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Abstract. We consider a generalization of spatial branching coalescing processes in which the
behaviour of individuals is not (necessarily) independent, on the contrary, individuals tend to take
simultaneous actions. We show that these processes have moment duals, which happen to be
multidimensional diffusions with jumps. Moment duality provides a general framework to study
structural properties of the processes in this class. We present some conditions under which the
expectation of the process is not affected by coordination and comment on the effect of coordination
on the variance. We analyse several examples in more detail, including the nested coalescent, the
peripatric coalescent with selection and coordinated migration, and the Parabolic Anderson Model.

1. Introduction

Spatial branching coalescing processes and their duals have received considerable attention in the
literature. For example, in Athreya and Swart (2005) particle systems on a lattice are considered,
where particles undergo migration, death, branching and (pair) coalescence, independently of one
another. These processes are dual to certain interacting diffusions used in the modelling of spatially
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interacting populations with mutation, selection and resampling. One of the many questions of
investigation is the long time behaviour of such processes.

On the other hand, coordinated transitions of several particles have lead to interesting processes
in a number of models which are already well-studied in the literature, such as multiple merger
coalescents (Pitman, 1999; Möhle and Sagitov, 2001). More recently, the seed-bank coalescent with
simultaneous switching (Blath et al., 2020) has shown qualitatively different features compared to its
non-coordinated version. In both these cases, the effects of coordinated vs. independent actions of
particles may lead to drastically different long term behaviour, reflected for example in the question
of ‘coming down from infinity’.

In this paper, we present a unified framework of spatial branching coalescing interacting particle
systems, where all types of occurring transitions may occur in a coordinated manner. For simplicity,
we restrict our presentation to the case of finitely many spatial locations, except for a few remarks
in the last section. In our construction, the size of a coordinated transition is determined according
to a measure on [0, 1]. The individuals then ‘decide’ independently according to the size of the
transition whether or not to participate. This construction is reminiscent of Lambda-coalescents or
of the seed-bank coalescent with simultaneous switching, and leads (under some suitable conditions
on the measures involved) to a continuous time Markov chain with finite jump rates.

As a first result in Section 3, we prove moment duality for this class of coordinated processes. The
SDEs arings as dual processes will then be interpreted in terms of population genetics. We discuss a
number of examples of processes in the (recent) mathematical literature, and construct their duals,
some of which seem to be new. Via duality, we also provide some results on the long time behaviour
of these models, such as a criterion for coming down from infinity for the so-called nested coalescent
(Blancas et al., 2018) and for models exhibiting death but no coalescence, and almost sure fixation
in a variant of the peripatric coalescent (Lambert and Ma, 2015) with non-coordinated selection
and coordinated migration. Examples extend to situations not generally looked at from the point
of view of population models, such as the famous Parabolic Anderson Model (PAM).

In Section 4 we show that in absence of coalescence, the expectation of the coordinated branching
coalescing process is the unique solution of a system of ODEs depending only on the total mass
of the defining measures. As an example, we consider the PAM branching process and provide
a straightforward new proof of the well-known Feynman-Kac formula based on our observation.
In Section 5, also in the coalescence-free case, we identify the choice of reproduction, death and
migration measures that maximize or minimize the variance of the process, given the total masses
of these measures. We use this to provide an upper bound on the variance of the PAM branching
process. In Section 6, we extend some of our results, in particular our proof for the Feynman-Kac
formula, to a class of infinite graphs. We point out that a prominent example of a process of our
class on infinite graphs is the binary contact path process (Griffeath, 1983), a simple function of
which is the contact process. Finally, as another application of the invariance of expectation, we
provide a probabilistic interpretation of the expectation process of a branching random walk on an
infinite uniform rooted tree.

2. Coordinated branching coalescing processes

In this section, we present the general framework of this paper. Without coordination, spatial
branching coalescing particle systems in the setup of Athreya and Swart (2005) are continuous time
Markov chains with transitions according to the following definition:

Definition 2.1. Consider a finite set V . We write ev for the unit vector with 1 at the v-th
coordinate, v ∈ V. For each v ∈ V fix the following parameters for

• pair-coalescence: cv ≥ 0,
• death: dv ≥ 0,
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and for each pair (v, u) ∈ V × V fix parameters for
• branching: rvu ≥ 0, and
• migration: mvu ≥ 0.

A structured branching coalescing process on V with these parameters is the continuous time Markov
chain (Zt)t≥0 taking values in NV0 with the following transitions:

z 7→


z − ev + eu, at rate zvmvu, v, u ∈ V
z + eu, at rate zvrvu, v, u ∈ V
z − ev, at rate cv

(
zv
2

)
+ dvzv.

The set V may be chosen countably infinite, see Athreya and Swart (2005), but for this paper
we will restrict ourselves to finite sets. We assume mvv = 0. Binary branching may be extended
to more general reproduction mechanisms as in González Casanova et al. (2019), and more general
pairwise interactions, see González Casanova et al. (2021).

In order to include coordination into such models, we replace the positive real-valued parameters
of Definition 2.1 with measures on [0, 1]. Denote byM[0, 1] the space of finite measures on [0, 1].

Definition 2.2. Fix a finite set V . For each v ∈ V fix measures
• coalescence: Λv ∈M[0, 1],
• death: Dv ∈M[0, 1],

and for each pair (v, u) ∈ V × V fix measures
• reproduction: Rvu ∈M[0, 1],
• migration: Mvu ∈M[0, 1].

A structured branching coalescing process with coordination with these parameters is the continuous
time Markov chain (Zt)t≥0 = (Z

(v)
t )t≥0,v∈V with values in the set NV0 of functions having domain V

and values in N0 such that

z 7→


z − iev + ieu, at rate

∫ 1
0

(
zv
i

)
yi(1− y)zv−i 1

yMvu(dy), u, v ∈ V, 1 ≤ i ≤ zv
z − iev, at rate

∫ 1
0

(
zv
i

)
yi(1− y)zv−i 1

yDv(dy), v ∈ V, 1 ≤ i ≤ zv
z + ieu, at rate

∫ 1
0

(
zv
i

)
yi(1− y)zv−i 1

yRvu(dy), u, v ∈ V, 1 ≤ i ≤ zv
z − (i− 1)ev, at rate

∫ 1
0

(
zv
i

)
yi(1− y)zv−i 1

y2
Λv(dy), v ∈ V, 2 ≤ i ≤ zv.

(2.1)

The rates of this process may be interpreted as individuals deciding independently to participate
in an event, leading to a binomial number of affected individuals. The probability to participate in,
say, a migration event from v to u is determined by the measure y−1Mvu(dy). This measure has a
singularity at y = 0 and is not necessarily finite, but (with only slight abuse of notation)∫

{0}

(
zv
i

)
yi(1− y)zv−i

1

y
Mvu(dy) = zv1{i=1}Mvu({0})

is finite, analogously for the death and reproduction. For the coalescence, similarly,∫
{0}

(
zv
i

)
yi(1− y)zv−i

1

y2
Λv(dy) =

(
zv
2

)
1{i=2}Λv({0}).

We will further discuss the role of these singularities below.
We abbreviate the total masses of Λv, Dv, Rvu and Mvu by cv, dv, rvu and mvu respectively,

where we again assume that mvv = 0. Throughout the paper, δa denotes the Dirac measure in
a ∈ [0, 1]. Thus, in terms of Definition 2.2, the process defined in Definition 2.1 corresponds to
each of these measures being equal to the corresponding total mass times δ0. We refer to the points
v ∈ V as vertices, which we often interpret as islands in a spatial population model with multiple
islands. Another possible interpretation of V may be that of a type space, leading to multitype



1820 Adrián González Casanova, Noemi Kurt and András Tóbiás

branching coalescing processes with coordination. The (undirected) interaction graph associated to
the measures defined in Definition 2.2 is given as G = (V,E), where

E = {(u, v) ∈ V × V : u 6= v and max{ruv, rvu,muv,mvu} > 0},
i.e., the vertex set of G equals V and we connect two different vertices u, v ∈ V by an edge whenever
there is interaction by migration or reproduction between u and v.

We prove in Lemma 2.4 below that (2.1) indeed yields a Markov chain. Its infinitesimal generator
is expressed below in (3.1).

Coordination of interactions in the above sense may be interpreted by means of suitable Poisson
processes. We illustrate this by a first example.

Example 2.3. Consider the non-spatial case V = {1} without migration, and with Λ1 = D1 = 0
fixed. We first let R1 = r1δ0 for some r > 0. Then the rate for a branching event producing i
offspring if there are presently z particles is given by

r1

∫ 1

0

(
z

i

)
yi−1(1− y)z−iδ0(dy) = r1z1{i=1},

thus (Zt)t≥0 is a binary branching process where particles reproduce independently at rate r1, i.e.
a Yule process. If on the other hand R1 = r1δ1, then the reproduction rate is given by

r1

∫ 1

0

(
z

i

)
yi−1(1− y)z−iδ1(dy) = r11{i=z}.

In this case we may look at the process from the following viewpoint: Reproduction events happen
according to a Poisson process with intensity r1, and at each arrival time of the Poisson process,
every particle produces exactly one new particle. That is, the resulting process is given by (2N

(r1)
t )t≥0

where for λ > 0, (N
(λ)
t )t≥0 denotes a Poisson process with intensity λ. The main difference between

the two cases considered here is independence vs. coordination. The Dirac measure R1 = δ0 gives
full independence, while for R1 = δ1 the reproduction events are fully coordinated. The choice
R1 = r1δw for some w ∈ (0, 1) leads to a model in which reproduction events arrive according to
a Poisson process with intensity r1/w and at each reproduction event each individual reproduces
with probability w. It is interesting to observe that in all these cases

En[Zt] = nE
[
(1 + w)N

(r1/w)
t

]
= er1t.

As we will see in Lemma 4.1, the invariance of the expectation is not a coincidence. In the general
case R1 ∈ M[0, 1], the process will also have expectation er1t. When we take the reproduction
measure such that R1(dy)/y ∈ M[0, 1] we observe a relation to branching processes in a random
environment in the sense of Athreya and Karlin (1971). To make this connection precise, let
{(tn, yn)}n∈N be the times at which an event occurs and their impacts. Then Yn =

∑Yn−1

i=1 X
(n)
i = Ztn

is a branching process in random environment where for every i ∈ N, P(X
(n)
i = 2) = 1− P(X

(n)
i =

1) = yn, and given {(tn, yn)}n∈N, the random variables (X
(n)
i )n∈N are independent.

In order to study the processes rigorously, the following definitions are useful. Let

C0 = {f : NV0 → R : lim
i→∞

f(zi) = 0, ∀(zi)i∈N such that lim
i→∞
|zi| =∞}.

We say that g ∈ C̃0 if g = c+ f for some c ∈ R and f ∈ C0. We consider the process (Zt)t≥0 as a
process in the one-point compactification N̄V0 of NV0 by taking the minimal extension, that is to say
that the generator at any function evaluated at the point at infinity is zero.

Lemma 2.4. (Zt)t≥0 is a well-defined continuous time Markov chain with state space N̄V0 . Further,
it is a conservative process, in the sense that for all T > 0

P(Zt ∈ NV0 , ∀t ∈ [0, T ]
∣∣Z0 ∈ NV0 ) = 1, (2.2)
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and the domain of its extended generator includes C̃0.

We recall that the domain of the extended generator is equal to the set of functions corresponding
to the associated martingale problem, which will be spelt out in the proof of the lemma below. Note
that if (2.2) holds for all T > 0, then this together with the continuity of measures implies

P
(
Zt ∈ NV0 ,∀t ∈ [0,∞)

∣∣Z0 ∈ NV0
)

= 1,

i.e., almost surely, the process (Zt)t≥0 does not explode within finite time.

Proof of Lemma 2.4: The core of the proof is a domination argument and a control of the overall
jump intensities (as required in Ethier and Kurtz, 1986, Chapter 4, (11.9)) in order to prevent
explosion.

In order to verify that the process is conservative, we first show that the rate at which the process
leaves any state z ∈ NV0 is finite. Thus (2.1) yields a Q-matrix, which generates the semigroup of a
Markov chain on NV0 . Observe that for all u, v ∈ V, zv ∈ N0

zv∑
i=1

∫ 1

0

(
zv
i

)
yi(1− y)zv−i

1

y
Mvu(dy) =

∫ 1

0
(1− (1− y)zv)

1

y
Mvu(dy)

≤
∫ 1

0
zvy ·

1

y
Mvu(dy) = zvmvu.

Similar calculations hold for the reproduction and death. For the coalescence we get
zv∑
i=2

∫ 1

0

(
zv
i

)
yi(1− y)zv−i

1

y2
Λv(dy)

=

∫ 1

0
(1− (1− y)zv − zvy(1− y)zv−1)

1

y2
Λv(dy) ≤ zv(zv − 1)cv.

Thus the total rate at which the process jumps out of state z ∈ NV0 is bounded from above by∑
v∈V

zv

[ K∑
u=1

(mvu + rvu + dv + (zv − 1)cv)
]
<∞.

The fact that the process is conservative can be proved directly. However, we use a simple stochastic
domination argument. Let (Yt)t≥0 be a one-dimensional process in our class with only one non-zero
parameter which is R =

∑
v∈V

∑
u∈V Rvu. Then one can couple the processes (Yt)t≥0 and (Zt)t≥0

in such a way that
P(|Zt| ≤ Yt, ∀t ≥ 0) = 1.

As we saw in Example 1, E[Yt] = ert where r =
∑

v∈V
∑

u∈V rvu. The fact that (Yt)t≥0 is increasing
together with the finiteness of its expectation imply that P(Yt < ∞,∀t ∈ [0, T ]) = 1 for all T > 0.
From the stochastic domination we conclude that (Zt)t≥0 is conservative.

Finally, let us study the extended generator of (Zt)t≥0 (and the associated martingale problem).
We observe that for any (a(i))i∈V , (m(i))i∈V such that m(i) ≥ 0 and a(i) ∈ R for all i ∈ V ,(∑

i∈V
a(i)e−m

(i)Z
(i)
t −

∫ t

0
A
(∑
i∈V

a(i)e−m
(i)Z

(i)
s
)
ds
)
t≥0

is a martingale, where A is the pointwise generator of (Zt)t≥0 that we describe in Equation (3.1).
The martingale property follows from Ethier and Kurtz (1986, Chapter 4, Problem 15, page 263),
since condition Ethier and Kurtz (1986, Chapter 4, (11.9)) is satisfied. It follows that all functions
of the form

f(z) =
r∑

k=1

∑
i∈V

a
(i)
k e−m

(i,k)Z
(i)
t ,
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for r ∈ N, i ∈ V , m(i,k) > 0 and a(i)
k ∈ R, are in the extended domain of (Zt)t≥0. Finally, as this

family of functions is dense in C0, an application of the Stone–Weierstrass theorem allows us to
conclude that for every f ∈ C0, writing

Mf
t = f(Zt)−

∫ t

0
Af(Zs)ds,

(Mf
t )t≥0 is a martingale. Now, if g = c+f for c ∈ R, Mg

t = g(Zt)−
∫ t

0 Ag(Zs)ds = Mf
t +c and thus

(Mg
t )t≥0 is also a martingale. Hence, g is in the domain of the extended generator of (Zt)t≥0. �

Besides the branching processes in random environment briefly discussed in Example 2.3, several
members of this class of processes are known:

(1) Choosing Λv ∈ M[0, 1], Dv = 0, Rv = 0 and Muv = muvδ0 leads to the block-counting
process of the structured Λ-coalescent, see Pitman (1999); Möhle and Sagitov (2001); Limic
and Sturm (2006).

(2) For V = {v}, Λv = 0, Dv = δp, Rv = rδ0, r > 0, we obtain a branching process with
binomial disasters as discussed in Hermann and Pfaffelhuber (2020).

(3) For V = {1, 2}, Λ1 = δ0, Λ2 = 0, M12,M21 ∈ M[0, 1], and for all v ∈ V , Dv = Rv = 0, we
get the seed-bank coalescent with simultaneous migration Blath et al. (2020).

(4) Fix n ∈ N, K > 0, V = {vi : i ∈ {1, . . . , n}} ∪ {wi : i ∈ {1, . . . , n}}, (ei)
n
i=1 ∈ Rn, (di)

n
i=1 ∈

Rn and (a(i, j))i,j∈{1,...,n},i 6=j ∈ Rn×n. Then for Λvi = diδ0, Λwi = 0, Mvivj = a(i, j)δ0,
Mviwi = eiδ0 and Mwivi = Keiδ0, i, j = 1, . . . n, we obtain the moment dual of a spatial
seed bank model Greven et al. (2020, Model 1). Further, Greven et al. (2020, Model 2),
the moment dual of the multi-layer seed-bank model also satisfies Definition 2.2, but with
different migration measures. These examples are even included in Definition 2.1, whereas
different choices of the measures Mvivj yield spatial variants of the seed-bank coalescent
with simultaneous migration (fulfilling Definition 2.2 only).

(5) For V = {v}, Λv ∈ M[0, 1], Dv = 0 and Rv ∈ M[0, 1], we obtain coordinated branching
coalescing processes González Casanova et al. (2019) which arise as the moment dual of
the Wright-Fisher model with selection in a (subordinator) random environment in the
sense of Bansaye et al. (2019). Indeed, this is the process (Zt)t≥0 in Bansaye et al. (2019,
Theorem 3.2) with the following choice of parameters: b1 = σE = 0, p(z, w) = z, and the
Lévy process (Yt)t≥0 being a decreasing Lévy process (with a nonpositive drift), i.e., the
negative of a subordinator.

(6) For a general finite graph V , and for all v, u ∈ V with u 6= v and for some R,D ∈ M[0, 1],
c1, c2 ≥ 0 and c3, c4, c5 > 0, the choice Rv = c1δ0, Dv = c2δ0, Λv = c3δ0 and Muv =
c4δ0 + c5δ1 yields the moment dual of the hierarchical Moran model introduced in Dawson
(2018, Section 2.1), in the case when there is no selection on the level of colonies. In the
particular case R = D = 0, this process is Kingman’s coalescent with erosion Foutel-Rodier
et al. (2020).

(7) V = [K]d ⊂ Zd where [K] = {1, . . . ,K}, and for all v ∈ [K]d, Λv = 0, Dv = ξ−v δ0, Rv = ξ+
v δ0

and mvu = δ01{|v−u|=1}, where {ξ+
v }v∈[K]d and {ξ−v }v∈[K]d are two families of independent

and identically distributed random variables in [0,∞), leads to a branching process whose
expectation is a solution of the Parabolic Anderson Model (PAM), see König, 2016. In the
context of the PAM, coordination and some consequences will be discussed in Sections 4.1
and 5, which will partially be extended to infinite graphs in Section 6.

The first example is classical, and so is the interpretation as a coordinated process: According to
an underlying Poisson point process, coalescence events happen, and at each event, blocks decide
independently according to y ∈ [0, 1] determined by Λ whether or not to participate in the merger.
Examples 2, 3, 4, 5 and 6 are recent in the literature. In these cases, coordination (of migration
respectively death and reproduction) was used to construct models that include interesting features.
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For all five models, moment duality results were proved. The PAM is a well-understood model with a
large literature. Despite having a moment dual, it is not usually included in the class of models that
can be studied using the techniques of population genetics. We will introduce below the coordinated
processes associated to the PAM ; all the members of this family have the same expectation, but
radically different behaviour.

Another classical example of a process of our class is the binary contact path process Griffeath
(1983), which is strongly related to the contact process. Since these processes are usually studied
on infinite graphs, we will recall them in this context in Section 6.

3. Moment Duality

Since the process (Zt)t≥0 is a pure jump Markov process with finite rates, it is straightforward to
identify its generator, which we denote by A. It acts on bounded measurable functions f : NV0 → R
by

Af(z) =
∑
u,v∈V

AMvuf(z) +
∑
u,v∈V

ARvuf(z) +
∑
v∈V

ADvf(z) +
∑
v∈V

AΛvf(z),

where

AMvuf(z) =

∫ 1

0

zv∑
i=1

(
zv
i

)
[f(z − iev + ieu)− f(z)]yi(1− y)zv−i

1

y
Mvu(dy),

ARvuf(z) =

∫ 1

0

zv∑
i=1

(
zv
i

)
[f(z + ieu)− f(z)]yi(1− y)zv−i

1

y
Rvu(dy),

ADvf(z) =

∫ 1

0

zv∑
i=1

(
zv
i

)
[f(z − iev)− f(z)]yi(1− y)zv−i

1

y
Dv(dy),

AΛvf(z) =

∫ 1

0

zv∑
j=2

(
zv
j

)
[f(z − (j − 1)ev)− f(z)](1− y)jyzv−j

1

y2
Λv(dy).

(3.1)

Our goal is to derive a moment duality. As a first step, we derive a generator duality. Define for
functions f ∈ C2([0, 1]V ,R)

Bf(x) :=
∑
u,v∈V

BMvuf(x) +
∑
u,v∈V

BRvuf(x) +
∑
v∈V

BDvf(x) +
∑
v∈V

BΛvf(x),

where

BMvuf(x) :=

∫ 1

0
[f(x+ evy(xu − xv))− f(x)]

1

y
Mvu(dy), (3.2)

BRvuf(x) :=

∫ 1

0
[f(x+ evyxv(xu − 1))− f(x)]

1

y
Rvu(dy), (3.3)

BDvf(x) :=

∫ 1

0
[f(x+ evy(1− xv))− f(x)]

1

y
Dv(dy) (3.4)

and

BΛvf(x) :=

∫ 1

0
[xvf(x+ evy(1− xv)) + (1− xv)f(x− evyxv)− f(x)]

1

y2
Λv(dy). (3.5)

Formulas (3.2)–(3.5) are valid for measures that have no atoms at zero, which are extended to the
case of measures having atoms at zero via a standard abuse of notation, which we will explain now.
We first clarify how to understand these formulas if one of these measures equals δ0. If Mvu = δ0,
then (3.2) is to be understood as

BMvuf(x) = (xu − xv)
∂f

∂xv
(x). (3.6)
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If Rvu = δ0, then (3.3) degenerates to

BRvuf(x) = xv(xu − 1)
∂f

∂xv
(x). (3.7)

If Dv = δ0, then (3.4) reads as

BDvf(x) = (1− xv)
∂f

∂xv
(x). (3.8)

Finally, if Λv = δ0, then we obtain the generator of the corresponding Wright–Fisher diffusion as
the limit of (3.5):

BΛvf(x) =
1

2
xv(1− xv)

∂2f

∂x2
v

(x). (3.9)

A general measure µ ∈ M[0, 1] can always be decomposed as µ = cδ0 + µ′ where c ≥ 0 and
µ′({0}) = 0. The general formulas for BMvu , BRvu , BDv and BΛv are then obtained as a linear
combination of the generators BMvu in (3.2) and (3.6), the ones BRvu in (3.3) and (3.7), the ones
BDv in (3.4) and (3.8), respectively the ones BΛv in (3.5) and (3.9).

Let H : [0, 1]V × NV0 → [0, 1] be such that for any z ∈ NV0 and x ∈ [0, 1]V

H(x, z) =
∏
v∈V

xzvv

with the convention that 00 = 1. For z ∈ NV0 and x ∈ [0, 1]V we write Hx(z) := H(x, z) and
Hz(x) := H(x, z) in order to indicate the coordinate functions. Clearly, Hx for x ∈ [0, 1]V is in the
domain of the generator A, and Hz for z ∈ NV0 is in the domain of the generator of B.

Theorem 3.1. For H defined above,

AHx(z) = BHz(x) ∀z ∈ NV0 , x ∈ [0, 1]V .

Proof : We check this for the four parts of the generator. Migration:

AMvuHx(z) = Hx(z)

∫ 1

0

zv∑
i=0

(
zv
i

)
[x−iv x

i
u − 1]yi(1− y)zv−i

Mvu(dy)

y

= Hx(z)x−zvv

∫ 1

0

zv∑
i=0

(
zv
i

)
[xzv−iv xiu − xzvv ]yi(1− y)zv−i

Mvu(dy)

y

= Hx(z)x−zvv

∫ 1

0
[(xv(1− y) + xuy)zv − xzvv ]

Mvu(dy)

y

=

∫ 1

0
[Hz(x+ evy(xu − xv))−Hz(x)]

Mvu(dy)

y

= BMvuHz(x).

Reproduction:

ARvuHx(z) = Hx(z)

∫ 1

0

zv∑
i=0

(
zv
i

)
[xiu − 1]yi(1− y)zv−i

Rvu(dy)

y

= Hx(z)

∫ 1

0
[(xuy + (1− y))zv − 1]

Rvu(dy)

y

=

∫ 1

0
[Hz(x+ evyxv(xu − 1))−Hz(x)]

Rvu(dy)

y

= BRvuHz(x)
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where in the third equality we used xzvv (xuy+(1−y))zv = (xv(1−y)+xvxuy)zv = (xv−yxv(1−xu))zv .
Death:

ADvHx(z) = Hx(z)

∫ 1

0

zv∑
i=0

(
zv
i

)
[x−iv − 1]yi(1− y)zv−i

Dv(dy)

y

= Hx(z)x−zvv

∫ 1

0

zv∑
i=0

(
zv
i

)
[xzv−iv − xzvv ]yi(1− y)zv−i

Dv(dy)

y

= Hx(z)x−zvv

∫ 1

0
[(xv(1− y) + y)zv − xzvv ]

Dv(dy)

y

=

∫ 1

0
[Hz(x+ evy(1− xv))−Hz(x)]

Dv(dy)

y

= BDvHz(x).

Coalescence (this calculation in well-known, but we include it for completeness):

AΛvHx(z) = Hx(z)x−zvv

∫ 1

0

zv−1∑
i=0

(
zv
i

)
[xi+1
v − xzvv ](1− y)iyzv−i

Λv(dy)

y2

= Hx(z)x−zvv

∫ 1

0
[xv(xv(1− y) + y)zv + (1− xv)xzvv (1− y)zv − xzvv ]

Λv(dy)

y2

= Hx(z)x−zvv

∫ 1

0
[xv(xv + y(1− xv))zv + (1− xv)(xv − yxv)zv − xzvv ]

Λv(dy)

y2

=

∫ 1

0
[xvHz(x+ evy(1− xv)) + (1− xv)Hz(x− evyxv)−Hz(x)]

Λv(dy)

y2

= BΛvHz(x).

�

We denote by (Xt)t≥0 the Markov process on [0, 1]V with infinitesimal generator B.

Corollary 3.2. (Xt)t≥0 and the process (Zt)t≥0 of Definition 2.2 are moment duals, that is, for all
z ∈ NV0 , x ∈ [0, 1]V , t ≥ 0 we have

Ex[H(Xt, z)] = Ez[H(x, Zt)]. (3.10)

Proof : This follows from Proposition 1.2 of Jansen and Kurt (2014) and Theorem 3.1, since by our
assumptions the rates are finite. Alternatively, using Theorem 3.1 and Lemma 2.4 it is immediate
to verify the conditions of Theorem 4.11 in Ethier and Kurtz (1986). �

The dual Markov process (Xt)t≥0 can be explicitly represented as a |V |-dimensional jump dif-
fusion. Fix the parameters Λv, Dv, Rvu and Mvu in M[0, 1]. We define the following Poisson
point processes (PPPs). For v ∈ V let NDv be a PPP on (0,∞) × (0, 1] with intensity measure
Dv(dy)

y ⊗ dt, and NΛv a PPP on (0,∞) × [0, 1] × (0, 1] with intensity measure Λv(dy)
y2
⊗ dt ⊗ dθ.

For (v, u) ∈ V × V let NMvu be a PPP on (0,∞)× (0, 1] with intensity measure Mvu(dy)
y ⊗ dt, and

NRvu a PPP on (0,∞)× (0, 1] with intensity measure Rvu(dy)
y ⊗ dt. Here, the notations dt, dy and

dθ stand for the Lebesgue measure on [0,∞) respectively (0, 1] and [0, 1]. All PPPs involved are
independent of each other and independent for different v ∈ V respectively (v, u) ∈ V × V . Let
(Bt)t≥0 = (B

(v)
t )t≥0,v∈V be a |V |-dimensional standard Brownian motion independent of the PPPs.
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Then (Xt)t≥0 = (X
(v)
t )t≥0,v∈V solves the system of SDEs

dX
(v)
t =

∑
u∈V

∫
y∈(0,1]

(
y(X

(u)
t− −X

(v)
t− )
)
NMvu(dy,dt)

+
∑
u∈V

∫
y∈(0,1]

(
yX

(v)
t− (X

(u)
t− − 1)

)
NRvu(dy,dt)

+

∫
y∈(0,1]

(
y(1−X(v)

t− )
)
NDv(dy,dt)

+

∫
y∈(0,1]

∫
θ∈[0,1]

(
y(1{θ<X(v)

t− }
−X(v)

t )
)
NΛv(dy,dθ,dt)

+
∑

u∈V,u6=v
(X

(u)
t −X(v)

t )Mvu({0})dt+
∑
u∈V

X
(v)
t (X

(u)
t − 1)Rvu({0})dt

+ (1−X(v)
t )Dv({0})dt+

√
X

(v)
t (1−X(v)

t )Λv({0})dB(v)
t , t ≥ 0

(3.11)

where v ∈ V, with initial condition X0 = (x(v))v∈V ∈ [0, 1]V .
The above initial value problem gives a |V |-dimensional jump diffusions with non-Lipschitz coeffi-

cients. Existence and uniqueness results for such systems have recently drawn considerable interest,
and we may refer to Kurtz (2007, 2014); Barczy et al. (2015); Xi and Zhu (2019) for existence and
strong uniqueness results.

This dual process has an interpretation of the frequency process in the sense of population ge-
netics, which is classical at least in the case without coordination. In that case, (3.11) reduces
to

dX
(v)
t =

∑
u∈V,u6=v

(X
(u)
t −X(v)

t )mvudt−
∑
u∈V

X
(v)
t (1−X(u)

t )rvudt

+ (1−X(v)
t )dvdt+

√
X

(v)
t (1−X(v)

t )cvdB
(v)
t , v ∈ V, t ≥ 0.

(3.12)

The solution (Xt)t≥0 of (3.12) can then be understood as the frequency of one genetic type in a
two-type population living in a structured environment of |V | islands. More precisely, it is the
stepping stone model with mutation and selection, see Kimura (1953). Denote the two types by −
or +. Then (3.12) describes the dynamics under the following assumptions:

(1) mvu is the rate at which individuals of island v migrate to island u (migration).
(2) rvu measures the selective disadvantage of type − individuals situated on island v against

type + individuals situated on island u (selection). Note that the term rvu for v 6= u is less
classical than the one rvv, nevertheless it receives an analogous interpretation,

(3) dv is the rate at which individuals of type + change into individuals of type − on island v
(mutation from + to −).

(4) cv measures the strength of the random genetic drift in island v.
In our dual process in (3.11), the role of general measures, as opposed to Dirac measures at 0, is
compatible with this classical interpretation, which is now enriched by the possibility of large events
that affect a positive fraction of the population. Large migration events are considered for example
in the seed-bank model with simultaneous switching, see Blath et al. (2020).

3.1. The nested coalescent and its dual. The nested coalescent is an object introduced recently
Blancas et al. (2018), which has already received some attention Blancas et al. (2019); Duchamps
(2020); Lambert and Schertzer (2020). Its purpose is to integrate speciation events and individual
reproduction in the same model, in order to be able to trace ancestry at the level of species. Species
can be regarded as islands (in the sense of a classical structured coalescent), meaning that individual
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ancestral lines inside each species coalesce according to some measure Λ, for example at pairwise
rate one, just as in the Kingman coalescent. The difference is that species also perform a Kingman
coalescent of their own, and when two species coalesce, the ancestral lines inside them are allowed to
coalesce, again at pairwise rate one. Thus the nested coalescent consists of (independent) coalescents
at individual level, nested inside an ‘external’ coalescent at species level. In our framework, the
block-counting process of the nested coalescent is given by choosing Λv ∈ M[0, 1], Dv = 0, v ∈ V ,
Rvu = 0 and Mvu = δ1, v 6= u in Definition 2.2. The resulting process (Zt)t≥0 on NV0 is given by the
jumps

z 7→


z + zv(−ev + eu), at rate 1, for each v, u ∈ V, v 6= u

z − ev, at rate Λv({0})
(
zv
2

)
+
∫ 1

0

(
zv
2

)
y(1− y)zv−1 Λv(dy)

y2

z − jev, at rate
∫ 1

0

(
zv
j+1

)
yj(1− y)zv−j Λv(dy)

y2
, for j ≥ 2.

(3.13)

If we impose Λv = Λ for all v ∈ V and ignore the empty islands, then up to labelling, (Zt)t≥0 is
the block-counting process of a nested coalescent with individual Λ-coalescent and species Kingman
coalescent. We now define the moment dual of the nested coalescent, which to our knowledge has
not yet been introduced in the literature.

Definition 3.3 (The nested Moran model). Fix parameters Λv ∈ M[0, 1], Dv = 0, Rvu = 0 and
Mvu = δ1. Let (Xt)t≥0 = (X

(v)
t )t≥0,v∈V be the solution of

dX
(v)
t =

∑
u : u6=v

(X
(v)
t− −X

(u)
t− )ÑMvu(dt)

+

∫
y∈(0,1]

∫
θ∈[0,1]

y(1{θ<X(v)
t− }
−X(v)

t− )NΛv(dy,dθ,dt)

+

√
X

(v)
t (1−X(v)

t )Λv({0})dB(v)
t , t ≥ 0

(3.14)

for v ∈ V, where NΛv are independent Poisson point processes as in (3.11), ÑMvu are independent
Poisson point processes on [0,∞) with intensity dt that are also independent of {NΛv : v ∈ V }, and
(B

(v)
t )t≥0,v∈V is a standard |V |-dimensional Brownian motion independent of these Poisson point

processes. We call (Xt)t≥0 the nested Moran model with parameters Λv, v ∈ V .

The relation between the nested Moran model and the classical Moran model becomes clear if
one considers an initial condition X0 = (X

(v)
0 ) ∈ {0, 1}V . Observe that in this case equation (3.14)

reduces to
dX

(v)
t =

∑
u:u6=v

(X
(v)
t− −X

(u)
t− )ÑMvu(dt).

The connection becomes clear after observing that 1
|V |
∑

v∈V X
(v)
t is the frequency process of a

Moran model with population size |V |.
Further, considering Example 6 in Section 2, we see that the nested Moran model is similar to the

hierarchical Moran model in case all branching and death measures are zero. A substantial difference
is that in the hierarchical case, there is also independent migration apart from the completely
coordinated one, i.e., Mvu = c′δ0 + c′′δ1 for some positive c′, c′′.

The word nested may seem slightly misleading in the context of Defintion 3.3, as the object we
introduce is not a family of Moran models correlated by a Moran model, but rather a family of
jump diffusions correlated by a Moran model. We use the name nested Moran model in order to
emphasize that it arises as the moment dual of the nested coalescent. This is the content of the
next result, which is an immediate corollary of Theorem 3.2.

Corollary 3.4 (The nested coalescent and its dual). Fix parameters Λv ∈M[0, 1], Dv = 0, Rvu = 0
andMvu = δ1. Then the block-counting process of the nested coalescent (Zt)t≥0 and the nested Moran
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model (Xt)t≥0 with these parameters are moment duals, that is, for every x ∈ [0, 1]V , z ∈ NV0 and
t > 0

Ex[
∏
v∈V

(X
(v)
t )zv ] = Ez[

∏
v∈V

(xv)
Z

(v)
t ].

Remark 3.5. It seems plausible to generalize this construction to species Λ-coalescents and even to
more general nested coalescents (see Duchamps, 2020) considering the Poisson processes governing
the migration to be exchangeable instead of independent.

We now provide a criterion for the nested coalescent to come down from infinity, whose proof is
based on the moment duality. Let us first recall the following notions related to coming down from
infinity. We set z̄ := (z, z, ..., z) and x̄ := (x, x, ..., x), for some z ∈ N and x ∈ [0, 1], where both z̄
and x̄ have |V | coordinates. Further, for w ∈ NV0 we put |w| := ‖w‖1 =

∑n
i=1wi.

Definition 3.6. We say that the structured branching coalescing process (Zt)t≥0 immediately comes
down from infinity if limm→∞ limz→∞ ∂z̄(|Zt| < m) = 1 for every t > 0, it comes down from infinity
if limm→∞ limz→∞ ∂z̄(|Zt| < m) > 0 for every t > 0 and it does not come down from infinity if
limm→∞ limz→∞ ∂z̄(|Zt| < m) = 0 for every t > 0.

Thanks to the strong Markov property, these three cases cover all possibilities, i.e., it cannot
happen that limm→∞ limz→∞ ∂z̄(|Zt| < m) is zero for small t but positive for large t, and it is also
impossible that it is less than one for small t but equal to one for large t. Further, thanks to the
strong Markov property and the fact that the total number of particles of the nested coalescent is
decreasing in t, coming down from infinity for this process implies that P(lim supt→∞ |Zt| <∞) = 1.

Let us now again consider the particular case when (Zt)t≥0 is the nested coalescent, let (Xt)t≥0

be the nested Moran model, and define

τ := inf{t > 0 : Xt = (1, 1, ..., 1)}.
For any measurable set A ⊆ [0,∞] and for any t > 0, we write ∂∞(|Zt| ∈ A) = limz→∞ ∂z̄(|Zt| ∈

A). We have the following lemma.

Lemma 3.7. For all t > 0, ∂∞(|Zt| <∞) = supx∈(0,1) ∂x̄(τ < t).

Proof : Note that for x ∈ (0, 1),

∂x̄(τ < t) = ∂x̄(Xt = (1, ..., 1)) = lim
z→∞

Ex̄[
∏
v∈V

(X
(v)
t )z] = lim

z→∞
Ez̄[
∏
v∈V

xZ
(v)
t ]

where we have used the duality in the last equation. This implies that

lim
z→∞

∂z̄(|Zt| < m) + xm ≥ ∂x̄(τ < t) ≥ xm lim
z→∞

∂z̄(|Zt| < m).

Taking x = 1−m−1/2, one gets that

lim
z→∞

∂z̄(|Zt| < m) + e−
√
m ≥ ∂

1−m−1/2(τ < t).

After observing that ∂x̄(τ < t) is an increasing function of x, we conclude that

lim inf
m→∞

lim
z→∞

∂z̄(|Zt| < m) ≥ sup
x∈(0,1)

∂x̄(τ < t).

Now take x = 1−m−2 and observe that

∂
1−m−2(τ < t) ≥ e1/m lim

z→∞
∂z̄(|Zt| < m),

and taking m to infinity this implies that

sup
x∈(0,1)

∂x̄(τ < t) ≥ lim sup
m→∞

lim
z→∞

∂z̄(|Zt| < m).

�
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Now the proof of the following corollary is trivial.

Corollary 3.8. The nested coalescent immediately comes down from infinity if, for every t > 0,
supx∈(0,1) ∂x̄(τ < t) = 1, comes down from infinity if, for every t > 0, supx∈(0,1) ∂x̄(τ < t) > 0 and
does not come down from infinity if, for every t > 0, supx∈(0,1) ∂x̄(τ < t) = 0.

Proof : The corollary follows directly from Lemma 3.7. Indeed, by continuity of measures,

P∞(|Zt| <∞) = lim
m→∞

P∞(|Zt| < m) = lim
m→∞

lim
z→∞

Pz̄(|Zt| < m).

�

We note that in Blancas et al. (2018), an equivalent condition for coming down from infinity
for the nested coalescent was found, where the marginal coalescent of species can be an arbitrary
Λ-coalescent instead of a Kingman one. Here, the only assumption on the measures corresponding
to the Λ-coalescent of individual ancestral lines (called ‘marginal gene coalescent’ in that paper)
and the one of species is that they have no mass at one, i.e., the probability that all species or all
individuals of a given species merge simultaneously is zero. It was shown in Blancas et al. (2018,
Proposition 6.1) that such a nested coalescent comes down from infinity if and only if both the
marginal gene coalescent and the marginal species coalescent both come down from infinity. Our
Corollary 3.8 provides a simple alternative condition for coming down from infinity in the case when
the marginal species coalescent is Kingman, using moment duality, including also the case when
Λv({1}) > 0. We expect that this result also extends to the case of a general Λ-coalescent for the
species, but we refrain from presenting details.

This approach via duality may be applied to other models in the literature, like the Kingman
coalescent with erosion Foutel-Rodier et al. (2020) that was introduced in Example 6 in Section 2,
but we defer such investigations to future work.

3.2. Fixation of the advantageous trait in models with selection. Being able to manipulate different
mechanisms in the same mathematical framework allows us to translate known results about one
mechanisms to find new results about a different mechanism, and also to come up with comparison
arguments involving seemingly unrelated behaviours. First, we provide a simple equivalent condition
on coming down from infinity for one-dimensional processes that exhibit no coalescence but death,
using a comparison between these two effects. Thanks to moment duality, this has implications
regarding fixation in the moment dual of the process. Second, by comparing migration with death
and using moment duality, we show that there are several examples of selection that lead to almost
sure fixation in a structured population. The latter result is new and seems to be interesting from
a biological perspective.

Example 3.9 (Coming down from infinity without coalescence). In Schweinsberg (2000), a necessary
and sufficient condition for coming down from infinity for Λ-coalescents was provided. For structured
processes with coalescence, the results of Blancas et al. (2018); Blath et al. (2020) show that different
coalescance mechanisms at different vertices and coordinated migration can change the behaviour
of the process with this respect radically, see also Corollary 3.8 in the present paper. It is natural
to ask whether coming down from infinity is possible for structured branching coalescing processes
exhibiting no coalescence but only death, migration and reproduction. While we expect that the
answer to this question is still nontrivial due to a competition between death and migration if the
set V has at least two elements, for V = {v} the answer is straightforward and easy to verify, based
on a comparison between death and coalescence.

Let us recall the notion of coming down from infinity, coming down from infinity immediately,
and not coming down from infinity from Definition 3.6. We are interested in the case V = {v},
where we ignore the index v in the nomenclature of the corresponding measures and the process,
writing simply D,R,Λ and (Zt)t≥0.
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Proposition 3.10. Assume that |V | = 1 and Λ = 0. Then the structured branching coalescing process
(Zt)t≥0 comes down from infinity if and only if D has an atom at one.

Before proving this proposition, let us explain some of its consequences. In case D = δ1, starting
from an infinite number of particles, the process is extinguished (i.e., absorbed at zero) after an
exponentially distributed time. Thanks to Proposition 3.10 and the linearity of rates in (2.1) with
respect to D = Dv, it follows that the same holds whenever D has an atom at one, in particular
coming down from infinity never happens immediately if Λ = 0. Let us note that coming down from
infinity up to time t with positive probability is equivalent to reaching 1 with positive probability
up to time t for the moment dual (Xt)t≥0 starting from any initial condition in (0, 1). Indeed, for
x ∈ (0, 1) and t > 0 we have

E∞[xZt ] = lim
n→∞

En[xZt ] = lim
n→∞

Ex[Xn
t ] = Px(Xt = 1), (3.15)

which is positive if and only if the process comes down from infinity. In case there is selection in
the model (i.e., R 6= 0), reaching 1 can be interpreted as fixation of the advantageous trait.

Proof of Proposition 3.10: We will study three cases, when there is mass at one, when the mass is
concentrated at zero and when there is no mass at either one nor zero. We will combine these cases
in order to obtain the whole spectrum.

First, it is clear that if D has an atom at 1, then the process (Zt)t≥0 gets extinguished after an
exponentially distributed time, and hence in particular it comes down from infinity (further, if D is
a multiple of δ1, then it stays infinite until the extinction). Thus, the condition of the proposition
is sufficient for coming down from infinity.

For the rest of the proof, let us assume that D has no atom at 1. Our goal is to show that the
process does not come down from infinity. Since reproduction can only increase the value of the
process, we assume without loss of generality that R = 0.

Now, let us first consider the case when D = δ0. Our process (Zt)t≥0 is a pure death chain with
jumps n → n − 1 at rate n. Hence, by (3.11), the dual process (Xt)t≥0 is deterministic, it equals
the unique solution (x(t))t≥0 of the ODE

d

dt
x(t) = 1− x(t)

with x(t) = (1 − (1 − x(0))e−t), t ≥ 0. We observe that En[(x(0))Zt ] = Ex[Xn
t ] = (x(0)e−t + (1 −

e−t))n, and thus Zt is a binomial random variable with parameter n and e−t. Either from this or
from Equation (3.15), we conclude that the process (Zt)t≥0 does not come down from infinity.

Second, if D has no atom at zero, then we define a coalescence measure Λ̂ according to

Λ̂(dy)

y2
=
D(dy)

y
, y ∈ (0, 1]. (3.16)

Then, since D is a finite measure, we have
∫

(0,1]
Λ̂(dy)
y < ∞. Consequently, by Pitman (1999, The-

orem 8), the Λ̂-coalescent does not come down from infinity. According to the proof of Schweins-
berg (2000, Corollary 2), it is even true that if we define a process (Yt)t≥0 similarly to the block-
counting chain of the Λ̂-coalescent but having downward jumps of size k instead of k − 1 at rate∫ 1

0 x
k−2(1− x)b−kΛ̂(dx), given that there are b ≥ k blocks, then (Yt)t≥0 does not come down from

infinity. Now, according to (2.1) and (3.16), starting from b ∈ N blocks at the moment, the rate at
which (Yt)t≥0 jumps to b− k, k = 2, . . . , b, is(

b

k

)∫ 1

0
xk−2(1− x)b−kΛ̂(dx) =

(
b

k

)∫ 1

0
xk−1(1− x)b−kD(dx).
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Now, thanks to (2.1), started from b ∈ N, our process (Zt)t≥0 has the same jump rates as (Yt)t≥0,
plus additionally downward jumps of size 1 at rate

b

∫ 1

0
(1− x)b−1D(dx). (3.17)

This additional rate however depends linearly on b. Hence, using the same arguments as for D = δ0,
one can easily verify that (Zt)t≥0 does not come down from infinity. The case of a generalD (without
an atom at 1) follows from the linearity of the transition rates in the second line of (2.1) with respect
to the death measure D = Dv. �

Remark 3.11. As we have seen, given D, the construction (3.16) results in a coalescence measure
Λ̂ satisfying

∫
(0,1]

Λ̂(dy)
y < ∞. Pitman (1999, Theorem 8) implies that the associated Λ̂-coalescent

has dust, i.e. if it is started from an infinite number of blocks, then there is a positive proportion of
singletons for any t > 0. This is a stronger condition than not coming down from infinity. E.g., the
Bolthausen–Sznitman coalescent Λ̂(dy) = dy has no dust, but it does not come down from infinity
(cf. Schweinsberg, 2000).

Conversely, one could think of defining a death measure D according to (3.16) given a coalescence
measure Λ̂ having no atom at zero. Then, for a process satisfying Definition 2.2 and having zero
death measure and coalescence measure Λ̂, we can consider the process where instead of coalescence
according to Λ̂ there is death according to D, whereas reproduction is unchanged. This process, if
it is well-defined, dominates the process with coalescence stochastically from below. However, the
measure D is only finite if

∫
(0,1]

Λ̂(dy)
y < ∞. Otherwise, the death rate (3.17) of single individuals

equals +∞, and one can intuitively say that the process with death instead of coalescence is the
degenerate process jumping to zero immediately after time t = 0, whatever the initial condition is.

Example 3.12. Now, consider the peripatric coalescent (Z
(1)
t , Z

(2)
t )t≥0 defined analogously to Lam-

bert and Ma (2015), but with corordinated migration (instead of independent one). This is one of
the processes satisfying Definition 2.2, with V = {1, 2}, where for some c > 0, we have Λ1 = cδ0,
Λ2 = 0, M21,M12 ∈ M(0, 1], R11 = α′δ0 and R22 = αδ0 for some α′, α ≥ 0, and all other measures
are equal to zero. The moment dual of the arising process can be interpreted as follows: the vertex
2 is a continent with a large population and the vertex 1 is an island with a smaller one, there is
migration in both directions and selection at both locations, but random genetic drift plays a role
only on the island.

We are interested in sufficient conditions under which Z(2)
t tends to infinity almost surely, which

is equivalent to almost sure fixation of the fitter type in the dual process. Such an assertion follows
as soon as we can verify that Zt →∞ almost surely as t→∞ for a process (Zt)t≥0 satisfying

Z
(2)
t ≥ Zt, ∀t ≥ 0 (3.18)

realizationwise, given that Z(2)
0 = Z0. In order to construct a process that dominates (Z

(2)
t )t≥0 from

below in this sense, we can remove migration from vertex 1 to vertex 2 from the model. Then,
the population on vertex 1 does not influence the one on vertex 2, and hence we can ignore the
population on vertex 1 and consider migration from vertex 2 to 1 as death. This gives rise to the
one-dimensional process (Zt)t≥0 on vertex set {2} with the following measures: Λ2 = 0 for the
coalescence, R22 = αδ0 for the reproduction (as for (Z

(2)
t )t≥0), M22 = 0 for the migration and

D2 = M21 for the death. It is easy to see (Zt)t≥0 satisfies (3.18) realizationwise.
For a general migration measure M21 ∈ M[0, 1], proving that Zt → ∞ almost surely as t → ∞

may be involved. However, such results are available for Dirac measures. Note that for D2 = pδp,
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p ∈ (0, 1), according to (3.4), the part of the generator of the dual corresponding to death reads as

BD2f(x) =

∫ 1

0
[f(x+ y(1− x))− f(x)]

1

y
Dv(dy) = [f(x+ p(1− x))− f(x)],

where we wrote x instead of x2 everywhere for simplicity. Now note that if a Markov process with
values in [0, 1] jumps from x ∈ [0, 1] to x + p(1 − x) at rate p, then one minus this process jumps
from 1−x to (1−p)(1−x) at the same rate. This together with (3.7) yields that if (Nt)t≥0 denotes
the dual of (Zt)t≥0, then (1−Nt)t≥0 has generator

Lf(x) = αx(1− x)f ′(x) + f((1− p)x)− f(x).

This relates our setting to the one of Hermann and Pfaffelhuber (2020), where processes with
generators of the form

Lf(x) = α(x)f ′(x) + f((1− p)x)− f(x)

were studied, where the domain of the generator L consists of continuously differentiable functions
f : [0, ν) → R for ν > 0 fixed, and α : [0, ν) → R differentiable. It was showed in Hermann and
Pfaffelhuber (2020, Theorem 1) that if we have supx∈(0,ν)

α(x)
x < − log(1−p), then the process tends

to zero almost surely. Now, if we choose ν = 1 and α(x) = αx(1− x), α > 0, then this condition is
equivalent to

α < − log(1− p), (3.19)

which can always be guaranteed by a suitable choice of α > 0 as long as p ∈ (0, 1). Thus, if α and p
satisfy (3.19), then it follows by Hermann and Pfaffelhuber (2020, Theorem 1) that Nt → 1 almost
surely as t → ∞. This implies almost sure fixation of the fitter type in the peripatric coalescent
with selection and coordinated migration thanks to (3.18).

This can be generalized to the case when D2 = M21 is compactly supported within (0, 1], i.e.,
there exist p− > 0 such that Λ([0, p−)) = 0. In this case, we define c̄ =

∫
[0,1]

D2(dy)
y ; this number

is finite by assumption. Then the process (Nt)t≥0 is stochastically dominated from below by the
moment dual of the process having death measure D−2 = c̄p−δp− and all the other measures equal to
the ones corresponding to (Zt)t≥0. Hence, if α is such that (3.19) holds with p = p−, then Nt → 1
almost surely as t→∞, which again implies almost sure fixation.

4. Coordination and expectation

In this section we show that for the process (Zt)t≥0 introduced in Definition 2.2, for v ∈ V ,
the expectation process t 7→ E[Z

(v)
t ] equals the unique solution of a linear differential equation

depending only on the total mass of the underlying measures Muw, Dw and Ruw, u,w ∈ V . This is
true under the assumption that there is no coalescence (i.e., Λv = 0 for all v ∈ V ), but we will also
provide some extensions to the case of nonzero coalescence.

Lemma 4.1. Let the collections of measures (Dv)v∈V , (Rvu)v,u∈V , (Mvu)v,u∈V and (Λv)v∈V satisfy
Definition 2.2 with Λv = 0 for all v ∈ V . Define

(f(t, v))t∈[0,∞),v∈V = (E[Z
(v)
t ])t∈[0,∞),v∈V .

Then (f(t, v))t∈[0,∞),v∈V is the unique solution of

d

dt
f(t, v) =

∑
u∈V

(f(t, u)muv − f(t, v)mvu)− f(t, v)dv +
∑
u∈V

f(t, u)ruv, v ∈ V, t ≥ 0 (4.1)

with initial condition f(0, v) = z
(v)
0 = Z

(v)
0 ∈ Rd, v ∈ V .
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Proof : The ODE in (4.1) is linear with continuous coefficients and thus has a unique solution. We
fix v ∈ V for the proof. From the proof of Lemma 2.4 we know that E[|Zt|] < ∞ for all t > 0
and from Lemma 2.4 that fkv (z) = min{zv, k} is in the extended domain for all k ∈ N and v ∈ V .
From monotone convergence we conclude that fv(z) = zv is also in the extended domain, for all
v ∈ V . Applying the form (3.1) of the generator for fv(z) = zv, Dynkin’s formula together with the
linearity of expectation implies

E
[
Z

(v)
t

]
− Z(v)

0 = E
[ ∫ t

0

(∑
u∈V

[ ∫ 1

0

Z
(u)
s∑
i=1

(
Z

(u)
s

i

)
iyi(1− y)Z

(u)
s −i 1

y
Muv(dy)

−
∫ 1

0

Z
(v)
s∑
i=1

(
Z

(v)
s

i

)
iyi(1− y)Z

(v)
s −i 1

y
Mvu(dy)

]

−
∫ 1

0

Z
(v)
s∑
i=1

(
Z

(u)
s

i

)
iyi(1− y)Z

(u)
s −i 1

y
Dv(dy)

+
∑
u∈V

∫ 1

0

Z
(u)
s∑
i=1

(
Z

(u)
s

i

)
iyi(1− y)Z

(u)
s −i 1

y
Ruv(dy)

)
ds
]

= E
[ ∫ t

0

(∑
u∈V

[ ∫ 1

0
E
[
Bin(Z(u)

s , y)|Zs
]1
y
Muv(dy)

−
∫ 1

0
E
[
Bin(Z(v)

s , y)|Zs
]1
y
Mvu(dy)

]
−
∫ 1

0
E
[
Bin(Z(v)

s , y)|Zs
]1
y
Dv(dy)

+
∑
u∈V

∫ 1

0
E
[
Bin(Z(u)

s , y)|Zs
]1
y
Ruv(dy)

)
ds
]
,

(4.2)

where Bin(n, p) denotes a binomially distributed random variable with parameters n ∈ N and
p ∈ [0, 1]. Let us show that for example the term for fixed u ∈ V corresponding to migration
between u to v depends only on the total mass of Muv and Mvu:∫ 1

0
E
[
Bin(Z(v)

s , y)|Zs
]1
y
Muv(dy)−

∫ 1

0
E[Bin(Z(u)

s , y)|Zs]
1

y
Mvu(dy)

= Z(u)
s muv − Z(v)

s mvu.

Analogously, we obtain for the death term

−
∫ 1

0
E
[
Bin(Z(v)

s , y)|Zs
]1
y
Dv(dy) = −Z(v)

s dv

and for the reproduction term for fixed u ∈ V with offspring in v ∈ V∫ 1

0
E
[
Bin(Z(u)

s , y)|Zs
]1
y
ruv(dy) = Z(u)

s ruv.

Since our process (Zt)t≥0 is nonnegative and E[
∫ t

0 Z
(u)
s muvds] <∞ for all u ∈ V , the Fubini–Tonelli

theorem implies that we can interchange the outermost expectation (with respect to Z(v)
s ) with the

integration from 0 to t, and similarly for the death and reproduction terms. Performing this and
differentiating with respect to t, we obtain that (f(t, w))t≥0,w∈V = (E[Z

(w)
t ])t≥0,w∈V is a solution

to (4.1). �
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Since the system of linear ODEs has an unique solution, the previous lemma implies that the
expectation is invariant under coordination of migration, birth and death, as long as the coalescence
measures are zero and the total masses of the other measures are unchanged.

The previous lemma works for coordinating events that affect single individuals. As calculating
the expectation for the fully coordinated process is in general simpler, this provides a general
machinery to calculate expectations, see the following example and (in the context of the PAM)
Example 4.5.

Example 4.2. Consider a one-dimensional pure death process (Zt)t≥0 with D = dδ0 (where D and
R denote the single death and reproduction measures, respectively). Our approach to calculate
its expectation is to consider the fully coordinated process (Z̄t)t≥0 with D = dδ1, where all the
individuals die simultaneously at a random time T which is exponentially distributed with parameter
d. Then for t ≥ 0, En[Zt] = En[Z̄t] = nP(T > t) = ne−dt.

The same principle can be used to calculate the expectation of a Yule process (Zt)t≥0 with
branching parameter r > 0, i.e., R = rδ0 and all other parameters equal to zero. As we saw in
Example 1, in this case the fully coordinated process (R = rδ1) admits the representation Z̄t = n2Wrt

where (Wt)t≥0 is a standard Poisson process. This implies that En[Z̄t] = nE[2Wrt ]. Now, using that
the probability generating function of a Poisson random variable with rate parameter rt evaluated
at x is E[xWrt ] = ert(x−1) we conclude that En[Zt] = En[Z̄t] = nert.

If we now change the notation and consider a process (Zt)t≥0 with D = dδ0, R = rδ0 and all other
parameters equal to zero, we can combine the previous examples to observe that the fully coordinated
process (Z̄t)t≥0 defined via Z̄t = n2Wrt1{T >t} satisfies En[Zt] = En[Z̄t] = nE[2Wrt ]P(T > t) =

ne(r−d)t. It is interesting to see that the fully coordinated process and the birth-death branching
process have the same expectation at any deterministic time t ≥ 0, but very different path behaviour.
The first one will be extinguished almost surely at time T regardless of the reproduction rate, while
if r − d > 0 the birth-death branching process tends to infinity with positive probability.

The case Λv 6= 0 does not allow such a clean representation. It is clear that no such result
can hold in general, i.e., coordination has an effect on the expectation in the presence of pairwise
interaction. To see this, think of the expectation of the block-counting process of a Kingman
coalescent (no coordination). It is known that at t > 0 started from infinity the expectation is
finite (see Berestycki and Berestycki, 2009 and the references therein), while the expectation for
a star-shaped coalescent (full coordination, Pitman, 1999) started at infinity is always infinite. It
is not hard to see that starting both processes with 3 blocks will already lead to processes with
different expectations. However, it is still possible to use the idea of Lemma 4.1 to some extent. We
state a result for the Kingman case Λv = δ0.

Proposition 4.3. Let the collections of measures (Dv)v∈V , (Rvu)v,u∈V , (Λv)v∈V and (Mvu)v,u∈V
satisfy Definition 2.2 with Λv = cvδ0. Let (f(t, v))t≥0,v∈V be any solution of

d

dt
f(t, v) =

∑
u∈V

(f(t, u)muv − f(t, v)mvu)− f(t, v)dv +
∑
u∈V

f(t, u)ruv

− (f(t, v)2 − f(t, v))
cv
2
, v ∈ V, t > 0,

with f(0, v) = z
(v)
0 ∈ R, v ∈ V . Then E[Z

(v)
t ] ≤ f(t, v).

Proof : The proof follows from the proof of Lemma 4.1 together with Jensen’s inequality. Indeed,

−E
[(Z(v)

s

2

)]
= −1

2
E
[
(Z(v)

s )2 − Z(v)
s

]
≤ −1

2
E[Z(v)

s ]2 +
1

2
E[Z(v)

s ],

which deals with the additional term. �
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4.1. Variations of the PAM branching process. The Parabolic Anderson Model is a classical math-
ematical object that has attracted a lot of attention in the recent decades. In its context, we work
on the subgraph of Zd spanned by the vertex set V = [K]d, where [K] = {1, . . . ,K} for K ∈ N.
Consider the Cauchy problem for the heat equation with random coefficients and localized initial
datum: Let ξ̄+ = {ξ+

v }v∈[K]d and ξ̄− = {ξ−v }v∈[K]d be two families of independent and identically
distributed random variables with values in R+, where we write [K] = {1, . . . ,K} for K ∈ N. For
v ∈ [K]d let us define ξv := ξ+

v − ξ−v , and let us put ξ̄ = {ξv}v∈[K]d . Then the Cauchy problem is

d

dt
f(t, v) =

∑
u : |u−v|=1

[f(t, u)− f(t, v)] + ξvf(t, v)

f(0, v) = 1{v=0̄}.

(4.3)

It is well-known that conditionally on (ξ̄+, ξ̄−) the branching process (Zt)t≥0 which goes from the
state z̄ to the state z̄− ev + eu at rate zv if u, v are neighbouring vertices and to the state z̄+ ev at
rate zvξ+

v and z̄− ev at rate zvξ−v , where ξ+
v − ξ−v = ξv, has the property that under mild conditions

on ξ̄ = {ξv}v∈[K]d , f(t, v) = E[Z
(v)
t ] is a solution to the PAM (Gärtner and Molchanov, 1990). (Note

that conditional on ξ̄, this solution is unique according to Lemma 4.1.) For this reason (Zt)t≥0 is
studied in Ortgiese and Roberts (2018, 2016, 2017). We note that the results of the present section
remain valid if we replace [K]d with a discrete torus, i.e., if the notion of neighbouring vertices is
taken with respect to periodic boundary conditions.

As the process (Zt)t≥0 is a branching process, one can use moment duality, for example, to
estimate the probability that there is at least one individual (in the branching process) in a certain
position, using an ODE. Indeed, imagine that the branching process starts with one individual in
the island 0̄ and we are interested in knowing if at a fixed time t > 0 there is some individual in
position v. Taking x̄ = (1, 1, ..., 1)− ev(1− ε), z̄ = ev,

Pev(Z
(v)
t = 0) = lim

ε→0
Eev [εZ

(v)
t ] = lim

ε→0
Ex̄[X

(v)
t ]

and
Peu(Z

(v)
t = 0) = lim

ε→0
Eeu [εZ

(v)
t ] = E(1,1,...,1)−ev [X

(u)
t ]. (4.4)

This approach seems not to be explored yet in the PAM literature. Indeed, the behaviour of this
branching process is a classical problem that has been solved to a great extent only recently (Ortgiese
and Roberts, 2018, 2016, 2017) using different techniques. Note that in the case without death,
(X

(v)
t )v∈V,t≥0 is the solution of a system of ordinary differential equations

d

dt
X

(v)
t =

∑
u : |u−v|=1

[X
(u)
t −X(v)

t ]dt+ ξvX
(v)
t (1−X(v)

t )dt

which is easy to solve numerically and seems plausible to study mathematically (see Figure 4.1).
Probably, the most important technique used in the study of the PAM is the following assertion.

Proposition 4.4 (Feynman-Kac formula). Let (Yt)t≥0 be a simple symmetric random walk in [K]d.
Under the moment condition

E
[( max{ξv, 2}

log(max{ξv, 2})
)d]

<∞, ∀v ∈ V, (4.5)

we have that

f(t, v) = E[e
∫ t
0 ξYsds1{Yt=v}] = E[e

∫ t
0 ξ

+
Ys

ds1{Yt=v}1{t<T }], t > 0, v ∈ [K]d

is a solution to the PAM, where (Mt)t≥0 is a Poisson process that is independent of (Zt)t≥0, and

T = inf{t ≥ 0: M∫ t
0 ξ

−
Ys

ds ≥ 1}. (4.6)
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Figure 4.1. In these pictures we observe the process Xt with V = N, Rv,v = rδ0,
Mv,v+1 = mδ0 and all other parameters being zero. This is the dual of a branching random
walk in which particles branch at rate 1 and migrate from state v to v+ 1 at rate m. In a),
b) and c) the starting condition is (1, 1, ...)−e4 and in d) it is (1, 1, ...)−e40. As observed in
Equation (4.4), the black line (X0) is the graph of the probability that there is no particle
at position 4 (resp. 40) at time t > 0, starting the branching random walk with one particle
at position zero at time zero.

The original proof is analytic and can be found in Gärtner and Molchanov (1990). Our construc-
tion provides a straightforward proof of this formula using the ‘lonely walker representation’ (see
Remark 2.7 of König, 2016).

Proof : Since in the PAM there is no coalescence, Lemma 4.1 provides a straightforward way to
compute E[Z

(v)
t ], v ∈ V . Let us first consider the case without death. Then, thanks to the lemma

and the uniqueness of the solution of the PAM under (4.5) (cf. König, 2016, Theorem 1.2), for
t ≥ 0, Z(v)

t has the same expectation as Z ′(v)
t where the ‘fully coordinated PAM’ process (Z ′t)t≥0 is

such that Λv = Dv = 0, further, Ruv and Mvu are replaced by their total masses times δ1. In the
process (Z ′t)t≥0, all individuals move together and reproduce simultaneously according to a Poisson
process (Nt)t≥0 time-changed by (ξ+

v )v∈V evaluated along the random walk path (Yt)t≥0. To be
more precise, let us define τ =

∫ t
0 ξ

+
Ys
ds. Then (Z ′t)t≥0 = (Z

′(v)
t )t≥0,v∈V is defined as

Z
′(v)
t = 2Nτ1{Yt=v}.

Using the probability generating function of a Poisson random variable, one computes

E
[
Z

(v)
t

]
= E

[
Z ′t1{Yt=v}

]
= E

[
2Nτ1{Yt=v}

]
= E

[
E
[
2Nτ

∣∣σ(ξ̄+, (Ys)0<s≤t
)]
1{Yt=v}

]
= E

[
eτ1{Yt=v}

]
,

which finishes the proof.
In case there is also death in the model, in the fully coordinated process all individuals si-

multaneously die after the first arrival time of a Poisson process (Mt)t≥0 independent of (Nt)t≥0

time-changed by (ξ−v )v∈V . To be more precise, for t > 0,

{Z ′t = 0} = {t ≥ T },
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where T is defined according to (4.6). Thus, we have

E
[
Z

(v)
t

]
= E

[
eτ1{Yt=v}1{t<T }

]
= E

[
e
∫ t
0 ξ

+
Ys
ds1{Yt=v}1{t<T }

]
= E

[
e
∫ t
0 (ξ+Ys−ξ

−
Ys

)ds1{Yt=v}
]

= E
[
e
∫ t
0 ξYsds1{Yt=v}

]
.

�

Example 4.5. Since the PAM has a unique solution under the condition (4.5), there is an uncountable
family of coordinated processes (Z ′′t )t≥0 such that E[Z

′′(v)
t ] equals E[Z

(v)
t ] = E[Z

′(v)
t ] from the proof

of Proposition 4.4. For example, this is the case for (Z ′′t )t≥0 where the birth and the death rates are
the same as for the branching process (Zt)t≥0, further, Λv = 0 and Muv = muvδ 1

2
. In the process

(Z ′′t )t≥0, for any (u, v) ∈ V × V with u 6= v, migration events from u to v happen according to a
homogeneous Poisson process, independently of all the other pairs of vertices, and at a migration
event each individual situated at u migrates to v independently with probability 1/2.

5. Coordination and variance

In this section, we further analyse the processes that turn out to have the same expectation thanks
to Lemma 4.1. In the case of spatial branching processes with migration, i.e., in the case where
there is no coalescence but reproduction, death and migration are possibly present in the model, we
compute the variance of the processes. We show that given the total masses of the reproduction,
death and migration measures, the variance is maximal in the completely coordinated case and
minimal in the independent case.

We say that the collection of measures{
(Dv)v∈V , (Rvu)v,u∈V , (Mvu)v,u∈V , (Λv)v∈V

}
is of type {

(dv)v∈V , (rvu)v,u∈V , (mvu)v,u∈V , (cv)v∈V
}

if Dv[0, 1] = dv, Rvu[0, 1] = rvu,Mvu[0, 1] = mvu and Λv[0, 1] = cv. In case the structured branching
coalescing process (Zt)t≥0 (defined according to Definition 2.2) has parameters of this type, we write
(Zt)t≥0 ∈ K((dv)v, (rvu)u,v, (mvu)u,v, (cv)v).

Lemma 5.1. Let dv, rvu,mvu ≥ 0 and cv = 0 for all u, v ∈ V . Then,

sup
(Zt)t≥0∈K((dv)v ,(rvu)u,v ,(mvu)u,v ,(0)v)

Var[Z(v)
s ] = Var[Z̄(v)

s ]

for all v ∈ V , where Z̄(v)
s is such that for all u,w ∈ V , Mu,w = mu,wδ1, Ruw = ruwδ1 and Du = duδ1,

and

inf
(Zt)t≥0∈K((dv)v ,(rvu)u,v ,(mvu)u,v ,(0)v)

Var[Z(v)
s ] = Var[Z(v)

s ]

for all v ∈ V , where Z(v)
s is such that for all u,w ∈ V , Mu,w = mu,wδ0, Ruw = ruwδ0 and Du = duδ0.

Here, (0)v denotes the collection of |V | instances of the zero measure.
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Proof : Applying the form (3.1) of the generator for fv(z) = z2
v , we obtain, using Dynkin’s formula,

E
[
Z

(v)
t

2]
− Z(v)

0

2

= E
[ ∫ t

0

(∑
u∈V

∫ 1

0

Z
(v)
s∑
i=1

(−2Z(v)
s i+ i2)

(
Z

(v)
s

i

)
yi(1− y)Z

(v)
s −i 1

y
Mvu(dy)

+
∑
u∈V

∫ 1

0

Z
(u)
s∑
i=1

(2Z(u)
s i+ i2)

(
Z

(u)
s

i

)
yi(1− y)Z

(u)
s −i 1

y
Muv(dy)

+

∫ 1

0

Z
(s)
v∑
i=1

(−2Z(v)
s i+ i2)

(
Z

(v)
s

i

)
yi(1− y)Z

(v)
s −i 1

y
Dv(dy)

+
∑
u∈V

∫ 1

0

Z
(u)
s∑
i=1

(2Z(u)
s i+ i2)

(
Z

(u)
s

i

)
yi(1− y)Z

(u)
s −i 1

y
Ruv(dy)

)
ds
]
. (5.1)

Thus, recalling that for a binomial random variable with parameters n, p one has E[X2] = np(1 −
p+np) and using (4.2) together with the Fubini-Tonelli theorem, we can interchange the outermost
expectation with the integration from 0 to t on the right-hand side of (5.1) by the same arguments
as in the proof of Lemma 4.1 and write the equation in differential form as follows

d

dt
E
[
Z

(v)
t

2]
= E

[∑
u∈V

∫ 1

0
Z(u)
s (1− y + Z(u)

s y − 2Z(u)
s )
]
Mvu(dy)

+ E
[∑
u∈V

∫ 1

0
Z(v)
s (1− y + Z(v)

s y + 2Z(v)
s )
]
Muv(dy)

+ E
[ ∫ 1

0
Z(v)
s (1− y + Z(v)

s y − 2Z(v)
s )
]
Dv(dy)

+ E
[∑
u∈V

∫ 1

0
Z(u)
s (1− y + Z(u)

s y + 2Z(u)
s )
]
Ruv(dy).

(5.2)

Now, Var[Z
(v)
t ] = E[Z

(v)
t

2
] − E[Z

(v)
t ]2, and Lemma 4.1 implies that E[Z

(v)
t ]2 is constant given the

total masses of all migration, death and reproduction measures. Hence, in order to maximize
(minimize) Var[Z

(v)
t ] given these total masses, it suffices to maximize (minimize) the right-hand

side of (5.2). Note that for all v ∈ V , Z(v)
s takes nonnegative integer values, and given that it is

zero, Z(v)
s (1 − y + Z

(u)
s y ± 2Z

(u)
s ) = 0. Further, for Z(v)

s ≥ 1, Z(v)
s y ≥ y. It follows that given the

total masses, any term on the right-hand side of (5.2) is maximal for the corresponding measure
being a constant multiple of δ1 and minimal for the measure being a constant multiple of δ0. Hence,
we conclude the lemma. �

The previous result allows us to bound the variance of all the processes whose expectation solves
the PAM.

Corollary 5.2. Assume that (Zt)t≥0 is a coordinated branching process such that E[Z
(v)
t ] is a so-

lution of equation (4.3). Let (Yt)t≥0 be a simple symmetric random walk in [K]d. Then, recalling
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ξv = ξ+
v − ξ−v , for v ∈ V ,

Var
[
Z

(v)
t

]
≤E
[

exp
(∫ t

0
ξ+
Ys

ds
)(

exp
(
2

∫ t

0
ξ+
Ys

ds
)
− 1
)
1{Yt=v}1{t<T }

]
=E
[

exp
(∫ t

0
ξYsds

)(
exp

(
2

∫ t

0
ξ+
Ys

ds
)
− 1
)
1{Yt=v}

]
.

Here, (Mt)t≥0 is a Poisson process independent of (Zt)t≥0, and T = inf{t ≥ 0: M∫ t
0 ξ

−
Ys

ds ≥ 1}.

Proof : The right-hand side of the equation to be proven is the variance of Z̄(v)
t in the notation of

Lemma 5.1, and thus the statement follows directly from this lemma. To calculate the variance we
compute the second moment as follows:

E
[
(Z

(v)
t )2

]
=E
[
4
N∫ t

0 ξYs
ds1{Yt=v}1{t<T }

]
= E

[
e

ln(4)N∫ t
0 ξYs

ds1{Yt=v}1{t<T }
]

=E
[
e3

∫ t
0 ξYsds1{Yt=v}1{t<T }

]
.

where in the last equality we used the formula for moment generating function of a Poisson random
variable. As shown in Proposition 4.4,

E[Z̄
(v)
t ]2 = E[e2

∫ t
0 ξYsds1{Yt=v}1{t<T }],

which together with the definition of T implies

Var
[
Z̄

(v)
t

]
= E

[
e2

∫ t
0 ξYsds(e

∫ t
0 ξYsds − 1)1{Yt=v}1{t<T }

]
= E

[
e
∫ t
0 ξYsds(e2

∫ t
0 ξ

+
Ys

ds − 1)1{Yt=v}
]
.

�

6. Extensions to infinite graphs

The main results of the present paper tell about the case when G = (V,E) is a finite graph (where
we recall that this graph was defined in Section 2). Let us now discuss under what conditions these
statements can be extended to an infinite graph in general.

Let G = (V,E) be an infinite, connected, locally finite graph. Choose a collection

M = {Ruv, Dw,Muv,Λw : w ∈ V, (u, v) ∈ E}
of elements of M[0, 1] interpreted similarly to Definition 2.2 for the case of a finite graph, and a
collection

P = {NRuv , NDw , NMuv , NΛw : w ∈ V, (u, v) ∈ E}
of independent Poisson point processes, defined analogously to the case of a finite graph (cf. page
1825), involving the measures contained in M.

Let us fix v0 ∈ V . For v, w ∈ V let d(v, w) denote the graph distance of v and w, i.e., the length
of the shortest path of edges connecting v and w in the graph. Then for N ∈ N0 we define

V N = {v ∈ V : d(v, v0) ≤ N}
as the set of vertices situated at graph distance at most N from v0. We also put V−1 = E−1 = ∅.
We denote by GN = (V N , EN ) the subgraph of G spanned by V N . Then we let (ZN,t)t≥0 =

(Z
(v)
N,t)t≥0,v∈V to be the process defined according to the Poisson point process representation for

finite graphs involving the measures contained in the set

MN = {Ruv, Dv,Muv,Λv : w ∈ V N , (u, v) ∈ EN}
and the corresponding Poisson point processes included in the set

P = {NRuv , NDw , NMuv , NΛw : w ∈ V N , (u, v) ∈ EN}.
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Now, for N ∈ N0 we let

τN = inf{t ≥ 0: ∃v ∈ V N \ V N−1 : Z
(v)
N,t > 0}.

The crucial assumption in order to define a limiting process on the infinite graph is the following
nonexplosion condition:

lim
N→∞

τN =∞, (6.1)

almost surely given the initial condition Z(v)
0 = 1{v=v0}, v ∈ V . Indeed, then for t ≥ 0, the random

variable
Nt = inf{N ∈ N0 : t < τN}.

is almost surely finite. Hence, if we define

Zt = lim
N→∞

ZN,t∧τN ,

then Zt = ZNt,t, almost surely, and for all t ≥ 0, ZNt,t is almost surely well-defined according to the
Poissonian construction for finite graphs.

Condition (6.1) is difficult to check. Despite it should be true in many interesting cases, it is not
hard to come up with examples in which even if all the measures have a bounded mass, condition
(6.1) is not satisfied. It remains an open question to find easy to verify sufficient conditions to
extend the results presented in this paper to infinite graphs.

Lemma 4.1 can be extended to the infinite case under assumption (6.1).

Corollary 6.1. Assume that for every N , (ZNt )t≥0 as constructed above fulfills the condition of
Lemma 4.1 and the assumption (6.1) is true. Then, for all t ≥ 0

E[Zt] = lim
N→∞

E[ZNt∧τN ].

Proof : After observing that for every t > 0, ZNt∧τN is an increasing function of N , the proof follows
from monotone convergence. �

Next, we recall three classical processes that are strongly related to each other, two of them
belonging to our class of processes: one independent one (a branching random walk) and one fully
coordinated one (the binary contact path process), and the third one being the contact process.
These processes are usually studied on infinite graphs such as Zd or uniform trees (see Liggett, 1999
for details).

Example 6.2 (Contact process, binary contact path process and branching random walk). Let
D,R > 0, let G = (V,E) be a (possibly infinite) graph and let (Z̄t)t≥0 = (Z

(v)
t )v∈V,t≥0 be the

N|V |0 -valued Markov process with transitions

z 7→

{
z − zvev, at rate D, v ∈ V,
z + zveu, at rate R1(v,u)∈E , u, v ∈ V.

It is clear that the process (Z̄t)t≥0 satisfies Condition (6.1). It is called the binary contact path
process, and it was first studied in Griffeath (1983). Now consider C̄t = (C

(v)
t )v∈V = (1

Z
(v)
t >0

)v∈V ,
t ≥ 0 and observe that (Ct)t≥0 is the contact process on the graph G with parameters D and R

(cf. Bezuidenhout and Grimmett, 1990, Section 2). Let further (N̄t)t≥0 = (N
(v)
t )v∈V,t≥0 be the

N|V |0 -valued Markov process with transitions

z 7→

{
z − ev, at rate Dzv, v ∈ V,
z + eu, at rate Rzv1(v,u)∈E , u, v ∈ V.
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The process (N̄t)t≥0 = (N
(v)
t )v∈V,t≥0 is the branching random walk associated to the contact process.

We observe that by Lemma 4.1,

Ez̄[Z
(v)
t ] = Ez̄[N

(v)
t ], ∀v ∈ V, t ≥ 0, z̄ ∈ N|V |0 ,

and thus, (N̄t)t≥0 also satisfies Condition (6.1).
It is easy to see that if C(v)

0 ≤ N
(v)
0 for all v ∈ V , then C

(v)
t ≤ N

(v)
t for all t ≥ 0 and v ∈ V ;

in this sense, the contact process can be seen as a branching random walk where particles at the
same site (vertex) coalesce. These assertions can be found in Liggett (1999, page 32). A well-known
consequence Liggett (1999, page 43) of this comparison is that if all degrees of the graph G are
bounded by d ∈ N, then limt→∞ |Ct| = 0 holds almost surely whenever the branching random walk
is subcritical, i.e., dR−D < 0. Further, in the critical case dR = D, since particles of this branching
random walk can actually die with positive probability, the branching random walk and hence also
the contact process dies out.

We now present two applications of the results of the present paper that extend to infinite graphs
thanks to Corollary 6.1. To start with, the proof that we provided for the Feynman-Kac formula
(Proposition 4.4) remains true for infinite graphs satisfying (6.1). Using classical results on the
PAM, we can provide a more explicit sufficient condition for (6.1) as follows.

Corollary 6.3. Proposition 4.4 remains true for V = Zd, d ∈ N (instead of V = [K]d for K ∈ N),
in case the moment condition (4.5) holds.

Proof : As already mentioned, according to König (2016, Theorem 1.2), (4.3) has a unique solution
in Zd given that (4.5) holds. Using Corollary 6.1, we conclude that f(t, v) = E[Z

(v)
t ] equals this

solution. Finally, thanks to Proposition 4.4 and monotone convergence, this solution must be equal
to f(t, v) = E[e

∫ t
0 ξ

+
Ys

ds1{Yt=v}1{t<T }]. This implies the corollary. �

Finally, as an additional application of the invariance of expectation on infinite graphs, we consider
a branching random walk on a d-uniform rooted tree, and we provide a probabilistic interpretation
of its expectation process in terms of the underlying “fully coordinated” process.

Remark 6.4. Let the graph G = (V,E) be a d-uniform rooted tree for some d ∈ N. That is, there
is a distinguished vertex o called the root, which is the only vertex in the 0th generation of the
vertex set V , vertex generations are pairwise disjoint, and for n ∈ N0, each vertex in generation n is
connected by an edge to precisely d vertices in generation n+ 1, so that each vertex in generation
n+1 has precisely one neighbour from generation n. For each n ∈ N0, let us fix an arbitrary indexing
v(n,1), . . . , v(n,dn) of the vertices of generation n, in particular, v(0,1) = o. Then we fix r, µ > 0 and
define a branching random walk, i.e., a particle system (Zt)t≥0 on G according to Definition 2.2
with the following rates: Λv = Dv = 0 for all v ∈ V , Rvv = rδ0 for all v ∈ V and Rvu = 0 for all
u, v ∈ V, u 6= v, further, Mvu = 1

dµδ0 in case (v, u) ∈ E and u belongs to one generation higher than
v and Mvu = 0 otherwise. In words, particles create an offspring at rate r and jump to a uniformly
chosen neighbouring vertex in the next generation at rate µ, independently of all the other particles.

Let (Z̄t)t≥0 be the associated fully coordinated process, i.e., the process that exhibits also no
coalescence or death, and whose reproduction and migration measures R̄vu, M̄vu, u, v ∈ V are ob-
tained by replacing δ0 with δ1 in the definition of the corresponding measure Rvu respectively Mvu

of (Zt)t≥0. In this process, all particles move simultaneously at rate µ to one of the neighbours of
the present vertex in the next generation, and at rate r they reproduce simultaneously. In order
to simplify the notation, we use the notations Z(k,i)

t and Z̄(k,i)
t instead of Z

(v(k,i))
t resp. Z̄

(v(k,i))
t for

the coordinates of Zt resp. Z̄t corresponding to the vertex v(k,i), k ∈ N0, i = 1, . . . , dk. For k ∈ N,
j ∈ {0, 1, . . . , k − 1} and i = 1, . . . , dk, let us write a(j, k, i) for the ancestor of (k, i) in generation
j, i.e., for the unique vertex of the form (j, ·) connected by a path (i.e., sequence of edges) to (k, i).
In particular, a(0, k, i) = o for all i = 1, . . . , dk.
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Then, it is easy to check that the nonexplosion condition (6.1) is satisfied, and hence Corollary 6.1
is applicable. Together with Lemma 4.1, we obtain that starting from one single particle at o at
time zero, for t ≥ 0, k ∈ N0 and i = 1, . . . , dk we have

E
[
Z

(k,i)
t

]
= E

[
Z̄

(k,i)
t

]
= ert

(tµ)k

k!
e−tµ

1

dk
= et(r−µ)

( tµ
d

)k 1

k!
. (6.2)

This yields a probabilistic interpretation for the sytem of ODEs
d

dt
f(t, (k, i)) = (r − µ)f(t, (k, i)) +

µ

d
f(t, a(k − 1, k, i)), k ∈ N, i = 1, . . . , dk,

d

dt
f(t, o) = (r − µ)f(t, o),

f(0, (k, i)) = δ0,k,

(6.3)

where it is straightforward to derive that its unique solution f(t, (k, i)) equals E[Z
(k,i)
t ] from (6.2).

Note that the representation (6.2) of the solution of the system (6.3) by a fully coordinated process
is in analogy to the one provided for the solution of the PAM in the proof of Proposition 4.4. Hence,
(6.2) can also be interpreted as an explicit Feynman–Kac representation.

By Lemma 4.1, for all structured branching-coalescing processes with coordination on G where
all the measures of the form Rvv and Mvu have the same total mass as for the branching random
walk and all other measures are zero, the expectation of the process solves (6.3).
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