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Abstract. In this paper, we study the extinction time of logistic branching processes which are
perturbed by an independent random environment driven by a Brownian motion. Our arguments
use a Lamperti-type representation which is interesting on its own right and provides a one to
one correspondence between the latter family of processes and the family of Feller diffusions which
are perturbed by an independent spectrally positive Lévy process. When the independent random
perturbation (of the Feller diffusion) is driven by a subordinator then the logistic branching processes
in a Brownian environment converges to a specified distribution; otherwise, it becomes extinct
a.s. In the latter scenario, and following a similar approach to Lambert (2005), we provide the
expectation and the Laplace transform of the absorption time as a functional of the solution to a
Ricatti differential equation. In particular, the latter characterises the law of the process coming
down from infinity.

1. Introduction and main results.

The prototypical example of continuous state branching processes (or CB-processes) with com-
petition is the so-called logistic Feller diffusion which is defined as the unique strong solution of the
following stochastic differential equation (SDE),

Yt = Y0 + b

∫ t

0
Ysds+

∫ t

0

√
2γ2YsdBs − c

∫ t

0
Y 2
s ds, t ≥ 0, (1.1)

where b ∈ R, c > 0 and B = (Bt; t ≥ 0) is a standard Brownian motion. The logistic Feller
diffusion is considered as the random analogue of the so-called logistic growth model, a demographic
deterministic model which is well used in ecology. The logistic growth model is an elementary
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combination of geometric growth, such as the Malthusian growth model, for small population sizes
and a quadratic density-dependent regulatory mechanism. As we can see from (1.1), the logistic
Feller diffusion has such a geometric growth, given by the parameter b and the quadratic regulatory
term, when the parameter c is strictly positive. The quadratic regulatory term has a deep ecological
meaning as it describes competition between pairs of individuals in a given population and thus
deserves special attention.

On the other hand, the logistic Feller diffusion can also be constructed as scaling limits of
Bienaymé-Galton-Watson (BGW) processes with competition where the negative interactions be-
tween individuals can be observe more clearly. More precisely, BGW processes with competition
are continuous time Markov chains where individuals give birth to a random number of offspring
independently from one another, but where competitive pressure is also considered, that is to say,
each pair of individuals interacts at a fixed rate and one of them is killed as result of such in-
teraction. Such competition pressure is a size-dependence which complies with the deterministic
logistic growth model, since it produces a geometric growth coming from the reproduction law of
each individual and a quadratic death rate which represents negative interactions between pairs of
individuals. For further details about the convergence of BGW processes with competition towards
the logistic Feller diffusion, we refer to Section 2.4 in Lambert (2005).

There is a remarkable random time change representation of the logistic Feller diffusion which is
quite important for our purposes. Let us consider the random clock

Ct :=

∫ t

0
Ysds, t ≥ 0,

and (ηt, t ≥ 0) its right-continuous inverse. The process (Mt, t ≥ 0) defined by

Mt :=

∫ t

0

√
YsdBs, t ≥ 0,

is a local martingale whose quadratic variation is given by (Ct, t ≥ 0) (i.e. η represents the right-
continuous inverse of the quadratic variation), thus from the extended Dubins-Schwarz Theorem
(see for instance Chapter V in Revuz and Yor, 1999 or Theorem 7.1 in Ikeda and Watanabe, 1989)
the time-changed process M ◦ η is a standard Brownian motion. The previous argument clearly
implies that Y ◦ η solves the SDE

dRt = dWt − cRtdt, (1.2)

where W is a Brownian motion with drift, i.e. (2γ2)−1/2(Wt− bt), for t ≥ 0, is a standard Brownian
motion. Conversely, let R be the unique strong solution of (1.2), TR0 its first hitting time of 0 and
C the right-continuous inverse of

ηt =

∫ t∧TR0

0

ds

Rs
, t ≥ 0, (1.3)

then Y = R ◦ C is a diffusion killed when it hits 0 and solves (1.1). This type of random time-
change is known as Lamperti’s representation and the unique strong solution of (1.2) is known as
the Ornstein-Uhlenbeck diffusion.

Using the above random time-change argument, Lambert (2005) generalised the logistic Feller
diffusion by replacing the Ornstein-Uhlenbeck diffusion by a Ornstein-Uhlenbeck process driven by
a Lévy process. Before we explain Lambert’s construction, let us first introduce one of the basic
objects in our study. Let X = (Xt, t ≥ 0) be a spectrally positive Lévy process, i.e. a càdlàg
stochastic process with independent and stationary increments with no negative jumps. We denote
by Px for the law of X started from x ∈ R and for simplicity, we let P = P0. It is known that the
law of any spectrally positive Lévy process X is completely characterised by its Laplace exponent
ψ which is defined as ψ(λ) = logE[e−λX1 ], for λ ≥ 0, and satisfies the so-called Lévy-Khintchine
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formula
ψ(λ) = −bλ+ γ2λ2 +

∫
(0,∞)

(
e−λu − 1 + λu1{u<1}

)
µ(du), (1.4)

where b ∈ R, γ ≥ 0 and µ is a Radon measure concentrated on (0,∞) satisfying∫
(0,∞)

(1 ∧ u2)µ(du) <∞. (1.5)

It is also known that the triplet (b, γ, µ) characterises the law of X.
In Lambert (2005), the author considered an Ornstein-Uhlenbeck driven by the Lévy process X

starting from x > 0, i.e. the unique strong solution of

dRt = dXt − cRtdt. (1.6)

The process R is also known as the generalised Ornstein-Uhlenbeck process and defines a time
homogeneous Markov process whose transitions {pt(x, ·), t ≥ 0} are determined by∫

R
eizypt(x,dy) = exp

{
ixze−ct +

∫ t

0
ψ(e−csz)ds

}
, z ∈ R,

see for instance section 17 in Sato (1999). According to Theorem 17.5 in Sato (1999), the following
log-moment condition

E
[

log+X1

]
<∞,

is necessary and sufficient for the generalised Ornstein-Uhlenbeck process R to possess an invariant
distribution. From Theorem 25.3 in Sato (1999), the previous log-moment condition is equivalent
to ∫ ∞

1
log(u)µ(du) <∞. (1.7)

For further details on Lévy and generalised Ornstein-Uhlenbeck processes, we refer to the monograph
of Sato (1999).

Let TR0 denotes the first hitting time of 0 of the generalised Ornstein-Uhlenbeck process R, i.e.
TR0 := inf{s : Rs = 0}, and consider the random clock (ηt,≥ 0) defined by (1.3) in this setting
and its right-continuous inverse C. According to Lambert (2005), the logistic branching process is
defined as follows

Yt =

{
RCt if 0 ≤ t < η∞
0 if η∞ <∞ and t ≥ η∞.

(1.8)

When c = 0, the process Y is the so-called CB-process and the previous random time change
relationship is known as the Lamperti transform which was established by Lamperti (1967). In other
words, a CB-process is associated with a spectrally positive Lévy process and in particular with
its Laplace exponent ψ which takes the role of the offspring generating function in the compound
Poisson case. Formally speaking, we shall refer to all ψ consistent with Definition (1.4) as branching
mechanisms.

The logistic Feller diffusions and their extensions have been studied by several authors, see for
instance Berestycki et al. (2018), Foucart (2019), Lambert (2005), Ma (2015), Pardoux (2016) and
the references therein.

As it was observed by Foucart (2019), the definition of the logistic branching process Y , given
by (1.8), is inconsistent with the fact that the process R is positive, drifts to ∞ and η∞ <∞, a.s.
The latter may occur when

E :=

∫ θ

0

1

x
exp

{
2

c

∫ θ

x

ψ(u)

u
du

}
dx <∞, for some θ > 0, (1.9)

according to Lemma 4 in Foucart (2019). Actually, condition (1.9) is necessary and sufficient for
the logistic branching process Y to explode with positive probability. We also point out that the
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process Y does not explode a.s., if the log-moment condition (1.7) holds since it implies that E =∞.
The latter follows from the fact that∫

0+

ψ(z)

z
dz <∞ is equivalent to

∫ ∞
log(u)µ(du) <∞,

see for instance Corollary 3.21 in Li (2011).
In Foucart (2019), the author is interested in studying the long term behaviour of the extension

of the logistic branching process Y on [0,∞] where the state ∞ might be an entrance, reflecting or
an exit boundary. In particular, Foucart improved the results of Lambert (2005) for such extension.
In this paper, we are not interested in the extension of Y , so that we continue our exposition below
in the setting of Lambert (2005).

It is important to note that the logistic branching process Y can also be defined (up to the time
of explosion) as the unique strong solution of a SDE which can also be extended to more general
competition mechanisms. To be more precise, let us consider a general competition mechanism g
which is a non-decreasing continuous function on [0,∞) with g(0) = 0, hence the branching process
with competition satisfies the following SDE

Yt = Y0 + b

∫ t

0
Ysds−

∫ t

0
g(Ys)ds+

∫ t

0

√
2γ2YsdB

(b)
s

+

∫ t

0

∫
(1,∞)

∫ Ys−

0
zN (b)(ds, dz,du) +

∫ t

0

∫
(0,1)

∫ Ys−

0
zÑ (b)(ds, dz, du),

(1.10)

up to explosion, where B(b) is a standard Brownian motion which is independent of the Poisson
random measure N (b) which is defined on R3

+, with intensity measure dsµ(dz)du such that µ satisfies
(1.5) and Ñ (b) denotes its compensated version. The first line in (1.10) represents a size-dependent
diffusion with branching. The size dependent mechanism is given by the mapping x 7→ bx−g(x) and
when g(x) = cx2 with c > 0, the first three terms of (1.10) represents the logistic Feller diffusion.
The Poisson integrals in (1.10) have the following interpretation: the role of the second coordinate
of the Poisson measure N (b) is to mark jumps in order to have them occur only if this mark is below
the path of Y ; thus the jumps with size in (z, z + dz) occur at a rate equals Ytµ(dz), that is the
branching process jumps at a rate which is linear in the population size similarly to the discrete
space state setting.

The SDE in (1.10) was considered by Ma (2015) (see also Berestycki et al., 2018) in the particular
case when ψ satisfies (1.4) with ∫

(0,∞)
(u ∧ u2)µ(du) <∞, (1.11)

or equivalently |ψ′(0+)| <∞. Such assumption simplifies the previous SDE by modifying the linear
and the jump structure terms as follows

Yt = Y0 − ψ′(0+)

∫ t

0
Ysds−

∫ t

0
g(Ys)ds+

∫ t

0

√
2γ2YsdB

(b)
s +

∫ t

0

∫
(0,∞)

∫ Ys−

0
zÑ (b)(ds, dz, du).

Moreover, under condition (1.11) the previous SDE does not explode a.s. The term ψ′(0+) represents
the Malthusian parameter of the geometric growth.

Our aim is to study the time to extinction of a generalized version of the logistic branching process
which includes an extra randomness coming from an independent Brownian motion which can be
interpreted as a random environment. To be more precise, we consider the following SDE

Zt = Z0 +

∫ t

0

(
bZs − cZ2

s

)
ds+

∫ t

0

√
2γ2ZsdB

(b)
s + σ

∫ t

0
ZsdB

(e)
s

+

∫ t

0

∫
[1,∞)

∫ Zs−

0
zN (b)(ds, dz,du) +

∫ t

0

∫
(0,1)

∫ Zs−

0
zÑ (b)(ds, dz,du),

(1.12)
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up to explosion, with b, γ, the Brownian motion B(b) and the Poisson random measure N (b) being
as before and where c, σ ≥ 0 and B(e) is a standard Brownian motion independent of B(b) and N (b).
The SDE (1.12) has a unique non-negative strong solution which satisfies the Markov property, see
for instance Theorem 1 in Palau and Pardo (2018).

When c = 0, the family of processes described by (1.12) was introduced independently by He
et al. (2018) and by Palau and Pardo (2018) with B(e) replaced by a Lévy process under the name
of CB-processes in a Lévy random environment. In this particular case, the process Z satisfies the
branching property conditionally on the environment B(e) (quenched branching property). This
particular case (i.e. c = 0) was studied by in Palau and Pardo (2017) where the probability of
survival and non-explosion is explicitly determined when the branching mechanism is stable, i.e.
ψ(λ) = cαλ

α, for λ > 0, with α ∈ (0, 1) ∪ (1, 2] and cα < 0 or cα > 0 accordingly as α ∈ (0, 1)
or α ∈ (1, 2]. The latter events can be computed in a closed-form in this case, since the Laplace
transform of Z is explicit, a property which is derived from the quenched branching property of
Z. We point out that in Palau and Pardo (2017) there are not necessary and sufficient conditions
for CB-processes in a Brownian random environment to explode or become extinct. Under the
finite moment condition (1.11), CB-processes in a Lévy random environment do not explode (see
for instance Lemma 7 in Bansaye et al., 2021) and moreover, according to He et al. (2018) Grey’s
condition, i.e. ∫ ∞ dz

ψ(z)
<∞, (1.13)

is a necessary and sufficient condition for the process to become extinct with positive probability, see
Theorem 4.1 in He et al. (2018). In the particular case when the random environment is driven by
a Brownian motion with drift, the associated CB-process in random environment becomes extinct
at finite time a.s. if the drift term is not positive, see Corollary 4.4 in He et al. (2018).

We also observe that the linear drift case, i.e ψ(u) = −bu for u ≥ 0, when c > 0 corresponds to
the monomorphic model of a single population living in a patchy environment which was studied
recently in Evans et al. (2015).

Interesting path properties of the process Z are known under different conditions on the param-
eters (b, c, γ, µ, σ). Most of them are due to Lambert (2005) when σ = 0, i.e. when there is no
random environment, and to Evans et al. (2015) when γ = 0 and µ ≡ 0.

Lambert divided his study in Lambert (2005) into two cases depending on properties of the
measure µ. Both cases always assume that the log-moment condition (1.7) holds and σ = 0. In the
first scenario, by also assuming that∫

(0,∞)
(1 ∧ z)µ(dz) <∞ and δ := b−

∫
(0,1)

zµ(dz) ≥ 0,

Lambert shows that if either δ 6= 0, µ(0,∞) =∞ or c < µ(0,∞) <∞, then the process Z is positive
recurrent on (δ/c,∞) and possesses a stationary distribution which can be computed explicitly.
Moreover if none of the latter conditions are satisfied, then the process Z is null recurrent in (0,∞)
and converges to 0 in probability (see Theorem 3.4 in Lambert, 2005). When the Lévy measure µ
satisfies ∫

(0,∞)
(1 ∧ z2)µ(dz) <∞,

then the process Z goes to 0 a.s. Moreover, the process Z gets extinct in finite time a.s. accordingly
as Grey’s condition (1.13) is fulfilled. Let TZ0 denotes the time to extinction of the process Z, i.e
TZ0 := inf{t ≥ 0 : Zt = 0}. In Lambert (2005), under Grey’s condition, the Laplace transform of
TZ0 was computed explicitly and the law of the process coming down from infinity, i.e. that Z starts
at ∞ and immediately after starting it takes finite values, was also determined.
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Evans et al. (2015) consider the longterm behaviour of Z when γ = 0 and µ ≡ 0. In particular,
the authors in Evans et al. (2015) found that starting from a strictly positive state then Zt > 0 for
all t ≥ 0, a.s. Moreover

(a) if 2b < σ2 then the process Z goes to 0 a.s.,
(b) if 2b = σ2 then

lim inf
t→∞

Zt = 0 and lim sup
t→∞

Zt =∞ almost surely,

(c) if 2b > σ2, then Z has a unique stationary distribution.
Recently, Leman and Pardo (2021) studied the event of extinction and the property of coming

down from infinity of CB-processes with general competition mechanisms in a Lévy environment
under the assumption that the branching mechanism satisfies the first moment condition (1.11). In
particular in Leman and Pardo (2021) it is proved, under the so-called Grey’s condition together with
the assumption that the Lévy environment does not drift towards infinity, that for any starting point
the process becomes extinct in finite time a.s. Moreover if the condition on the Lévy environment is
replaced by an integrability condition on the competition mechanism then the process comes down
from infinity.

In this paper, we study the particular case when the competition mechanism is logistic, where
more explicit results about the extinction time can be provided. In particular, when the branching
mechanism is associated to a subordinator, i.e. when ψ(u) < 0, we provide conditions under which
0 is polar, i.e the process never becomes extinct. Moreover, when the process does not become
extinct, we provide conditions for the process to be recurrent or transient and give a description of
the invariant measure when it exists.

In order to establish our results, we introduce the following notation. Let us denote by Px, the
law of Z starting from x > 0, and define the first hitting time to 0 of Z as follows

T0 = inf{t ≥ 0, Zt = 0},
with the convention that inf{∅} =∞. Hence, 0 is polar for Z if and only if Px(T0 <∞) = 0 for all
x > 0. We adopt the following definition of recurrence and transience (see for instance Chapter X
of Revuz and Yor (1999) or Definition 1 in Duhalde et al. (2014))

Definition 1.1. Assume that 0 is polar, the process Z is said to be recurrent if there exists x > 0
such that

Px
(

lim inf
t→∞

|Zt − x| = 0
)

= 1.

On the other hand, the process is said to be transient if

Px
(

lim
t→∞

Zt =∞
)

= 1, for every x > 0.

Observe that if the property of recurrence is satisfied for a particular x > 0, it is also true for all
x > 0. We also point out that in Definition 1 of Duhalde et al. (2014), the authors did not assume
the polarity of 0, since they studied a process with positive immigration. In that case, contrary to
ours, the process may grow again after extinction and thus it is either recurrent for all x ≥ 0, or
transient.

For clarity of exposition, we split our results in two cases depending on the form of the branching
mechanism ψ, the subordinator case and what we call the general case which is nothing but the
cases where the branching mechanism is associated with a subordinator with negative drift or
with an unbounded variation spectrally positive Lévy process. Both cases use different techniques
also. Indeed in the subordinator case we use the Lamperti-type representation since the law of the
underlying process is known and implicity many path properties can be established. Unfortunately,
this technique cannot be applied in the general case since the law of the underlying process seems
to be not so easy to be determined. Instead, we use a similar approach as in Lambert (2005) where
the knowledge of the infinitesimal generator is relevant.
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1.1. Subordinator case. Let us assume that the branching mechanism is associated to the Laplace
transform of a subordinator, that is to say

ψ(z) = −δz −
∫

(0,∞)
(1− e−zu)µ(du), (1.14)

where ∫
(0,∞)

(1 ∧ u)µ(du) <∞ and δ := b−
∫

(0,1)
uµ(du) ≥ 0.

We also introduce, the function

ω(x) = cx+
σ2x2

2
,

with σ > 0 and c ≥ 0. Notice that we are also considering the case without competition (i.e. c = 0)
and implicitly we will obtain (up to our knowledge) some unknown path properties for CB-processes
in a Brownian environment with branching mechanism given by (1.14).

Our first result provides a necessary and sufficient condition under which the process Z is con-
servative, i.e. that Z does not explode at finite time a.s.

Theorem 1.2. Assume that σ > 0 and c ≥ 0. The process Z, the unique strong solution of (1.12)
with branching mechanism given by (1.14), is conservative if and only if

I :=

∫ 1

0

1

ω(z)
exp

{∫ 1

z

ψ(u)

ω(u)
du

}
dz =∞.

Moreover, if σ2 > 2δ, then the process Z converges to 0 with positive probability, i.e

Px
(

lim
t→∞

Zt = 0
)
> 0, for x > 0.

In particular, if we also assume that I =∞, then the process converges to 0 a.s.

For instance, when the branching mechanism is such that ψ(z) = −cαzα, for z ≥ 0, with α ∈ (0, 1)
and cα > 0, that is to say the negative of a stable subordinator, straightforward computations lead
to I is finite or infinite accordingly as c = 0 or c > 0. In other words, if there is presence of
competition the associated process Z is conservative and moreover the process becomes extinct
a.s., since σ2 is always positive. If there is no competition, the process Z explodes with positive
probability. The latter case was studied in Palau and Pardo (2017) where the rate of explosion was
determined explicitly.

In this setting, we also have the following identity for the total population size of the process Z
up to time Ta = inf{t ≥ 0 : Zt ≤ a}, the first hitting time of Z at a. Let us define

fλ(x) :=

∫ ∞
0

dz

ω(z)
exp

{
−xz +

∫ z

`

λ− ψ(u)

ω(u)
du

}
, x ≥ 0,

where ` is an arbitrary constant larger than 0.

Proposition 1.3. Assume that σ > 0 and c ≥ 0. For every λ > 0 and x ≥ a ≥ 0, we have

Ex
[
exp

{
−λ
∫ Ta

0
Zsds

}]
=
fλ(x)

fλ(a)
. (1.15)

Similarly to the case when the environment is fixed (i.e. σ2 = 0), treated by Lambert (2005), we
observe that when c > 0, the process Z may have an invariant distribution which can be described
explicitly. In order to do so, we introduce the following notation. Let

m(λ) :=

∫ λ

0

ψ(u)

ω(u)
du, for λ ≥ 0, (1.16)
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which is well defined under the log-moment condition (1.7) and c > 0 (see for instance Corollary 3.21
in Li, 2011).

The next Lemma is necessary for the description of the invariant distribution of Z, whenever it
exists.

Lemma 1.4. Assume that σ2, c > 0 and that the branching mechanism ψ, given by (1.14), satisfies
the log-moment condition (1.7). Then the following identity holds

−m(λ) =
2

σ2

∫ ∞
0

(
1− e−λz

)e− 2c
σ2
z

z

(
δ +

∫ z

0
e

2c
σ2
uµ̄(u)du

)
dz, (1.17)

where µ̄(x) = µ(x,∞), and ∫
(0,∞)

e−λzν(dz) = em(λ), λ ≥ 0,

defines a unique probability measure ν on (0,∞) which is infinitely divisible. In addition, it is
self-decomposable whenever µ̄(0) ≤ δ.

We recall that self-decomposable distributions on (0,∞) is a subclass of infinitely divisible dis-
tributions whose Lévy measures have densities which are decreasing on (0,∞). We refer to Sato
(1999) for further details on self-decomposable distributions.

In order to introduce the limiting distribution associated to Z, whenever it exists, we first provide
conditions under which

∫
(0,∞) s

−1ν(ds) is finite. For any z sufficiently small, we define two sequences
of functions as follows

l(1)(z) = | ln(z)| and l(k)(z) = ln(l(k−1)(z)), k ∈ Z+, k ≥ 2,

I(1)(z) = l(1)(z)

∫ z

0
µ̄(w)dw and I(k)(z) = l(k)(z)

(
I(k−1)(z)− σ2

2

)
, k ∈ Z+, k ≥ 2.

Observe that for any k ∈ Z+, I(k)(z) is well defined for z sufficiently small. On the other hand
l(k)(z) is well defined for both, z sufficiently small and large. Then, for any continuous function f
taking values in R, we set

Adh(f) =

[
lim inf
z→0

f(z), lim sup
z→0

f(z)

]
⊂ R.

We are now ready to establish the following two conditions which will give the behaviour of Z under
the particular setting when 2δ = σ2:

(∂) There exists n ∈ Z+ s.t. inf(Adh(I(n))) >
σ2

2
and Adh(I(k)) =

{
σ2

2

}
, ∀k ∈ {1, .., n− 1},

(ð) There exists n ∈ Z+ s.t. sup(Adh(I(n))) <
σ2

2
and Adh(I(k)) =

{
σ2

2

}
, ∀k ∈ {1, .., n− 1}.

For instance if µ̄(0) <∞ (i.e. ψ is the Laplace exponent of a compound Poisson process) condition
(ð) holds. These two conditions are exclusive conditions under which the process is either positive
recurrent or null recurrent, that is to say the process is recurrent and either it has an invariant
probability measure or not.

Theorem 1.5. Assume that 2δ ≥ σ2 > 0, c > 0 . Then the point 0 is polar, i.e. Px(T0 < ∞) = 0
for all x > 0.

Moreover if ∫ 1

0

dz

z
exp

{
−
∫ 1

z

∫ ∞
0

(1− e−us)
ω(u)

µ(ds)du

}
=∞ (1.18)

Z is recurrent. Additionally,
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a) if 2δ > σ2 then the process Z is positive recurrent. Its invariant distribution ρ has a fi-
nite expected value if and only if (1.7) holds. If the latter holds, then ρ is the size-biased
distribution of ν, in other words

ρ(dz) =

(∫
(0,∞)

s−1ν(ds)

)−1

z−1ν(dz), z > 0, (1.19)

b) if 2δ = σ2 and (1.7) holds, together
b.1) with condition (∂), then Z is positive recurrent and its invariant probability is defined

by (1.19),
b.2) or with condition (ð), then the process Z is null recurrent and converges to 0 in proba-

bility.

Finally, if (1.18) is not satisfied, then Z explode at finite time a.s.

It is important to note that (1.18) is satisfied as soon as (1.7) holds. We also point out that the
previous results are consistent with the behaviours found in Proposition 2.1 in Evans et al. (2015)
where ψ(z) = −bz.

1.2. General case. Finally, we consider the case when the process X is not a subordinator, in other
words the branching mechanism ψ satisfies that there exist ϑ ≥ 0 such that ψ(z) > 0 for any
z ≥ ϑ. For simplicity, we say that the branching mechanism ψ is general if it satisfies the previous
assumptions.

In the sequel we assume that c > 0 and that the Lévy measure associated to the general branching
mechanism ψ satisfies the log-moment condition (1.7). Our main result in this section provides a
complete characterization of the Laplace transform of the stopping times

Ta = inf{t ≥ 0 : Zt ≤ a}, for a ≥ 0,

as long as T0 is finite a.s. To this aim, we introduce the functional

I(λ) :=

∫ λ

0
em(u)du, for λ ≥ 0, (1.20)

where m is defined by (1.16) and well posed under the log-moment (1.7). Observe from our as-
sumptions that m is increasing on (ϑ,∞) implying that I(·) is a bijection from R+ into itself. We
denote its inverse by ϕ and a simple computation provides

ϕ′(z) = exp(−m ◦ ϕ(z)). (1.21)

The formulation of the Laplace transform of Ta will be written in terms of the solution to a Ricatti
equation. Similarly to Lemma 2.1 in Lambert (2005), we deduce the following Lemma on the Ricatti
equation of our interest.

Lemma 1.6. For any λ > 0, there exists a unique non-negative solution yλ to the equation

y′ = y2 − λr2, (1.22)

where r(z) = ϕ′(z)√
ω(ϕ(z))

such that it vanishes at ∞. Moreover, yλ is positive on (0,∞), and for any z

sufficiently small or large, yλ(z) ≤
√
λr(z). As a consequence, yλ is integrable at 0, and it decreases

initially and ultimately.
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We now state our last result. Recall that the infinitesimal generator U of the process Z satisfies
that for any f ∈ C2,

Uf(x) = (bx− cx2)f ′(x) +

(
γ2x+

σ2

2
x2

)
f ′′(x)

+ x

∫
(0,∞)

(
f(x+ z)− f(x)− zf ′(x)1{z<1}

)
µ(dz),

(1.23)

see for instance Theorem 1 in Palau and Pardo (2018).

Theorem 1.7. Let c > 0 and assume that the branching mechanism ψ is general and its associated
Lévy measure satisfies the log-moment condition (1.7). Hence the function

hλ(x) := 1 + λ

∫ ∞
0

e−xz−m(z)

ω(z)
e−

∫ I(z)
0 yλ(v)dv

∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdudz (1.24)

is well defined and positive for any x > 0 and λ > 0 and it is a non-increasing C2-function on
(0,∞). Moreover it solves

Uhλ(x) = λhλ(x), for any x > 0. (1.25)

Furthermore, if Px(T0 <∞) = 1, for any x > 0 then hλ is also well-defined at 0 with

hλ(0) = exp

{∫ ∞
0

yλ(v)dv

}
<∞,

and, for any x ≥ a ≥ 0,

Ex
[
e−λTa

]
=
hλ(x)

hλ(a)
. (1.26)

In particular, for any x > 0,

Ex[T0] =

∫ ∞
0

du em(u)

∫ ∞
u

e−m(z)

ω(z)
(1− e−zx)dz. (1.27)

It is important to note that under the assumptions of Theorem 1.2 in Leman and Pardo (2021),
the previous result can be applied. To be more precise, according to Theorem 1.2 in Leman and
Pardo (2021) if ψ satisfies Grey’s condition (1.13) together with (1.11) (i.e. |ψ′(0+)| < ∞), then
Ex[T0] < ∞, for any starting point x ≥ 0. In other words, under these assumptions, the results
of Theorem 1.7 apply and moreover the logistic branching process in a Brownian environment Z is
Feller and comes down from infinity as it is stated in the following Corollary. Formally, we define
the property of coming down from infinity in the sense that ∞ is a continuous entrance point, i.e.

lim
a→∞

lim
x→∞

Px(Ta < t) = 1 for all t > 0,

and the original process can be extended into a Feller process on [0,∞] (see for instance Theorem
20.13 in Kallenberg, 1997 for the diffusion case or Definition 2.2 for Feller processes in Döring and
Kyprianou, 2020).

Corollary 1.8. Assume that c > 0 and that the branching mechanism ψ is general and satisfies
(1.11) and Grey’s condition (1.13). Then the logistic branching process in a Brownian environment
Z is Feller and the boundary point ∞ is a continuous entrance point. Moreover, the process Z can
be extended into a Feller process on [0,∞] and, in particular, we have

E∞
[
e−λTa

]
=

1

hλ(a)
and E∞[T0] =

∫ ∞
0

du em(u)

∫ ∞
u

e−m(z)

ω(z)
dz.



Extinction time of LBPs in a Brownian environment 1869

We believe that T0 is finite a.s., under much weaker conditions (including the case −ψ′(0+) =∞)
than those stated in Corollary 1.8 but in order to deduce such result the knowledge of the underlying
process in the Lamperti-type representation is necessary. Under such weaker conditions we can also
expect that the process Z must be Feller which can be extended to [0,∞].

The remainder of this paper is organised as follows. In Section 2, we deal with a Lamperti-
type representation which is established for more general competition mechanisms than the logistic
case. Such random time change representation is very useful for the proofs of the subordinator case
which are presented in Section 3. Section 4 is devoted to the proof of the results presented for the
general case which uses the solution of Ricatti differential equation that appears in Lemma 1.6.
Finally, in Section 5 we discuss the case when the competition mechanism is more general and the
process possesses continuous paths. We call this case branching diffusions with interactions in a
Brownian random environment, since the competition mechanism may take negative and positive
values. We study this case separately since the techniques we use here are based on the theory
of scale functions for diffusions. This allow us to provide a necessary and sufficient condition for
extinction and moreover, the Laplace transform of hitting times is computed explicitly in terms of
a Ricatti equation. Such results seems complicated to obtain with the presence of jumps coming
from the branching mechanism.

2. Lamperti-type transform for CB-processes with competition in a Brownian environ-
ment.

Let g be a continuous function on [0,∞) with g(0) = 0 and consider the following SDE

Zt = Z0 + b

∫ t

0
Zsds−

∫ t

0
g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s + σ

∫ t

0
ZsdB

(e)
s

+

∫ t

0

∫
[1,∞)

∫ Zs−

0
zN (b)(ds, dz,du) +

∫ t

0

∫
(0,1)

∫ Zs−

0
zÑ (b)(ds, dz,du),

(2.1)

with σ ≥ 0. It is important to note that Proposition 1 in Palau and Pardo (2018) guarantees that
the above SDE has a unique strong positive solution up to explosion and by convention here it is
identically equal to +∞ after the explosion time.

The main result in this section is the Lamperti-type representation of a CB-process with compe-
tition in a Brownian environment. Such random time change representation will be very useful to
study path properties of the logistic case. In order to state the Lamperti-type representation, we
introduce the family of processes which are involved in the time change.

Let X = (Xt, t ≥ 0) be a spectrally positive Lévy process with characteristics (−b, γ, µ) and such
that its Lévy measure µ satisfies (1.5). We also consider W = (Wt, t ≥ 0) a standard Brownian
motion independent of X and assume that g is a continuous function on [0,∞) with g(0) = 0 and
such that limx→0 x

−1g(x) exists. According to Proposition 1 in Palau and Pardo (2018) for each
x > 0, there is a unique strong solution to

dRt = 1{Rr−>0:r≤t}dXt − 1{Rr−>0:r≤t}
g(Rt)

Rt
dt+ 1{Rr−>0:r≤t}σ

√
RtdWt, (2.2)

with R0 = x. The assumption that limx→0 x
−1g(x) exists, is not necessary but it implies that we

can use directly Proposition 1 of Palau and Pardo (2018). We can relax this assumption but further
explanations are needed. Indeed a similar approach to Theorems 2.1 and 2.3 in Ma (2015) will
guarantee that the SDE defined above for a more general competition mechanism g has a unique
strong solution.

It is important to note that in the logistic-case i.e. g(x) = cx2, for x ≥ 0 and some constant c > 0,
the process R is a Feller diffusion which is perturbed by the Lévy process X. Moreover if the Lévy
process X is a subordinator, then the process R turns out to be a CB-process with immigration.
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We now state the Lamperti-type representation of CB-processes with competition in a Brownian
environment.

Theorem 2.1. Let R = (Rt, t ≥ 0) be the unique strong solution of (2.2) and TR0 = sup{s : Rs = 0}.
We also let C be the right-continuous inverse of η, where

ηt =

∫ t∧TR0

0

ds

Rs
, t > 0,

that is, Ct := inf{s ≥ 0, ηs > t}, for any t ∈ [0,+∞). Hence the process defined by

Zt =


RCt , if 0 ≤ t < η∞
0, if η∞ <∞, TR0 <∞ and t ≥ η∞,
+∞, if η∞ <∞, TR0 =∞ and t ≥ η∞,

satisfies the SDE (2.1).
Reciprocally, let Z be the unique strong solution to (2.1) with Z0 = x and let

Ct =

∫ t

0
Zsds, t > 0.

If η denotes the right-continuous inverse of C, then the process defined by

Rt = Zηt∧T0 for t ≥ 0.

satisfies the SDE (2.2).

Proof of Theorem 2.1: Since X is a spectrally positive Lévy process and Rt− = 0 implies Rt = 0,
we get Rt− > 0 if and only if t ∈ [0, TR0 ). We also observe that X can be written as follows

Xt = bt+
√

2γBt +

∫ t

0

∫
(0,1)

zM̃(ds, dz) +

∫ t

0

∫
[1,∞)

zM(ds, dz),

where B is a standard Brownian motion andM is a Poisson random measure with intensity dsµ(dz)

and M̃ denotes its compensated version. Then from the latter identity and (2.2), we have

Zt = x+ b

∫ Ct∧TR0

0
ds−

∫ Ct∧TR0

0

g(Rs)

Rs
ds+

√
2γ

∫ Ct∧TR0

0
dBs +

∫ Ct∧TR0

0
σ
√
RsdWs

+

∫ Ct∧TR0

0

∫
(0,1)

z1{Rs−>0}M̃(ds, dz) +

∫ Ct∧TR0

0

∫
[1,∞)

z1{Rs−>0}M(ds, dz), t ≥ 0.

On the one hand, by straightforward computations we deduce

Ct ∧ TR0 =

∫ t

0
Zsds,

implying that ∫ Ct∧TR0

0

g(Rs)

Rs
ds =

∫ t

0
g(Zs)ds,

and

L
(1)
t =

√
2γ

∫ Ct∧TR0

0
dBs and L

(2)
t = σ

∫ Ct∧TR0

0

√
RsdWs,

are independent continuous local martingales with increasing processes

〈L(1)〉t = 2γ2

∫ t

0
Zsds and 〈L(2)〉t = σ2

∫ t

0
Z2
sds.
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On the other hand, we define the random measure N(ds, dz) on (0,∞)2 as follows

N((0, t]× Λ) =

∫ Ct∧TR0

0

∫
(0,∞)

1Λ(z)1{Rs−>0}M(ds, dz).

Then N(ds, dz) has predictable compensator

Zs−dsµ(dz).

By Theorems 7.1 and 7.4 in Ikeda and Watanabe (1989), on an extension of the original probability
space there exist two independent Brownian motions, B(1) and B(2), and a Poisson random measure
N(ds, du,dz) on (0,∞)3 with intensity dsµ(dz)du such that for any t ≥ 0,∫ Ct∧TR0

0

∫
[1,∞)

z1{Rs−>0}M(ds, dz) =

∫ t

0

∫
[1,∞)

∫ Zs−

0
zN(ds, dz,du),

∫ Ct∧TR0

0

∫
(0,1)

z1{Rs−>0}M̃(ds, dz) =

∫ t

0

∫
(0,1)

∫ Zs−

0
zÑ(ds, dz, du),

L
(1)
t =

∫ t

0

√
2γ2ZsdB

(1)
s and L

(2)
t = σ

∫ t

0
ZsdB

(2)
s .

Putting all pieces together, we deduce that (Zt, t ≥ 0) is a solution of (2.1) up to explosion.
For the reciprocal, we first observe that since Z has no negative jumps and Zt− = 0 implies

Zt = 0, we get Zt− > 0 if and only if Zt > 0 for t ∈ [0, T0). Thus Rt− > 0 if and only if Rt > 0 for
t ∈ [0, CT0), then for any t ∈ [0, CT0), the equation (2.2) is equivalent to

Rt = dXt −
g(Rt)

Rt
dt+ σ

√
RtdWt. (2.3)

Since the process Z satisfies the SDE (2.1) and Rt = Zηt∧T0 , we have

Rt =Z0 + b

∫ ηt∧T0

0
Zsds+

∫ ηt∧T0

0

√
2γ2ZsdBs + σ

∫ ηt∧T0

0
ZsdB

(e)
s −

∫ ηt∧T0

0
g(Zs)ds

+

∫ ηt∧T0

0

∫
[1,∞)

∫ Zs−

0
zN(ds, dz, du) +

∫ ηt∧T0

0

∫
(0,1)

∫ Zs−

0
zÑ(ds, dz,du).

(2.4)

On the one hand, by straightforward computations we deduce∫ ηt∧T0

0
Zsds = t ∧ CT0 , and

∫ ηt∧T0

0
g(Zs)ds =

∫ t∧CT0

0

g(Rs)

Rs
ds.

The latter identities imply

M
(1)
t =

∫ ηt∧T0

0

√
2γ2ZsdBs and M

(2)
t = σ

∫ ηt∧T0

0
ZsdB

(e)
s ,

are independent continuous local martingales with increasing processes

〈M (1)〉t = 2γ2

∫ ηt∧T0

0
Zsds = 2γ2(t ∧ CT0) and 〈M (2)〉t = σ2

∫ ηt∧T0

0
Z2
sds = σ2

∫ t∧CT0

0
Rsds.

By Theorems 7.1 and 7.4 in Ikeda and Watanabe (1989), on an extension of the original probability
space there exist two independent Brownian motions, B(1) and B(2), such that for any t ≥ 0,

M
(1)
t = B

(1)
t∧CT0

and M
(2)
t = σ

∫ t∧CT0

0

√
RsdB

(2)
s . (2.5)
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On the other hand, we define the random measure M(ds, dz) on (0,∞)2 as follows

M((0, t]× Λ) =

∫ ηt∧T0

0

∫
(0,∞)

∫ Zs−

0
1Λ(z)N(ds, dz, du)

+

∫ t

CT0

∫
(0,∞)

∫ 1

0
1Λ(z)1{t>CT0}N(ds, dz, du).

(2.6)

Then M(ds, dz) has predictable compensator dsµ(dz). Hence, M(ds, dz) is a Poisson random mea-
sure on (0,∞)2 with intensity dsµ(dz). Putting all the pieces together, we deduce that (2.3) holds
for t ∈ [0, CT0). Recall that ZT0− = ZT0 = 0. Then on {CT0 < ∞} by using (2.4)-(2.5), we deduce
that the right hand side of (2.3) is equal to 0 for t = CT0 and then for all t ≥ CT0 . �

3. Proofs of the subordinator case

In this part, we provide the proofs of Theorems 1.2 and 1.5. Their proof relies on the Lamperti-
type representation in the discussed in the previous section. Unfortunatelly, the same techniques
cannot be used in the general case since a deep understanding of the process R is required such
as its marginal laws and path properties as recurrence and transience which seems not so clear to
deduce.

In the particular case when the spectrally positive Lévy process X is a subordinator in the
Lamperti-type representation in Theorem 2.1, the process R turns out to be a Feller diffusion with
immigration. In other words, it is the unique positive strong solution of the following SDE up to
the first hitting time of 0:

Rt = R0 +Xt − c
∫ t

0
Rsds+

∫ t

0

√
σ2RsdWs. (3.1)

The branching mechanism ω and the immigration mechanism φ associated to the process R, are
given by

ω(z) = cz +
σ2z2

2
and φ(z) = −ψ(z) = δz +

∫
(0,∞)

(1− e−zu)µ(du),

respectively and where∫
(0,∞)

(1 ∧ u)µ(du) <∞ and δ = b−
∫

(0,1)
uµ(du) ≥ 0.

We denote by Qx, for the law of the Feller diffusion with immigration R starting from x > 0.
This type of processes have been studied recently by many authors, see for instance the papers of

Keller-Ressel and Mijatović (2012) and Duhalde et al. (2014) and the references therein. In Keller-
Ressel and Mijatović (2012), the authors were interested in the invariant distribution associated to
the process R and Duhalde et al. (2014) studied first passage times problems and provide necessary
and sufficient conditions for polarity and recurrence.

Lemma 3.1. Let R = (Rt; t ≥ 0) be the Feller diffusion with immigration described by (3.1) with
branching and immigration mechanisms given by ω and φ, respectively. The point 0 is polar, i.e.
TR0 =∞ almost surely, if and only if 2δ ≥ σ2.

Proof : According to Theorem 2 in Duhalde et al. (2014), the point 0 is polar for the Feller diffusion
with immigration R, accordingly as∫ ∞

1

dλ

ω(λ)
exp

{∫ λ

1

φ(z)

ω(z)
dz

}
=∞. (3.2)
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Let K := 2c/σ2, which is equal to 0 if c = 0. Then for any λ > 1 and x0 > 0, we have∫ λ

1

φ(z)

ω(z)
dz =

2

σ2

∫ λ

1

(
δz

Kz + z2
+

1

Kz + z2

∫ ∞
0

(1− e−zu)µ(du)

)
dz. (3.3)

Since all terms in (3.3) are positive, we can separate the above integral into two terms and study
each of them independently. Then∫ λ

1

φ(z)

ω(z)
dz =

2δ

σ2
ln

(
K + λ

K + 1

)
+

2

σ2

∫ ∞
0

µ(du)

∫ λ

1

1− e−zu

Kz + z2
dz

≤ 2δ

σ2
ln

(
K + λ

K + 1

)
+

2

σ2

∫ x0

0
µ(du)

∫ λ

1

zu

Kz + z2
dz +

2

σ2

∫ ∞
x0

µ(du)

∫ λ

1

1

z2
dz

≤ 2δ

σ2
ln

(
K + λ

K + 1

)
+

2

σ2

(∫ x0

0
uµ(du)

)
ln

(
K + λ

K + 1

)
+

2

σ2
µ̄(x0),

where we used Fubini-Tonelli’s theorem to obtain the first equality. The above inequality holds for
any x0 > 0, hence for any ε > 0, we can choose x0 > 0 such that∫ x0

0
uµ(du) ≤ σ2

2
ε.

Then for any λ > 1, the following inequalities hold

K1(x0)
(K + λ)

2δ
σ2

λ2
≤ 1

ω(λ)
exp

{∫ λ

1

φ(z)

ω(z)
dz

}
≤ K2(x0)

(K + λ)
2δ
σ2

+ε

λ2
,

where K1(x0) and K2(x0) are positive constants which are independent from λ. Therefore we
conclude that (3.2) holds if and only if 2δ ≥ σ2. �

Proof of Theorem 1.2: We first treat the case σ2 > 2δ. From Lemma 3.1, we observe that 0 is not
polar, meaning that the Feller diffusion with immigration R hits 0 with positive probability. From
Theorem 2.1, we then deduce

Px
(

lim
t→∞

Zt = 0
)
≥ Qx(TR0 <∞) > 0, x > 0.

In other words, with positive probability, the process Z does not explode. Moreover, if I = ∞,
Theorem 3 in Duhalde et al. (2014) implies that the process R, the unique strong solution to (3.1),
is recurrent in the sense of Duhalde et al. (2014) (i.e. without assuming the polarity of 0, cf. remark
after Definition 1.1). In other words, since 0 is not polar, R hits 0 at finite time a.s. Since we
are interested in the unique strong solution of (3.1) up to the first hitting time of 0, the latter
probability equals 1, i.e. the process Z converges to 0 a.s.

Next, we assume 2δ ≥ σ2. From Lemma 3.1, we know that TR0 =∞ a.s. and thus ηt =
∫ t

0
1
Rs

ds

for any t ≥ 0. If we also assume that I =∞, then the solution to (3.1) is recurrent and 0 is polar.
Let us thus prove that the limit η∞ of (ηt, t ≥ 0) is ∞ a.s. If we define recursively the sequences of
finite stopping times as follows τ+

0 = 0, and for any k ≥ 1,

τ−k+1 = inf{t ≥ τ+
k , Rs ≤ 1} and τ+

k+1 = inf{t ≥ τ−k+1, Rs ≥ 2},

we deduce that, since {τ+
k − τ−k , k ≥ 1} is an infinite sequence of strictly positive i.i.d random

variables,

η∞ =

∫ ∞
0

1

Rs
ds ≥

∑
k≥1

1

2
(τ+
k − τ

−
k ) =∞, a.s. (3.4)

This implies that Ct, the right inverse of ηt, is well defined on (0,∞) and that Zt = RCt for any
t ≥ 0. In other words, the process Z is conservative.
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If I <∞, then the process R is transient according to Theorem 3 in Duhalde et al. (2014). Recall
that the Laplace transform of Rt satisfies

Qx[e−λRt ] = exp

{
−xvt(λ)−

∫ t

0
φ(vs(λ))ds

}
, for λ ≥ 0,

where vt(λ) is solution of

∂

∂t
vt(λ) = −ω(vt(λ)), with v0(λ) = λ. (3.5)

From the form of the branching mechanims ω and the previous identity, we deduce

vt(λ) =
λe−ct

1 + σ2λ
2c (1− e−ct)

, for t, λ ≥ 0.

Therefore, by Tonelli’s Theorem, identity (3.5), the fact that v∞(λ) = 0 and using twice the change
of variables y = vt(λ), we deduce that for θ > 0

Qx

[∫ ∞
0

1− e−θRs
Rs

ds

]
=

∫ θ

0
dλ

∫ ∞
0

dsQx

[
e−λRs

]
=

∫ θ

0
dλ

∫ λ

0

du

ω(u)
exp

{
−xu−

∫ λ

u

φ(y)

ω(y)
dy

}
,

which is clearly finite from our hypothesis. Since the Feller diffusion with immigration R is transient,
it is clear that

lim
s→∞

e−θRs = 0, Qx-a.s.,

implying that

Qx

[∫ ∞
0

1

Rs
ds

]
<∞,

and implicitly the process Z explodes at finite time a.s. This completes the proof. �

We now proceed with the proofs of Proposition 1.3, Lemma 1.4 and Theorem 1.5 where it is
assumed that c > 0.

Proof of Proposition 1.3: The proof of this result is a direct consequence of the Lamperti-type rep-
resentation (Theorem 2.1) and Theorem 1 in Duhalde et al. (2014). �

Proof of Lemma 1.4: We first recall that m, introduced in (1.16), is well defined under the log-
moment condition (1.7). Then, similarly to (3.3), we have

−m(λ) =

∫ λ

0

φ(z)

ω(z)
dz =

2

σ2

∫ λ

0

δz
2c
σ2 z + z2

dz +

∫ λ

0

(
1

2c
σ2 z + z2

∫ ∞
0

(1− e−zu)µ(du)

)
dz. (3.6)

For simplicity in exposition, we study the two last integrals independently. For the first integral of
(3.6), we observe∫ λ

0

δz

Kz + z2
dz = δ

∫ λ

0

∫ ∞
0

e−v(z+K)dvdz =

∫ ∞
0

(1− e−λv)δe
−Kv

v
dv,

where K := 2c/σ2 and the last equality follows from an application of Fubini-Tonelli’s theorem. For
the second integral of (3.6), we use again Fubini-Tonelli’s theorem, to deduce∫ λ

0

1

Kz + z2

(∫ ∞
0

(1− e−zu)µ(du)

)
dz =

1

K

∫ ∞
0

(∫ λ

0

K(1− e−zu)

Kz + z2
dz

)
µ(du).
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Now, we fix u > 0 and study the integral inside the brackets. Since the map z 7→ (1 − e−zu)/z is
integrable at 0, we have∫ λ

0

K(1− e−zu)

Kz + z2
dz =

∫ λ

0

(
1− e−zu

z
− 1− e−zu

K + z

)
dz

=

∫ u

0

1− e−λv

v
dv −

∫ K+λ

K

1− eKue−zu

z
dz

=

∫ u

0

1− e−λv

v
dv − (1− eKu)

∫ K+λ

K

1

z
dz − eKu

∫ K+λ

K

1− e−zu

z
dz

=

∫ u

0

1− e−λv

v
dv − (1− eKu)

∫ K+λ

K

∫ ∞
0

e−zvdvdz

+ eKu
(∫ K

0

1− e−zu

z
dz −

∫ K+λ

0

1− e−zu

z
dz

)
=

∫ u

0

1− e−λv

v
dv − (1− eKu)

∫ ∞
0

e−Kv

v
(1− e−λv)dv

− eKu
∫ u

0

e−Kv

v
(1− e−λv)dv

=

∫ u

0

1− e−λv

v
(1− e−Kv)dv + (eKu − 1)

∫ ∞
u

1− e−λv

v
e−Kvdv

where the second identity follows from the change of variables zu = λv, the third identity is obtained
by adding and subtracting eKu, the fifth identity follows from Fubini-Tonelli’s Theorem and the
change of variables Kv = zu and (K +λ)v = zu and finally, the last identity follows by adding and
subtracting ∫ u

0

1− e−λv

v
e−Kvdv.

In other words, we get∫ λ

0

K(1− e−zu)

Kz + z2
dz =

∫ ∞
0

1− e−λv

v
e−Kv(eK(v∧u)−1)dv =

∫ ∞
0

1− e−λv

v
e−Kv

(∫ v∧u

0
KeKzdz

)
dv.

Putting all pieces together and using twice Fubini-Tonelli’s theorem, we obtain the following ex-
pression for the second integral of (3.6)∫ λ

0

1

Kz + z2

(∫ ∞
0

(1− e−zu)µ(du)

)
dz =

∫ ∞
0

1− e−λv

v
e−Kv

(∫ ∞
0

(∫ v∧u

0
eKzdz

)
µ(du)

)
dv

=

∫ ∞
0

1− e−λv

v
e−Kv

(∫ v

0
eKzµ̄(z)dz

)
dv. (3.7)

Finally from identity (3.6) and the previous computations, we find (1.17).
Next, we define the positive measure Π(dz) as follows

Π(dz) =
2e−Kz

σ2z

(
δ +

∫ z

0
eKvµ̄(v)dv

)
dz, (3.8)

and prove that
∫

(0,∞)(1∧z)Π(dz) is finite. To this aim, we observe that the following three inequal-
ities hold true,∫ ∞ µ̄(w)

w
dw <∞,

∫
0
µ̄(w)dw <∞ and

∫ ∞
u

e−Kz

z
dz ≤ e−Ku

Ku
. (3.9)
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Indeed, the finiteness of the first two integral follows from Fubini-Tonelli’s theorem, since∫ ∞
1

µ̄(w)

w
dw =

∫ ∞
1

ln(z)µ(z)dz and
∫ 1

0
µ̄(w)dw =

∫ ∞
0

(1 ∧ z)µ(z)dz.

With this in mind, we observe∫ 1

0
zΠ(dz) ≤ 2

σ2

(
δ + eK

∫ 1

0
µ̄(v)dv

)
<∞.

Moreover, ∫ ∞
1

Π(dz) =
2

σ2

(
δ

∫ ∞
1

e−Kz

z
dz +

∫ ∞
1

e−Kz

z

∫ z

0
eKvµ̄(v)dvdz

)
≤ 2

σ2

(
δ

K
e−K +

∫ ∞
0

eKvµ̄(v)

∫ ∞
v∨1

e−Kz

z
dzdv

)
≤ 2

σ2

(
δ

K
e−K +

1

K

∫ 1

0
µ̄(v)dv +

1

K

∫ ∞
1

µ̄(v)

v
dv

)
<∞.

In other words, the probability measure ν is infinitely divisible with support on (0,∞) and with
Laplace exponent −m. Finally, if µ̄(0) ≤ b, a simple computation guarantees that k defined by

k(z) =
2e−Kz

σ2

(
δ +

∫ z

0
eKvµ̄(v)dv

)
,

is non-increasing and Theorem 15.10 in Sato (1999) implies the self-decomposability of ν. �

Proof of Theorem 1.5: Recall from Theorem 3 in Duhalde et al. (2014) that the solution to (3.1) is
recurrent if and only if I =∞. From the definition of functions φ and ω and the fact that 2δ ≥ σ2

and c > 0, we deduce that I =∞ if and only if (1.18) is satisfied.
In other words, under the assumption that 2δ ≥ σ2 and (1.18) hold, we have that 0 is polar and

that R is recurrent. From the proof of (3.4), we deduce that Ct, the right inverse of ηt, is well
defined on (0,∞) and that Zt = RCt for any t ≥ 0. That is to say Z is also recurrent, T0 =∞ a.s.
and has an invariant measure that we denote by ρ.

Next, we characterise the invariant measure ρ below. In order to do so, we use the infinitesimal
generator U of Z, i.e. ρ is an invariant measure for Z if and only if∫ ∞

0
Uf(z)ρ(dz) = 0,

for any f in the domain of U . According to Palau and Pardo (2018), the infinitesimal generator U
satisfies for any f ∈ C2

b (R+),

Uf(x) = xAf(x)− cx2f ′(x) +
σ2

2
x2f ′′(x),

where A represents the generator of the spectrally positive Lévy process associated to the branching
mechanism ψ. For the particular choice of f(x) = e−λx, for λ > 0, we observe Af(x) = ψ(λ)e−λx

implying that

0 =

∫ ∞
0
Uf(z)ρ(dz) =

∫ ∞
0

(
ψ(λ) + ω(λ)z

)
ze−λzρ(dz).

Then, similarly as in Lambert (2005), we denote the Laplace transform of zρ(dz) by χ and per-
forming the previous identity, we observe that χ satisfies the ordinary differential equation

ψ(λ)χ(λ)− ω(λ)χ′(λ) = 0 on (0,∞).

Straightforward computations implies that χ satisfies

χ(λ) = K0 exp

{∫ λ

θ

ψ(u)

ω(u)
du

}
, (3.10)
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for some constants K0 > 0 and θ ≥ 0. We can now prove the cases (a) and (b).
Let us assume that (1.7) is satisfied or equivalently the integrability of ψ/ω at 0. We take θ = 0

in (3.10) and deduce that χ(λ) = K0 exp(m(λ)) for some constant K0 > 0. In other words, we have
for z ≥ 0

ρ(dz) = K0
1

z
ν(dz),

with a possible Dirac mass at 0, and where ν is defined in Lemma 1.4. We can conclude as soon as
we prove that % :=

∫∞
0 z−1ν(dz) is finite if 2δ > σ2 or if 2δ = σ2 and condition (∂) holds and that

ρ is infinite if 2δ = σ2 and condition (ð) holds. Indeed, if % <∞, ρ defined by (1.19) is the unique
invariant probability measure of Z and consequently it is positive recurrent. If % = ∞, then all
invariant measures of Z are non-integrable at 0, so that Zt converges to 0 in probability and since
Z oscillates in (0,∞) then it is null-recurrent.

Therefore, it remains to verify whether % is finite or not. Note that formally,∫ ∞
0

em(λ)dλ =

∫
(0,∞)

z−1ν(dz) = %.

Hence, % is finite if and only if em(λ) is integrable at ∞. From the proof of Lemma 1.4 (see (3.6)
and (3.7)), we deduce

−m(λ) =
2δ

σ2
ln

(
1 +

λ

K

)
+

∫ +∞

0

(1− e−λz)
z

h(z)dz, (3.11)

where we recall that K = 2c/σ2, and

h(z) =
2

σ2
e−Kz

∫ z

0
eKwµ̄(w)dw.

With all this in mind, we study the integral in the right-hand side of (3.11) for λ large enough
following a similar approach to the proofs of Theorem 53.6 in Sato (1999) or Theorem 3.4 in
Lambert (2005). We take x > 0 and λ > 1, and split the interval (0,∞) into (0, x/λ], (x/λ, x] and
(x,∞). From (3.9),we deduce∫ ∞

x

h(z)

z
dz =

2

σ2

∫ ∞
0

eKwµ̄(w)

(∫ ∞
x∨w

e−Kz

z
dz

)
dw

≤ 2

Kσ2

(
1

x

∫ x

0
µ̄(w)dw +

∫ ∞
x

µ̄(w)

w
dw

)
<∞,

which guarantees, together with the Dominated Convergence Theorem, that∫ ∞
x

(1− e−λz)h(z)

z
dz converges as λ→∞.

On the other hand, we observe∫ x/λ

0
(1− e−λz)h(z)

z
dz =

σ2

2

∫ x

0

(1− e−z)
z

e−
Kz
λ

(∫ z/λ

0
eKwµ̄(w)dw

)
dz

≤ σ2

2
eKx

∫ x

0

(1− e−z)
z

dz

∫ x

0
µ̄(w)dw <∞,

which implies the convergence of∫ x/λ

0
(1− e−λz)h(z)

z
dz when λ→∞.
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A similar change of variables lead us to deduce∫ x

x/λ
e−λzh(z)/zdz

converges when λ grows to ∞. Putting the pieces together in (3.11), we deduce that for any x > 0
and for λ large enough

−m(λ) =
2δ

σ2
ln

(
1 +

λ

K

)
+

∫ x/λ

x

h(z)

z
dz +K1(x) + o(1),

where K1(x) is a non-negative constant. Hence, for λ large enough and for any x > 0,

em(λ) =
K2(x)

(1 + λ)2δ/σ2 exp

{
−
∫ x/λ

x

h(z)

z
dz + o(1)

}
, (3.12)

where K2(x) is a positive constant.
It thus remains to study the integral term in (3.12). Since h is positive, we can find K3(x) > 0

such that for any λ large enough, em(λ) ≤ K3(x)λ−2δ/σ2
, and we conclude as soon as 2δ > σ2. This

implies part (a), when (1.7) holds.
Next, we prove part (b), i.e. we assume that 2δ = σ2 and that (1.7) holds. For the sake of brevity,

we concentrate on the case (∂), the case (ð) uses similar arguments. Under condition (∂), there
exists n ∈ Z+ such that inf(Adh(I(n))) > σ2/2 and Adh(I(k)) = {σ2/2}, for any k ∈ {1, .., n − 1}.
Let us define by recurrence the collection of functions Ī such that

Ī(1)(z) = l(1)(z)h(z) and Ī(k)(z) = l(k)(z)
[
Ī(k−1)(z)− 1

]
, k ∈ Z+, k ≥ 2.

Note that the sequences {Ī(k)}k≤n and {I(k)}k≤n satisfy similar recurrence relations but start on
different values. From the definition of h and a recurrence argument, it is straightforward to compute
that for any k ∈ Z+, and for z small enough,

2

σ2
e−KzI(k)(z) + (e−Kz − 1)

k∑
j=2

k∏
i=j

l(i)(z) ≤ Ī(k)(z) ≤ 2

σ2
I(k)(z).

Since (e−Kz − 1) behaves as −Kz, for z small enough, the second term of the left hand side
converges to 0 when z converges to 0 and we deduce that the sequences of functions {Ī(k)}k≤n and
{I(k)}k≤n satisfy similar assumptions, which are inf(Adh(Ī(n))) = A > 1 and Adh(Ī(k)) = {1}, for
any k ∈ {1, .., n − 1}. Let us fix ε > 0 such that A − ε > 1 and x > 0 such that Ī(n)(x) ≥ A − ε.
Using the definition of {Ī(k)}k≥0 and a recurrence argument, we obtain that for any z sufficiently
small,

h(z) =
Ī(n)(z)∏n
i=1 l

(i)(z)
+
n−1∑
j=1

1∏j
i=1 l

(i)(z)
.

Hence, ∫ x

x/λ

h(z)

z
dz ≥ (A− ε)

∫ x

x/λ

dz

z
∏n
i=1 l

(i)(z)
+
n−1∑
j=1

∫ x

x/λ

dz

z
∏j
i=1 l

(i)(z)
. (3.13)

Moreover from the definition of l(j), we have for any j ∈ Z+,∫ x

x/λ

dz

z
∏j
i=1 l

(i)(z)
= l(j+1)(x)− l(j+1)

(x
λ

)
= l(j+1)(x) + l(j+1)(λ)−R(j+1)(x, λ) as λ→∞,
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where the sequence {R(k)}k≥2 satisfies the following recurrence relation: for any x small enough
and λ large enough,

R(2)(x, λ) = ln

(
1 +

l(1)(x)

l(1)(λ)

)
and R(j)(z) = ln

(
1 +

R(j−1)(x, λ)

l(j−1)(λ)

)
, j ∈ {3, .., n+ 1}.

Hence, we deduce that R(j)(x, λ) converges to 0 when λ increases to ∞, for all j ∈ {3, .., n+ 1}. In
addition with (3.13), as soon as λ is sufficiently large, we have∫ x

x/λ

h(z)

z
dz ≥ (A− ε)l(n+1)(λ) +

n−1∑
j=1

l(j+1)(λ) +K4(x),

where K4(x) is a finite constant. Hence using (3.12), we deduce that for λ sufficiently large there
exist a finite constant K5(x) > 0 such that

em(λ) ≤ K5(x)

λ
n−1∏
i=1

l(i)(λ)(l(n)(λ))A−ε

. (3.14)

Since A − ε > 1, the right hand side of (3.14) is integrable at ∞. Indeed, for any z, y sufficiently
large such that l(n)(y) > 0 and l(n)(z) > 0, with the change of variables u = ln(λ), we have∫ y

z

1

λ
n−1∏
i=1

l(i)(λ)(l(n)(λ))A−ε

dλ =

∫ l(n)(y)

l(n)(z)

1

uA−ε
du −→

b→∞

∫ ∞
l(n)(z)

1

uA−ε
du <∞.

Finally, we have proved that under condition (∂),∫ ∞
em(λ)dλ <∞.

This completes the proof of part (b) and the cases when condition (1.7) is satisfied.
Now, we deal with the case when the log-moment condition (1.7) does not hold and 2δ > σ2.

Under this assumption we show that Z is still positive recurrent but its invariant distribution has
an infinite expected value. Recall that condition 2δ > σ2 guarantees that Z is recurrent with an
invariant distribution ρ satisfying (3.10). However in this case, ψ/ω is not integrable at 0 and we
can not take θ = 0 in (3.10), instead we let θ = 1. Formally, the following identity still holds∫ ∞

0
χ(λ)dλ =

∫ ∞
0

ρ(dz).

Our aim is thus to prove that the latter identity is finite but the expected value of ρ is infinite.
On the one hand, recalling that K = 2c/σ2 and taking λ smaller than 1, we use the definition of

ψ and Fubini-Tonnelli’s Theorem to deduce

−
∫ 1

λ

ψ(z)

ω(z)
dz =

2δ

σ2
ln

(
K + 1

K + λ

)
+

2

σ2

∫ ∞
0

(∫ 1

λ

1− e−zu

Kz + z2
dz

)
µ(du)

≤ 2δ

σ2
ln

(
1 +

1

K

)
+

2

σ2

∫ A

0

(∫ 1

λ

zu

Kz
dz

)
µ(du) +

2

σ2

∫ ∞
A

(∫ 1

λ

1

Kz
dz

)
µ(du)

≤ 2δ

σ2
ln

(
1 +

1

K

)
+

2

Kσ2

∫ A

0
uµ(du)− 2

Kσ2
ln(λ)µ̄(A),
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for any A > 0. Thus, we take A > 0 in such a way that µ̄(A) ≤ Kσ2/4. Implying that for any
λ ≤ 1, we get

χ(λ) ≤ K0
eK(A)

λ1/2
,

with K0 and K(A) two positive constants which are independent from λ. In other words, χ is
integrable near 0. On the other hand, since∫ λ

1

ψ(z)

ω(z)
dz ≤ − 2b

σ2
ln

(
K + 1

K + λ

)
,

we also have

χ(λ) ≤ K0

(
K + 1

K + λ

) 2b
σ2

,

implying that ∫ ∞
0

χ(λ)dλ <∞,

since 2b > σ2. In other words Z has a finite invariant measure and is positive recurrent. Moreover,
since the log-moment condition (1.7) does not hold, a straightforward computation gives∫ ∞

0
zρ(dz) = lim

λ→0

∫ ∞
0

e−λzzρ(dz) = lim
λ→0

χ(λ) =∞.

Finally, if condition (1.18) does not hold then I < ∞ and from Theorem 1.2 the process Z
explodes in finite time a.s. �

4. General case

For the proof of Theorem 1.7 recall that the associated Lévy process X which appears in (2.2)
is general, that is to say, there exist ϑ ≥ 0 such that ψ(z) > 0 for any z ≥ ϑ and the log-moment
condition (1.7) is satisfied.

Proof of Theorem 1.7: Let us fix λ > 0, and denote by Φ the function

Φ(z) :=
e−m(z)

ω(z)
exp

{
−
∫ I(z)

0
yλ(v)dv

}∫ z

0
exp

{
m(u) + 2

∫ I(u)

0
yλ(v)dv

}
du,

in other words, we have

hλ(x) = 1 + λ

∫ ∞
0

e−xzΦ(z)dz,

which was defined by (1.24). For simplicity in exposition, we split the proof in six steps.
Step 1: We first prove that hλ is well defined on (0,∞) or equivalently, we prove that z 7→

e−xzΦ(z) is integrable on (0,∞) as soon as x is positive. From the definitions of m and I (see (1.16)
and (1.20), respectively), it is straightforward that

exp

{
m(u) + 2

∫ I(u)

0
yλ(v)dv

}
→ 1, as u→ 0, (4.1)

implying

e−xzΦ(z)∼ z

ω(z)
∼ 1

c
, as z → 0, (4.2)

hence the integrability at 0.
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Concerning the neighbourhood of ∞, we see from Lemma 1.6 that yλ(z) ≤
√
λ ϕ′(z)√

ω(ϕ(z))
which is

equivalent to
√

2λ ϕ′(z)
σϕ(z) . In addition with (1.21), we deduce∫ I(z)

0
yλ(u)du = O (ln(z)) and

ψ(z)

ω(z)
+ I′(z)yλ(I(z)) ≥ 0 as z →∞. (4.3)

Then, for any x > 0 and for u sufficiently large, we have∣∣∣∣∣∣
exp

{
m(u) + 2

∫ I(u)
0 yλ(v)dv

}
(
x
2 + ψ(u)

ω(u) + I′(u)yλ(I(u))
)

exp
{
xu
2 +m(u) +

∫ I(u)
0 yλ(v)dv

}
∣∣∣∣∣∣ ≤

2 exp
{
−xu

2 +
∫ I(u)

0 yλ(v)dv
}

x
,

which converges to 0 as u goes to ∞. In other words,∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdz = o

(
exp

{
xz

2
+m(z) +

∫ I(z)

0
yλ(v)dv

})
, as z →∞. (4.4)

Finally from the definition of Φ, we obtain

e−zxΦ(z) = o

(
1

ω(z)
e−

xz
2

)
, as z →∞, (4.5)

implying the integrability of z 7→ e−zxΦ(z) at ∞. It is important to note that (4.2) and (4.5), also
imply that the mappings z 7→ ze−xzΦ(z) and z 7→ z2e−zxΦ(z) are integrable on (0,∞) and that hλ
is a C2-function on (0,∞).
Step 2: Now, we prove (1.25). The infinitesimal generator of Z satisfies (1.23), i.e. for any

f ∈ C2
b (R+)

Uf(x) = xAf(x)− cx2f ′(x) +
σ2

2
x2f ′′(x) (4.6)

where A is the generator of the spectrally positive Lévy process associated to branching mechanism
ψ. Since, for f(x) = e−zx, Af(x) = ψ(z)e−zx with z ≥ 0, we deduce using integrations by parts
(twice) that

Uhλ(x)− λhλ(x) = λ

∫ ∞
0

(
xψ(z) + x2ω(z)− λ

)
Φ(z)e−zxdz − λ

= λ

(∫ ∞
0

(
(ψΦ)′(z) + (ωΦ)′′(z)− λΦ(z)

)
e−xzdz − 1

− xw(z)Φ(z)e−xz
∣∣∣∣z=∞
z=0

+
(
ψ(z)Φ(z) + (ωΦ)′(z)

)
e−xz

∣∣∣∣z=∞
z=0

)
.

(4.7)

Let us prove that the right-hand side of the latter expression equals 0. Recall that m′(z) = ψ(z)
ω(z)

and I′(z) = em(z), then

(ωΦ)′(z) = −ψ(z)Φ(z)− yλ(I(z))e−
∫ I(z)
0 yλ(v)dv

∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdu+ e

∫ I(z)
0 yλ(v)dv. (4.8)

In addition with the fact that yλ is solution to (1.22), we deduce that (ωΦ)′′(z) = −(ψΦ)′(z)+λΦ(z)
for any z ≥ 0. On the other hand, using (4.2) and (4.5), we have that

xw(z)Φ(z)e−xz
∣∣∣∣z=∞
z=0

= 0,

and from (4.8), together with (4.3) and (4.4), we deduce

lim
z→∞

(ψ(z)Φ(z) + (ωΦ)′(z))e−xz = 0,
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as soon as x > 0. Therefore, it remains to study the previous limit but when z goes to 0. According
to (4.8),

lim
z→0

(ψ(z)Φ(z) + (ωΦ)′(z))e−xz = 1− lim
z→0

yλ(I(z))

∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdu. (4.9)

By Lemma 1.6 and (4.1), we deduce

yλ(I(z))

∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdu ≤

√
λ

ω(z)
e−m(z)

∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdu ∼

√
λ

cz
z, as z → 0,

which implies that the right-hand side of (4.9) equals 1. In other words, the right-hand side of (4.7)
equals 0, meaning that Uhλ(x) = λhλ(x) for any x > 0 and that (1.25) holds.
Step 3: Our next step is to prove that

∫∞
0 yλ(v)dv is finite as soon as Px(T0 <∞) = 1, for any

x > 0, actually Lemma 1.6 is not enough to conclude. With this goal in mind, we fix x > 0 and
λ ≥ 0 and set the function Gλ,x as follows,

Gλ,x(v) :=

∫ ∞
0

e−λtEx
[
e−vZt

]
dt, for any v ≥ 0.

This function is related with the Laplace transform of T0, indeed

lim
v→∞

λGλ,x(v) = Ex
[
e−λT0

]
.

The latter is positive since Px(T0 < ∞) = 1. Our aim is to find a second formulation to Gλ,x,
related to

∫∞
0 yλ(v)dv, to conclude.

Let us provide some properties of Gλ,x. We first note that for any h belonging to the domain of
U , the following identity holds

λ

∫ ∞
0

e−λtEx
[
h(Zt)

]
dt = h(x) +

∫ ∞
0

e−λtEx
[
Uh(Zt)

]
dt.

By taking h(x) = e−vx together with identity (4.6), we deduce

λGλ,x(v) = e−vx +

∫ ∞
0

e−λtEx
[
ψ(v)Zse

−vZs + ω(v)Z2
t e
−vZt]dt

= e−vx − ψ(v)G′λ,x(v) + ω(v)G′′λ,x(v).

Moreover λGλ,x(0) = 1 and the dominated convergence theorem implies

G′λ,x(v) = −
∫ ∞

0
e−λtEx[Zte

−vZt1{Zt>0}]dt −→ 0, as v →∞.

We now prove that Gλ,x is the unique solution to ω(v)y′′(v) − ψ(v)y′(v) − λy(v) = e−vx with
conditions λy(0) = 1 and limv→∞ y

′(v) = 0. In order to do so, we will explicit the set of functions
that satisfy the equation with condition λy(0) = 1. First of all, let us prove that the following
function, for any v ≥ 0,

k(v) :=
1

λ
e−

∫ I(v)
0 yλ(s)ds

(
1 + λ

∫ v

0

∫ ∞
u

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds+m(u)+2

∫ I(u)
0 yλ(s)dsdzdu

)
(4.10)

satisfies the same conditions as Gλ,x. We first observe that∫ v

0

∫ ∞
u

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds+m(u)+2

∫ I(u)
0 yλ(s)dsdzdu

=

∫ ∞
0

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

(∫ v∧z

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu

)
dz

(4.11)
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is finite according to (4.1). In other words, k is well defined. Moreover, λk(0) = 1 and since
I′(z) = exp(m(z)), a straightforward computation gives

k′(v) = −em(v)yλ(I(v))k(v) + em(v)+
∫ I(v)
0 yλ(s)ds

∫ ∞
v

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)dsdz. (4.12)

From (4.4) and (4.11), we deduce that k is bounded by some constant C on R and from Lemma
1.6, we also see that ∣∣∣em(v)yλ(I(v))k(v)

∣∣∣ ≤ C√ λ

ω(v)
−→ 0, as v → +∞.

For the second term of the right-hand side of (4.12), we use a similar arguments to those used to
deduce (4.4) which gives∫ ∞

v

e−xz

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)dsdz = o

(
e−m(v)−

∫ I(v)
0 yλ(s)ds−xv

2

)
, as v →∞.

That is to say that k′(v) converges to 0 when v goes to ∞. Finally, from (4.12), a straightforward
computation provides

ω(v)k′′(v) = ψ(v)k′(v) + λk(v)− e−vx. (4.13)
Putting all pieces together, we prove that k and Gλ,x satisfy the same differential equation with
conditions λk(0) = 1 and limv→∞ k

′(v) = 0.
Furthermore, from this, we deduce that the set of functions that satisfy

ω(v)y′′(v)− ψ(v)y′(v)− λy(v) = e−vx,

with conditions λy(0) = 1 is exactly S := {kA, A ∈ R}, with

kA(v) := k(v) +Ae−
∫ I(v)
0 yλ(s)ds

∫ v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu,

Let us prove that limv→+∞ k
′
A(v) = 0 if and only if A = 0. Indeed,

k′A(v) = k′(v) +Aem(v)+
∫ I(v)
0 yλ(s)ds

[
1− 1

α(v)

∫ v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu

]
,

where
1

α(v)
:= yλ(I(v))e−2

∫ I(v)
0 yλ(s)ds.

Using Lemma 1.6, we have

α′(v)e−m(v)−2
∫ I(v)
0 yλ(s)ds = −

y′λ(I(v))

yλ(I(v))2
+ 2 = 1 + λ

r2(I(v))

y2
λ(I(v))

≥ 2,

for any v large enough. In other words, there exist v0 > 0 such that for any v ≥ v0,
1

α(v)

∫ v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu ≤ 1

2
+

1

α(v)

∫ v0

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu.

Since limv→∞ α(v) =∞, the latter inequality guarantees

lim sup
v→∞

1

α(v)

∫ v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdu ≤ 1

2
.

In addition to the expression of k′A, we deduce that limv→∞ k
′
A(v) = 0 if and only if A = 0. Thus

there exist a unique function in S that satisfies limv→∞ k
′
A(v) = 0. Finally, since both k and Gλ,x

belong to S and satisfy the condition, then both functions are equals on R.
Furthermore, with a direct application of Fubini’s theorem

lim
v→∞

∫ v

0

∫ ∞
u

e−zx

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds+m(u)+2

∫ I(u)
0 yλ(s)dsdzdu =

∫ ∞
0

e−zxΦ(z)dz > 0.
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In addition with (4.10), we get

e−
∫∞
0 yλ(s)ds

(
1 + λ

∫ ∞
0

e−zxΦ(z)dz

)
= lim

v→∞
λk(v) = lim

v→∞
λGλ,x(v) = Ex

[
e−λT0

]
> 0.

We conclude that
∫∞

0 yλ(v)dv is finite and

Ex
[
e−λT0

]
= e−

∫∞
0 yλ(v)dv

(
1 + λ

∫ ∞
0

e−zxΦ(z)dz

)
. (4.14)

Step 4: We next prove that hλ(0) = exp{
∫∞

0 yλ(v)dv}. The main issue comes from the fact that
we can not make x tend to 0 directly in the formula of hλ since we do not know the integrability of
Φ(z) near ∞. However, from (4.1) we know that for any v ∈ (0,∞),

λ

∫ ∞
0

1

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

∫ z∧v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdudz <∞.

The goal is to take v near ∞. Using Fubini’s theorem and twice the following change of variables
z 7→ I(z), we find

λ

∫ ∞
0

1

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

∫ z∧v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdudz

=

∫ I(v)

0
e2

∫ u
0 yλ(s)ds

∫ ∞
u

λ
e−2m(ϕ(z))

w(ϕ(z))
e−

∫ z
0 yλ(s)dsdzdu.

Recalling that, according to Lemma 1.6,

λ
e−2m(ϕ(z))

w(ϕ(z))
= λ

ϕ′(z)2

w(ϕ(z))
= y2

λ(z)− y′λ(z),

and using integration by parts on the term y2
λ(z)e−

∫ z
0 yλ , we finally deduce

λ

∫ ∞
0

1

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

∫ z∧v

0
em(u)+2

∫ I(u)
0 yλ(s)dsdudz = e

∫ I(v)
0 yλ(s)ds − 1.

Since the integrand is positive, we let v tend to ∞ to find

hλ(0) = 1 + λ

∫ ∞
0

1

ω(z)
e−m(z)−

∫ I(z)
0 yλ(s)ds

∫ z

0
em(u)+2

∫ I(u)
0 yλ(s)dsdudz = e

∫∞
0 yλ(s)ds (4.15)

which is finite according to the previous step.
Step 5: We now prove identity (1.26). First, let us assume that x ≥ a > 0 and define for any

n ∈ Z+,

θn = inf{t ≥ 0, Zt ≥ n}.
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Recalling that Uhλ = λhλ and that the expression of U is given by (1.23), we deduce from Itô’s
formula applied to Zt∧Ta∧θn and C2-function (t, u) 7→ e−λthλ(u) that, for any n ∈ Z+,

e−λt∧Ta∧θnhλ(Zt∧Ta∧θn) = hλ(x) +

∫ t∧Ta∧θn

0
e−λsh′λ(Zs)

√
2γ2ZsdBs

+

∫ t∧Ta∧θn

0
σe−λsh′λ(Zs)ZsdB

(e)
s

+

∫ t∧Ta∧θn

0

∫
(0,1)

∫ Zs−

0
e−λs (hλ(Zs− + z)− hλ(Zs−)) Ñ (b)(ds, dz,du)

+

∫ t∧Ta∧θn

0

∫
[1,∞)

∫ Zs−

0
e−λs (hλ(Zs− + z)− hλ(Zs−))N (b)(ds, dz,du)

−
∫ t∧Ta∧θn

0
e−λsZs

∫
[1,∞)

(hλ(Zs + z)− hλ(Zs))µ(dz)ds,

(4.16)

where all terms are well defined since hλ is positive non-increasing, h′λ is negative non-decreasing,
and (Zs, s ≤ t ∧ Ta ∧ θn) take values on [a, n]. According to the same arguments, the three first
integrals of the r.h.s. of (4.16) are martingales. Since

Ex
[∫ t∧Ta∧θn

0

∫ ∞
1

∫ Zs

0

∣∣∣e−λs (hλ(Zs + z)− hλ(Zs−))
∣∣∣µ(dz)dsdu

]
≤ 2hλ(a)tn

∫ ∞
1

µ(dz) < +∞,

the fourth and integrals of the r.h.s. of (4.16) can be written as a martingale by observing that the
fifth integral is exactly the compensator. Finally, taking the expectation of (4.16), we obtain for
any n ≥ 1 and t ≥ 0 that

Ex
[
e−λt∧Ta∧θnhλ(Zt∧Ta∧θn)

]
= hλ(x).

Since hλ is bounded by hλ(0) < ∞, we use the dominated convergence theorem and make n go to
0 and t go to ∞. Since Px(Ta < ∞) = 1 (recall that we are assuming that Px(T0 < ∞) = 1) and
thus ZTa = a, Px-a.s., we deduce (1.26) for x ≥ a > 0. For a = 0, identity (1.26) has already been
obtained in (4.14) and (4.15).
Step 6: Next, we handle the result on the expectation of T0, i.e. identity (1.27), using similar

arguments as in the proof of Theorem 3.9 in Lambert (2005). We denote H(t, λ) for the Laplace
transform Ex[e−λZt ], and observe

lim
λ→∞

∫ ∞
0

(1−H(t, λ))dt = Ex
[∫ ∞

0
1{Zt>0}dt

]
= Ex

[
T0

]
.

On the other hand, from (4.6), for any t ≥ 0, λ > 0,

∂H

∂t
(t, λ) = −ψ(λ)

∂H

∂λ
(t, λ) + ω(λ)

∂2H

∂λ2
(t, λ) = ω(λ)em(λ) ∂

∂λ

(
∂H

∂λ
(t, λ)e−m(λ)

)
,

which, by integrating ∂H
∂λ e

−m(λ) with respect to λ yields to

∂H

∂λ
(t, λ) = −em(λ)

∫ ∞
λ

e−m(u)

ω(u)

∂H

∂t
(t, u)du

and then integrating again with respect to λ and t on [0, λ]× R, we obtain∫ ∞
0

(1−H(t, λ))dt =

∫ λ

0
em(u)

∫ ∞
u

e−m(z)

ω(z)
(1− e−zx)dzdu.

Letting λ go to ∞, we deduce (1.27). The proof of Theorem 1.7 is now complete. �
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5. Branching diffusion with interactions in a Brownian environment

We finish this paper with some interesting remarks on branching diffusions with interactions in
a Brownian environment. We decide to treat this case separately since the competition mechanism
g may take negative and positive values and the techniques we use here are different from the rest
of the paper. Our methodology are based on the theory of scale functions for diffusions. This
allow us to provide a necessary and sufficient condition for extinction and moreover, the Laplace
transform of hitting times is computed explicitly in terms of a Ricatti equation. Such results seems
complicated to obtain with the presence of jumps coming from the branching mechanism or the
random environment

More general competition mechanisms were considered by Ba and Pardoux (2015) in the case
when the branching mechanism is of the form ψ(u) = γ2u2, for u ≥ 0, see also Chapter 8 in the
monograph of Pardoux (2016). In this case, the CB-process with competition can be written as the
unique strong solution of the following SDE

Yt = Y0 +

∫ t

0
h(Ys)ds+

∫ t

0

√
2γ2YsdB

(b)
s ,

where h is a continuous function satisfying h(0) = 0 and such that

h(x+ y)− h(x) ≤ Ky, x, y ≥ 0,

for some positive constant K. According to Ba and Pardoux, the process Y gets extinct in finite
time if and only if ∫ ∞

1
exp

{
−1

2

∫ u

1

h(r)

r
dr

}
du =∞.

Here, we focus on the Feller diffusion case and general competition mechanism where more explicit
functionals of the process can be computed. In this particular case, the process that we are interested
on is defined by the unique strong solution of

Zt = Z0 + b

∫ t

0
Zsds−

∫ t

0
g(Zs)ds+

∫ t

0

√
2γ2ZsdB

(b)
s +

∫ t

0
σZsdB

(e)
s , (5.1)

where g is a real-valued continuous function satisfying the conditions in Proposition 1 in Palau and
Pardo (2018).

Our first main result provides a necessary and sufficient condition for the process Z defined by
(5.1) to become extinct

Theorem 5.1. Assume that Z is the unique strong solution of (5.1), then

Px
(
T0 <∞

)
= 1 if and only if

∫ ∞
exp

{
2

∫ u

1

g(z)− bz
2γ2z + σ2z2

dz

}
du =∞. (5.2)

Moreover
Px
(

lim
t→∞

Zt =∞
)

= 1− Px
(
T0 <∞

)
.

In particular, we may have the following situations
i) If there exist z0 > 0 and w < b− σ2

2 such that for any z ≥ z0, g(z) ≤ wz, then

Px(T0 <∞) < 1.

An example of this situation is the cooperative case, that is to say when g(z) is decreasing
and b > σ2

2 .
ii) If there exist z0 > 0 and w > b− σ2

2 such that for any z ≥ z0, g(z) ≥ wz, then

Px(T0 <∞) = 1.
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An example of this situation are large competition mechanisms, that is to say for g(z) ≥ bz
for any z large enough. For instance, the latter holds for the so-called logistic case i.e.
g(z) = cz2.

Proof of Theorem 5.1: We first observe from Dubins-Schwarz Theorem, that the law of Z is equal
to the law of the following diffusion

dYt = (bYt − g(Yt))dt−
√

2γ2Yt + σ2Y 2
t dWt,

where W is a standard Brownian motion. Associated to Y , we introduce for any z ∈ R,

b(z) := g(z)− bz, d(z) :=
1

2

(
2γ2z + σ2z2

)
,

as well as the following functions related with the scale function of Y , for any x, l ∈ R+

s(l) = exp

{∫ l

1

b(z)

d(z)
dz

}
, S(l, x) =

∫ x

l
s(u)du and Σ(l, x) =

∫ x

l

(∫ x

u

1

d(η)s(η)
dη

)
s(u)du.

Observe that for any x ∈ R+,

S(0, x) =

∫ x

0
exp

{
2

∫ u

1

g(z)− bz
2γ2z + σ2z2

dz

}
du. (5.3)

For simplicity, we denote S(x) = S(0, x).
In order to prove the first statement of this proposition, we follow the approach of Chapter 15

in Karlin and Taylor (1981) which ensures that the equivalence (5.2) follows from the fact that
liml→0 Σ(l, x) is finite. Indeed, according to Lemma 15.6.3 in Karlin and Taylor (1981), the finiteness
of liml→0 Σ(l, x) for an x > 0 implies the finiteness of liml→0 S(l, x) = S(0, x) for all x ≥ 0. Then
Lemma 15.6.2 in Karlin and Taylor (1981) guarantees that for any y ≥ x, T0 ∧ Ty < ∞, a.s., and
Section 3 of Chapter 15 provides the following formulation

Px(T0 < Ty) =
S(x)− S(y)

S(0)− S(y)
. (5.4)

By making y tend to ∞, we find the equivalence (5.2) as required.
Hence let us show that liml→0 Σ(l, x) is finite. In order to do so, we fix ε > 0 and x ∈ (0, 1) in

such a way that for any z ≤ x, |b(z)| ≤ ε. Therefore

Σ(l, x) =

∫ x

l

(∫ x

u

1

d(η)
exp

{∫ 1

η

b(z)

d(z)
dz

}
dη

)
exp

{
−
∫ 1

u

b(z)

d(z)
dz

}
du

≤ C1(x)

∫ x

l

(∫ x

u

1

d(η)
exp

{∫ x

η

ε

d(z)
dz

}
dη

)
exp

{∫ x

u

ε

d(z)
dz

}
du

≤ C2(x)

∫ x

l

∫ x

u

1

d(η)

(
1 + σ2

2γ2
η

η

)ε/γ2
dη

(1 + σ2

2γ2
u

u

)ε/γ2
du,

(5.5)

where C1(x) and C2(x) are positive constants that only depend on x. Moreover, in a neighbourhood
of 0, we have

1

d(η)

(
1 + σ2

2γ2
η

η

)ε/γ2
∼
η→0

1

2γ2

1

η1+ε/γ2
,

which is not integrable at 0. Hence,∫ x

u

1

d(η)

(
1 + σ2

2γ2
η

η

)ε/γ2
dη ∼

u→0
C3(x)

1

uε/γ2
,
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where C3(x) is a positive constant that only depends on x. This implies that the integrand on the
right-hand side of the last inequality in (5.5) is equivalent to u−2ε/γ2 which is integrable at 0 as
soon as ε is chosen small enough. The latter implies that liml→0 Σ(l, x) < ∞ which completes the
first statement of this proposition.

In order to finish the proof, note that for any y > x,

Px
(

lim
t→∞

Z(t) =∞
)
≥ Px(Ty < T0) =

S(0)− S(x)

S(y)− S(0)
.

Since it holds for any y ≥ x, we can take y goes to ∞. By writing S(∞) := limy→∞ S(y) ∈ (0,∞],
we deduce

Px
(

lim
t→∞

Z(t) =∞
)
≥ S(0)− S(x)

S(∞)− S(0)
,

and the right-hand side is equal to 1 − Px(T0 < ∞) according to (5.4), whenever S(∞) is finite or
not. This ends the proof. �

Our second result gives a formulation the Laplace transform of the first passage time

Ta = inf{t : Zt ≤ a}, for a ≥ 0,

by using the solution to the Ricatti equation described in the next Lemma and depending on the
scale function S defined by (5.3). The proof of Proposition 5.1 guarantees that S is well-defined.
Moreover, it is clear that the function S : R+ → (0, S(∞)) is continuous and bijective, and under
condition (5.2), S(∞) equals∞. We denote by ϕ̄(x) the inverse of S on (0, S(∞)). Following similar
arguments to those provided in the proof of Lemma 2.1 in Lambert (2005), we deduce the following
properties on the solution to the Ricatti equation that we are interested in.

Lemma 5.2. For any λ > 0, there exists a unique non-negative solution ȳλ on (0, S(∞)) to the
equation

y′ = y2 − λr̄2,

where

r̄(z) =
ϕ̄′(z)√

γ2ϕ̄(z) + σ2

2 (ϕ̄(z))2
,

such that it vanishes at S(∞). Moreover, ȳλ is positive on (0, S(∞)), and for any z sufficiently small
or close to S(∞), ȳλ(z) ≤

√
λr̄(z). In particular, ȳλ is integrable at 0 if γ 6= 0, and it decreases

initially and ultimately.

Our next result provides explicitly the Laplace transform of Ta in terms of the function ȳλ.

Proposition 5.3. Assume that γ > 0. Then, for any x ≥ a ≥ 0, and for any λ > 0,

Ex
[
e−λTa

]
= exp

{
−
∫ S(x)

S(a)
ȳλ(u)du

}
. (5.6)

Note that if (5.2) is satisfied, then Ta <∞ a.s.

Proof : Let x ≥ a > 0, then (Zt∧Ta , t ≥ 0), under Px, is a process with values in [a,∞). For any
y ≥ a, we define

fλ,a(y) = exp

{
−
∫ S(x)

S(a)
ȳλ(u)du

}
.

A direct computation ensures that fλ,a is a C2-function on [a,∞), bounded by 1, fλ,a(a) = 1 and
such that it solves

d(y)f ′′(y)− b(y)f ′(y)− λf(y) = 0. (5.7)
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Applying Itô Formula to the function F (t, y) = e−λtfλ,a(y) and the process (Zt∧Ta , t ≥ 0), we obtain
by means of (5.7),

e−λtfλ,a(Zt∧Ta) = fλ,a(x) +

∫ t∧Ta

0
f ′λ,a(Zs)

√
2γ2ZsdB

(b)
s + σ

∫ t∧Ta

0
f ′λ,a(Zs)ZsdB

(e)
s .

We then use a sequence of stopping time (Tn, n ≥ 1) that reduces the two local martingales of the
right-hand side and from the optimal stopping theorem, we obtain for any n ≥ 1

Ex
[
e−λTn∧Tafλ,a(ZTn∧Ta)

]
= fλ,a(x).

Letting n go to ∞ gives (5.6) for any x ≥ a > 0. We finally let a go to 0 to deduce the result for
a = 0 and conclude the proof. �
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