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Abstract. At each site of a supercritical Galton-Watson tree place a parking spot which can ac-
commodate one car. Initially, an independent and identically distributed number of cars arrive at
each vertex. Cars proceed towards the root in discrete time and park in the first available spot they
arrive at. Let X be the total number of cars that arrive at the root. Goldschmidt and Przykucki
proved that X undergoes a phase transition from being finite to infinite almost surely as the mean
number of cars arriving to each vertex increases. We show that EX and P (X = 0) are discontin-
uous at the critical threshold, describe the growth rate of EX above criticality, and prove that X
stochastically increases as the initial car arrival distribution becomes less concentrated. We also
provide a new characterization of the threshold with a generating function condition satisfied by
the time of first arrival at the root. For the simple case that either 0 or 2 cars arrive at each vertex
of a d-ary tree, we give improved bounds on the critical threshold and also prove that the location
of the phase transition depends on more than just the mean number of cars arriving to each vertex.

1. Introduction

Parking, introduced over fifty years ago (Konheim and Weiss, 1966), is a stochastic process at the
intersection of probability and combinatorics. The parking process on a tree T with root ρ begins
with a parking spot at each vertex. Initially, ηv cars arrive at each vertex v ∈ T and move towards
the root in discrete time steps. When a car arrives at an available spot, the car parks there and
the spot becomes unavailable. If multiple cars arrive at the same available spot, then one is chosen
uniformly at random to park there. The remaining cars continue moving towards the root. Let X
be the total number of cars that arrive at ρ. This includes the ηρ cars that initially arrive and all
subsequent cars that arrive from further in the tree.
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There has been significant progress on understanding whether or not X is finite or infinite for
a given η when T is a critical Galton-Watson tree (Goldschmidt and Przykucki, 2019; Chen and
Goldschmidt, 2021; Curien and Hénard, 2019; Roulet and d’Aspremont, 2020). Less is known about
the case that T is a supercritical Galton-Watson tree. The point of this article is to make some
progress on this case and develop some machinery that might aid future work. We also provide a
fairly detailed survey of parking from a probabilistic perspective in Section 1.1.

Suppose that the offspring distribution of the Galton-Watson tree T is described by the non-
negative integer-valued random variable Z with EZ = λ > 1. Additionally, assume that the ηv
are independent and identically distributed (i.i.d.) as η(α), which is a family of random variables
(η(α))0≤α≤1 that is stochastically increasing in α = Eη(α). Stochastically increasing means that
P (η(α) ≥ x) ≤ P (η(α′) ≥ x) for all x ≥ 0 and α ≤ α′. Throughout this work we assume that
0 ≤ α ≤ 1. For this setting, Goldschmidt and Przykucki proved in Goldschmidt and Przykucki
(2019, Theorem 3.4) that there exists αc ∈ (0, 1) such that if α < αc, then

EX =
λ− α− λP (X = 0)

λ− 1

while if α > αc, then, conditionally on the non-extinction of the tree, X =∞ almost surely.
Unless stated otherwise, we let η(α) and αc be as in Goldschmidt and Przykucki (2019, Theorem

3.4). What happens when α = αc was left open. Our first result shows that EX is finite at
criticality.

Theorem 1.1. For all α ≤ αc it holds that

EX =
λ− α− λP (X = 0)

λ− 1
(1.1)

with P (X = 0) > 0.

Remark 1.2. After releasing our preprint, a simpler proof of (1.1) from Theorem 1.1 was pointed out
to us by Olivier Hénard. This argument is given immediately following our proof of Theorem 1.1.
We still include our original approach, since it develops machinery that we use to derive Theorem 1.3
and the upper bound in Proposition 1.4.

The behavior described in Theorem 1.1 for supercritcal trees is different than what occurs when
T is instead a critical Galton-Watson tree conditioned to be infinite. In this setting EX =∞ and
P (X = 0) = 0 at criticality. See the discussion of results from Goldschmidt and Przykucki (2019);
Chen and Goldschmidt (2021); Curien and Hénard (2019) following the statements of our results.

Determining the value of αc remains an open problem. We introduce time to the process by
viewing cars as arriving to their starting vertex at t = 0 and subsequently proceeding towards ρ
at unit time increments t = 1, 2, . . .. Let Xn be the number of cars that arrive at ρ up to time
n. This is equivalent to the total number of cars that arrive at ρ (including those initially at ρ) in
the process restricted to the first n levels of T . One consequence of the proof of Theorem 1.1 is a
formula for the growth rate of EXn as well as a characterization for αc in terms of the first time
that a car arrives at the root.

Theorem 1.3. If τ ∈ {0, 1, . . .} is the time that the first car arrives at ρ, then

lim
n→∞

EXn

λn
=

λ

λ− 1
(α− Eλ−τ ). (1.2)

Moreover,

αc = sup{α : Eλ−τ = α}. (1.3)

Notice that taking λ ↓ 1 in Theorem 1.3 gives Eλ−τ → P (τ <∞) = P (X > 0). The value αc in
for a critical Galton-Watson a tree is thus the supremum of α such that P (X > 0) = α as observed
in Curien and Hénard (2019).
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One particularly simple choice for the distribution of η(α) is that it takes value 2 with probability
α/2 and otherwise is 0. After the initial cars that arrive park, the number of cars at each site is a
Bernoulli random variable with parameter α/2. Accordingly, we refer to the parking process with
this distribution as Bernoulli parking. As a further simplification, we consider Bernoulli parking on
Td the infinite d-ary tree in which each vertex has d children. We denote the critical threshold for
this specific setting by

αc(d) = critical value for Bernoulli parking on Td.
It was shown in Goldschmidt and Przykucki (2019, Theorem 3.5) that 0.03125 ≤ αc(2) ≤ 0.50.

We give an improved upper bound and also perform a small tweak to the proof of Goldschmidt and
Przykucki (2019, Theorem 3.5) to slightly improve the lower bound.

Proposition 1.4. 0.03175 < αc(2) < 0.08698

The calculation for the upper bound is computer-assisted which, theoretically, yields arbitrarily
close upper bounds. However, runtime with exact precision quickly becomes an issue. Truncating
the decimals in our calculations allows us to compute further and still have a rigorous bound, but
at the cost of some accuracy. Nonetheless, we believe that the upper bound is very close to the
correct value of αc(2). Allowing for rounding error, the evidence suggests that αc(2) ≈ 0.0863. See
the proof of Proposition 1.4 for more details.

The lower bound comes from the observation that infinitely many visits to the root requires the
existence of infinitely many connected subgraphs containing the root that at time 0 contain more
cars than spots. A slight optimization to the union bound from Goldschmidt and Przykucki (2019)
gives our improvement. Note that a similar approach is used in parts of Damron et al. (2019a) and
Damron et al. (2021). Our lower bound is much further from what we believe to be the true value
of αc(2) than our upper bound. It would be interesting to find a method of dominating the number
of root visits in parking on trees that yield better lower bounds. It is also natural to ask how αc(d)
changes as d is increased. A straightforward generalization of Goldschmidt and Przykucki (2019,
Theorem 3.5), gives that αc(d) ≈ d−2.

Proposition 1.5. It holds for all d ≥ 2 that
1

2e2
d−2 ≤ αc(d) ≤ 2d−2. (1.4)

Comparing the following result to Proposition 1.5, we see that the location of the phase transition
on Td depends on more than just the mean of the car arrival distribution.

Proposition 1.6. Let α′c(d) be the critical threshold for the parking process on Td with η(α) = 3
with probability α/3 and 0 otherwise. It holds that

α′c(d) ≤ 3d−3.

Combining this with (1.4) gives α′c(d) < αc(d) for large enough d.

That the volatility of η(α) influences the location of the phase transition is part of a more general
property of the parking process. Namely, that X increases when η(α) is replaced by a more volatile
distribution. Note that this does not occur with transience and recurrence for branching random
walk which only depends on the mean of the offspring distribution Athreya (2006). However,
Hutchcroft recently proved that the global transience/recurrence behavior at criticality is sensitive
to the distribution Hutchcroft (2020). On critical Galton-Watson trees with α fixed, Curien and
Hénard proved in Curien and Hénard (2019) that αc decreases linearly in var(η) (see (1.9).) We
prove a more general, albeit less precise, result.

Given random variables X and Y taking values in [0,∞), we say that Y dominates X in the
increasing convex order (icx order) if for all increasing convex functions ϕ : [0,∞) → R it holds
that Eϕ(X) ≤ Eϕ(Y ). Denote this ordering by X �icx Y . Roughly speaking, the larger or less
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concentrated a distribution is, the larger it is in the increasing convex order. As the identity function
is convex, when X �icx Y we have EX ≤ EY . Moreover, if EX = EY , then, since x2 is increasing
and convex, we have X �icx Y implies that var(X) ≤ var(Y ). See Shaked and Shanthikumar
(2007) for a thorough survey of stochastic orders. We show for all Galton-Watson trees (not just
supercritical) that X increases in the increasing convex order when η does. Consequently, so does
EX.

Theorem 1.7. Let X and X ′ denote the total number of cars that arrive at ρ for the parking
process on a Galton-Watson tree with car arrival distributions η and η′, respectively. If η �icx η

′,
then X �icx X

′.

An equivalent stochastic order is considered in Johnson and Junge (2018) for an interacting
particle system known as the frog model. Unlike parking, the number of visits to the root in this
process decreases if the initial particle distribution is replaced by one with the same mean that is
larger in the increasing convex order. Like our Proposition 1.6, Johnson and Rolla proved that the
location of the phase-transition for the frog model on trees is sensitive to the concentration of the
initial configuration Johnson and Rolla (2019). An analogous effect occurs for the limiting shape in
first passage percolation van den Berg and Kesten (1993); Marchand (2002).

In Remark 4.1 we explain how to generalize Theorem 1.7 to arbitrary locally finite trees. We
do not give that argument since a significantly more general result concerning parking and the icx
order was recently proven in Bahl et al. (2021). To close our line of pursuit, we provide a corollary
which says that Bernoulli parking gives the maximal critical threshold among all arrival distributions
whose supports do not include {1}. So, our estimates in Proposition 1.4 and Proposition 1.5 hold
for a large family of arrival distributions. A more general version of this monotonicity result also
appears in Bahl et al. (2021).

Corollary 1.8. If αc is the critical value for Bernoulli parking on a Galton-Watson tree T , then
α′c ≤ αc with α′c the critical value for parking on T with any other family η′(α) of car arrival
distributions satisfying the hypotheses of Goldschmidt and Przykucki (2019, Theorem 3.4) and whose
support does not include {1}.

1.1. Discussion. Parking dynamics were introduced by Konheim and Weiss for T = [1, n] the path
on n vertices and ρ = 1 Konheim and Weiss (1966). They fixed a parameter α ∈ (0, 1] and placed
dαne cars uniformly at random on [1, n]. Let An be the event that every car parks. Their main
result was an asymptotic formula for the probability a given configuration is a parking function:

lim
n→∞

P (An) = (1− α)eα. (1.5)

There has been significant followup study of the combinatorial structures that arise from parking
functions. See the work of Stanley and Pitman (Stanley, 1997, 1998; Stanley and Pitman, 2002) as
well as Diaconis and Hicks (2017). There are also connections to the Abelian sandpile and activated
random walk (Chebikin and Pylyavskyy, 2005; Cabezas et al., 2014a).

Notice that (1.5) is never equal to zero. Lackner and Panholzer showed that there is a phase
transition when T is a uniformly random tree on n vertices and dαne cars are placed uniformly at
random throughout the vertices. Again letting An be the event that every car parks, they proved
that P (An) has limiting behavior

lim
n→∞

P (An) =

{√
1−2α
1−α , 0 ≤ α ≤ 1/2

0, α ≥ 1/2
. (1.6)

Goldschmidt and Przykucki studied the natural limiting case of Lackner and Panholzer (2016)
in Goldschmidt and Przykucki (2019). They let T be a Galton-Watson tree with a Poisson with
mean 1 offspring distribution conditioned to be infinite. Each ηv is an independent Poisson random
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variable with mean α. With A the event that every car parks, they showed that P (A) has the same
formula as (1.6). Furthermore, they deduced the main theorem of Lackner and Panholzer (2016) as
a corollary of their theorem on the infinite tree. Recently, Chen and Goldschmidt proved a similar
result for when T is the limiting tree from a sequence of uniformly random rooted plane trees (Chen
and Goldschmidt, 2021). In this case, the phase transition occurs at α =

√
2 − 1 ≈ 0.4142, rather

than 1/2.
The parking process has been studied from two alternative perspectives. Jones viewed parking as

a model for runoff of rainfall in Jones (2019). Parking can also be thought of as an interacting particle
system with mobile particle (cars) and stationary particles (spots) which mutually annihilate upon
colliding. This was first studied on the integer lattice with cars performing simple random walk
by Cabezas, Rolla, and Sidoravicius under the name particle-hole model (Cabezas et al., 2014b).
Later Damron, Gravner, Junge, Lyu, and Sivakoff studied these dynamics on transitive unimodular
graphs (Damron et al., 2019b). This is a special case of two-type diffusion-limited annihilating
systems studied in the physics literature (Ovchinnikov and Zeldovich, 1978; Lee and Cardy, 1995)
and also by mathematicians (Bramson and Lebowitz, 1991; Cabezas et al., 2018). More recently,
Przykucki, Roberts, and Scott studied the parking process with cars performing simple random walk
on the integers Przykucki et al. (2019). Johnson, Junge, Lyu and Sivakoff considered the process
in continuous time on integer lattices and on bi-directed regular trees (Johnson et al., 2020). Such
graphs with simple random walks are unimodular, so the phase transition happens when there is
an equal initial density of cars and spots.

Returning our discussion to parking on Galton-Watson trees, both Goldschmidt and Przykucki
(2019) and Chen and Goldschmidt (2021) rely on explicit formulas for the generating function of X
when T is an unconditioned critical Galton-Watson tree. This is made possible through a renewal
present in the parking process on Galton-Watson trees and then additional nice properties from
the underlying offspring distributions (Poisson and Geometric with mean 1 in Goldschmidt and
Przykucki, 2019 and Chen and Goldschmidt, 2021, respectively). Namely, if Z is the number of
children of ρ, then

X = ηρ +
Z∑
i=1

(X(i) − 1)+, (1.7)

where the X(i) are i.i.d. copies of X and x+ = max(0, x). Similar equations as (1.7):

Yn+1 = (Y (1)
n + Y (2)

n + · · ·+ Y (Z)
n − 1)+, (1.8)

model total arrivals at the root of a tree of height n + 1 with the inital cars only arriving to the
leaves of the tree. This setting is related to a spin glass model referred to as the Derrida-Retaux
model. See Collet et al. (1984); Hu and Shi (2018); Hu et al. (2020). Aldous and Bandyopadhyay
study many other similar recursive equations Aldous and Bandyopadhyay (2005).

How (1.8) grows from a starting distribution Y0 is better understood than (1.7). For example,
the analogue of Bernoulli parking on a binary tree is when: P (Y0 = 0) = 1− p, P (Y0 = 2) = p, and
n = 2. Collet et al. proved that F∞ = limn→∞EYn/2

n satisfies F∞ > 0 for p > 1/5 and F∞ = 0
for p < 1/5. The formula

pc =
1

E[(Y0 − 1)2Y 0] + 1

was worked out for when Y0 is integer valued Collet et al. (1984). Hu and Shi studied (1.8) with
a random number of terms, which corresponds to a supercritical Galton-Watson tree Hu and Shi
(2018). They studied how F∞ behaves as p ↓ pc. It seems to us that the addition of the ‘ηρ’-term
in (1.7) means that a different approach is needed than what has been used to analyze (1.8).

In Curien and Hénard (2019), Curien and Hénard confirmed a conjecture from Goldschmidt
and Przykucki (2019) by generalizing the phase transition results from Goldschmidt and Przykucki
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Figure 1.1. Plots of P (Xn = 0) in Bernoulli parking on T2 for n =
10, 15, 20, 30, 35, 40 (arranged right to left) and α ∈ [0, 0.2]. The plotted values pos-
sibly have small floating point inaccuracies for large n. We do not have an explicit
formula for P (X = 0), but these curves are increasingly accurate approximations.
The fact that P (X = 0) at αc(2) is seen in the steepening curves.

(2019) and Chen and Goldschmidt (2021) to arbitrary Galton-Watson trees whose offspring distri-
butions have mean 1 and finite variance Σ2. They proved that when the ηv are i.i.d. with mean α
and variance σ2 and T is such a Galton-Watson tree conditioned to be infinite, a phase transition
for EX occurs when

θ := (1− α)2 − Σ2(σ2 + α2 − α) = 0. (1.9)

For example, if the offspring distribution is Poisson with mean 1 and arrival distribution is Poisson
with mean α, solving (1.9) gives α = 1/2 as in Goldschmidt and Przykucki (2019).

What happens at criticality? For the setting in Goldschmidt and Przykucki (2019), Goldschmidt
and Przykucki proved that EX undergoes a discontinuous phase transition on the critical Poisson
Galton-Watson tree:

EX =

{
1−
√

1− 2α, α ≤ 1/2

∞, α > 1/2
.

In particular, EX = 1 when α = 1/2. Similar behavior was observed for EX in the setting in Chen
and Goldschmidt (2021). All of this is covered by the main theorem of Curien and Hénard (2019)
which implies, among other things, that

E(X − 1)+ =

1−
√
θ + α

Σ2
, θ ≥ 0

∞, θ < 0

with θ defined at (1.9). Contat generalized some results from Curien and Hénard (2019) to the
setting in which the arrival distribution depends on the degree of the vertex Roulet and d’Aspremont
(2020). Subsequently, Contant and Curien described the critical window for the parking process on
Cayley trees Contat and Curien (2021).

As remarked earlier, less is known about the phase transition on supercritical trees. It would be
good to have an exact formula for αc(d), and more generally for the critical threshold on supercritical
Galton-Watson trees analogous to the main theorem of Curien and Hénard (2019). Even a heuristic
for where the threshold should be would be nice to have. It is unclear to us if, like for critical Galton-
Watson trees, the threshold only depends on the mean and variance of η. One clear difference from
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the formula for αc at (1.9), is that even if the variance of Z is 0, i.e. Z ≡ d, then the critical threshold
can change. So it seems likely that, if a closed form for αc exists on supercritical Galton-Watson
trees, it is more involved than (1.9).

Although we prove that P (X = 0) > 0 for α ≤ αc(d), we do not have a closed formula for
P (X = 0), nor for EX. Nor do we have a conjecture. In Figure 1.1 we give a few plots of
P (Xn = 0) for Bernoulli parking on T2, where Xn is the number of cars that arrive at ρ up to and
including time n.

1.2. Organization. In Section 2 we prove Theorem 1.1, and Theorem 1.3. Section 3 has the results
for Bernoulli parking: Proposition 1.4, Proposition 1.5, and Proposition 1.6. Section 4 has the
stochastic comparison results: Theorem 1.7 and Corollary 1.8.

2. Critical behavior

Recall that X is the total number of cars that arrive at ρ when T is a Galton-Watson tree with
offspring distribution Z satisfying EZ = λ > 1. The number of cars arriving to the site v is ηv
which has distribution η := η(α). Let Xn be the number of cars that arrive at ρ up to time n. We
let X0 = ηρ. Let qn = P (Xn = 0).

Our starting point is a formula for EXn+1. Define the functions

Gn(α) =
n∑
i=0

λ−iqi; F (α) =
λ(1− α)

λ− 1
; C(α) =

1− α
λ− 1

. (2.1)

Also, let G(α) = limn→∞Gn(α).

Proposition 2.1. Let Gn, F and C be as in (2.1). It holds for all n ≥ 0 that

EXn+1 = (Gn(α)− F (α))λn+1 + C(α). (2.2)

Proof : The truncated analogue of (1.7) is

Xn+1 = ηρ +
Z∑
i=1

(Xn − 1)+,

which follows from renewal properties of T . Taking the expected value of both sides gives

EXn+1 = α+ λ(EXn − P (Xn > 0))

Iterating the recursion yields

EXn+1 = λn+1EX0 +
n∑
i=0

λiα−
n+1∑
i=1

λi(1− qn−i+1)),

which simplifies to (2.2) after expanding the
∑
λ−i terms and factoring out λn+1. �

Proposition 2.1 gives us a necessary and sufficient condition to have EX <∞.

Lemma 2.2. G(α)− F (α) = 0 if and only if EX <∞.

Proof : First note that F (α), C(α) > 0 for α < 1. For such α, we must have G(α) − F (α) ≥ 0.
Otherwise, since Gn ↑ G, we would have Gn(α) − F (α) < −δ for some δ > 0, which gives the
contradiction that EXn ↓ −∞. If G(α) − F (α) = 0, then (2.2) implies that EX ≤ C(α) for all
n ≥ 1. The monotone convergence theorem implies that EXn ↑ EXn ≤ C(α) <∞.

If F (α)−G(α) > 0 then, since Gn ↑ G is strictly increasing in n, we have GN (α)−F (α) = δ for
some δ > 0 and large enough N . The formula at (2.2) implies that EXn ≥ δdn for all n ≥ N , and
thus EX =∞. �
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To describe what happens at α = αc we require continuity of G, which relies on continuity of qn
in α. First we prove that the distribution of η(α) is continuous in α.

Lemma 2.3. Suppose that (η(α)) is a stochastically increasing family of random variables supported
on the nonnegative integers with Eη(α) = α. It holds for all k ≥ 0 that P (η(α) = k) is a continuous
function in α.

Proof : Let α′ < α. Since α = Eη(α) =
∑

m≥0 P (η(α) > m), we write

α− α′ = Eη(α)− Eη(α′) =

∞∑
m=0

[P (η(α) > m)− P (η(α′) > m)].

Because (η(α)) is stochastically increasing, each summand is positive. Thus, for any m ≥ 0 we
have P (η(α) > m) − P (η(α′) > m) ≤ α − α′, which can be made arbitrarily small. It follows
that P (η(α) > m) is continuous in α for all m ≥ 0. This implies that 1 − P (η(α) > m) =∑m

k=0 P (η(α) = k) is also continuous. Iteratively applying this fact for m = 0, 1, . . . gives that
P (η(α) = k) is continuous for all k ≥ 0. �

Lemma 2.4. qn is continuous in α for all n ≥ 0.

Proof : Let Tn denote the subset of T containing all vertices within distance n of ρ. Fix N > 0 and
partition

qn = P (Xn = 0, |Tn| ≤ N) + P (Xn = 0, |Tn| > N)

≤ P (Xn = 0, |Tn| ≤ N) + P (|Tn| > N). (2.3)

Using Markov’s inequality we have P (|Tn| > N) ≤ λn+1/N , and can be made arbitrarily small for
fixed n.

Observe that there are finitely many trees Tn ≤ N , and the event Xn = 0 requires that all ηv ≤ N
with v ∈ Tn, otherwise ρ would be visited. Thus, P (Xn = 0, |Tn| ≤ N) is a finite sum involving
only products of the probabilities P (η = k) for k ≤ N . By Lemma 2.3, this is continuous. Hence,
for α ∈ (0, 1) and any ε > 0, we may choose N so that P (|Tn| > N) < ε/3 and δ so that

|P (Xn(α) = 0, |Tn| ≤ N)− P (Xn(α′) = 0), |Tn| ≤ N)| < ε/3

for all |α − α′| < δ. Here Xn(α) signifies the dependence of Xn on α. Applying this to (2.3) gives
for all |α− α′| < δ we have |qn(α)− qn(α′)| < ε, and so qn is continuous at α. �

Now we can prove that EX is finite when α = αc.

Proof of Theorem 1.1: By Lemma 2.2, it suffices to prove that G(αc) − F (αc) = 0. We claim
that G(α) is continuous for all α ∈ (0, 1). By our hypothesis that P (η = k) is continuous in α
and Lemma 2.4, the qn are continuous functions of α. It follows that each Gn =

∑n
i=0 λ

−iqi is
continuous. Moreover, the convergence Gn ↑ G is uniform since

G(α)−Gn(α) =
∑
i>n

λ−iqi ≤
∑
i>n

λ−i

which can be made arbitrarily small for all sufficiently large n. A uniformly convergent sequence
of continuous functions is continuous, so G is continuous. As F is also continuous, it follows that
G(α)− F (α) is continuous for all α ∈ (0, 1).

Goldschmidt and Przykucki (2019, Theorem 3.4) tells us that α < αc implies EX < ∞. Thus,
Lemma 2.2 gives that G(α)− F (α) = 0 for all α < αc. Continuity of G− F implies that

G(αc)− F (αc) = lim
α→α−

c

[G(α)− F (α)] = 0.

Thus, EX < ∞ when α = αc. The explicit formula (1.1) follows from taking expectation in (1.7)
and solving for EX, which is valid whenever EX <∞.
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To establish that P (X = 0) > 0 whenever α ≤ αc, we proceed by contradiction. If P (X = 0) = 0,
then we claim that there almost surely exists an infinite sequence of cars that eventually arrive at
ρ. Indeed, let v1 be the location of the first car to arrive at ρ from a vertex distinct from ρ. The
existence of v1 is guaranteed by the fact that P (X = 0) = P (X = 0 | ηρ = 0)P (ηρ = 0) = 0,
hence a car will almost surely arrive at ρ even after ignoring any arrivals from ηρ. If there are
several vertices, break the tie in an arbitrary manner. We then apply the same reasoning to v1 to
obtain a vertex v2 initially housing the first car to arrive at v1 from a vertex distinct from v2. Since
a car originating at v1 reached ρ, the car from v2 will also visit ρ. Iterating gives a sequence of
infinitely many distinct vertices with a car that visits ρ, hence X =∞ almost surely. However, this
contradicts our just-established result that α ≤ αc implies X is almost surely finite. �

Alternate proof of Theorem 1.1: Let Xn(α) be the number of cars that arrive at ρ up to time n
with η(α) cars arriving initially to each site. Let X(α) = X∞(α). Since the η(α) are stochastically
increasing, so are the Xn(α). We claim that the functions

fn : [0, αc]→ [0,∞] : α→ EXn(α)

are left-continuous. Indeed, for any 0 ≤ α1 < α2 < αc we have

E[Xn(α2)]− E[Xn(α1)] ≤
n∑
k=0

λk[Eη(α2)− Eη(α1)] = (α2 − α1)
n∑
k=0

λk.

The first inequality comes from the observation that the amount of extra arrivals at the root can
be no greater than the total amount of arrivals at the entire tree. Since the fn are left-continuous
and non-decreasing, it follows that

fn ↗ f := EX(α)

is also left-continuous. Left-continuity along with the uniform bound on f(α) for 0 ≤ α < αc from
Goldschmidt and Przykucki (2019, Theorem 3.4) imply the bound at (1.1) holds for f(αc). �

Proof of Theorem 1.3: It follows from Lemma 2.2 that

αc = sup{α : G(α)− F (α) = 0}.

Notice that qn = P (Xn = 0) = P (τ > n). We then have

G(α) =
∞∑
i=0

λ−iP (τ > i) =
∞∑
i=0

∑
m>i

λ−iP (τ = m) +
∞∑
i=0

λ−iP (τ =∞)].

Apply Fubini’s theorem to the double sum to write this as

G(α) =
∑
m>0

m−1∑
i=0

λ−iP (τ = m) +
∞∑
i=0

λ−iP (τ =∞)

=
∑
m>0

λ− λ−m+1

λ− 1
P (τ = m) +

λ

λ− 1
P (τ =∞)

=
λ

λ− 1

(
P (τ =∞) +

∑
m>0

[P (τ = m)− λ−mP (τ = m)]

)
.

After grouping the P (τ = m) terms and the λ−mP (τ = m) terms and accounting for the fact that
both are missing P (τ = 0), this simplifies to

G(α) =
λ

λ− 1

(
1− Eλ−τ

)
.
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Now, subtracting F (α) = λ(λ− 1)−1(1− α) and simplifying a bit gives

G(α)− F (α) =
λ

λ− 1

(
α− Eλ−τ

)
. (2.4)

Proposition 2.1 tells us that
EXn+1

λn
= (Gn(α)− F (α)) + C(α)λ−n.

Taking the limit of the above and applying the equality at (2.4) gives (1.2). As for (1.3), by
Lemma 2.2 we have EX is finite if and only if α−Eλ−τ = 0, thus αc is the largest solution to this
equation.

�

3. Bernoulli parking on Td

3.1. Bounds for αc(2). The idea for improving previous estimates on αc(2) is to generate closed
forms for qn := P (Xn = 0) using a recursive relationship. Let p = α/2. For n ≥ 1 define Vn =
(Xn − ηρ)+ to be the number of cars that arrive at ρ between time 1 and n. Let rn,j = P (Vn = j).
Notice we have the simple relationship

qn = (1− p)rn,0. (3.1)

The following lemma describes a recursion satisfied by the rn,j .

Lemma 3.1. Let n ≥ 1. Set rn,j = 0 for j < 0 and j > 2n+1 − 2. For n = 0,

r1,0 = (1− p)2, r1,1 = 2p(1− p), r1,2 = p2.

When j = 0 we have

rn+1,0 = (1− p)2(rn,0 + rn,1)
2.

It holds for all 0 < j ≤ 2n+1 − 2 that

rn+1,j = p2

(
j−2∑
k=0

rn,krn,j−k−2

)

+ 2p(1− p)

(
rn,0rn,j−1 +

j−1∑
k=0

rn,krn,j−n

)

+ (1− p)2
(

2rn,0rn,j+1 +

j+1∑
k=1

rn,krn,j−k+2

)
.

Proof : This follows from (1.7). Label the two children of the root as x and y. The formulas for r1,j
come from the fact that V1 = 1{ηx = 2} + 1{ηy = 2} is a Binomial random variable. The formula
for rn+1,0 comes from the requirement that ηx, ηy = 0 and that no more than one car visits each
of x and y, respectively. Clearly, rn,j = 0 for j < 0, and since the number of vertices in T2 up to
distance n from ρ is 2n+1 − 1. The formula for rn+1,j comes from conditioning on ηx, ηy and then
partitioning on k cars arriving at x. Special considerations need to be made when k = j + 1 since,
in this case, either 0 or 1 cars can arrive at y. Similarly for when k = 0. �

Proof of Proposition 1.4: We start with the upper bound. It follows from Lemma 2.2 that G(α)−
F (α) > 0 if and only if α > αc. Since Gn ↑ G, if

Gn(α)− F (α) > 0 (3.2)

then G(α)− F (α) > 0. Thus, if we can find a pair n, α satisfying (3.2), then α is an upper bound
on αc.
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Using Lemma 3.1 and (3.1), it is not so taxing to write out qn for small values of n by hand, but
this quickly becomes intractable. A computer can calculate qn for much larger values of n, but still
is limited, since the number of terms and degree of the polynomials grow exponentially. Rounding
error makes any estimates obtained with floating point calculations non-rigorous.

We avoid this issue by truncating all numbers (at the 200th decimal place). Let gn be the analogue
of Gn, but with all decimals truncated. Since every summand in the formula for qn from Lemma 3.1
and (3.1) are positive, truncating gives a lower bound: gn(α) ≤ Gn(α) for all α. It only takes a few
seconds to show that for α0 = 0.08698 we have

g50(α0)− F (α0) > 0,

and thus G(α0)− F (α0) is also positive. Thus, αc < 0.08698.
The improvement to the lower bound uses a similar union bound approach as in Goldschmidt

and Przykucki (2019, Theorem 3.5). The authors show that if X = ∞ then there is an infinite
sequence (Hn) of connected subgraphs containing the root with

(a) |Hn| = n and
(b) there are at least dn/2e vertices in v ∈ Hn with ηv = 2.

The number of such subgraphs of size n is counted by the nth Catalan number which is bounded
by 4n.

The number of vertices with ηv = 2 in a subgraph of size n is a Binomial random variable with
parameters n and p = α/2. Thus, the probability of such a subgraph containing k > n/2 vertices
with cars initially arriving to them is∑

k>n/2

(
n

k

)
pk(1− p)n−k ≤ 2n

∑
k>n/2

pk(1− p)n−k.

Above we use the fact that
(
n
k

)
≤
(

n
dn/2e

)
for all k ≥ dn/2e. If p < 1/2, then

∑
k>n/2

pk(1− p)n−k = pdn/2e(1− p)n−dn/2e
n/2∑
k=0

(
p

1− p

)k
≤ 2Cpn/2(1− p)n/2

for C =
∑∞

k=0(p/(1 − p))k = (1 − p)/(1 − 2p). The ‘2’ coefficient is to correct for the periodicity
coming from the (1− p)n−dn/2e term.

Applying a union bound tells us that the probability that the sequence (Hn) exists is bounded
by

∞∑
n=1

4n2n(2Cpn/2(1− p)n/2) = 2C

∞∑
n=1

(64p(1− p))n/2.

For p < 1
2 −

√
15
8 ≈ 0.015877 the term 64p(1 − p) < 1 and the series is summable. It follows from

the Borel-Cantelli lemma that there is no infinite sequence (Hn) with the required properties, and
thus P (X =∞) = 0. Switching back to α = 2p, this gives αc > 2(0.015877) = 0.031754.

�

Remark 3.2. Regarding the truncation used with gn to obtain upper bounds on αc, there is some
loss of accuracy from truncation. However, being able to compute for larger n is better than
computing with perfect accuracy. For example, it took several hours to show that G23(112/1000)−
F (112/100) > 0 working with rational numbers. For n = 23 most of the fractions have millions
of digits in the denominator and numerator. Still, with enough computing power, proceeding with
exact calculations would give arbitrarily close upper bounds on αc.

Remark 3.3. The improvement to the lower bound in Goldschmidt and Przykucki (2019, Theo-
rem 3.5) is the (1− p)n/2 term. The authors did not optimize to include it and instead of finding p
satisfying 64p(1− p) < 1, they required that 64p < 1. This gives their lower bound of 1/64.
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3.2. Asymptotic behavior of pc(d).

Proof of Proposition 1.5: Both bounds are straightforward generalizations of Theorem 3.5 in Gold-
schmidt and Przykucki (2019). For the upper bound, the idea is to compare to percolation that
considers the d2 vertices at distance two from the root. If one of these vertices has ηv = 2, then it
and its ancestor will be parked at. When α/2 > d−2, basic percolation theory tells us that there
is almost surely an infinite connected path of occupied parking spots. As observed by Goldschmidt
and Przykucki, the odd generations of the tree along this path almost surely have infinitely many
cars arrive at them, of which infinitely many will reach the root since the spots on the path are
parked at and the start of the path is some finite distance from ρ. It follows that X = ∞ almost
surely. Thus, αc(d) ≤ 2d−2.

The lower bound follows the argument in the proof of Proposition 1.4 concerning the existence of
a sequence of subgraphs (Hn). The only modification needed is that on Td the number of connected
subgraphs containing the root with n vertices is equal to the generalized Catalan number

Cd,n =
1

(d− 1)n+ 1

(
dn

n

)
≤
(
dn

n

)
See Hilton and Pedersen (1991). Using a standard upper bound on binomial coefficients (see Cormen
et al., 2001), we have (

dn

n

)
≤
(
e
dn

n

)n
= (ed)n.

Thus, we can replace 4n with (ed)n when applying a union bound. The rest of the quantities are
unchanged. So, again letting p = α/2, we have X <∞ almost surely whenever

(de)n2npn/2(1− p)n/2 < 1.

Bounding the (1 − p)n/2 term by 1, solving for p, then making the replacement α/2 = p gives the
claimed lower bound. �

We conclude this section by showing that the value of αc depends on how concentrated the arrival
distribution is.

Proof of Proposition 1.6: As in the proof of the upper bound in Proposition 1.5 we compare to
percolation. Now that η(α) = 3 with probability α/3 we can consider the vertices at distance three
from the root. Whenever α/3 ≥ d−3 there is almost surely an infinite connected path of spots that
are parked at, which, by similar reasoning as before, implies that X = ∞ almost surely. Thus,
α′c ≤ 3d−3. �

4. The increasing convex order

Proof of Theorem 1.7: Let Xn and X ′n be the number of arrivals at ρ up to time n for parking with
arrival distributions η and η′ as in Proposition 2.1. We claim that it suffices to prove that

Xn �icx X
′
n for all n ≥ 0. (4.1)

Suppose we show (4.1). It follows from the closure under sequences property Shaked and Shanthiku-
mar (2007, Theorem 4.A.8.(c)) that, whenever EX and EX ′ are finite, we have X �icx X

′. On the
other hand, if EX is infinite, then (4.1) implies that EXn ≤ EX ′n and thus EX ′ is also infinite. By
Goldschmidt and Przykucki (2019, Theorem 3.4), this implies that P (Xn =∞) = 1 = P (X ′n =∞).
So trivially we have X �icx X

′.
To establish (4.1), we proceed inductively. By hypothesis we have

X0 = ηρ �icx η
′
ρ = X ′0.
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Now, supposing that Xn �icx X
′
n. Since ϕ(x) = (x−1)+ is an increasing convex function on [0,∞),

it follows from our inductive hypothesis and Shaked and Shanthikumar (2007, Theorem 4.A.8.(a))
that

(Xn − 1)+ �icx (X ′n − 1)+. (4.2)

Applying (4.2) along with Shaked and Shanthikumar (2007, Theorem 4.A.9.) for random sums of
i.i.d. random variables whose respective summands are dominated in the increasing convex order
gives

Z∑
i=1

(X(i)
n − 1)+ �icx

Z∑
i=1

((X(i)
n )′ − 1)+. (4.3)

Also, since ηρ � η′ρ, Shaked and Shanthikumar (2007, Theorem 4.A.8.(d)) and (4.3) imply that

ηρ +
Z∑
i=1

(X(i)
n − 1)+ �icx η

′
ρ +

Z∑
i=1

((X(i)
n )′ − 1)+. (4.4)

The left and right formulas in (4.4) are exactly the recursive equations for Xn+1 and X ′n+1 as in
(2.2). This gives (4.1), which concludes the argument. �

Remark 4.1. The proof of Theorem 1.7 could be generalized so that the result holds for parking on
an arbitrary locally finite tree. We would take as inductive hypothesis that total arrivals at the root
respects the icx order for all such trees of height n or less. As in our argument for Galton-Watson
trees, we can obtain an i.i.d. decomposition for the total number of visits at the root from distance
n+1 in terms of trees of height no larger than n. The inductive hypothesis along with the machinery
from Shaked and Shanthikumar (2007) could then be applied in a similar manner.

Proof of Corollary 1.8: Let η := η(α) be the car arrival distribution for Bernoulli parking. By The-
orem 1.7, it suffices to prove for fixed α that η �icx η

′(α) := η′. This follows from a straightforward
adaptation of Johnson and Junge (2018, Proposition 15 (b)).

Let ψ be an increasing convex function on [0,∞). It is more convenient to work with ϕ(x) =
ψ(x)−ψ(0) so that ϕ(0) = 0. This is without loss of generality since linearity of expectation ensures
that E[ϕ(η)] ≤ E[ϕ(η′)] implies that E[ψ(η)] ≤ E[ψ(η′)]. First, we have

E[ϕ(η)] = (α/2)ϕ(2). (4.5)

As for η′, let a = E[η′ | η′ ≥ 2]. Since ϕ(0) = 0 and P (η′ = 1) = 0, we can condition and apply
Jensen’s inequality

E[ϕ(η′)] = E[ϕ(η′) | η′ ≥ 2]P (η′ ≥ 2)

≥ ϕ(a)P (η′ ≥ 2). (4.6)

As a ≥ 2 and ϕ is convex, the point (a, ψ(a)) lies above the secant line connecting (0, 0) and
(2, ϕ(2)). It follows that aϕ(2)/2 ≤ ϕ(a). Applying this to (4.6) gives

E[ϕ(η′)] ≥ aϕ(2)

2
P (η′ ≥ 1).

Notice that aP (η′ ≥ 1) = Eη′ = α, so we have E[ϕ(η′)] ≥ (α/2)ϕ(2) = E[ϕ(η)] by (4.5). Thus,
η �icx η

′. �
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