harmonic functions on metric graphs, see
respectively Berkolaiko et al. (2006), Fitzsimmons and Kuter (2015). We are not going to discuss
here these issues.

The paper is organized as follows.
In Section 2 we shortly recall the classic Markov chain matrix tree theorem for finite state irre-

ducible continuous time Markov chains.
In Section 3 we discuss briefly one dimensional diffusion processes. Then we recall the scaling

limit of diffusive random walks giving the relation between the microscopic triple (α,Q, F ) and the
macroscopic pair (b, σ). We discuss the scaling limit of the discrete arborescences and the corre-
sponding weights obtaining formulas written in terms of continuous metric arborescences. Finally,
we show by a direct computation that the representations obtained in the case of the circle and the
interval give the correct result.

In Section 4 we describe shortly the metric graphs.
In Section 5 we discuss the definition of a diffusion process on a metric graph. This is done

by exhibiting the form of the generator that depends on a collection of parameters related to the
behaviour of the process in correspondence of the vertices.

In Section 6 we prove the validity of the representation formula for the invariant measure of a
diffusion on a metric graph in terms of a normalized sum of weights associated with continuous
metric arborescences obtained by cutting the original metric graph at a finite number of points.
We show moreover that the reversibility condition corresponds to the reversibility of a finite state
effective Markov chain evolving on the vertices of the graph.

2. Markov chain tree Theorem

Here we briefly recall a classic representation of the invariant measure of a finite irreducible
Markov chain (see for example Freidlin and Wentzell, 2012 or Pitman and Tang, 2018 for a recent
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general overview or Anantharam and Tsoucas, 1989 for a simple proof). The general framework is
the following. We consider a Markov chain having transition graph (V,E). The finite set V is the
state space while the set of directed edges E represents the collection of possible transitions of the
chain. If (x, y) ∈ E we have that the rate r(x, y) of jump from x to y is strictly positive. We say
that the directed edge (x, y) exits from x and enters into y.

The stationarity condition that the invariant measure π has to satisfy is given by

π(x)
∑

y:(x,y)∈E

r(x, y) =
∑

y:(y,x)∈E

π(y)r(y, x) , ∀x ∈ V . (2.1)

If the transition graph (V,E) is strongly connected (any two points can be connected by directed
paths) then the chain is irreducible and the invariant measure is unique and strictly positive Norris
(1998). We restrict to this case.

Definition 2.1. Let (V,E) be a directed graph. An arborescence τ directed toward x ∈ V is a
spanning subgraph of (V,E) such that:
1) For each vertex y 6= x there is exactly one directed edge exiting from y and belonging to τ ;
2) For any y ∈ V there exists one directed path from y to x in τ ;
3) There are no edges exiting from x.
Let Tx the set of arborescences of (V,E) directed toward x ∈ V .

If the chain is irreducible, then Tx is not empty for any x.
Equivalently the arborescences in Tx can be characterized as follows. Take the transition graph

(V,E) and construct the corresponding undirected graph (V, E) obtained simply transforming each
directed edge into an undirected one and removing all the multiple undirected edges obtained.
Indeed we can have multiple undirected edges since more than one single directed edge may have
the same extremal vertices. We allow no more than one single undirected edge connecting two
vertices. An element τ ∈ Tx is characterized by the fact that if we ignore orientation of the edges
of τ we obtain a spanning tree of (V, E). Moreover, any directed edge in τ exiting from y 6= x is
directed according to the orientation obtained going along the unique unoriented path in the tree
going from y to x.

To any arborescence τ we associate a weight given by

R(τ) :=
∏
e∈τ

r(e) , (2.2)

where r : E → (0,∞) are the transition rates. In the above formula the product is over all the
directed edges e that are edges of the arborescence τ .

The Markov chain matrix tree Theorem claims that the invariant measure of the chain is given
by

µ(x) =

∑
τ∈Tx R(τ)∑

z∈V
∑

τ∈Tz R(τ)
. (2.3)

See Pitman and Tang (2018) for a interpretation in terms of determinants of (2.3).

3. One dimensional diffusions

Let I be a finite interval in R and let us consider a one dimensional diffusion process determined
by a stochastic differential equation

dX(t) = b(X(t))dt+ σ(X(t))dW (t) (3.1)

where b is a C1-Lipschitz function, called the drift, and σ > 0 is a strictly positive C2-Lipschitz
function, called the diffusion coefficient. Under these assumptions we have that the invariant mea-
sure µ = µ(x)dx has a C2-density (this is a consequence of the following explicit formulas but see
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also Sections 4.1, 4.2 and 4.3 of Pavliotis, 2014) that is a strong solution to
1

2
∂2
x

(
σ2(x)µ(x)

)
− ∂x

(
b(x)µ(x)

)
= 0 , (3.2)

where x belongs to the interior of I. We assume strong regularity of the coefficients since we con-
centrate on the geometric construction of the invariant measures and try to minimize the unrelated
technical details. Equation (3.2) can be naturally written as follows. Consider a measure with
C2-density ν = ν(x)dx and define the corresponding probability current as

J(ν) := −1

2
∂x
(
σ2(x)ν(x)

)
+ b(x)ν(x) . (3.3)

The stationarity condition for the invariant measure µ can be written in terms of the current (3.3)
in one of the two equivalent conditions:

i) ∂xJ(µ) = 0
ii) J(µ) = constant . (3.4)

Let us write

s(x) :=
b(x)

σ2(x)
; S(x) := 2

∫ x

x∗
s(y)dy , (3.5)

where x∗ is an arbitrary point. The general solution to (3.2) on R is

µ(x) =
1

σ2(x)

[
k1 + k2

∫ x

x∗
e−S(y)dy

]
eS(x), (3.6)

where ki are constants that have to be determined in order to obtain the invariant measure of (3.1).
This procedure depends on the particular geometric framework and boundary conditions that we
consider. Within the class of stationary measures which satisfy Eq. (3.2), a special mention goes to
the so-called equilbrium measures which characterize reversible processes, and for which J(µ) = 0
holds. This case is tackled in the next example and, more extensively, also in Theorem 6.3 below.
Example 1: Let us first consider the special case when the process (3.1) is defined on an interval
[a, b] with reflecting boundary conditions (see forthcoming Section 5 for a detailed discussion of
boundary conditions). Since there is no flow across the boundaries, the stationarity condition (3.4)
coincides with J(µ) = 0, the process is always reversible and we easily get

µ(x) =
eS(x)

Zσ2(x)
, (3.7)

where Z is a normalization factor. This means that we have to fix in (3.6) k2 = 0 and the value of
k1 is then fixed by the normalization condition.
Example 2: Consider now the process (3.1) on a ring of length one S1 := R/Z. This is equivalent to
fixing the coefficients in (3.1) to be periodic with period one. Given z ∈ R we denote by π(z) ∈ S1 its
projection. We draw S1 as a ring on which the anticlockwise direction corresponds to the direction
of the motion of π(z + t) for increasing t.

Given x 6= y ∈ S1 we call I±[x, y] the closed intervals containing the points of S1 encountered
moving on the ring from x to y respectively anticlockwise for the + sign and clockwise for the −
sign.

We will use integrals over oriented intervals of S1 so that our intervals will be always oriented.
In particular the intervals I±[x, y] have always the orientations from x to y. We have therefore
that I+[x, y] and I−[y, x] have the same support but opposite orientations since I+[x, y] is anti-
clockwise oriented while I−[y, x] is clockwise oriented. When we write S1 we mean always the ring
anticlockwise oriented.

Consider I an oriented interval of S1 with extrema x, y and orientation from x to y. Let z1, z2 ∈ R
such that x = π(z1) and z2 > z1 is the minimal element of R such that y = π(z2). If the orientation
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of the interval I is the anticlockwise one then we define for a function f : S1 → R the integration
over the oriented interval as ∫

I
f(s)ds :=

∫ z2

z1

f(z)dz . (3.8)

If Ī is an interval of S1 having the same support as I but opposite orientation then we define∫
Ī
f(s)ds = −

∫
I
f(s)ds . (3.9)

The diffusion process (3.1) on S1 may be non-reversible. The condition of reversibility (see for
example Bakry et al., 2014; Colangeli et al., 2011) is s(x) = ∇G(x) where G is a function defined
on S1 i.e. a periodic function of period 1. This condition is equivalent to having (recall definitions
(3.5)) ∫

S1

s(x)dx = 0 . (3.10)

In particular the function S defined in (3.5) can be interpreted as a function on the ring S1 just
as in the reversible case. In the reversible case the stationarity condition becomes J(µ) = 0 and
the invariant measure coincides with (3.7). In the non-reversible case we have a more complicated
solution. We will show that in this case the invariant measure can be naturally represented by a
continuous version of the combinatorial construction illustrated in Section 2. We will then generalize
this representation to arbitrary metric graphs.

3.1. Scaling limit. We discuss informally the diffusive scaling limit of a random walker. This is done
to obtain the invariant measure of a diffusion process as the scaling limit of the invariant measure of
the discrete walker. The computation for the scaling limit will be short and informal (but it could
easily be turned into a rigorous one): once we have obtained the limiting form of the measure we
can prove directly that this is the correct one. The aim of the computation is to show that the basic
structure of the combinatorial representation of Section 2 is preserved in the limit, which thus yields
a continuous version of the construction. This fact is shown in particular on a one-dimensional ring.

Since we want a diffusive scaling limit we need to consider reversible random walks. In particular
we consider the most general reversible nearest neighbor random walk on the discrete circle with N
sites that we consider embedded into S1 with mesh N−1. According to Andreucci et al. (2019) this
is determined by a weight function αN : V → R+ and a weight function QN : E → R+ such that
QN (x, y) = QN (y, x). A random walk is reversible if and only if the jump rates are fixed by

rN (x, y) := αN (x)QN (x, y) , y = x± 1

N
. (3.11)

We consider the case when the weight function αN is obtained by the discretization of a C2-
function α : S1 → R+ by fixing αN (x) := α(x) when x ∈ V . The weight function QN is likewise
obtained by the discretization of a C2-function Q : S1 → R+ by fixing QN (x, y) := Q

(x+y
2

)
. We

assume that α and Q are strictly positive.
We allow perturbation of rates by the switching on of a weak external field. The scaling behavior

stays again diffusive. We consider a C1-vector field F on S1. This is a C1-periodic function
F : R→ R. The discretized version is a discrete vector field FN : E → R defined by

FN (e) :=

∫
e
F (x)dx , e ∈ E , (3.12)

where the integral in (3.12) is the integral on the oriented segment going from the tail of the directed
edge e ∈ E to its head. By definition we have FN (x, x+ 1

N ) = −FN (x+ 1
N , x).
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The perturbed rates (Andreucci et al., 2019) are defined by

rFN (x, y) := rN (x, y)eFN (x,y) . (3.13)

We stress the difference between the two discretizations for FN and QN . We have indeed that
FN (x, y) = O(N−1) while instead QN (x, y) = O(1).

According to the general discussion in Andreucci et al. (2019), when the lattice is of mesh 1/N
and the rates are rescaled by a factor of N2 (diffusive rescaling) we obtain that the law of the random
walk converges to the law of a diffusion process with a forward Kolmogorov equation (Gardiner,
2009) for the evolution of the probability measures given by

∂tµt(x) = −∂xJ(µt) = ∂x

[
Q(x)∂x

(
α(x)µt(x)

)]
− 2∂x

[
α(x)Q(x)F (x)µt(x)

]
. (3.14)

Comparing (3.14) with (3.3) we obtain the relation between the macroscopic parametrization of the
diffusion process, that is given by (b, σ) and the microscopic one that is determined by (α,Q, F ).
We obtain {

σ =
√

2Qα
b = α(2QF + ∂xQ) .

(3.15)

Let us discuss the inverse transformations of (3.15). The first equation gives α = σ2

2Q . If we insert
this in the second one we get

∂xQ

2Q
= s− F . (3.16)

Since the left hand side of (3.16) is a total derivative, i.e. its integral on the circle vanishes, we have
that if a triple (Q,α, F ) satisfies (3.15) then we have∫

S1

F (x)dx =

∫
S1

s(x)dx . (3.17)

Once an external field F satisfying (3.17) has been fixed then the weights Q,α are uniquely deter-
mined as {

Q(x) = ce[S+2V ](x) ,

α(x) = σ2(x)
2c e−[S+2V ](x) ,

(3.18)

where c is an arbitrary positive constant and

[S + 2V ](x) :=

∫
I±[x∗,x]

2
(
s(z)− F (z)

)
dz , (3.19)

where x∗ ∈ S1 is an arbitrary point and the sign ± can be chosen arbitrarily since the result does
not change due to (3.17). In formulas (3.18) and (3.19) we use the notation [S + 2V ] in place of
S + 2V since in general the single functions S and V will not be well defined functions on the ring.
We use the symbol V following some classic notation for the potential even if this is the same symbol
denoting the set of vertices. Since they are very different objects there will be no risk of confusion.

Remark 3.1. The above computations are independent of the boundary conditions and they hold
also in the case that the lattice is embedded on an interval with suitably boundary conditions. In this
case the external field F can be fixed arbitrarily since for any external field the equation (3.16) can
be solved in Q on an interval. Given an arbitrary external field F , if we call V (x) := −

∫ x
x∗ F (y)dy

and S(x) := 2
∫ x
x∗ s(y)dy where x∗ is an arbitrary point of the interval, then the weights Q,α are

uniquely determined up to the choice of an arbitrary positive constant c as in (3.18).
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3.1.1. Scaling limit of the invariant measure on the ring. Recall that the discrete walker is evolving
on a discrete ring of mesh 1/N embedded into S1 and that we draw the lattice as a ring on which
the anticlockwise orientation corresponds to move from site x to site x+ 1

N .
We will use in the discrete setting the following notation similar to the continuous one. Given

x 6= y ∈ V , with the symbol I+[x, y] we mean the subgraph of (V,E) containing the vertices and
the directed edges that are visited by a walker moving from x to y anti-clockwise, x and y included.
Likewise with the symbol I−[x, y] we mean the subgraph of (V,E), x and y included, containing
the vertices and the directed edges that are visited by a walker moving from x to y clockwise. Note
that according to our definition the vertices belonging to I+[x, y] and I−[y, x] are the same but they
contain oppositely oriented edges.

We introduce the following notation

R±N (x, y) :=

{ ∏
e∈I±[x,y] r

F
N (e) y 6= x ,

1 y = x .
(3.20)

For the rates (3.13) we have that (3.20) becomes

R±N (x, y) = α−1(y)

( ∏
z∈I±[x,y]

α(z)

)( ∏
e∈I±[x,y]

Q(e)

)
e
∫
I±[x,y] F (z)dz

. (3.21)

Using the matrix tree Theorem discussed in Section 2 we can write the invariant measure for the
walker on the ring of mesh 1/N as

µN (x) =
1

ZN

∑
y∈V

R+
N (y +

1

N
, x)R−N (y, x) , (3.22)

where ZN is a normalization factor. Using (3.21), for any y we have

R+
N

(
y +

1

N
, x
)
R−N (y, x) =

(∏
z∈V

α(z)

)(∏
e∈E

√
Q(e)

)
e

∫
I+[y+ 1

N
,x]
F (z)dz

e
∫
I−[y,x] F (z)dz

α(x)Q(y, y + 1
N )

.

The product is over directed edges and for this reason there is a square root. Using the above
formula we obtain therefore that (3.22) converges to

µ(x) =
1

Z ′α(x)

∫
S1

dy
e
∫
I+(y,x) F (z)dz

e
∫
I−[y,x] F (z)dz

Q(y)
, (3.23)

where Z ′ is a suitable normalization constant.
Formula (3.23) is written in terms of the parameters of the microscopic walker. Using relation

(3.15) and its inverse we can show that for any triple (α,Q, F ) corresponding to a given (b, σ)
formula (3.23) coincides with

µ(x) =
1

Zσ2(x)

∫
S1

dy e

[ ∫
I+[y,x] s(z)dz+

∫
I−[y,x] s(z)dz

]
, (3.24)

where Z is a normalization constant. Indeed according to (3.16) we have

e
∫
I±(y,x) F (z)dz

= e
∫
I±(y,x) s(z)dz−

∫
I±(y,x)

∂zQ
2Q

(z)dz
= e

∫
I±(y,x) s(z)dz

(Q(y)

Q(x)

) 1
2

and (3.24) is obtained.
The geometric interpretation of (3.24) is very clear. Fix a point x ∈ S1 where we want to compute

the density of the invariant measure. The density is then obtained by summing some weights over
all possible continuous arborescences of S1 directed toward x. A continuous directed arborescense
is obtained by cutting S1 on a point y ∈ S1 and by orienting the segments toward x (see Figure 3.1
and Section 4 for precise definitions). The weight of the oriented continuos arborescence is obtained



Invariant measures on metric graphs 1781

x

y

Figure 3.1. A continuous arborescence oriented toward the point x obtained cut-
ting S1 on the point y and orienting I+[y, x] and I−[y, x] from y to x.

by multiplying by a factor of σ−2(x) the exponential of the sum of integrals of the form
∫
s over the

oriented segments. The construction is therefore a direct continuous generalization of the discrete
construction except for the appearance of the factor σ−2(x), related to the position of the root that
it is not present in the discrete case.

Remark 3.2. Formula (3.24) can be also be written as

µ(x) =
1

Zσ2(x)

∫ x+1

x
eS(x)−S(y)dy , (3.25)

that is a generalization of formula (2.3) in Faggionato and Gabrielli (2012) which is particularly
useful in the small noise limit. We underline that formula (3.25) holds in the general case and not
only under the condition (3.10).

3.2. Direct proof. We computed shortly the scaling limit of the Markov chain matrix tree Theorem.
We give now a direct proof that the obtained formula is the invariant measure of the limiting
diffusion process. This is an elementary fact that will however be used in the following and similar
computations will be relevant in the more general case. Once again we stress that the importance
of formula (3.24) is in the geometric interpretation.

Lemma 3.3. The unique invariant measure of the diffusion process (3.1) on S1 is given by (3.24).

Proof : Uniqueness is classic, see for example Bakry et al. (2014). We prove invariance by a direct
computation. A key property is that when y 6= x we have

∂x

[∫
I+[y,x]

s(z)dz

]
= ∂x

[∫
I−[y,x]

s(z)dz

]
= s(x) .

By this computation we deduce that if we call ψ(y, x) the integrand in (3.24), then this function is
differentiable when x 6= y and we have

∂xψ(y, x) = 2s(x)ψ(y, x) , x 6= y .

Moreover ψ has a discontinuity at y = x given by

∆ψ(x, x) = lim
ε↓0

(
ψ(x− ε, x)− ψ(x+ ε, x)

)
= e−

∫
S1 s(z)dz − e

∫
S1 s(z)dz . (3.26)
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a x b

Figure 3.2. The continuous arborescence in the case of the interval. There are no
cuts to be done and the orientation is drawn with red arrows.

Recall that as usual in the above formula we considered S1 anticlockwise oriented. Note that the
jump at the discontinuous points does not depend on x and therefore we call just ∆ψ the right hand
side of (3.26). We can proceed as follows

∂x

(∫
S1

ψ(y, x)dy

)
= ∂x

(∫
I+[x+ε,x−ε]

ψ(y, x)dy

)
+ ∂x

(∫
I+[x−ε,x+ε]

ψ(y, x)dy

)
= 2s(x)

(∫
I+[x+ε,x−ε]

ψ(y, x)dy

)
+ ψ(x− ε, x)− ψ(x+ ε, x)

+ ∂x

(∫
I+[x−ε,x+ε]

ψ(y, x)dy

)
.

The last term in the above chain can be shown to be negligible in the limit ε ↓ 0 so that we deduce
taking this limit on the right hand side of the above computation

∂x

(∫
S1

ψ(y, x)dy

)
= 2s(x)

(∫
S1

ψ(y, x)dy

)
+ ∆ψ . (3.27)

Inserting these computations into (3.3) we obtain

J(µ) = −∆ψ

2Z

which is constant and represents the typical value of the current across the ring. We have therefore
that (3.4) is satisfied and this implies that (3.24) is the unique invariant measure of (3.1) on S1.
This is because it is naturally periodic, it is not negative, normalized to one and satisfies (3.2). �

Remark 3.4. In the case of an interval [a, b] there are no cycles and once the point x where to
compute the density is fixed there are no cuts to be done. The oriented arborescence is obtained
by orienting the intervals [a, x] and [b, x] towards x, see Figure 3.2. We get from the scaling limit

µ(x) =
1

Zσ2(x)
e

[ ∫ x
a s(z)dz+

∫ x
b s(z)dz

]
. (3.28)

Formula (3.7) coincides with (3.28) since∫ x

a
s(z)dz +

∫ x

b
s(z)dz = 2

∫ x

x∗
s(z)dz + c , (3.29)

with c a suitable additive constant.
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Figure 4.3. A very simple example of metric graph: a triangle obtained suitably
gluing the 3 metric edges ei , i = 1, 2, 3 to 3 vertices vi , i = 1, 2, 3.

4. Metric graphs and metric arborescences

We give a quick and informal description of a family of metric spaces called metric graphs. We
refer for more details for example to Mugnolo (2014) or Burago et al. (2001) Section 3.2.2.

We describe a finite metric graph G = (V,E). The set of vertices V is a finite set and each element
v ∈ V is just a single point called a vertex. The set of metric edges E is also a finite set containing
|E| metric edges. An element e ∈ E is identified with an open interval e = (0, `e), `e ∈ (0,∞). A
metric graph is a metric space obtained by suitably gluing the intervals associated with the edges to
the vertices in V . More precisely, when we glue the edge e ∈ E to the vertex v ∈ V , this means that
we identify one of the two extrema of e with v. Note that, as explained in the following, the metric
edges have an intrinsic orientation (the one corresponding to increasing coordinates) and the gluing
can be done in two different ways, namely by identifying v with the endpoint corresponding to either
the coordinate 0 or to the coordinate `e. If the orientation is disregarded the two identifications
turn out to be equivalent. We allow also for a third possibility, corresponding to the case in which
v is identified with both endpoints of e, thus obtaining a ring of length `e with the marked point v.
When a vertex is identified with one endpoint of a metric edge we say that the edge is incident to
the vertex. Every endpoint of each edge must be identified with exactly one vertex and therefore we
do not allow to have endpoints of edges not identified with any vertex (i.e. the procedure ends after
exactly 2|E| identifications). Moreover me may have multiple edges. This means that we may have
two or more metric edges that have their two endpoints identified with the same pair of vertices.
If one endpoint of the metric edge e and one endpoint of the metric edge e′ are identified with the
same vertex v then automatically the two identified endpoints of the two metric edges are identified
with each other.

The metric graph is obtained starting from the collection of vertices and metric edges and per-
forming a finite number of identifications of vertices and endpoints according to the above rules.

One of the simplest possible examples is illustrated in Figure 4.3, where a triangle is obtained
gluing the 3 metric edges ei , i = 1, 2, 3, to the 3 vertices vi , i = 1, 2, 3. In particular the endpoints of
e1 are identified with v1 and v2; the endpoints of e2 are identified with v2 and v3 and the endpoints
of e3 are identified with v3 and v1.

Each metric edge is itself a metric space but it is a very special one, indeed a one dimensional
segment. For this reason after identifications we have a well defined notion of distance between
different points of the metric graph. The distance between two points on G is the length of the
minimal path moving along the edges and going from one endpoint of one edge to an endpoint of
another edge if both are identified with the same vertex. We underline that this notion of distance
is independent of the orientation of the edges.

If we disregard orientation of the metric edges and consider them just as segments of length `e we
can identify the metric structure of the metric graph by giving just its combinatorial arrangement
and the lengths. More precisely given v ∈ V we denote by A+(v), A−(v) ⊂ E the metric edges
that are respectively exiting from the vertex v and entering into the vertex v. Moreover we define
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A(v) = A+(v) ∪ A−(v). Given a metric graph (V,E) we construct the corresponding unoriented
graph (V, E) defined as follows. The set of vertices is again V and given v, w ∈ V we have that there
is a number of unoriented edges {v, w} ∈ E equal to

∣∣∣A(v)∩A(w)
∣∣∣. We have moreover a number of

loops {v, v} equal to
∣∣∣A+(v) ∩ A−(v)

∣∣∣. The unoriented graph is weighted and the edge {v, w} ∈ E
corresponding to e ∈ E has a weight given by `e.

The metric graph (V,E) is connected if (V, E) is connected and it is a metric tree if (V, E) is a
tree.

Formally this can be equivalently formulated as follows. A path from x ∈ (V,E) to y ∈ (V,E) is
a continuous map ψ : [a, b] → (V,E), where a < b are some given real parameters, and such that
ψ(a) = x and ψ(b) = y. When we write x, y ∈ (V,E) we mean that x, y are generic elements of
the metric graph i.e. they can be points on an edge or vertices. We underline that a path is just
a continuous map from an interval to the metric space (V,E) so that in general has not to satisfy
any relation with orientation. A metric graph is connected if for any pair x, y ∈ (V,E) there exists
a path from x to y. A metric graph is called a metric tree if for any two points x, y ∈ (V,E) there
is an unique injective path, up to reparametrizations, going from x to y.

In order to draw pictures, it is very useful to consider the graph embedded into Rd but the specific
embedding is irrelevant. The vertices are therefore points of Rd. The edges are disjoint and non-self
intersecting regular curves of length `e. Every edge connects two vertices of V or just one in the
case of loops. An edge e ∈ E is parametrically described by the corresponding interval (0, `e), with
`e ∈ (0,∞), and a C1 map φe : (0, `e)→ Rd such that |φ′e|(x) = 1 for any x ∈ (0, `e). The vertices
connected by the edge e are recovered by limx↓0 φe(x) and limx↑`e φe(x).

We allow for the possibility of cutting some of the edges of the metric graph. Given e ∈ E and
x ∈ e when we cut the metric graph at x we remove the point x from the metric graph (V,E).
The new metric graph obtained after the cut is as follows. The structure remains unchanged for
all the edges that do not contain the cutting point while the edge e containing x is removed and
substituted by two different edges e1 = (0, x) and e2 = (0, `e−x). Henceforth, with a slight abuse of
notation, we call x ∈ e both the point on the edge and its coordinate on the corresponding interval
(0, `e). The endpoint 0 of the first edge is identified with the same vertex of the endpoint 0 of e.
The endpoint `e − x of the second edge is identified with the same vertex of the endpoint `e of e.
Finally we add two new vertices v1, v2 and identify v1 with the endpoint x of e1 and v2 with the
endpoint 0 of e2. See Figure 4.4 for an illustrative example.

Note that before the cut the points of e with coordinates x− ε and x+ ε for ε small enough are
at distance 2ε while this is no more the case after the cut.

Every edge of a metric graph is naturally oriented according to the increasing direction of the
coordinates. The opposite orientation corresponds to the decreasing direction. There are just two
possible orientations for each edge. An orientation of a metric graph is simply a choice between
the two possible orientations for each edge. An orientation is represented by drawing an arrow on
each edge. The canonical orientation of a metric graph is the one on which each edge is increasingly
oriented. Given a vertex v ∈ V , according to our notation, A+(v) and A−(v) are the sets of edges
incident to v that are respectively canonically oriented exiting from v or entering into v. A path
ψ : [a, b] → (V,E) is compatible with the orientations of the edges if when restricted to each edge
the map ψ is increasing or decreasing depending if the edge is increasingly or decreasingly oriented.

A metric arborescence oriented toward x ∈ E is a metric graph that is a metric tree and moreover
all the edges are oriented toward the root x. This means that given any y ∈ (V,E) there exists an
unique injective path from y to x and the path is compatible with the orientations. This essentially
means that it is possible to reach the root x starting from any other point y and moving on the
graph following the edges according to their orientation. Note that on a metric arborescence the
edge containing the root is divided into two parts oppositely oriented.
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Figure 4.4. A metric graph on the left with a special point marked with a red
cross. We cut the edge at the cross and obtain a new metric graph. The metric edge
e is transformed into two metric edges ei , i = 1, 2 and two new vertices vi , i = 1, 2
are created.

Figure 4.5. A metric graph embedded into Rd and an associated oriented arbores-
cence obtained cutting the edges on the green slices. The root of the arborescence
is drawn as a red dot. Note that loops and multiple edges are allowed.

Given a metric graph G we can obtain a metric arborescence by cutting some of the edges and
suitably orienting the edges, see Figure 4.5 for an example and the following Section 6 for a more
detailed description.

5. Diffusions on metric graphs

A walker is moving randomly on G = (V,E) according to the following mechanism. For each edge
e ∈ E we fix coefficients (be, σe) defined on the intervals (0, `e), `e ∈ R, and again for simplicity we
require be ∈ C1 and σe ∈ C2. The coefficients can be extended continuously on [0, `e] and we require
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minx∈[0,`e] σe(x) > 0. When the walker is on the edge e then the coordinate of the walker on (0, `e)
evolves as a diffusion process Xe(t) satisfying the equation (3.1) with coefficients (be, σe). When
the walker reaches a vertex v ∈ V then she can spend some time there and then the new edge on
which she continues the evolution is chosen randomly according to a given probability distribution
on A(v). The precise formulation of the dynamics can be formalized using the excursions of the
diffusion processes, see for example Barlow et al. (1989); Walsh (1978). In the following we will use
an alternative approach to defining the dynamics via the the corresponding generator.

We present a formal definition of the diffusion processes on a metric graph by describing the
structure of the generator. We state the basic facts and refer to Freidlin and Sheu (2000); Freidlin
and Wentzell (1993, 1994) for a general discussion. We give a short and essential summary of the
features of the possible dynamics, all of them depend on the behavior of the walker at the nodes.

All the possible Feller processes with continuous sample path and such that inside each edge
e ∈ E the random dynamics coincides with a diffusion with parameters (be, σe) are determined by
a family of nonnegative parameters α’s. In particular we have a family of parameters associated to
the vertices

(
αv
)
v∈V and a family of parameters associated to the pairs (v, e) such that v ∈ V and

e ∈ A(v). We denote them as
(
αv,e

)
v∈V,e∈A(v)

. The parameters must satisfy the constraints

αv +
∑

e∈A(v)

αv,e > 0 , ∀ v ∈ V .

Once a collection of parameters is fixed then the process is defined by its generator A that is a linear
operator on a suitable subset of C(G), which is the set of continuous function on the metric graph
G. To describe the form of the generator we need some notation. To avoid problems of irreducibility
we consider always metric graphs that are connected and we will assume that each coefficient αv,e
is strictly positive:

αv,e > 0 , ∀ v ∈ V and ∀ e ∈ A(v).

A function f ∈ C(G) is determined by a family of continuous functions fe : (0, `e)→ R. The value
of the function f on a point x ∈ e is given by f(x) := fe

(
x
)
. Here again with abuse of notation we

call x ∈ e both the point and its coordinate in (0, `e). In order that f ∈ C
(
G
)
we need to impose

the condition that given any v ∈ V there is a real number f(v) ∈ R (the value of the function at
the vertex v) such that

f(v) = lim
x↑`e

fe(x) = lim
x↓0

fe′(x) , ∀ e ∈ A−(v) , e′ ∈ A+(v) .

Given v ∈ V , e ∈ A(v) and f ∈ C(G) we define Def(v) the exiting derivative of f at v along e as

Def(v) :=

{
limx↓0

fe(x)−f(v)
x , e ∈ A+(v) ,

limx↑`e
fe(x)−f(v)

`e−x , e ∈ A−(v) ,

when the limits exist.
We define now the generator A of our dynamics.

Definition 5.1 (Generator of the dynamics). Consider a function f ∈ C(G) with fe ∈ C2(0, `e).
For an x ∈ e ∈ E we define

[Af ](x) := Lefe
(
x
)
,

where Le is the generator of the diffusion process with parameters (be, σe), i.e.

Lefe(x) :=
1

2
σ2
e(x)∂2

xfe(x) + be(x)∂xfe(x) , x ∈ (0, `e) . (5.1)

The domain of definition D(A) ⊆ C(G) of the operator A is the set of functions for which all the
derivatives exist and such that Af ∈ C

(
G
)
. In particular we have

Af(v) := lim
x↑`e

Lefe(x) = lim
x↓0

Lefe′(x) , ∀ e ∈ A−(v) , e′ ∈ A+(v) .
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Finally on the nodes the following relation has to be satisfied

αv[Af ](v) =
∑

e∈A(v)

αv,eDef(v) , v ∈ V . (5.2)

Note that in the case αv = 0 then relation (5.2) does not involve [Af ](v).
For the above definition 5.1 and the following Theorem 5.2 we refer to Freidlin and Sheu (2000),

Freidlin and Wentzell (1993), Freidlin and Wentzell (1994). In particular for a result that classifies
all the possible diffusions on metric graphs and a clear discussion of the form of the generator we
refer to Section 3 of Freidlin and Wentzell (1993); next theorem is Theorem 3.1 there.

Theorem 5.2. The operator A as defined in Definition 5.1 is the infinitesimal generator of a
strongly continuous semigroup of operators on C(G) corresponding to a conservative Markov process
on G with continuous paths. The following statements hold:

• Before the process leaves an edge e it evolves like a diffusion process with generator Le as
in (5.1)
• If αv = 0 then the process spends almost surely zero time at the vertex v ∈ V
• If αv = 0 for any v ∈ V then the distribution of the process at all given time has a density
with respect to a measure that is zero on all the vertices v ∈ V

Conversely, if X(t) is a Feller conservative Markov process on G which coincides, before leaving e,
with a diffusion having generator (5.1) then its infinitesimal generator coincides with A in Defini-
tion 5.1 for a suitable choice of the parameters. Moreover if the process X spends almost surely zero
time at v ∈ V then necessarily αv = 0.

We discuss now the invariant measures of diffusion processes on metric graphs. The conditions
that we obtain can be easily described in terms of a divergence free condition for the probability
currents (3.3) on the edges. Fix an arbitrary reference orientation for each edge that for us will be
always the canonical one. For v ∈ V , e ∈ A(v) and a collection of functions

(
ge(x) , x ∈ (0, `e)

)
e∈E

we denote by
ge(v) := lim

y∈e,y→v
ge(y) . (5.3)

The invariant measures µ for this class of processes contain atomic components on the vertices
and are absolutely continuous with respect to the Lebesgue measure on the edges. A measure of
this type is denoted by

µ =
{(
µv
)
v∈V ,

(
µe(x)dx

)
e∈E

}
. (5.4)

The number µv is the weight of the atomic component on the vertex v ∈ V while µe(x)dx is the
density of the absolutely continuous component on the edge e ∈ E. The normalization condition is∑

v∈V
µv +

∑
e∈E

∫ `e

0
µe(x)dx = 1 . (5.5)

Given a measure µ with C1 densities, we define a probability current J [µ] =
(
Je[µ]

)
e∈E on the

edges of G by

Je[µ](x) := −1

2
∂x
(
σ2
e(x)µe(x)

)
+ b(x)µe(x) , x ∈ (0, `e) . (5.6)

The following is a direct consequence of Theorem 5.2, see also Jehring (2009). Note that in the
following lemma, condition (3) is separated into (3A) and (3B); this splitting will be relevant in the
following. When we say condition (3) we mean that both (3A) and (3B) are satisfied.

Lemma 5.3. Consider a diffusion process on a metric graph G having generator A as in Defini-
tion 5.1. Then the process has a unique invariant measure µ of the form (5.4) characterized by the
following properties:

(1) The current Je[µ] is constant on each edge e ∈ E.
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(2) On each node v ∈ V we have the divergence free condition

div J [µ](v) :=
∑

e∈A+(x)

Je[µ]−
∑

e∈A−(x)

Je[µ] = 0 .

(3) There exist some constants λv > 0 such that{
1
2σ

2
e(v)µe(v) = λvαv,e v ∈ V, e ∈ A(v) , (3A) ,

µv = λvαv v ∈ V , (3B) .
(5.7)

Furthermore the process is reversible if and only if conditions (1) + (2) are replaced by the single
condition

(1’) Je[µ] = 0 on each edge e ∈ E .

Proof : Uniqueness follows using the same argument of Corollary 5.4.3 in Bogachev et al. (2015).
The fact that the unique invariant measure is of the form (5.4) follows by Theorem 5.2. We show
now that a probability measure µ satisfies the three conditions above if and only if∫

G

[
Af
]
dµ = 0 , ∀f ∈ D(A) . (5.8)

Consider a generic f ∈ D(A) and perform double integration by parts on each edge. We obtain
the following∫

G

[
Af
]
dµ =

∑
v∈V

[
µv[Af ](v)−

∑
e∈A(v)

1

2
σ2
e(v)µe(v)Def(v)

]
+
∑
v∈V

f(v)div J [µ](v)

−
∑
e∈E

∫ `e

0
fe(x)∂xJe(µ)dx .

Condition (1) implies that each term of the third sum on the right hand side of the above equation
is zero. Condition (2) implies the same for the second sum and condition (3) for the first one. We
have therefore that if the conditions are satisfied then (5.8) holds. Conversely since the right hand
side of the above equation has to be zero for each function f ∈ D(A) then each single term has to
be identically zero and this implies the validity of the three conditions.

We briefly outline why D(A) is large enough in order to guarantee that (5.8) implies conditions
(1), (2) and (3). Consider first the last term in the right hand side of the above computation.
Observe that if we consider f ∈ D(A) and we keep f fixed on all the edges apart one single edge
e where we add a compactly supported function, we obtain again a function in the domain. Only
one of the terms in the last sum in the right hand side of the above computation is changing and
since the perturbation is an arbitrary C2 function compactly supported inside the edge we deduce
the validity of (1) for each edge e. We consider now the second sum on the right hand side of
the above computation. We can construct an element of D(A) as follows. First we fix the values
of
(
Def(v)

)v∈V
e∈E. Once fixed arbitrarily these numbers we have that

(
Af(v)

)
v∈V are determined

by conditions (5.2) (we are considering the case αv > 0 for any v, the other cases can be handled
similarly). By continuity of Af we have therefore that the numbers

(
∂2
xfe(v)

)v∈V
e∈E are determined.

Any collection of C2 functions on the edges that satisfy these constraints determines an element of
the domain. We can then perturb this function obtaining a new function that is again in the domain
adding a C2 function that is different from zero just on edges in A(v), it is compactly supported
in a neighborood of v and has first and second derivative equal to zero at v. In this way the new
function on the domain has the same value of the original function on each vertex different from v
while in v we can have a new arbitrary value. This means that condition (2) must hold and each
term in the second sum in the right hand side of the above computation is necessarily zero. Finally
since we can fix arbitrarily the values

(
Def(v)

)v∈V
e∈E (recall that we are considering the case αv > 0
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for any v, the other cases can be handled similarly) we can fix them is such a way that just one is
different from zero and this implies directly condition (3).

The reversibility is proved observing that, for all f, h ∈ D(A), we get∫
G

[
Af
]
hdµ−

∫
G
f
[
Ah
]
dµ =

∑
v∈V

[
µv[Af ](v)−

∑
e∈A(v)

1

2
σ2
e(v)µe(v)Def(v)

]
h(v)

−
∑
v∈V

[
µv[Ah](v)−

∑
e∈A(v)

1

2
σ2
e(v)µe(v)Deh(v)

]
f(v)

+
∑
e∈E

∫ `e

0

(
∂xfe(x)he(x)− fe(x)∂xhe(x)

)
Je(µ)dx.

The first two terms in the right hand side of the above formula are zero by (3). The third term is
zero by condition (1′). The converse statement is proved observing that the above equation has to
be zero for any pair of functions f, h ∈ D(A). The argument for this is very similar to the one of
the general case and we do not give details. �

Remark 5.4. Condition (3) of Lemma 5.3 can be written as

σ2
e(v)µe(v)

2µv
=
αv,e
αv

, v ∈ V, e ∈ A(v) , (5.9)

for the vertices for which αv > 0 and as

σ2
e(v)µe(v)

σ2
e′(v)µe′(v)

=
αv,e
αv,e′

, e, e′ ∈ A(v) , (5.10)

for the vertices for which αv = 0. Note that for a vertex v with αv > 0 we have that condition (5.9)
implies condition (5.10).

In the next section we give an explicit construction of a probability measure satisfying the con-
ditions of Lemma 5.3, thereby describing the unique invariant measure of the process.

6. A combinatorial representation of the invariant measure

We consider metric arborescences rooted at x ∈ G that we recall are oriented metric trees obtained
cutting the original metric graph on a finite number of points and orienting all the edges toward the
root (see Figure 4.5 for an example). Let us call Tx the collection of all the metric arborescences
rooted at x ∈ e ∈ E.

Given τ ∈ Tx we define the corresponding weight as

R(τ) :=
e
∫
τ s

σ2
e(x)(x)

∏
v∈V
Wv(τ) . (6.1)

The symbol
∫
τ s denotes the sum of all the integrals along the edges of the metric graph according to

the orientations of τ . In particular if the edge e does not contain a cut and it is oriented in τ accord-
ing to its natural orientation then the contribution of the edge is given by

∫ `e
0 se(x)dx. If instead

the edge is oriented in τ oppositely with respect to the natural orientation then the contribution is
−
∫ `e

0 se(x)dx. If the edge e contains a cut at the point z ∈ (0, `e) then the contribution coming
from this edge is given by −

∫ z
0 se(x)dx +

∫ `e
z se(x)dx since the orientations of the two branches

of the edge are necessarily exiting from the cut-point. Recall that as before we use the notation
se := be

σ2
e
.
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The weight Wv(τ) for the vertex v ∈ V and the arborescence τ is defined by

Wv(τ) :=
∏

e∈A(v)

W θv(e,τ)
v (e) . (6.2)

In (6.2) we have θv(e, τ) = ± depending on whether e is oriented in the arborescence τ in a
neighborhood of v exiting or entering respectively into v. For any pair v ∈ V and e ∈ A(v) we
therefore have two free parameters W±v (e) > 0.

We fix W−v (e) := 1 for any edge e, since this corresponds to multiplying the weights R by a
constant.

The number of cuts which have to be performed in order to transform a metric graph (V,E) into
a metric tree is fixed and it is given by |E| − |V |+ 1. We call this number the dimension of the cut
space. In order to obtain a metric tree the cuts have to be made on different edges. More precisely,
the exact procedure is the following. Associate to the metric graph (V,E) the unoriented graph
(V, E) as discussed in Section 4. According to our definitions, loops and multiple edges are allowed.
By construction we have |E| = |E| and there is a natural correspondence between metric edges and
unoriented edges. Consider a spanning tree (V, T ) of (V, E). This is obtained starting from the set
of edges E , removing a number of edges and keeping the unoriented edges T ⊆ E . The unoriented
edges that have been removed are the ones belonging to E \ T . Consider now the metric graph
(V,E) and perform one single cut on each metric edge that is in correspondence with an unoriented
edge in E \ T . The metric graph that we obtain after all the cuts is then a metric tree.

Let C the collection of cutting points that transform the metric graph (V,E) into a metric tree.
When the dimension of the cut space is k = |E \ T | then a generic element of C is given by
y = (y1, . . . yk) where each yi belongs to a different element of E associated to an edge in E \ T .
We call T the collection of the spanning trees of (V, E) and C(T ) the cutting points compatible
with the spanning tree T ∈ T as discussed above. We have therefore C = ∪T∈TC(T ). Given
y = (y1, . . . , yk) ∈ C(T ) we call τx[y] the metric arborescence obtained cutting the metric graph on
the points (y1, . . . , yk) and orienting the edges toward x.

Let us define a positive measure m =
(
me(x)dx

)
e∈E on G that gives zero weight to vertices and

that is absolutely continuous on the edges, defined by

me(x) :=
∑
T∈T

∫
C(T )

dy1 . . . dykR
(
τx
[
y
])
, x ∈ e . (6.3)

We have the following

Theorem 6.1. Under the condition

W+
v (e) = Kvαv,e , v ∈ V, e ∈ A(v) , (6.4)

where Kv > 0 is a family of arbitrary constants, the positive measure m defined by (6.3) satisfies
conditions (1), (2) and (3A) in Lemma 5.3.

Proof : The basic fact to prove this theorem is the computation of

∂x

(∫
C(T )

dy1 . . . dyke
∫
τx[y] s

)
. (6.5)

We do it by distinguishing several cases. The first case is when x ∈ e and e∩C(T ) = ∅. In this case
we can differentiate directly and using the computations in Lemma 3.3 we get that (6.5) is equal to

2be(x)

σ2
e(x)

∫
C(T )

dy1 . . . dyke
∫
τx[y] s . (6.6)
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xyk

x yk

Figure 6.6. An edge in C(T ) with the root x denoted by a black cross and the cut
point yk denoted by a red cross. In the upper part we illustrate the case yk < x while
in the bottom part we illustrate the case yk > x. The orientations outside of the
edge containing x are constant and depend just on the sign of the above inequalities.
This corresponds to the fact that τ ′x[y] assumes just the two configurations τ ′x± letting
vary x on the edge.

In the case instead that x ∈ e and e ∩ C(T ) 6= ∅ we have to do a different computation. Let us
assume (for simplicity of notation and without loss of generality) that yk is the cutting point that
belongs to e. We can write the term to be differentiated in (6.5) as∫

C′(T )
dy1 . . . dyk−1e

∫
τ ′x[y] s

(∫ x

0
dyke

∫ 0
yk
se(z)dz

e
∫ x
yk
se(z)dz

e
∫ x
`e
se(z)dz

+

∫ `e

x
dyke

∫ x
0 se(z)dze

∫ x
yk
se(z)dz

e
∫ `e
yk
se(z)dz

)
. (6.7)

In the above formula we called C′(T ) the cutting points that do not belong to e and we called τ ′x[y]
the metric graph obtained from τx[y] removing the oriented edges contained in e. First of all we
observe that

∫
τ ′x[y] s as a function of x is piecewise constant and assumes only two values depending

whether x < yk of x > yk; we denote such values and the corresponding pieces of arborescences as∫
τ ′x[y]

s =

{ ∫
τ ′x−[y] s yk < x ,∫
τ ′x+[y] s yk > x .

(6.8)

See Figure 6.6 for a pictorial illustration of τ ′x[y]. Let us call for simplicity of notation the two terms
inside parenthesis in (6.7) as ∫ x

0
dykψ−(yk, x) +

∫ `

x
dykψ+(yk, x) . (6.9)
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By a simple direct computation we have that ∂xψ±(yk, x) = 2s(x)ψ±(yk, x), when x 6= yk. We are
therefore in the multidimensional counterpart of the situation discussed in Lemma 3.3. In particular
we have to perform an ε type argument like the one just above formula (3.27) to deduce a result
that is the multidimensional counterpart of (3.27). As in formula (3.27), we have in the derivation
with respect to x, when x ∈ e with e ∩ C(T ) 6= ∅, the appearence of an extra term:

∂x

∫
C(T )

dy1 . . . dyke
∫
τx[y] s =

{
2se(x)

∫
C(T ) dye

∫
τx[y] s x ∈ e , e ∩ C(T ) = ∅ ,

2se(x)
∫
C(T ) dye

∫
τx[y] s + ∆ x ∈ e , e ∩ C(T ) 6= ∅ .

(6.10)

The term ∆ in the above equation can be computed as a limit like in formula (3.26), in particular
we have

∆ = ∆− −∆+ (6.11)
where

∆− = lim
yk↑x

∫
C′(T )

dy1 . . . dyk−1e
∫
τ ′x[y] sψ−(yk, x)

=

∫
C′(T )

dy1 . . . dyk−1e

∫
τ ′x−[y] se

∫ 0
x se

∫ x
`e
s ,

and

∆+ = lim
yk↓x

∫
C′(T )

dy1 . . . dyk−1e
∫
τ ′x[y] sψ+(yk, x)

=

∫
C′(T )

dy1 . . . dyk−1e

∫
τ ′x+[y] se

∫ `e
x se

∫ x
0 s .

All the above computations can be done using the same argument used in the simpler framework
in Lemma 3.3.

Moreover, we can offer some simple and natural interpretations of the above formulas. We have
two contributions, one is positive while the other is negative. These contributions can be naturally
interpreted as weights coming from arborescences that have a cut in the edge e that coincides
exactly with the point x. The positive term ∆− corresponds to the weight of the arborescence
when both parts of e are oriented in the opposite way with respect to the canonical one. The term
with the minus sign ∆+ corresponds instead to the situation when both parts of the edge e are
oriented in agreement with the canonical orientation. We call τx±[y] the corresponding two different
arborescences (see Figure 6.7 for an illustrative example) and notice that this notation is compatible
with formula (6.8) as we now explain. Consider a cutting point y = (y1, . . . , x, . . . , yk) having a cut
in correspondence of x ∈ e. We write τ ′x−[y] to denote the part of the arborescence τx−[y] outside
of the edge e when both parts of e are oriented in the opposite way with respect to the canonical
one. We write instead τ ′x+[y] to denote the part of the arborescence τx+[y] outside of the edge e
when both parts of e are oriented in agreement with respect to the canonical one.

An alternative natural interpretation of the terms in (6.11) is the following. We call L the set of
uni-cyclic oriented metric spanning subgraphs of (V,E) defined as follows. We call L the connected
spanning subgraphs of (V, E) that contains one single cycle and we call Le ⊆ L the ones such that
the element of E corresponding to e is one of the edges of the unique cycle. For any L ∈ L we call
C̃(L) the sets of points ỹ = (y1, . . . , yk−1) ∈ Ek−1 such that the yi belong to different metric edges
and each of them corresponds to an element of E that has been erased from (V, E) to get L. We call
a uni-cyclic spanning metric subgraph L ∈ L the metric graph obtained from (V,E) by the above
cuts (y1, . . . , yk−1), such that all the edges are oriented toward the unique cycle and the edges of the
cycle are oriented in such a way that it is possible to go around respecting the orientation. For each
L ∈ L there exists a L̄ ∈ L such that L and L̄ are obtained by the same cuts, the edges outside of
the cycle are oriented in the same way and all the edges inside the cycle are oriented in the opposite
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x

x

x

y1

y1

y2

y2

Figure 6.7. A metric graph with a marked point x. The black arrows denote the
canonical orientation of the edges (top picture). The oriented arborescence τx+(y)
where the three cuts y = (y1, y2, x) are represented respectively by two cutting red
segments and a red x in correspondence of the marked point x. The orientations
of the branches of the arborescence are red colored (middle picture). The oriented
arborescence τx−(y) where y is as before. The orientations of the branches of the
arborescence are red colored (bottom picture).

way. Given ỹ ∈ C̃(L) we call L(ỹ, θ), with θ = ± the two uni-cyclic spanning metric subgraphs with
the two possible orientations of the cycle. Consider a metric arborescence τx±(ỹ, x) obtained from
G by a cutting set of the form (ỹ, x). A unicyclic metric graph L(ỹ, θ) is obtained from τx±(ỹ, x) by
removing the cut at x and in this case x belongs to the unique cycle (see Figure 6.8). We are now
ready to do computations. Recalling formulas (6.1), (6.2) and (6.3) we have that

∂x
(
σ2
e(x)me(x)

)
=
∑
T∈T

∂x

(∫
C(T )

dy1 . . . dyke
∫
τx[y] s

∏
v∈V
Wv(τx(y))

)
. (6.12)

For simplicity of notation we did not consider the term
∏
v∈V Wv(τx(y)) in the introductory com-

putations. The reason is that the behavior of this term is the same of the term e
∫
τ ′x[y] s. This means

that when x ∈ e with e∩C(T ) = ∅ then
∏
v∈V Wv(τx(y)), as a function of x, is constant while when

x ∈ e with e ∩ C(T ) 6= ∅ then
∏
v∈V Wv(τx(y)), as a function of x, is piecewise constant and, in

particular, it assumes only two values, namely one when yk < x and one when yk > x.
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Figure 6.8. Two uni-cyclic spanning metric oriented subgraphs L and L of the
metric graph in the top picture of Figure 6.7. The orientations are red colored, the
unique cycle is also red colored and oppositely oriented in the two pictures. Note
that the two pictures are obtained by the middle and bottom pictures of Figure 6.7
simply removing the x cut.

We can therefore use formula (6.10), where we recall that we have to insert a proper factor
containing the weights on the nodes. In particular, considering just the terms different from ∆ in
(6.10), we have in (6.12) a contribution given by

2be(x)me(x). (6.13)

The remaining contributions are one positive, coming from the terms of the type ∆− and one
negative, coming from the terms of the type ∆+. Given x ∈ e, the positive one is given by∑

L∈Le

∫
C̃(L)

dy1, . . . dyk−1e
∫
L(ỹ,θ∗) s

∏
v∈V
Wv

(
L(ỹ, θ∗)

)
. (6.14)

In the above formula θ∗ denotes the orientation of the unique cycle opposite to the natural one of e
and the W terms give the weights to the nodes depending on the local orientation of the edges and
they are defined like in (6.2). Given x ∈ e, the one appearing with a negative sign in front is given
by ∑

L∈Le

∫
C̃(L)

dy1, . . . dyk−1e
∫
L(ỹ,−θ∗) s

∏
v∈V
Wv(L(ỹ,−θ∗)) , (6.15)

where −θ∗ corresponds to the opposite orientation of the cycle with respect to θ∗ and it agrees
therefore with the natural one of e. The above formulas are obtained by considering all the contri-
butions of the terms of the type ∆± and considering the interpretation in terms of unicyclic graphs
of the different contributions. In particular formulas (6.14) and (6.15) are obtained according to
our previous discussion by the following identification. Consider an x ∈ e and denote by

∑∗
T∈T the

sum over all spanning trees that do not contain the edge corresponding to the metric edge e. Equiv-
alently the set of cut points must satisfy C(T ) ∩ e 6= ∅. Like in formula (6.7) we call C′(T ) the cut
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points that do not belong to e. Formulas (6.14) and (6.15) are obtained by the formal identification∑∗
T∈T

∫
C′(T ) =

∑
L∈Le

∫
C̃(L), i.e. summing over the two classes of graphs and integrating in those

classes of cut points is equivalent. The arguments to be integrated in formulas (6.14) and (6.15) are
obtained recalling that unicyclic metric graphs L(ỹ, θ) are obtained from τx±(ỹ, x) by removing the
cut at x and in this case x belongs to the unique cycle (see Figure 6.8).

We can now prove the properties of the measure m.
(1): Recall that the current probability along each edge is given by

Je[m] := −1

2
∂x
(
σ2
e(x)me(x)

)
+ be(x)me(x) . (6.16)

If we insert the three terms obtained by the computation of ∂x
(
σ2
e(x)me(x)

)
we obtain the following.

The term (6.13) matches exactly twice the last term in (6.16) and due to the factor 1/2 they cancel.
This means that the probability current is exactly equal to minus 1/2 the difference of the two
terms in (6.14) and (6.15). A key observation is now the following. Formulas (6.14) and (6.15) hold
for any x ∈ e, however as it is apparent from the explicit form there is a dependence on e but not
a dependence on the specific point x ∈ e. This means that these two terms do not depend on the
specific point x ∈ e and we have that the current (6.16) is therefore constant along each edge.
(2): The divergence free condition is obtained by the following argument. Let us write shortly
formulas (6.14) and (6.15) as

∑
L∈Le

∆±e (L). We obtain that, for any x ∈ e, the probability current
assumes the same value:

Je[m] =
1

2

∑
L∈Le

(
∆+

e (L)−∆−e (L)
)
.

Given L ∈ L we define J [L] as

Je[L] :=

{
∆+

e (L)−∆−e (L) L ∈ Le ,
0 L 6∈ Le .

With these definitions we have that J [m] = 1
2

∑
L∈L J [L] and since the divergence is a linear operator

it is enough to prove that each J [L] is divergence free. Note that J [L] is different from zero only
on the edges that belong to the unique cycle of L. Consider a fixed L ∈ Le and a metric edge e′

in correspondence with one edge belonging to the unique cycle of L. This means that we have also
L ∈ Le′ . Consider e and e′ having the vertex v in common (see Figure 6.9). A key observation
that is obtained by the explicit formulas is the following. If the natural orientations of the two
metric edges e and e′ are compatible with the same global orientation of the unique cycle of L
then ∆+

e (L)−∆−e (L) = ∆+
e′(L)−∆−e′(L). If the natural orientations of the two metric edges e and

e′ are instead compatible with opposite global orientations of the unique cycle of L then we have
∆+

e (L)−∆−e (L) = ∆−e′(L)−∆+
e′(L). It is now immediate to verify the divergence free condition at

vertex v. The same argument can be done for any vertex in the cycle. Since outside of the cycle
J [L] is zero, we have that in the remaining vertices the divergence free condition is automatically
satisfied.
(3A): In the computation of me(v) we can ignore, when considering the limit y → v in (5.3), the
contribution from integrations coming from cuts in a neighborhood of the node v. More precisely
consider e, e′ ∈ A(v) with v ∈ V and z ∈ e, z′ ∈ e′ such that z, z′ are at distance (along the edges
of the metric graph) ε from v. We can write

me(z) =
∑
T∈T

∫
Cε(T )

dy1 . . . dykR
(
τz
[
y
])

+
∑
T∈T

∫
Cε(T )

dy1 . . . dykR
(
τz
[
y
])

(6.17)

where Cε(T ) is the collection of cuts such that there is at least one cut at distance less or equal to
ε from v while Cε(T ) is the complementary set, i.e. the collection of cuts that are all at distance
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e

e'
v

Figure 6.9. We draw in red the unique cycle in L and give an example of a pair of
metric edges e and e′ belonging to this cycle and sharing a vertex v.

greater that ε from v. A formula similar to (6.17) can be written also for the point z′. In the limit
ε→ 0 the second term in (6.17) is negligible.

The basic observation is the following. Recall that by definition, in an arborescence, when the
root x does not coincide with a vertex we have that exactly one edge is oriented exiting from the
vertex while all the others are oriented entering into the vertex. This is because otherwise we could
find two different paths from the vertex to the root. See for example Figure 4.5 where it is possible
to check the validity of this fact on all the vertices. Consider a tree T and some cutting points
y ∈ Cε(T ). In this case all the edges e′′ ∈ A(v) such that e′′ 6= e will be oriented locally around
v in τz[y] entering into v while instead e will be oriented exiting from v. In τz′ [y] we have instead
that e′ is oriented exiting from v while instead all the other edges in A(v) will be oriented entering
into v. In particular in τz′ [y] and τz[y] all the branches of the two arborescenses will have the same
orientation apart the two segments (v, z) ⊆ e and (v, z′) ⊆ e′ that are of size ε.

We have therefore that for any T and for any y ∈ Cε(T )

R(τz(y))

R(τz′(y))
= e2

∫ z
x se2

∫ x
z′ s
W+
x (e)σ2

e′(z
′)

W+
x (e′)σ2

e(z)
. (6.18)

Taking the limit ε→ 0 in (6.18) and using (6.4) we finish the proof. �

Using the above result we can finally conclude. Let us call

λ̃v := lim
y∈e,y→v

σ2
e(y)me(y)

αv,e
v ∈ V, e ∈ A(v) . (6.19)

We observe by Theorem 6.1 that λ̃v does not depend on the edge e ∈ A(v). We have indeed that
by Theorem 6.1 the measure m satisfies condition (3A) of Lemma 5.3 and the constants λ̃v here are
the constants λv appearing in condition (3A). Let us also introduce the probability measure µ as
in (5.4) defined by {

µv := λ̃vαv
Z v ∈ V

µe(x) := me(x)
Z x ∈ e

(6.20)
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where Z is the normalization constant determined by (5.5).

Theorem 6.2. The probability measure (6.20) is the invariant measure of the process with generator
satisfying (5.1), provided that (6.4) holds.

Proof : Conditions (1) and (2) in Lemma 5.3 depend just on the form of the measure µ on the
edges and they are preserved by a multiplication of the measure by a constant factor. Since by
Theorem 6.1 the measure m satisfies these conditions and since the density of µ on each edge is
obtained multiplying the density of m by the factor Z−1 we deduce that µ satisfies conditions (1)
and (2).

Condition (3) on Lemma 5.3 is satisfied by the fact that the limit on the right hand side of (6.19)
does not depend on e ∈ A(v) and by definition (6.20).

Since conditions (1), (2) and (3) characterize the unique invariant measure we deduce that µ is
the invariant measure. �

This construction of the invariant measure gives as special cases formula (3.23) for a one dimen-
sional ring, and formula (3.7) in the case of a single interval since in that case the cut space is empty
and there are no integrations to be done.

6.1. The reversible case: In the reversible case all the structure simplifies and the invariant measure
can be simply computed in terms of an auxiliary finite state Markov chain on the set V . The
characterization of reversibility was discussed also in Jehring (2009), Fitzsimmons and Kuter (2015)
in terms of a similar discrete time Markov chain that is the process associated to the sequence of
visited nodes. We start defining our auxiliary Markov chain. Given v, w ∈ V we define the rate of
jump from v to w across the edge e ∈ A(v) ∩A(w) as

q(v, w) :=

{
αv,ee

∫ `e
0 se if e ∈ A+(v) ∩A−(w) ,

αv,ee
−

∫ `e
0 se if e ∈ A−(v) ∩A+(w) .

(6.21)

For simplicity we restrict to the case |A(v) ∩ A(w)| ≤ 1. The general case can be discussed very
similarly.

We have the following characterization of reversible processes and their invariant measures.

Theorem 6.3. Consider a diffusion process on a metric graph G having generator A as in Definition
5.1. Then the process is reversible if and only if the Markov chain on V with rates (6.21) is reversible.
In this case the invariant measure of the process is given by

µ =

{
µe(x) = 2cπvq(v,w)

σ2
e(x)

e
∫ x
0 se(y)dy−

∫ `e
x se(y)dy , x ∈ e ∈ A(v) ∩A(w) ,

µv = cπvαv , v ∈ V ,
(6.22)

where
(
πv
)
v∈V is the unique invariant measure of the Markov chain with rates (6.21) and c is a

suitable normalization constant.

Proof : Suppose that the Markov chain with rates (6.21) is reversible with invariant measure π.
Then by the detailed balance relationship

πvq(v, w) = πwq(w, v) (6.23)

the measure µ is well defined. We have to show that the measure (6.22) satisfies the conditions (1′)
and (3) in Lemma 5.3. Condition (1′) is satisfied since on each edge the measure is given by the
upper formula in (6.22) that coincides, by (3.28) (3.29), with the simple case (3.7) that corresponds
to zero probability current.

If we compute the quantities appearing in condition (3), that is formula (5.7), we obtain{
1
2σ

2
e(v)µe(v) = cπvαv,e v ∈ V, e ∈ A(v) ,

µv = cπvαv v ∈ V ,
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so that condition (3) is satisfied with λv = cπv.
Conversely suppose that the diffusion process on a metric graph having generator A as in Defini-

tion 5.1 is reversible. Then, since the probability current across each edge must be zero, the density
of the invariant measure µ on each edge has to be of the form

µe(x) =
Ce

σ2
e(x)

e
∫ x
0 se(y)dy−

∫ `e
x se(y)dy , (6.24)

for some suitable constants Ce (formula (6.24) is the general solution of the equation Je[µ] = 0,
as follows by the identity (3.29)). Condition (3) for the stationarity implies that there exists some
positive numbers

(
λv
)
v∈V for which we have{

Ce = λvαv,ee
∫ `e
0 se(y)dy , if e ∈ A+(v)

Ce = λvαv,ee
−

∫ `e
0 se(y)dy , if e ∈ A−(v) .

(6.25)

Take e ∈ A(v) ∩ A(w) and compute Ce using (6.25) using the two different formulas at v and w.
We get

Ce = λvq(v, w) = λwq(w, v) .

Normalising to one the sum of λ’s we have that the second identity above coincides with the detailed
balance for the Markov chain with rates q. �

We remark that the simple case discussed in Remark 3.4 of the interval with reflecting boundary
conditions always corresponds to a reversible situation since it is associated to a two states Markov
chain.

Acknowledgments

We thank an anonymous referee for a very careful reading of the paper which led to a notable
improvement of the text.

References

Anantharam, V. and Tsoucas, P. A proof of the Markov chain tree theorem. Statist. Probab. Lett.,
8 (2), 189–192 (1989). MR1017890.

Andreucci, D., Cirillo, E. N. M., Colangeli, M., and Gabrielli, D. Fick and Fokker-Planck diffusion
law in inhomogeneous media. J. Stat. Phys., 174 (2), 469–493 (2019). MR3910901.

Bakry, D., Gentil, I., and Ledoux, M. Analysis and geometry of Markov diffusion operators, volume
348 ofGrundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer, Cham (2014). ISBN 978-3-319-00226-2; 978-3-319-00227-9. MR3155209.

Barlow, M., Pitman, J., and Yor, M. On Walsh’s Brownian motions. In Séminaire de Probabilités,
XXIII, volume 1372 of Lecture Notes in Math., pp. 275–293. Springer, Berlin (1989). MR1022917.

Berkolaiko, G., Carlson, R., Fulling, S. A., and Kuchment, P., editors. Quantum graphs and their
applications, volume 415 of Contemporary Mathematics. American Mathematical Society, Provi-
dence, RI (2006). ISBN 0-8218-3765-6. MR2279143.

Bogachev, V. I., Krylov, N. V., Röckner, M., and Shaposhnikov, S. V. Fokker-Planck-Kolmogorov
equations, volume 207 ofMathematical Surveys and Monographs. American Mathematical Society,
Providence, RI (2015). ISBN 978-1-4704-2558-6. MR3443169.

Burago, D., Burago, Y., and Ivanov, S. A course in metric geometry, volume 33 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI (2001). ISBN 0-8218-2129-6.
MR1835418.

Camilli, F. and Marchi, C. A comparison among various notions of viscosity solution for Hamilton-
Jacobi equations on networks. J. Math. Anal. Appl., 407 (1), 112–118 (2013). MR3063108.

http://www.ams.org/mathscinet-getitem?mr=MR1017890
http://www.ams.org/mathscinet-getitem?mr=MR3910901
http://www.ams.org/mathscinet-getitem?mr=MR3155209
http://www.ams.org/mathscinet-getitem?mr=MR1022917
http://www.ams.org/mathscinet-getitem?mr=MR2279143
http://www.ams.org/mathscinet-getitem?mr=MR3443169
http://www.ams.org/mathscinet-getitem?mr=MR1835418
http://www.ams.org/mathscinet-getitem?mr=MR3063108


Invariant measures on metric graphs 1799

Colangeli, M., Maes, C., and Wynants, B. A meaningful expansion around detailed balance. J.
Phys. A, 44 (9), 095001, 13 (2011). MR2771859.

Faggionato, A. and Gabrielli, D. A representation formula for large deviations rate functionals of
invariant measures on the one dimensional torus. Ann. Inst. Henri Poincaré Probab. Stat., 48 (1),
212–234 (2012). MR2919204.

Fitzsimmons, P. J. and Kuter, K. E. Harmonic functions of Brownian motions on metric graphs.
J. Math. Phys., 56 (1), 013504, 28 (2015). MR3390843.

Freidlin, M. and Sheu, S.-J. Diffusion processes on graphs: stochastic differential equations, large
deviation principle. Probab. Theory Related Fields, 116 (2), 181–220 (2000). MR1743769.

Freidlin, M. I. and Wentzell, A. D. Diffusion processes on graphs and the averaging principle. Ann.
Probab., 21 (4), 2215–2245 (1993). MR1245308.

Freidlin, M. I. and Wentzell, A. D. Random perturbations of Hamiltonian systems. Mem. Amer.
Math. Soc., 109 (523), viii+82 (1994). MR1201269.

Freidlin, M. I. and Wentzell, A. D. Random perturbations of dynamical systems, volume 260 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer, Heidelberg, third edition (2012). ISBN 978-3-642-25846-6. MR2953753.

Garavello, M. and Piccoli, B. Traffic flow on networks. Conservation laws models, volume 1 of
AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS),
Springfield, MO (2006). ISBN 978-1-60133-000-0; 1-60133-000-6. MR2328174.

Gardiner, C. Stochastic methods. A handbook for the natural and social sciences. Springer Series in
Synergetics. Springer-Verlag, Berlin, fourth edition (2009). ISBN 978-3-540-70712-7. MR2676235.

Hajri, H. and Raimond, O. Stochastic flows on metric graphs. Electron. J. Probab., 19, no. 12, 20
(2014). MR3164765.

Jehring, K. E. Harmonic functions on Walsh’s Brownian motion. ProQuest LLC, Ann Arbor, MI
(2009). ISBN 978-1109-15160-2. Thesis (Ph.D.)–University of California, San Diego. MR2713145.

Kostrykin, V., Potthoff, J., and Schrader, R. Brownian motions on metric graphs. J. Math. Phys.,
53 (9), 095206, 36 (2012). MR2905788.

Mugnolo, D. Semigroup methods for evolution equations on networks. Understanding Complex
Systems. Springer, Cham (2014). ISBN 978-3-319-04620-4; 978-3-319-04621-1. MR3243602.

Norris, J. R. Markov chains, volume 2 of Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press, Cambridge (1998). ISBN 0-521-48181-3. MR1600720.

Pavliotis, G. A. Stochastic processes and applications. Diffusion processes, the Fokker-Planck and
Langevin equations, volume 60 of Texts in Applied Mathematics. Springer, New York (2014).
ISBN 978-1-4939-1322-0; 978-1-4939-1323-7. MR3288096.

Pitman, J. and Tang, W. Tree formulas, mean first passage times and Kemeny’s constant of a
Markov chain. Bernoulli, 24 (3), 1942–1972 (2018). MR3757519.

Walsh, J. B. A diffusion with a discontinuous local time. Astérisque, 52 (53), 37–45 (1978).

http://www.ams.org/mathscinet-getitem?mr=MR2771859
http://www.ams.org/mathscinet-getitem?mr=MR2919204
http://www.ams.org/mathscinet-getitem?mr=MR3390843
http://www.ams.org/mathscinet-getitem?mr=MR1743769
http://www.ams.org/mathscinet-getitem?mr=MR1245308
http://www.ams.org/mathscinet-getitem?mr=MR1201269
http://www.ams.org/mathscinet-getitem?mr=MR2953753
http://www.ams.org/mathscinet-getitem?mr=MR2328174
http://www.ams.org/mathscinet-getitem?mr=MR2676235
http://www.ams.org/mathscinet-getitem?mr=MR3164765
http://www.ams.org/mathscinet-getitem?mr=MR2713145
http://www.ams.org/mathscinet-getitem?mr=MR2905788
http://www.ams.org/mathscinet-getitem?mr=MR3243602
http://www.ams.org/mathscinet-getitem?mr=MR1600720
http://www.ams.org/mathscinet-getitem?mr=MR3288096
http://www.ams.org/mathscinet-getitem?mr=MR3757519

	1. Introduction
	2. Markov chain tree Theorem
	3. One dimensional diffusions
	3.1. Scaling limit
	3.2. Direct proof

	4. Metric graphs and metric arborescences
	5. Diffusions on metric graphs
	6. A combinatorial representation of the invariant measure
	6.1. The reversible case:

	Acknowledgments
	References

