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Abstract. We continue the study of the maximum of the scale-inhomogeneous discrete Gaussian
free field in dimension two that was initiated in Arguin and Ouimet (2016); Fels (2019) and continued
in Fels and Hartung (2021). In this paper, we consider the regime of weak correlations and prove
the convergence in law of the centred maximum to a randomly shifted Gumbel distribution. In
particular, we obtain limiting expressions for the random shift. As in the case of variable speed
branching Brownian motion, the shift is of the form CY , where C is a constant that depends only
on the variance at the shortest scales, and Y is a random variable that depends only on the variance
at the largest scales. Moreover, we investigate the geometry of highest local maxima. We show
that they occur in clusters of finite size that are separated by macroscopic distances. The poofs are
based on Gaussian comparison with branching random walks and second moment estimates.

1. Introduction

In recent years, log-correlated (Gaussian) processes have received considerable attention, see
e.g. Arguin et al. (2017a); Paquette and Zeitouni (2018); Chhaibi et al. (2018); Bailey and Keat-
ing (2019); Webb (2015); Nikula et al. (2020); Arguin et al. (2019a); Bourgade (2010); Harper
(2019); Harper; Soundararajan (2009); Arguin et al. (2019b); Saksman and Webb (2020); Biskup
and Louidor (2018); Bovier and Hartung (2014); Ding et al. (2017); Fyodorov (2004); Fyodorov and
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Keating (2014); Harper (2013a, 2020); Mallein (2015a); Harper (2013b); Arguin et al. (2017b); Yin
and Jin (2019); Ouimet (2018). Some prominent examples that fall into this class are branching
Brownian motion (BBM), the branching random walk (BRW), the 2d discrete Gaussian free field
(DGFF), local maxima of the randomised Riemann zeta function on the critical line and cover times
of Brownian motion on the torus. Their correlation structure is such that it becomes relevant for
the properties of the extremes of the processes. The 2d scale-inhomogeneous discrete Gaussian free
field first appeared in Arguin and Zindy (2015), where it served as a tool in order to prove Poisson-
Dirichlet statistics of the extreme values of the 2d DGFF, which also turns out to be true for the
2d scale-inhomogeneous DGFF in the case of finitely many scales Ouimet (2017). Moreover, it is
the natural analogue model of variable-speed BBM or the time-inhomogeneous BRW in the context
of the two-dimensional DGFF. To be more precise, we start with a formal definition of the model
studied in this paper and then, present our new results on the maximum value.

1.1. The discrete Gaussian free field. Let VN := ([0, N) ∩ Z)2. The interior of VN is defined as
V o
N := ([1, N −1]∩Z)2 and the boundary of VN is denoted by ∂VN := VN \V o

N . Moreover, for points
u, v ∈ VN we write u ∼ v, if and only if ‖u− v‖2 = 1, where ‖.‖2 is the Euclidean norm. Let Pu be
the law of a SRW {Wk}k∈N starting at u ∈ Z2. The normalised Green kernel is given by

GVN (u, v) :=
π

2
Eu

[τ∂VN−1∑
i=0

1{Wi=v}

]
, for u, v ∈ VN . (1.1)

Here, τ∂VN is the first hitting time of the boundary ∂VN by {Wk}k∈N. For δ > 0, we set V δ
N :=

(δN, (1− δ)N)2 ∩ Z2. By Daviaud (2006, Lemma 2.1), we have, for δ ∈ (0, 1) and u, v ∈ V δ
N ,

GVN (u, v) = logN − log+ ‖u− v‖2 +O(1), (1.2)

where log+(x) = max {0, log(x)}.

Definition 1.1. The 2d discrete Gaussian free field (DGFF) on VN , φN := {φNv }v∈VN , is a centred
Gaussian field with covariance matrix GVN and entries GVN (x, y) = E[φNx φ

N
y ], for x, y ∈ VN .

From Definition 1.1 it follows that φNv = 0 for v ∈ ∂VN , i.e. we have Dirichlet boundary
conditions.

1.2. The two-dimensional scale-inhomogeneous discrete Gaussian free field.

Definition 1.2. (The 2d scale-inhomogeneous discrete Gaussian free field).
Let φN = {φNv }v∈VN be a 2d DGFF on VN . For v = (v1, v2) ∈ VN and λ ∈ (0, 1), let

[v]λ ≡ [v]Nλ :=

([
v1 −

1

2
N1−λ, v1 +

1

2
N1−λ

]
×
[
v2 −

1

2
N1−λ, v2 +

1

2
N1−λ

])
∩ VN , (1.3)

and set [v]N0 := VN and [v]N1 := {v}. We denote by [v]oλ the interior of [v]λ. Let F∂[v]λ∪[v]cλ
:=

σ
(
{φNv , v /∈ [v]oλ}

)
be the σ−algebra generated by the random variables outside [v]oλ. For v ∈ VN ,

let

φNv (λ) = E
[
φNv |F∂[v]λ∪[v]cλ

]
, λ ∈ [0, 1]. (1.4)

We denote by ∇φNv (λ) the derivative ∂λφNv (λ) of the DGFF at vertex v and scale λ. Moreover, let
s 7→ σ(s) be a non-negative function such that Iσ2(λ) :=

∫ λ
0 σ

2(x)dx is a function on [0, 1] with
Iσ2(0) = 0 and Iσ2(1) = 1. Then the 2d scale-inhomogeneous DGFF on VN is a centred Gaussian
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field ψN := {ψNv }v∈VN 1 defined as

ψNv :=

∫ 1

0
σ(s)∇φNv (s)ds. (1.5)

In the case when σ is a right-continuous step function taking finitely many values, Fels (2019, (1.11))
shows that it is a centred Gaussian field with covariance given by

E
[
ψNv ψ

N
w

]
= logNIσ2

(
logN − log+ ‖v − w‖2

logN

)
+O(

√
log(N)), for v, w ∈ V δ

N . (1.6)

In fact Ouimet (2017, Corollary A.6) shows that (1.6) holds for any pair of vertices v, w ∈ VN that
are at least N1−δ away from the boundary, for any fixed δ ∈ (0, 1).

2. Main results

In the case of finitely many scales, Arguin and Ouimet (2016) showed the first order of the
maximum and the size of the level sets.

Assumption 2.1. In the rest of the paper, {ψNv }v∈VN is always a 2d scale-inhomogeneous DGFF on
VN . Moreover, we assume that Iσ2(x) < x, for x ∈ (0, 1), and that Iσ2(1) = 1, with s 7→ σ2(s)
being differentiable at 0 and 1, such that σ(0) < 1 and σ(1) > 1.

In Fels (2019), we proved, in the case when s 7→ Iσ2 is piecewise linear, that the maximum centred
bymN has exponential tails. In particular, in the case of the right-tail, our results are precise up to a
multiplicative constant. As a simple consequence we obtained the sub-leading logarithmic correction
to the maximum value . Provided Assumption 2.1, there are right-continuous, non-negative step
functions, s 7→ σ1(s), s 7→ σ2(s), taking finitely many values, such that, for x ∈ (0, 1),

Iσ2
1
(x) ≤ Iσ2(x) ≤ Iσ2

2
(x) < x, (2.1)

and such that Iσ2
1
(1) = Iσ2

2
(1) = 1. Fels (2019) shows that for scale-inhomogeneous DGFFs with

parameters σ1 or σ2, the maximum value is given by 2 logN − 1
4 log logN + OP (1), where OP (1)

means that remainder is stochastically bounded and that the centred maxima are tight. (2.1),
Sudakov-Fernique and Fels (2019) imply that the maximum value under Assumption 2.1 is given by

ψ∗N := max
v∈VN

ψNv = 2 logN − 1

4
log logN +OP (1). (2.2)

In particular, the maximum, ψ∗N , centred by mN := 2 logN − log logN
4 is tight. Our main result in

this paper is convergence in distribution of the centred maximum.

Theorem 2.2. Let {ψNv }v∈VN satisfy Assumption 2.1. Then, the sequence {ψ∗N −mN}N≥0 con-
verges in distribution. In particular, there is a constant β(σ(1)) > 0 depending only on the final
variance, and a random variable Y (σ(0)) which is almost surely non-negative, finite and depends
only on the initial variance, such that, for any z ∈ R,

P (ψ∗N −mN ≤ +z)→ E
[
exp

[
−β(σ(1))Y (σ(0))e−2z

]]
, as N →∞. (2.3)

Note that the limiting law is universal in the sense that only σ(0) and σ(1) affect the limiting
law. In particular, the choice of σ(s), for s ∈ (0, 1), does not affect the law, as long as Iσ2(x) < x,
for x ∈ (0, 1). In the proof of Theorem 2.2 one needs to understand the genealogy of particles close
to the maximum. Since this is of independent interest, we state it as a separate theorem.

1The study of a natural continuous extension of this model, in which one replaces the conditional expectation
φNv (·) by circle averages of the 2d continuum Gaussian free field was proposed on page 784 in Arguin and Ouimet
(2016).
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Theorem 2.3. Let {ψNv }v∈VN satisfy Assumption 2.1. Then, there exists a constant c > 0, such
that

lim
r→∞

lim
N→∞

P

(
∃u, v ∈ VN with r ≤ ‖u− v‖2 ≤

N

r
and ψNu , ψ

N
v ≥ mN − c log log r

)
= 0. (2.4)

As the field is strongly correlated, Theorem 2.3 implies that local maxima of the scale-
inhomogeneous DGFF are surrounded by very heigh points in O(1) neighbourhoods. Moreover,
the local maxima are at distance O(N) to each other and therefore, almost independent.

2.1. Related work. The special case σ(x) ≡ 1, for x ∈ [0, 1], is the usual 2d DGFF. In this case,
building upon work by Bolthausen, Bramson, Deuschel, Ding, Giacomin and Zeitouni (Bolthausen
et al., 2011; Bramson and Zeitouni, 2012; Ding, 2013; Ding and Zeitouni, 2014), Bramson, Ding and
Zeitouni (Bramson et al., 2016) proved convergence in law of the centred maximum. Generalizing
this approach, Ding, Roy and Zeitouni (Ding et al., 2017) proved convergence of the centred maxi-
mum for more general log-correlated Gaussian fields. In the 2d DGFF, Biskup and Louidor Biskup
and Louidor (2016, 2018) proved convergence of the full extremal process to a cluster Cox process.
Moreover, they derived several properties of the random intensity measure appearing in the Cox
process, which they identified as the so-called critical Liouville quantum gravity measure.

Another closely related model is (variable-speed) branching Brownian motion (BBM). Variable-
speed BBM, introduced by Derrida and Spohn (1988), is the natural analogue model of the 2d
scale-inhomogeneous DGFF in the context of BBM. In order to define the model, fix a time hori-
zon t > 0, a super-critical (continuous time) Galton-Watson tree and a strictly increasing function
A : [0, 1] → [0, 1], with A(0) = 0, A(1) = 1. For two leaves v and w, we denote by d(v, w) their
overlap, which is the time of their most recent common ancestor. Variable-speed BBM in time t,
is a centred Gaussian process, indexed by the leaves of a super-critical (continuous time) Galton-
Watson tree, and covariance tA(d(v, w)/t). BBM is the special case when A(x) = x, for x ∈ [0, 1]. It
coincides with the continuous random energy model (CREM) on the Galton-Watson tree (Gardner
and Derrida, 1986a,b; Bovier and Kurkova, 2004). The extremal process of BBM was investigated
in Bramson (1978); Lalley and Sellke (1987); Aïdékon et al. (2013); Arguin et al. (2011, 2012, 2015,
2013); Bovier and Hartung (2017), and those of variable-speed BBM in Bovier and Hartung (2014,
2015); Fang and Zeitouni (2012b); Maillard and Zeitouni (2016). In the weakly correlated regime,
i.e. when A(x) < x, for x ∈ (0, 1), A′(0) < 1 and A′(1) > 1, Bovier and Hartung (2014, 2015)
proved convergence of the extremal process to a cluster Cox process. They identified the random
intensity measure as the so-called “McKean-martingale” which differs from the random intensity
measure, the “derivate-martingale”, which appears in BBM. Works by Bovier and Kurkova (2004)
for general variance profiles show that in the context of GREM the first order of the maximum is de-
termined by the concave hull of A. The maxima of branching random walks in time-inhomogeneous
environments were studied by Fang and Zeitouni (2012a) and by Mallein (2015a,b). Building upon
results obtained by Fang and Zeitouni (2012b), Maillard and Zeitouni (2016) proved in the case
variable-speed BBM with strictly decreasing speed, that the 2nd order correction is proportional to
t1/3. As also in the case of the 2d scale-inhomogeneous DGFF all variances profiles can be achieved,
studying its extremes in the analogue setting of strictly decreasing speed would be of great interest.

2.2. Outline of proof. We start to explain the proof of Theorem 2.3 as these ideas are also used in the
proof of Theorem 2.2. In order to prove Theorem 2.3, we have to show with high probability, that
there cannot be two vertices in VN at “intermediate distance” to each other, i.e. in between O(1)
and O(N), and both reaching an extremal height. We therefore study the sum of two vertices, under
the additional restriction that their distance is “intermediate”, i.e. such that r ≤ ‖u − v‖ ≤ N/r
with r � N . The idea here is, if both vertices reach extreme heights, their sum must exceed
twice an extremal threshold. This reasoning works, since tightness of the centred maximum implies
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that there cannot be a vertex being considerably larger than the expected maximum. To analyse
the maximum of the sum of particles of the scale-inhomogeneous DGFF, we prove a variant of
Slepian’s lemma which allows to compare this quantity with the maximum of the sum of particles
of corresponding inhomogeneous branching random walks. We show that using a truncated second
moment method.

VN

BN/K,i

BN/K,j

BK′,i

“coarse field”

“local field”

“intermediate field”

N

K ′

N/(K)

Figure 1: 3-field decomposition

Theorem 2.3 suggests that to understand the law of the centred maximum, it suffices to consider
local maxima in “small” O(1) neighbourhoods, while the “small” neighbourhoods are far, i.e. O(N),
apart. The fact that these neighbourhoods are very far apart, makes them correlated only on the
level of the first increments, φNv (λ1) − φNv (0), for some λ1 > 1, as boxes of side length N1−λ1 and
centred at local maxima do not overlap. In particular, the remaining increments, φNv (λ) − φNv (µ),
for λ > µ ≥ λ1, for distinct such neighbourhoods are independent. We split these two different
contributions by studying the sum of two independent Gaussian fields. To do so, decompose the
box VN into K2 boxes BN/K,i and (N/K ′)2 boxes BK′,j with side lengths N/K and K ′, where
K,K ′ � N . One of the Gaussian fields is the “coarse field”, which is defined such that it is constant
in each box BN/K,i. It encodes initial increments and correlations of the field between different
boxes BN/K,i. The other Gaussian field is the “fine field”. It is independent between different boxes
BN/K,i, and encodes the remaining increments, including the local neighbourhoods. The “fine field”
is then decomposed further into a field capturing the “intermediate” increments and an indepen-
dent “local field”, which captures the increments in the small neighbourhoods, BK′,j , that carry
the local maxima. Instead of working directly with the scale-inhomogeneous 2d DGFF, we define
a Gaussian field, {SNv }v∈VN , as a sum of four independent Gaussian fields, with covariance struc-
ture of the “coarse field”, “local field”, “intermediate field” and an additional independent Gaussian
field. The additional field is defined such that variances of the scale-inhomogeneous DGFF and
the approximating field match asymptotically, which is crucial in order to use Gaussian comparison
to reduce the proof of Theorem 2.2 to show convergence of the centred maximum of the approx-
imating process, {SNv }v∈VN . The “coarse and local field” are instances of appropriately scaled 2d
DGFFs, the “intermediate field” is a collection of modified branching random walks (MIBRW). The
advantage of working with the approximating process is that the “coarse field” is constant in large
boxes, which substantially simplifies the analysis. At this point we make use of the assumption
of differentiability of σ2 at both 0 and 1, which allows to control the covariance structure of the
scale-inhomogeneous DGFF and how it differs from that of the approximating field, see Lemma 3.4
and Lemma 5.3. In particular, one needs to understand the influence of this difference on the law of
the centred maximum. This is done similarly as in Ding et al. (2017), adapting an idea from Biskup
and Louidor (2016), to show a certain invariance principle: Partition VN into sub-boxes VL, where
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L can be either of order K or N/K, with K � N . If one adds i.i.d. Gaussians of bounded variance
to each sub-box VL, i.e. the same random variable to each vertex in a sub-box, then the law of the
centred maximum is given by a deterministic shift of the original law. Moreover, the shift can be
stated explicitly. This is the contents of Lemma 5.5 and its proof uses Theorem 2.3 and Gaussian
comparison.
Another key step in the proof of convergence in law of the centred maximum of the approximating
process, {SNv }v∈VN , is to understand the correct right-tail asymptotics of the (auxiliary) process.
This is provided in Proposition 5.8, which is proved using a truncated second moment method. The
truncation uses a localizing property of vertices reaching extreme heights, similar to the one ob-
served in variable speed BBM. The idea is that intermediate increments of extremal vertices have to
stay far below the maximum possible increment. For vertices to become very heigh at the end, this
is then compensated by extraordinarily huge final increments. Based on a localization of increments
of the auxiliary process for vertices that are local extremes (cp. Proposition 4.2), one is able to
define random variables with the correct tails and distributions, whose parameters are determined
through those of the “coarse and local field”, and therefore independent of N . This is done in (5.44),
(5.45) and (5.46). These are then coupled to the auxiliary process and allow to obtain convergence
in law of the centred maximum, and further, for an explicit description of the limit distribution.

For technical reasons, we restrict ourselves to the case that all side length of boxes considered
are a natural power of 2, so that automatically N/KL divides N just as that K ′L′ divides N/KL,
which allows to decompose VN into equal sized boxes as explained above. In particular, we assume
that N = 2n, for some n ∈ N, throughout the paper. The reason why these assumptions pose no
restriction is the same as for the DGFF (cp. Bramson et al., 2016, pp. 2-3). We partition our box VN
by boxes with side length N/KL and K ′L′. Using Proposition 5.1, we may neglect contributions
from δN, δN/KL, δKL, δK ′L′−strips at the boundary, with possibly a different δ ∈ (0, 1/2) for
each, as we know that with high probability these do not contribute to the maximum. In particular,
we can choose δ ∈ (0, 1/2) such that we can partition using dyadic boxes.

Outline of the paper: In Section 3 we recall the definition of the corresponding inhomogeneous
branching random walk (IBRW) and the modified inhomogeneous branching random walk (MI-
BRW), introduced in Fels (2019), and state covariance estimates. The proof of Theorem 2.3 is
provided in Section 4 and the proof of Theorem 2.2 in Section 5. In Appendix A we state Gaussian
comparison tools such as Slepian’s lemma, the inequality of Sudakov-Fernique and provide proofs
of the additional covariance estimates. Lemma 5.5 and Lemma 5.6 are proved in Appendix B, and
the proof of the right-tail asymptotics, i.e. Proposition 5.8, is provided in Appendix C.
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3. Frequently occurring auxiliary processes

3.1. Inhomogeneous branching random walk. Let n ∈ N and set N = 2n. For k = 0, 1, . . . , n, let Bk
denote the collection of subsets of Z2 consisting of squares of side length 2k with corners in Z2, and
let BDk denote the subset of Bk consisting of squares of the form ([0, 2k− 1]∩Z)2 + (i2k, j2k). Note
that the collection BDk partitions Z2 into disjoint squares. For v ∈ VN , let Bk(v) denote the set of
elements B ∈ Bk with v ∈ B. Let Bk(v) be the unique box Bk(v) ∈ BDk that contains v.

Definition 3.1 (Inhomogeneous branching random walk (IBRW)). Let {ak,B}k≥0,B∈BDk be an i.i.d.
family of standard Gaussian random variables. Define the inhomogeneous branching random walk
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{RNv }v∈VN , by

RNv (t) :=
n∑

k=n−t

√
log(2)ak,Bk(v)

∫ n−k

n−k−1
σ
( s
n

)
ds, (3.1)

where 0 ≤ t ≤ n, t ∈ N.

3.2. Modified inhomogeneous branching random walk. For N = 2n, v ∈ VN , let BNk (v) be the
collection of subsets of Z2 consisting of squares of size 2k with lower left corner in VN and containing
v. Note that the cardinality of BNk (v) is 2k. For two sets B,B′, write B ∼N B′ if there are integers,
i, j, such that B′ = B + (iN, jN). Let {bk,B}k≥0,B∈BNk

denote an i.i.d. family of centred Gaussian
random variables with unit variance, and define

bNk,B :=

{
bk,B, B ∈ BNk ,
bk,B′ , B ∼N B

′ ∈ BNk .
(3.2)

Definition 3.2 (Modified inhomogeneous branching random walk (MIBRW)). The modified inho-
mogeneous branching random walk (MIBRW) {S̃Nv }v∈VN is defined by

S̃Nv (t) :=
n∑

k=n−t

∑
B∈BNk (v)

2−k
√

log(2)bNk,B

∫ n−k

n−k−1
σ
( s
n

)
ds, (3.3)

where 0 ≤ t ≤ n, t ∈ N.

3.3. Covariance estimates. In order to compare the auxiliary processes with the scale-
inhomogeneous DGFF, one needs estimates on their covariances, which are provided in this sec-
tion. Let ‖ · ‖2 be the usual Euclidean distance and ‖ · ‖∞ the maximum distance. We denote by
dTN (·, ·) the genealogical distance on the tree, TN , which is defined implictly by the partitioning
using in Definition 3.1. In addition, introduce the following two distances on the torus induced by
VN , i.e. for v, w ∈ VN ,

dN (v, w) := min
z: z−w∈(NZ)2

‖v − z‖2, dN∞(v, w) := min
z: z−w∈(NZ)2

‖v − z‖∞. (3.4)

Note that the Euclidean distance on the torus is smaller than the standard Euclidean distance, i.e.
for all v, w ∈ VN , it holds dN (v, w) ≤ ‖v − w‖2. Equality holds if v, w ∈ (N/4,N/4) + VN/2 ⊂ VN .

Lemma 3.3. Fels (2019, Lemma 3.3) For any δ > 0, there exists a constant α > 0 independent of
N = 2n, such that the following estimates hold: For any v, w ∈ VN ,

i.
∣∣∣E [S̃Nv S̃Nw ]− logNIσ2

(
1− log+ dN (v,w)

logN

)∣∣∣ ≤ α.
ii.
∣∣∣E [RNv RNw ]− logNIσ2

(
1− log+ dTN (v,w)

logN

)∣∣∣ ≤ α.
Further, for any u, v ∈ V δ

N , and any x, y ∈ VN + (2N, 2N) ⊂ V4N :

iii.
∣∣∣E [ψNu ψNv ]− logNIσ2

(
1− log+ ‖u−v‖2

logN

)∣∣∣ ≤ α
iv.
∣∣∣E [ψ4N

x ψ4N
y

]
− E

[
S̃4N
x S̃4N

y

]∣∣∣ ≤ α.
Proof : The proof is given in Appendix A.1. �

In the following lemma, we identify the asymptotic behaviour of covariances of the scale-
inhomogeneous 2d DGFF close to the diagonal and for two vertices at macroscopic distance, i.e. at
distance of order of the side length of the underlying box.

Lemma 3.4. There are continuous functions, f : (0, 1)2 7→ R and h : [0, 1]2\{(x, x) : x ∈ [0, 1]} 7→
R, and a function, g : Z2 × Z2 7→ R, such that the following two statements hold:
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i. For all L, ε, δ > 0, there exists an integer N0 = N0(ε, δ, L) > 0 such that, for all x ∈ [0, 1]2

with xN ∈ V δ
N , u, v ∈ [0, L]2 and N ≥ N0, we have∣∣E [ψNxN+uψ

N
xN+v

]
− log(N)− σ2(0)f(x)− σ2(1)g(u, v)

∣∣ < ε. (3.5)

ii. For all L, ε, δ > 0, there exists an integer N1 = N1(ε, δ, L) > 0 such that, for all x, y ∈ [0, 1]2

with xN, yN ∈ V δ
N as well as |x− y| ≥ 1/L and N ≥ N1, we have∣∣E [ψNxNψNyN]− σ2(0)h(x, y)

∣∣ < ε. (3.6)

Proof : The proof is given in Appendix A.1. �

Remark 3.5. In the proof of Lemma 3.4 we use a Taylor approximation of σ2 around both 0 and
1. It is here where we make use of the assumption of differentiability of σ at both 0 and 1 as in
Assumption 2.1.

4. Proof of Theorem 2.3

In order to prove Theorem 2.3, we have to show with high probability that there cannot be
two vertices at “intermediate distance” from each other and both reaching an extremal height.
We therefore study the sum of two vertices, under the additional restriction that their distance
is “intermediate”. For such sums, we first prove a version of Slepian’s lemma, which relates these
functionals of the scale-inhomogeneous DGFF to the same functionals of a suitable IBRW.

Lemma 4.1. Let {χNv }v∈VN and {ηNv }v∈VN be two centred Gaussian processes, such that

E
[
ηNu η

N
v

]
≤ E

[
χNu χ

N
v

]
∀u, v ∈ VN , (4.1)

Var
[
ηNu
]

= Var
[
χNu
]

∀u ∈ VN . (4.2)

Let Ωm,r := {A ⊂ VN : |A| = m,u, v ∈ A ⇒ r ≤ ‖u− v‖2 ≤ N/r}. For any r ≥ 0, N > r and any
λ ∈ R, it holds that

P

(
max
A∈Ωm,r

∑
v∈A

ηNv ≤ λ

)
≤ P

(
max
A∈Ωm,r

∑
v∈A

χNv ≤ λ

)
. (4.3)

Proof : The idea is to use Gaussian interpolation. We first introduce the necessary set-up. For
h ∈ [0, 1] and u ∈ VN , let

Xh
u =
√
hηNu +

√
1− hχNu (4.4)

be a Gaussian random variable, interpolating between the scale-inhomogeneous DGFF and the
time-inhomogeneous BRW. Moreover, let s > 0, set Φs(x) = 1√

2πs2

∫ x
−∞ exp

[
− z2

2s2

]
dz and write

xA =
∑

v∈A xv, for A ⊂ VN . We define

Fs(x1, . . . , x4n) =
∏

A∈Ωm,r

Φs(λ− xA). (4.5)

Clearly, Fs is bounded uniformly in s, smooth for all s > 0, and converges pointwise to F (x1, . . . , x4n)
= 1xA≤u,∈A∈Ωm,r at all continuity points of F . We have that, for i 6= j,

∂2Fs
∂xi∂xj

(x1, . . . , x4n) =
∑

A∈Ωm,r
xi,xj∈A

Φ′′s(λ− xA)
∏

B∈Ωm,r,B 6=A
Φs(λ− xB)

+
∑

A∈Ωm,r
xi∈A

∑
B∈Ωm,r

xj∈B,B 6=A

Φ′s(λ− xA)Φ′s(λ− xB)
∏

C∈Ωm,r,C 6=A,B
Φs(λ− xC). (4.6)
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Observe that, by dominated convergence, for A ∈ Ωm,r,

E
[
Φ′′s(λ−Xh

A)
]

=

∫
φh,A(x)

λ− x√
2πs2s2

exp

[
−(λ− x)2

2s2

]
dx→ 0, (4.7)

as s → 0, and where φh,A is the density of the centred Gaussian
∑

v∈AX
h
v . By (4.7) and as∏

B∈Ωm,r,B 6=A Φs(λ− xB) ≤ 1,

∑
A∈Ωm,r
xi,xj∈A

E

Φ′′s(λ−Xh
A)

∏
B∈Ωm,r,B 6=A

Φs(λ−Xh
B)

→ 0, (4.8)

as s→ 0. Next, we turn to the second sum in (4.6). For A,B ∈ Ωm,r, we have

E

Φ′s(λ−Xh
A)Φ′s(λ−Xh

B)
∏

C∈Ωm,r,C 6=A,B
Φs(λ−Xh

C)

 ≤ E
[
Φ′s(λ−Xh

A)Φ′s(λ−Xh
B)
]

=

∫
φh,A,B(x, y)

1

2πs2
exp

[
−(λ− x)2 + (λ− y)2

2s2

]
dxdy → φh,A,B(λ, λ), (4.9)

as s→ 0 and where

φh,A,B(x, y) =
1

2πσhAσ
h
B

√
1− %2

h,A,B

exp

[
− 1

2(1− %2
h,A,B)

(
x2

(σhA)2
+

y2

(σhB)2
− 2%h,A,B

xy

σhAσ
h
B

)]
(4.10)

with (σhA)2 = Var
[∑

v∈AX
h
v

]
, (σhB)2 = Var

[∑
v∈BX

h
v

]
and %h,A,B =

E[(
∑
v∈AX

h
A)(

∑
v∈B X

h
B)]√

Var[
∑
v∈AX

h
A]Var[

∑
v∈B X

h
v ]
.

φh,A,B(x, y) is the density of the bivariate distributed random vector
(∑

v∈AX
h
v ,
∑

v∈BX
h
v

)
. Ob-

serve that,

φh,A,B(x, y) ≤ 1

2π
√

1− %2
A,B

exp

[
− x2 + y2

2(1 + %A,B)

]
, (4.11)

where %A,B = max
(
E
[(∑

v∈A ηv
) (∑

v∈B ηv
)]
,E
[(∑

v∈A χ
N
v

) (∑
v∈B χ

N
v

)])
. Inserting (4.11) into

(4.9) and using this with (4.8) in (4.6) and letting s→ 0, allows to use Kahane’s theorem (Kahane,
1986), to obtain

P

(
∀A ∈ Ωm,r :

∑
v∈A

ηv ≤ λ

)
− P

(
∀A ∈ Ωm,r :

∑
v∈A

χNv ≤ λ

)

≤ 1

2π

∑
1≤i<j≤4n

∑
A∈Ωm,r
xi∈A

∑
B∈Ωm,r

xj∈B,B 6=A

(Λ1
A,B − Λ0

A,B)+√
1− %2

A,B

exp

[
− 2λ2

2(1 + %A,B)

]
, (4.12)

with Λ0
A,B = E

[(∑
v∈A χ

N
v

) (∑
v∈B χ

N
v

)]
and Λ1

A,B = E
[(∑

v∈A ηv
) (∑

v∈B ηv
)]
. By (4.1), (Λ1

A,B −
Λ0
A,B)+ = 0, and thus, (4.12) implies (4.3). �

In the following proposition, we determine the position of extremal particles of an inhomogeneous
BRW at the times when its variance changes. This is a direct consequence of Bovier and Hartung
(2014, Proposition 2.1) in the weakly-correlated regime of variable speed BBM. Set i(t, n) := t ∧
(n− t).
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Proposition 4.2. Let {RNv }v∈VN be a inhomogeneous BRW with Iσ2(x) < x, for x ∈ (0, 1) and
σ(0) < 1 < σ(1). Let s ∈ R. Then, there is a constant r0 > 0 such that for any r > r0, N = 2n, N
sufficiently large, and any γ ∈ (1/2, 1),

P

(
∃v ∈ VN , t ∈ [log r, n− log r] : RNv ≥ mN − s,RNv (t)− 2 log 2Iσ2

(
t

n

)
n /∈ [−iγ(t, n), iγ(t, n)]

)
≤ Ce2s

∞∑
k=blog rc

k
1
2
−γ exp

[
−k

2γ−1
2

]
,

(4.13)

where C ≤ 8√
log 2− logn+4s

4n

.

By Gaussian comparison and since we have Iσ2(x) < x, for x ∈ (0, 1), it turns out that for
our purposes, it suffices to consider a two-speed branching random walk, (XN

v (j))v∈VN ,0≤j≤n. We
choose the first speed to be 0 and the second to be σ2

max, where σmax = ess sup{σ(s) : 0 ≤ s ≤ 1}.
Note that σmax < ∞, as Iσ2(x) < x, for x ∈ (0, 1). To match variances, the change of speed
occurs at scale 1 − 1/σ2

max. Write u ∼
j
v, for u, v ∈ VN , if j is the largest integer such that

BDn−j(u) ∩ BDn−j(v) 6= ∅, i.e. in the language of BRW the “splitting-time” of u and v is j. The
following Proposition is the analogue statement to Theorem 2.3 for the two-speed BRW and key in
the proof of Theorem 2.3.

Proposition 4.3. There is a constant C > 0, such that for any constant c > 0 and any z ≥ 0,

P

(
∃j ∈ (log r, n− log r), ∃u ∼

j
v : XN

u , X
N
v ≥ mN − c log log r + z

)
(4.14)

≤ C
(

4− log r exp [−4z + 4c log log r] + log(r)−1/2 exp
[
2 log 2(1− σ2

max) log r + 2c log log r − 2z
])
.

In particular, there are c, r0 > 0, such that for all r > r0 and n sufficiently large,

E

[
max

u∼
s
v,s∈{log r,...,n−log r}

XN
u +XN

v

]
≤ 2mN − c log log r. (4.15)

Proof : We first consider the case when u ∼
j
v and j < n/σ2

max. In this case, the particles split

before the change in speed occurs. The speed change occurs at scale 1−λ = 1− 1/σ2
max. Note that

there are 42n−j such pairs, and as the initial speed is zero, XN
u , X

N
v are independent. Hence,

P
(
∃j ∈ (log r, bn(1− 1/σ2

max)c), ∃u ∼
j
v : XN

u , X
N
v ≥ mN − c log log r + z

)

≤
bn(1−1/σ2

max)c∑
j=log r

42n−jP
(
XN
u ≥ mN − c log log r + z

)2 ≤ C̃ bn(1−1/σ2
max)c∑

j=log r

42n−j log(2)n

(mN − c log r + z)2

× exp [−4 log(2)n+ log n+ 4(z − c log log r)] ≤ C4− log r exp [−4z + 4c log log r] .
(4.16)

where C̃, C > 0 are finite constants and the last inequality follows from a Gaussian tail bound.
Next, we treat the case when particles split after the change of speed. Let γ ∈ (1/2, 1) and set

i(j, n) := (n−σ2
max(n−j))∧(σ2

max(n−j)) and A1(j) := {x ∈ R : |x−n−σ2
max(n−j)
n mN | ≤ iγ(j, n)}. As

the extremal particles of the BRW stay with high probability in A1(j), for j ∈ {log r, . . . , n− log r}
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(see Proposition 4.2 for a precise statement), we can compute as follows:

P
(
∃s ∈ (bn(1− 1/σ2

max)c+ 1, n− log r), ∃u ∼
s
v : XN

u , X
N
v ≥ mN − c log log r + z

)
≤ C

n−log r∑
j=bn(1−1/σ2

max)c+1

∫
A1(j)

42n−jP
(
XN
v (n)−XN

v (j) ≥ mN − c log log r + z − x
)2

× 1√
2π log 2(n− σ2

max(n− j))
exp

[
− x2

2 log 2(n− σ2
max(n− j))

]
dx+ ε. (4.17)

By a Gaussian tail bound and using that by the integral restriction, (mN − x)2 ≥ (σ
2
max(n−j)

n mN −
i(j, n)γ)2, the summand in (4.17) is bounded from above by

C
σ2
max(n− j) exp

[
− (mN−c log log r+z)2

log 2(2n−σ2
max(n−j))

]
√

2π log 2(n− σ2
max(n− j))(σ

2
max(n−j)

n mN − c log log r + z − iγ(j, n))2

×42n−j
∫
A1(j)

exp

−
(
x− (mN − c log log r + z)2(n−σ2

max(n−j))
2n−σ2

max(n−j)

)2

2 log 2 (n−σ2
max(n−j))σ2

max(n−j)
2n−σ2

max(n−j)

dx. (4.18)

Changing variables, i.e. x =
√

log 2σ2
max(n− j) n−σ

2
max(n−j)

2n−σ2
max(n−j)y + 2(mN−c log log r+z)(n−σ2

max(n−j))
2n−σ2

max(n−j) , and
neglecting the upper restriction in A1(j), (4.18) is bounded from above by

C
(σ2
max(n− j))3/2(

σ2
max(n−j)

n mN − c log log r + z − iγ(j, n)
)2√

2π log 2(2n− σ2
max(n− j))

× exp

[
− (mN − c log log r + z)2

log 2(2n− σ2
max(n− j))

]
42n−j

∫
A′1(j)

exp
[
−y2/2

]
dy, (4.19)

with A′1(j) =
[
−mN

n σ̃(n, j)− (z − c log log r)
√

n−σ2
max(n−j)

log 2σ2
max(n−j)(2n−σ2

max(n−j)))− iγ(j,n)
σ̃(n,j) ,+∞

]
, and

where σ̃(n, j) =
√

σ2
max(n−j)(n−σ2

max(n−j))
log 2(2n−σ2

max(n−j)) . By a Gaussian tail bound applied to the integral, (4.19)
is bounded from above by

O

(
1

(n− j)
√
n− σ2

max(n− j)

)
42n−j exp

[
− (mN − c log log r + z)2

log 2(2n− σ2
max(n− j))

]
exp

[
−mN i

γ(j, n)

n
− i2γ(j, n) log 2(2n− σ2

max(n− j))
2σ2

max(n− j)(n− σ2
max(n− j))

]
× exp

[
−
m2
Nσ

2
max(n− j)(n− σ2

max(n− j))
2n2 log 2(2n− σ2

max(n− j))
− mN (z − c log log r)

n

n− σ2
max(n− j)

2n− σ2
max(n− j)

]
. (4.20)

Keeping only the dominant terms, one sees that the exponential is bounded from above by

exp

[
2 log 2(n− j)(1− σ2

max) + 2c log log r − 2z +
σ2
max

n−j
n + 1

2
log n− c1i

γ(j, n)− c2i
2γ−1(j, n)

]
,

(4.21)
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where c1, c2 > 0 are some finite constants. Inserting (4.21) into (4.20), allows to bound (4.17) from
above by

n−log r∑
j=bn(1−1/σ2

max)c+1

O

(
1

(n− j)
√
n− σ2

max(n− j)

)
exp

[
2(n− j)(1− σ2

max) log 2− 2z

+
σ2
max

n−j
n + 1

2
log n+ 2c log log r − c1i

γ(j, n)− c2i
2γ−1(j, n)

]

≤ O
(

1√
log r

)
exp

[
2 log 2(1− σ2

max) log r + 2c log log r − 2z
]
. (4.22)

Since σmax > 1, (4.22) tends to zero, as n→∞. (4.15) is an immediate consequence of (4.16) and
(4.22). This concludes the proof of Proposition 4.3. �

Similarly, as for the IBRW, we have a localization for extremal particles of the MIBRW, which
is the statement of the following lemma.

Lemma 4.4. Let {S̃Nv }v∈VN be the MIBRW, defined in (3.3). Let s ∈ R. Then, for any ε > 0, there
is a constant r0 > 0 such that for any r > r0, N = 2n, N sufficiently large, and any γ ∈ (1/2, 1),

P
(
∃v ∈ VN , t ∈ [log r, n− log r] : S̃Nv ≥ mN − s, S̃Nv (t) /∈ [−iγ(t, n), iγ(t, n)]

)
≤ Ce2s

∞∑
k=blog rc

k
1
2
−γ exp

[
−k

2γ−1
2

]
, (4.23)

where C ≤ 8√
log 2− logn+4s

4n

.

We do not give a proof here, as it is basically identical to the one of Proposition 4.2.

Proof of Theorem 2.3: Note that the tree distance of two vertices u, v ∈ VN on the underlying tree
of the IBRW, {XN

v }v∈VN , is up to an additional constant smaller than the Euclidean distance.
Hence, by Lemma 3.3 iii. there is a κ ∈ N and non-negative constants {av}v∈VN such that, for all
N ∈ N and all u, v ∈ VN ,

E
[
X2κN

2κu X
2κN
2κv

]
≤ E

[
ψNu ψ

N
v

]
+ auav, (4.24)

Var
[
X2κN

2κu

]
= Var

[
ψNu
]

+ a2
u. (4.25)

Let G be an independent standard Gaussian. Note that by independence, for any λ ∈ R,
P
(
∃u, v ∈ VN , r ≤ ‖u− v‖2 ≤ N/r : ψNu + ψNv ≥ λ

)
= P

(
∃u, v ∈ VN , r ≤ ‖u− v‖2 ≤ N/r : ψNu + ψNv ≥ λ,G ≥ 0

)
+ P

(
∃u, v ∈ VN , r ≤ ‖u− v‖2 ≤ N/r : ψNu + ψNv ≥ λ,G < 0

)
= P

(
∃u, v ∈ VN , r ≤ ‖u− v‖2 ≤ N/r : ψNu + ψNv ≥ λ,G ≥ 0

)
+

1

2
P
(
∃u, v ∈ VN , r ≤ ‖u− v‖2 ≤ N/r : ψNu + ψNv ≥ λ

)
. (4.26)

Using in (4.26) that {av}v∈VN are non-negative and applying Lemma 4.1 with m = 2, we obtain
that, for any λ ∈ R,

P
(
∃u, v ∈ VN , r ≤ ‖u− v‖2 ≤ N/r : ψNu + ψNv ≥ λ

)
≤ 2P

(
∃u, v ∈ VN , r ≤ ‖u− v‖2 ≤ N/r : ψNu + auG+ ψNv + avG ≥ λ

)
≤ 2P

(
∃u, v ∈ VN , r ≤ ‖u− v‖2 ≤ N/r : X2κN

2ku +X2κN
2kv ≥ λ

)
≤ 2P

(
∃u, v ∈ V2κN , r ≤ ‖u− v‖2 ≤ 2κN/r : X2κN

u +X2κN
v ≥ λ

)
. (4.27)
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Choosing λ = mN − c log log r, the last probability in (4.27) equals

P
(
∃u, v ∈ V2κN , r ≤ ‖u− v‖2 ≤ 2κN/r : X2κN

u +X2κN
v ≥ mN − c log log r

)
(4.28)

≤ P
(
∃u, v ∈ V2κN , r ≤ ‖u− v‖2 ≤ 2κN/r : X2κN

u +X2κN
v ≥ m2κN −

(
c+ κ

log 2

log log r

)
log log r

)
.

Applying Proposition 4.3 with c+κ log 2
log log r in place of c to the last probability in (4.28) yields (2.4),

which concludes the proof of Theorem 2.3. �

5. Proof of Theorem 2.2

The following proposition allows to control the right tail of the maximum over subsets.

Proposition 5.1. Let ε > 0 and {ψ̄Nv }v∈VN be a centred Gaussian field such that, for all v, w ∈ VN ,
|E
[
ψ̄Nv ψ̄

N
w

]
− E

[
ψNv ψ

N
w

]
| ≤ ε. For any fixed z ≥ 1, y ≥ 0 and N is sufficiently large, we have

P

(
max
v∈A

ψ̄Nv ≥ mN + z − y
)
≤ C |A|
|VN |

e−2(z−y). (5.1)

Proof of Propostion 5.1: By the covariance assumptions and Lemma 3.3 ii., iii. one can apply
Slepian’s lemma, to deduce that there exists k ∈ N, such that for all sufficiently large N ∈ N
and any λ ∈ R,

P

(
max
v∈A

ψ̄Nv ≥ λ
)
≤ P

(
max
v∈2kA

R2k

v ≥ λ
)
. (5.2)

Thus, it suffices to show (5.1) with RN instead of ψ̄N . Note that for any v ∈ VN , RNv ∼ N (0, n log 2).
Thus, by a first moment bound and a standard Gaussian tail estimate,

P
(

max
v∈A

RNv ≥ mN + y − z
)
≤ C|A| n log 2

(mN + z − y)
√

2πn log 2
exp

[
−(mN + z − y)2

2n log 2

]
≤ C|A| n log 2

(mN + z − y)
√

2πn log 2
exp [−2n log 2 + 1/2 log n− 2(z − y)]

≤ C |A|
|VN |

exp [−2(z − y)] , (5.3)

where the constant C > 0 may change from line to line and where we used that |VN | = 22n. �

5.1. Approximation via an auxiliary field. Let N = 2n be an integer, much larger as any other
integers forthcoming. For two integers L = 2l and K = 2k, partition VN into a disjoint union of
(KL)2 boxes, with each of side length N/KL, and denote the partition by BN/KL = {BN/KL,i : i =

1, . . . , (KL)2}. Let vN/KL,i ∈ VN be the left bottom corner of box BN/KL,i and write wi =
vN/KL,i
N/KL .

This allows to consider the grid points {wi}i=1,...,(KL)2 as elements of VKL. Analogously, letK ′ = 2k
′

and L′ = 2l
′ be another two integers and let BK′L′ = {BK′L′,i : i = 1, . . . , [N/(K ′L′)]2} be a

partitioning of VN with boxes BK′L′,i, each of side length K ′L′. The left bottom corner of a box
BK′L′,i is denoted by vK′L′,i. One should think of N/KL being much larger than K ′L′. Considering
Lemma 3.4, it turns out that this allows to define the corresponding approximating fields in such
a way that they have only a fixed variance parameter, which makes them easier to analyse. The
macroscopic or “coarse field”, {SN,cv : v ∈ VN}, is defined as a centred Gaussian field on VN with
covariance matrix Σc and entries given by

Σc
u,v := σ2(0)E

[
φKLwi φ

KL
wj

]
, for u ∈ BN/KL,i, v ∈ BN/KL,j , (5.4)
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where {φKLv }v∈VKL is a standard 2d DGFF on VKL. This field captures the macroscopic dependence.
The microscopic or “bottom field”, {SN,bv : v ∈ VN}, is a centred Gaussian field with covariance
matrix Σb defined entry-wise as

Σb
u,v :=

{
σ2(1)E

[
φK
′L′

u−vK′L′,iφ
K′L′
v−vK′L′,i

]
, if u, v ∈ BK′L′,i

0, else,
(5.5)

where {φK′L′v }v∈VK′L′ is a 2d DGFF on VK′L′ . This field is supposed to capture the “local” correla-
tions.
The third Gaussian field, {SN,mv : v ∈ VN}, is a collection of MIBRWs on BN/KL,i, i = 1, . . . , (KL)2,
i.e.

SN,mv :=
n−l−k∑
j=l′+k′

∑
B∈Bj(vK′L′,i′ )

2−j
√

log(2)bNi,j,B

∫ n−j

n−j−1
σ
( s
n

)
ds, for v ∈ BN/KL,i ∩BK′L′,i′ , (5.6)

with {bNi,j,B : i = 1, . . . , (KL)2, j ≥ 0, B ∈ BNj } being a family of independent standard Gaussian
random variables. Recall that Bj(vK′L′,i′) is the collection of boxes B ⊂ VN , of side length 2j ,
that contain the element vK′L′,i′ . This field is supposed to capture the “intermediate” correlations.
To obtain sufficiently precise covariance estimates, one needs to avoid boundary effects, which can
achieved working on a suitable subset of VN . Consider therefore the partitioning into N/L- and
L−boxes, i.e. BN/L = {BN/L,i : 1 ≤ i ≤ L2} and BL = {BL,i : 1 ≤ i ≤ (N/L)2}. Analogously,
let vN/L,i and vL,i be the left bottom corners of boxes BN/L,i, BL,i containing v. For a box B, let
Bδ ⊂ B the set Bδ = {v ∈ B : minz∈∂B ‖v− z‖ ≥ δlB}, where lB denotes the side length of the box
B. Finally, set

V ∗N,δ := { ∪
1≤i≤L2

Bδ
N/L,i} ∩ { ∪

1≤i≤(KL)2
Bδ
N/KL,i} ∩ { ∪

1≤i≤(N/L)2
Bδ
L,i} ∩ { ∪

1≤i≤(N/KL)2
Bδ
KL,i}. (5.7)

As |V ∗N,δ| ≥ (1− 16δ)|VN |, and using Proposition 5.1 with A = (V ∗N,δ)
c, we have

P

(
max

v∈(V ∗N,δ)
c
SNv ≥ mN + z

)
≤ 16δ P

(
max
v∈VN

SNv ≥ mN + z

)
, (5.8)

which tends to 0, as δ → 0. Thus, it suffices to consider the maximum of the field on the set V ∗N,δ.

VN

BN/KL,i

BN/KL,j

BK′L′,i

SN,c·

SN,b·

SN,m·

N

K ′L′

vN/KL,i

vK′L′,j

N/(KL)

Figure 2: 3-field decomposition

Using Gaussian comparison, we reduce the proof of Theorem 2.2 to showing convergence in law of
the centred maximum of an auxiliary field. Therefore, we need to have precise estimates on the
variances and covariances, which is what we provide in the following. In order to use Slepian’s
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lemma, we actually need, for each v ∈ VN , equality of variances. This is usually achieved by
adding suitable independent Gaussian random variables, which is done in the following lemma. In
particular, the lemma states that one can choose the constants in such a way, that, asymptotically,
they only depend on the “fine scales”, i.e. they live on boxes BK′L′,i,. In the rest of the paper, limits
are taken in the order N,K ′, L′,K and then L, for which we write (L,K,L′,K ′, N)⇒∞.

Lemma 5.2. Let {Φj}1≤j≤(N/K′L′)2 be a family of i.i.d. standard Gaussian random variables. For
v ∈ BK′L′,j, j = 1, . . . , (N/K ′L′)2 and v ≡ v̄ mod K ′L′, i.e. v̄ = v − vK′L′,j, there exists a
collection of non-negative constants {aK′L′,v̄}K′L′,v̄, such that if we set

SNv := SN,cv + SN,bv + SN,mv + aK′L′,v̄Φj , (5.9)

then

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

∣∣Var
(
SNv
)
−Var

(
ψNv
)
− 4α

∣∣ = 0. (5.10)

Proof : Considering Lemma 3.3 iii., (5.4), (5.5) and (5.6), a simple computation shows that, for any
v ∈ V ∗N,δ,

Var
(
SN,cv

)
+ Var

(
SN,bv

)
+ Var

(
SN,mv

)
= logN +ON (1), (5.11)

where the term ON (1) means that the constants are uniformly bounded in N . In particular, by
Lemma 3.3 iv. one has∣∣∣Var

(
SN,cv

)
+ Var

(
SN,bv

)
+ Var

(
SN,mv

)
−Var

(
ψNv
)∣∣∣ ≤ 4α. (5.12)

By (5.12), there exist non-negative constants {aN,v}v∈BN/KL,i , 1 ≤ i ≤ (KL)2, such that

Var
(
SN,cv + SN,bv + SN,mv

)
+ a2

N,v = Var
(
ψNv
)

+ 4α. (5.13)

Note that {aN,v}v∈BN/KL,i implicitly depend on KL and by (5.12), one gets

max
v∈V ∗N,δ

aN,v ≤
√

8α. (5.14)

For v ∈ Bδ
N/KL,i∩V

δ
N , writing v ≡ v̄ mod K ′L′, where v̄ = v− vN/KL,i, for v ∈ BN/KL,i, and using

Lemma 3.4 i. and Biskup (2020, (1.29)),

a2
N,v = 4α+ Var

(
ψNv
)
− σ2(0)Var

(
φKLwi

)
− σ2(1)Var

(
φK
′L′

v̄

)
− Iσ2

(
l + k

n
,
n− l′ − k′

n

)
log(N)

= 4α+ σ2(0)f(v/N)− σ2(0)f(wi/(KL))− σ2(1)f(v̄/(K ′L′)) + εN,KL,K′L′(v), (5.15)

which is non-negative. By Lemma 3.4 i., f is continuous and using ‖ vN −
wi
KL‖ = ‖v−vKL,iN ‖ → 0,

as (L,K,N) ⇒ ∞, we have in the same limit, |f(v/N) − f(wi/(KL))| → 0. Moreover, by using
Biskup (2020, (1.29)), Lemma 3.4 i. and (5.13) in the first line of (5.15), it follows that

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

sup
v∈V ∗N,δ

εN,KL,K′L′(v) = 0. (5.16)

Regarding (5.15), (5.16), and that Var
[
φK
′L′

v

]
≤ log(K ′L′) + α, for all v ∈ VN , there exist non-

negative aK′L′,v̄, such that

a2
N,v = a2

K′L′,v̄ + εN,KL,K′L′(v). (5.17)

Using Biskup and Louidor (2018, Lemma B.3, Lemma B.4, Lemma B.5), one obtains

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

sup
u,v∈V ∗N,δ:‖u−v‖∞≤L′

∣∣∣Var
(
φK
′L′

u

)
−Var

(
φK
′L′

v

)∣∣∣ = 0, (5.18)
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which, together with (5.15) and (5.16), implies∣∣a2
K′L′,ū − a2

K′L′,v̄

∣∣ ≤ sup
v∈V ∗N,δ

εN,KL,K′L′(v), ∀u, v ∈ V ∗N,δ : ‖u− v‖∞ ≤ L′. (5.19)

For v ∈ BK′L′,j , j = 1, . . . , (N/K ′L′)2 and v ≡ v̄ mod K ′L′, set

SNv := SN,cv + SN,bv + SN,mv + aK′L′,v̄Φj . (5.20)

By (5.13) and (5.17), it holds that, for v ∈ V ∗N,δ,

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

∣∣Var
(
SNv
)
−Var

(
ψNv
)
− 4α

∣∣ = 0, (5.21)

which concludes the proof of Lemma 5.2. �

The next goal is to show that it suffices to prove convergence of the centred maximum of the
approximating process, {SNv }v∈VN , defined in (5.9). This can be done by using Gaussian comparison.
The previous lemma, Lemma 5.2, provides asymptotically equal variances, and the following lemma
provides covariance estimates for {SNv }v∈VN . Crucially, for vertices close-by or at macroscopic
distance, the covariances coincide asymptotically.

Lemma 5.3. There exists a non-negative sequence {ε′N,KL,K′L′}N,K,L,K′,L′≥0, and bounded constants
Cδ, C > 0, such that lim sup

(L,K,L′,K′)⇒∞
lim sup
N→∞

ε
′
N,KL,K′L′ = 0, and for all u, v ∈ V ∗N,δ :

i. If u, v ∈ BL′,i, then
∣∣∣E [(SNu − SNv )2]−E [(ψNu − ψNv )2]∣∣∣ ≤ ε′N,KL,K′L′ .

ii. If u ∈ BN/L,i, v ∈ BN/L,j and i 6= j, then
∣∣E [SNu SNv ]−E [ψNu ψNv ]∣∣ ≤ ε′N,KL,K′L′ .

iii. In all other cases, i.e. if u, v ∈ BN/L,i but u ∈ BL′,i′ and v ∈ BL′,j′ , for some i′ 6= j′, it
holds that

∣∣E [SNu SNv ]−E [ψNu ψNv ]∣∣ ≤ Cδ + 40α.

Proof : See Appendix A.1. �

We use the Lévy-Prokhorov metric, d(·, ·), which is, for two probability measures on R, µ and ν,
given by

d(µ, ν) := inf{δ > 0 : µ(B) ≤ ν(Bδ) + δ, for all open sets B}, (5.22)

where Bδ = {y ∈ R : |x− y| < δ, for some x ∈ B}. Moreover, let

d̃(µ, ν) = inf{δ > 0 : µ((x,∞)) ≤ ν((x− δ,∞)) + δ, for all x ∈ R}. (5.23)

and observe that if d̃(µ, ν) = 0, then ν stochastically dominates µ. For random variables X,Y
with laws µX , µY , write d(X,Y ) instead of d(µX , µY ), and likewise for d̃(·, ·). The following lemma
reduces the proof of Theorem 2.2 to show convergence in law of S∗N := maxv∈VN S

N
v .

Lemma 5.4. Let {SNv }v∈VN be the field defined in (5.9). Then,

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d(ψ∗N −mN , S
∗
N −mN − 4α) = 0. (5.24)

The proof of Lemma 5.4 is based on the two following lemmas, whose proofs are postponed and
given in Appendix B. The overall idea is the following: Having asymptotically precise covariance
estimates for vertices close-by or at macroscopic distance, and in order to use Slepian’s lemma, we
would like to add independent Gaussian fields living on those scales and control how the laws of
the corresponding centred maxima change under such perturbations. It turns out, that this leads
to a deterministic shift (see Lemma 5.5). Having this control, we can then prove Lemma 5.4. First,
introduce additional notation.

Fix a positive integer r ∈ N and let Br a partition of VbN/rcr into sub-boxes of side length r.
Let B = ∪r∈N,r≤NBr and {gB}B∈B be a collection of i.i.d. standard Gaussian random variables.
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For v ∈ VN , denote by Br(v) ∈ Br the box containing v. For s = (s1, s2) ∈ R2
+, and two positive

integers, r1, r2, define

ψ̃Nv,s,r1,r2 = ψNv + s1gBr1 (v) + s2gBN/r2 (v). (5.25)

Set ψ̃∗N,s,r1,r2 = max
v∈VN

ψ̃Nv,s,r1,r2 and similarly, S̃Nv,s,r1,r2 = SNv +s1gBr1 (v) +s2gBN/r2 (v), and S̃∗N,s,r1,r2 =

max
v∈VN

S̃Nv,s,r1,r2 .

Lemma 5.5. Let {SNv }v∈VN be the field defined in (5.9). Then,

lim sup
r1,r2→∞

lim sup
N→∞

d
(
ψ∗N −mN , ψ̃

∗
N,s,r1,r2 −mN − ‖s‖22

)
= 0, (5.26)

and

lim sup
r1,r2→∞

lim sup
N→∞

d
(
S∗N −mN , S̃

∗
N,s,r1,r2 −mN − ‖s‖22

)
= 0. (5.27)

Lemma 5.6. Let {ψ̄Nv }v∈VN be a centred Gaussian field such that, for all u, v ∈ VN , N ∈ N and
some arbitrary ε > 0, |Var

(
ψNv
)
−Var

(
ψ̄Nv
)
| ≤ ε. Set ψ̄∗N := maxv∈VN ψ̄

N
v . Then there is a function,

l = l(ε), with l(ε)→ 0, as ε→ 0, such that, if E
[
ψ̄Nu ψ̄

N
v

]
≤ E

[
ψNu ψ

N
v

]
+ ε,

lim sup
N→∞

d̃
(
ψ∗N −mN , ψ̄

∗
N −mN

)
≤ l(ε). (5.28)

Else if E
[
ψ̄Nu ψ̄

N
v

]
+ ε ≥ E

[
ψNu ψ

N
v

]
, then

lim sup
N→∞

d̃
(
ψ̄∗N −mN , ψ

∗
N −mN

)
≤ l(ε). (5.29)

Lemma 5.5 and Lemma 5.6 allow to prove Lemma 5.4.

Proof of Lemma 5.4: As in (5.25), we write

ψ̃Nv,s,r1,r2 = ψNv + s1gBr1 (v) + s2gBN/r2 (v), (5.30)

and analogously,

S̃Nv,s,r1,r2 = SNv + s1gBr1 (v) + s2gBN/r2 (v), (5.31)

where s = (s1, s2) ∈ (0,∞)2, r1, r2 ∈ N+ and {gB}B being a collection of i.i.d. Gaussian random
variables. Recall that Br is a collection of sub-boxes of side length r and that this forms a partition
of VbN/rcr. By (5.8), we only need to show that, for any δ > 0,

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d

(
max
v∈V ∗N,δ

ψNv −mN , max
v∈V ∗N,δ

SNv −mN − 4α

)
= 0. (5.32)

Thus, fix δ > 0 and let σ2
∗ = Cδ + 40α with the constant Cδ as in Lemma 5.3, σlw = (0,

√
σ2
∗ + 4α)

and σup = (σ∗, 0). We consider the two Gaussian fields
{
ψ̃N
v,L′,0,L,

√
σ2
∗+4α

}
v∈V ∗N,δ

and{
S̃Nv,L′,σ∗,L,0

}
v∈V ∗N,δ

. By Lemma 5.3 i., ii., iii. and (5.10), one gets for u, v ∈ V ∗N,δ,∣∣∣∣Var

(
ψ̃N
v,L′,0,L,

√
σ2
∗+4α

)
−Var

(
S̃Nv,L′,σ∗,L,0

)∣∣∣∣ ≤ ε̄N,KL,K′L′ , (5.33)

and

E

[
S̃Nu,L′,σ2

∗,L,0
S̃Nv,L′,σ∗,L,0

]
≤ E

[
ψ̃N
u,L′,0,L,

√
σ2
∗+4α

ψ̃N
v,L′,0,L,

√
σ2
∗+4α

]
+ ε̄N,KL,K′L′ , (5.34)
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where lim sup
(L,K,L′,K′,N)⇒∞

ε̄N,KL,K′L′ = 0. Lemma 5.5 implies both

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d

(
max
v∈V ∗N,δ

ψ̃N
v,L′,0,L,

√
σ2
∗+4α

−mN − (σ2
∗ + 4α), max

v∈V ∗N,δ
ψNv −mN

)
= 0, (5.35)

and

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d

(
max
v∈V ∗N,δ

S̃Nv,L′,σ∗,L,0 −mN − σ2
∗, max
v∈V ∗N,δ

SNv −mN

)
= 0. (5.36)

Having (5.33) and (5.34), Lemma 5.6 implies that

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d̃

(
max
v∈V ∗N,δ

ψ̃N
v,L′,0,L,

√
σ2
∗+4α

−mN , max
v∈V ∗N,δ

S̃Nv,L′,σ∗,L,0 −mN

)
= 0. (5.37)

A combination of (5.35), (5.36) and (5.37), and using the triangle-inequality, gives stochastic dom-
ination in one direction, i.e.

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d̃

(
max
v∈V ∗N,δ

ψNv −mN , max
v∈V ∗N,δ

SNv −mN − 4α

)
= 0. (5.38)

For the proof of the other direction of stochastic domination, consider instead the Gaussian fields{
ψ̃N
v,L′,
√
σ2
∗+4α,L,0

}
v∈VN

and
{
S̃Nv,L′,0,L,σ∗

}
. This switches the roles in (5.34) and the rest of the

proof carries out analogously, which concludes the proof of Lemma 5.4. �

5.2. Convergence in law of the auxiliary field. A key step in the proof of Theorem 2.2 is to establish
a precise right-tail estimate for the maximum of the auxiliary process, which is provided in the
following proposition. Before we state it, we introduce additional notation and make a preliminary
observation. For a, b ∈ [0, 1], we write Iσ2(a, b) =

∫ b
a σ

2(x)dx. Let {SNv }v∈VN be the field defined in
(5.9), and set SN,fv := SNv −S

N,c
v . Recall the tail-bounds from Fels (2019, (2.6) in Theorem 2.1). By

Lemma 5.3 and applying Slepian’s lemma, these carry over to {SNv }v∈VN . In particular, Fels (2019,
(2.6) in Theorem 2.1) implies that there are constants cα, Cα > 0 such that for z ≥ 0,

cαe
−2z ≤ P

(
max
v∈VN

SNv ≥ mN + z

)
≤ Cαe−2z. (5.39)

Lemma 5.7. Let γ ∈ (1/2, 1) and fix A > 0. Then, for z ∈ R,

P
(
∃v ∈ VN : SNv ≥mN+z, SN,cv −2 log(2)σ2(0)(k+l) /∈ [−A(k+l)γ , A(k+l)γ ]

)
≤ Ce−

A2(k+l)2γ−1

2 log(2)σ2(0) .
(5.40)

Proof : Denote by νcv,N (·) the density such that for any interval I ⊂ R,∫
I
νcv,N (y)dy = P

(
SN,cv − 2 log(2)σ2(0)(k + l) ∈ I

)
. (5.41)
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For any v ∈ V δ
N , using a union bound the probability in (5.40) is bounded from above by

22n

∫
[−A(k+l)γ ,A(k+l)γ ]c

νcv,N (x)P
(
SN,fv ≥ 2 log(2)Iσ2

(
k + l

n
, 1

)
n− log(n)/4 + z − x

)
dx

= 22n

∫
[−A(k+l)γ ,A(k+l)γ ]c

exp
[
−2 log(2)σ2

1(k + l)− 2x− x2

2 log(2)σ2(0)(k+l)

]
√

2π log(2)σ2(0)(k + l)

× exp

−2 log(2)Iσ2

(
k + l

n
, 1

)
n− 2

(
z − x− log(n)

4

)
−

(
z − x− log(n)

4

)2

2 log(2)Iσ2

(
k+l
n , 1

)
n


×

√
2 log(2)Iσ2

(
k+l
n , 1

)
n

2 log(2)Iσ2

(
k+l
n , 1

)
n− log(n)

4 + z − x
dx. (5.42)

The latter integral decays with e−A2(k+l)2γ−1/(2 log(2)σ2(0), which allows to conclude the proof. �

Write k̄ = k + l and Mn(k, t) = 2 log(2)Iσ2

(
k
n ,

t
n

)
n − ((t)∧(n−l̄)) log(n)

4(n−l̄) , for t ∈ [k, n]. Note that
mN = Mn(0, n), for n = log2N .

Proposition 5.8. Let {SNv }v∈VN be the field defined in (5.9), and set SN,fv := SNv − S
N,c
v . Then,

there are constants Cα, cα > 0, depending only on α, and constants cα ≤ β∗K′,L′ ≤ Cα, such that

lim
z→∞

lim sup
(L′,K′,N)⇒∞

|e2 log(2)(k̄)(1−σ2(0))e−2k̄γe2z
P

(
max

v∈BN/KL,i
SN,fv ≥Mn(k̄, n)− k̄γ + z

)
− β∗K′,L′ | = 0.

(5.43)

In particular, {β∗K′,L′}K′,L′≥0 depends on the variance parameters only through σ(1).

Note that, unlike previous tail estimates obtained in Fels (2019, Theorem 2.1), the estimates
in Proposition 5.8 are precise estimates for the maximum far in front of the expected maximum.
Nevertheless, the proofs are technically similar, i.e. both rely on a truncated second moment
computation. The proof of Proposition 5.8 is postponed to Appendix C, as we first want to use
it to finish the proof of Theorem 2.2. Proposition 5.8 allows to construct the limiting law of
(max
v∈VN

SNv − mN )N≥0, which is the contents of the following: Partition [0, 1]2 into R = (KL)2

disjoint, equal-sized boxes. Let {β∗K′,L′}K′,L′≥0 be given by Proposition 5.8. Then, there is a
function, ρ : R→ R, that grows to infinity arbitrarily slowly, and such that

lim
z′→∞

lim sup
(L′,K′,N)⇒∞

sup
z′≤z≤ρ(K′L′)

∣∣∣∣e2ze−2k̄γe2 log(2)k̄(1−σ2(0))
P

(
max

v∈BN/KL,i
SN,fv ≥Mn(k̄, n) + z − k̄γ

)
−β∗K′,L′

∣∣ = 0. (5.44)

Let {%R,i}1≤i≤R be independent Bernoulli random variables with

P (%R,i = 1) = β∗K′,L′e
2k̄γ22 log(2)k̄(σ2(0)−1). (5.45)

In addition, consider independent random variables {YR,i}1≤i≤R satisfying

P (YR,i ≥ x) = e−2xe−2k̄γ , x ≥ −k̄γ , (5.46)

and let {ZR,i}1≤i≤R be an independent Gaussian field with the same distribution as {SN,cv }v∈VN .
Set

GR,i := %R,i(YR,i + 2 log(KL)(1− σ2(0))) + (ZR,i − 2 log(KL)), (5.47)
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and

G∗K,L,K′,L′ := max
1≤i≤R
%R,i=1

GR,i. (5.48)

Let µ̄K,L,K′,L′ be the distribution of G∗K,L,K′,L′ . Note that it is independent of N , which is essential
for the proof of convergence in law. The following theorem reduces the proof of convergence in law
of maxv∈VN S

N
v −mN , to proving convergence of the sequence {µ̄K,L,K′,L′}K,L,K′,L′ .

Theorem 5.9. Let µN = law of
(

max
v∈VN

SNv −mN

)
. Then,

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d
(
µN , µ̄K,L,K′,L′

)
= 0. (5.49)

In particular, there exists µ∞ such that lim
N→∞

d(µN , µ∞) = 0.

Proof : Denote by τ = arg max
v∈VN

SNv the (unique) particle achieving the maximal value. The correla-

tion estimates in Lemma 5.3, together with Slepian’s lemma and (2.2), imply that maxv∈VN S
N
v −mN ,

as a sequence in n, is tight. Using this fact and the localization of {SN,cv }v∈VN in Lemma 5.7, one
obtains

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

P

(
SN,fτ ≥Mn(k̄, n)− k̄γ

)
= 1. (5.50)

Thus, assume that SN,fτ ≥Mn(k̄, n)− k̄γ holds. To exclude that maxv∈VN S
N,f
v is too large, consider

the event E = ∪Ri=1{maxv∈BN/KL,i S
N,f
v ≥ Mn(k̄, n) + KL + k̄γ}. By a union and a Gaussian tail

bound,

P (E) ≤ 22k̄P
(

max
v∈BN/KL,i

SN,fv ≥Mn(k̄, n) +KL+ k̄γ
)
≤ 22nP

(
SN,fv ≥Mn(k̄, n) +KL+ k̄γ

)
≤ C exp

[
2 log(2)σ2(0)(k + l)− 2KL− 2k̄γ

]
. (5.51)

Thus, one obtains

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

P (E) = 0. (5.52)

Analogously, a union bound on the event E ′ = ∪Ri=1{YR,i ≥ KL+ k̄γ} yields

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

P
(
E ′
)

= 0. (5.53)

As a next step, we couple the centred fine field, Mf
n,i := maxv∈BN/kl,i S

N,f
v −Mn(k̄, n), to the ap-

proximating process GR,i defined in (5.47). By Proposition 5.8, there are ε∗N,KL,K′L′ > 0, satisfying
lim sup

(L,K,L′,K′,N)⇒∞
ε∗N,KL,K′L′ = 0, and such that, for some |ε�| ≤ ε∗N,KL,K′L′/4,

P

(
−Ak̄γ + ε� ≤Mf

n,i ≤ KL+ k̄γ
)

= P
(
%R,i = 1, YR,i ≤ KL+ k̄γ

)
(5.54)

and such that, for all t with −k̄γ − 1 ≤ t ≤ KL+ k̄γ ,

P
(
%R,i = 1, YR,i ≤ t− ε∗N,KL,K′L′/2

)
≤ P

(
−k̄γ + ε� ≤Mf

n,i ≤ t
)

≤ P
(
%R,i = 1, YR,i ≤ t+ ε∗N,KL,K′L′/2

)
. (5.55)
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Thus, there is a coupling of {Mf
n,i : 1 ≤ i ≤ R} and {(%R,i, YR,i) : 1 ≤ i ≤ R}, such that, on the

event (E ∪ E ′)c ,

%R,i = 1, |YR,i −Mf
n,i| ≤ ε

∗
N,KL,K′L′ , if Mf

n,i ≥ ε
∗
N,KL,K′L′ (5.56)

|YR,i −Mf
n,i| ≤ ε

∗
N,KL,K′L′ , if %R,i = 1. (5.57)

Note that, for each N , one possibly needs a different coupling, since Mf
n,i depends on N , whereas

(%R,i, YR,i) does not. A short argument for the existence of such couplings is as follows: In the event
Ec ∩ E ′,c, (5.54) becomes

P
(
−k̄γ + ε� ≤Mf

n,i

)
= P (%R,i = 1) . (5.58)

By (5.55) and since the random variables have distributions that are absolutely continuous with
respect to the Lebesgue measure, there is an increasing function, g : R→ R, with g(t) ∈ [t−ε∗/2, t+
ε∗/2], for −k̄γ − 1 ≤ t ≤ KL+ k̄γ , and such that

P (%R,i = 1, YR,i ≤ g(t)) = P

(
−k̄γ + ε� ≤Mf

n,i ≤ t
)
. (5.59)

Let −k̄γ − 1 = t0 < . . . < tD = KL+ k̄γ be an arbitrary partition. Define sets

Aj := {ω : %R,i(ω) = 1, YR,i(ω) ∈ [g(tj), g(tj+1))}, (5.60)

Bj := {ω : ε� ≤Mf
n,i(ω) ∈ [tj , tj+1)}. (5.61)

In particular, for any 0 ≤ j < D, P (Aj) = P (Bj). Define random variables (%′R,i, Y
′
R,i), i.e for

ω ∈ Bj∩(E ∪ E ′)c, set Y ′R,i(ω) = g(Mf
n,i(ω)) and such that, for all ω ∈ (E ∪ E ′)c∩(∪jBj), %′R,i(ω) = 1.

For ω ∈ E ∪ E ′, set %′R,i(ω) = %R,i(ω) and Y ′R,i(ω) = YR,i(ω). Then (%′R,i, Y
′
R,i)

d
= (%R,i, YR,i), and

(%′R,i, Y
′
R,i) additionally satisfies both (5.56) and (5.57). Concerning the coarse field, one can couple

such that SN,cv = ZR,i, for v ∈ BN/KL,i, 1 ≤ i ≤ R, simply as they have the same law. Thus, there
are couplings, such that, outside an event of vanishing probability as (L,K,L′,K ′, N)⇒∞,

max
v∈VN

(
SNv −mN

)
−G∗K,L,K′,L′ ≤ 2ε∗N,KL,K′L′ . (5.62)

Let τ ′ = argmax1≤i≤RGR,i. In the following, we exclude the case that the maximum of GR,i is
achieved at i = τ ′ and when at the same time, %R,τ ′ = 0. The first order of the maximum of
{SN,cv }v∈VN is given by 2 log(KL)σ(0) (see Bolthausen et al., 2001), which is of order O(log(KL))
less than subtracted in (5.47), and so, ZR,i − 2 log(KL) → −∞, as (L,K) ⇒ ∞. Having this in
mind, considering (5.62) and since (max

v∈VN
SNv −N)N≥0 is tight, it follows that

lim sup
(L,K,L′,K′,N)⇒∞

P
(
%R,τ ′ = 1

)
= 1. (5.63)

By (5.56), (5.57) and (5.63), there are couplings, such that outside a set with probability tending
to 0, as (L,K,L′,K ′, N)⇒∞, it holds that∣∣∣∣max

v∈VN
SNv −mN −G∗K,L,K′,L′

∣∣∣∣ ≤ 2ε∗N,KL,K′L′ , (5.64)

which proves (5.49). Moreover, (5.64) implies that µN is a Cauchy sequence and that there is µ∞,
such that lim

N→∞
d(µN , µ∞) = 0, which concludes the proof of Theorem 5.9. �
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Proof of Theorem 2.2: Recall that G∗K,L,K′,L′ is a random variable with law µ̄K,L,K′,L′ . The goal is
to construct a sequence of random variables, {DK,L}K,L≥0, which are measurable with respect to
Fc := σ ({ZR,i})Ri=1, with R := (KL)2, and so that, for any x ∈ R,

lim sup
(L,K,L′,K′)⇒∞

µ̄K,L,K′,L′((−∞, x])

E

[
exp(−β∗K′,L′DK,Le−2x)

] = lim inf
(L,K,L′,K′)⇒∞

µ̄K,L,K′,L′((−∞, x])

E

[
exp(−β∗K′,L′DK,Le−2x)

] = 1. (5.65)

Regarding (5.63), assume %R,τ ′ = 1. Moreover, let

SR,i := 2 log(KL)(1 + σ2(0))− ZR,i, for i = 1, . . . , R. (5.66)

For x ∈ R, it holds

µ̄K,L,K′,L′((−∞, x]) = P
(
G∗K,L,K′,L′ ≤ x

)
(5.67)

= E

[
R∏
i=1

(
1−P

(
%R,i

(
YR,i + 2 log(KL)(1− σ2(0))

)
> 2 log(KL)− ZR,i + x

)) ∣∣∣∣Fc
]
.

A union bound on Dc = {min1≤i≤R 2 log(KL) − ZR,i ≥ 0}c, shows that lim sup
KL→∞

P (D) = 1. Thus,

on the event D and using (5.45), (5.46), (5.66), one deduces

P
(
%R,iYR,i > 2 log(KL)σ2(0)− ZR,i + x|Fc

)
= β∗K′,L′e

−2(SR,i+x). (5.68)

Note that (5.68) tends to 0, as KL→∞. Using the fact that e−
x

1−x ≤ 1− x ≤ e−x, for x < 1, and
inserting for x the probability in (5.68), it follows that there is a non-negative sequence {εK,L}K,L≥0,
satisfying lim sup

KL→∞
εK,L = 0, and such that

exp
(
−(1 + εK,L)β∗K′,L′e

−2(SR,i+x)
)
≤ P

(
%R,iYR,i ≤ 2 log(KL)σ2(0)− ZR,i + x|Fc

)
≤ exp

(
−(1− εK,L)β∗K′,L′e

−2(SR,i+x)
)
. (5.69)

Plugging (5.69) into (5.67) yields (5.65). Combining (5.65) with Theorem 5.9 implies that there is
a constant β∗, such that

lim sup
(K′,L′)⇒∞

|β∗K′,L′ − β∗| = 0. (5.70)

Set

DK,L =
R∑
i=1

e−2SR,i . (5.71)

Combining (5.70) with (5.65), it follows that

lim sup
(L,K,L′,K′)⇒∞

µ̄K,L,K′,L′((−∞, x])

E [exp(−β∗DK,Le−2x)]
= lim inf

(L,K,L′,K′)⇒∞

µ̄K,L,K′,L′((−∞, x])

E [exp(−β∗DK,Le−2x)]
= 1. (5.72)

Theorem 5.9 and (5.72) imply that DK,L converges weakly to a random variable D, as (L,K)⇒∞.
(5.71) shows that DK,L depends solely on (KL)2 = R. Moreover, as µ̄K,L,K′,L′ is a tight sequence
of laws, it follows that almost surely, D > 0. This concludes the proof of Theorem 2.2. �

Note that the random variables {DK,L}K,L≥0, defined in (5.71), are the analogue of the “McKean
martingale” in variable-speed BBM (see Bovier and Hartung, 2015, (1.14)).
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Appendix A. Gaussian comparison and covariance estimates

Theorem A.1 (Slepian’s Lemma, Ledoux and Talagrand, 2011, Theorem 3.11). Let T = {1, . . . , n}
and X,Y be two centred Gaussian vectors. Assume further that it exist two subsets A,B ⊂ T × T ,
so that

E[XiXj ] ≤ E[YiYj ], (i, j) ∈ A (A.1)
E[XiXj ] ≥ E[YiYj ], (i, j) ∈ B (A.2)
E[XiXj ] = E[YiYj ], (i, j) /∈ A ∪B. (A.3)

Suppose f : Rn → R is smooth, with at most exponential growth at infinity of f and its first and
second derivatives , and

∂ijf ≥ 0, (i, j) ∈ A (A.4)
∂ijf ≤ 0, (i, j) ∈ B. (A.5)

Then,

E[f(X)] ≤ E[f(Y )]. (A.6)

Remark A.2. We use Slepian’s Lemma in a very particular setting: Assume that E
[
X2
i

]
= E

[
Y 2
i

]
and E [XiXj ] ≥ E [YiYj ], for all i, j ∈ T. Then, for any x ∈ R,

P

(
max
i∈T

Xi > x

)
≤ P

(
max
i∈T

Yi > x

)
, (A.7)

and

E

[
max
i∈T

Xi

]
≤ E

[
max
i∈T

Yi

]
. (A.8)

Theorem A.3 (Sudakov-Fernique, Fernique (1975, Sudakov-Fernique)). Let I be an arbitrary set
with cardinality |I| = n, {Xi}i∈I , {Yi}i∈I be two centred Gaussian vectors. Define γXij := E[(Xi −
Xj)

2], γYij := E[(Yi − Yj)2]. Let γ := maxi,j |γXij − γYij |. Then,

|E[X∗]−E[Y ∗]| ≤
√
γ log(n). (A.9)

If γXij ≤ γYij for all i, j then E[X∗] ≤ E[Y ∗]. (A.10)

In particular, if {Xi}i∈I , {Yi}i∈I are independent centred Gaussian fields, then

E

[
max
i∈I

(Xi + Yi)

]
≥ E

[
max
i∈I

Xi

]
. (A.11)

A.1. Covariance estimates.

Proof of Lemma 3.3: The proof of statement i. is a simple adaptation of the proof of the analogue
statement for finitely many scales Fels (2019, Lemma 3.3). Statement ii. is immediate. The forth
statement follows by a combination of i. with iii.. In the following, we prove statement iii.. Let
u, v ∈ V δ

N and denote by bN (u, v) = 1 − log+ ‖u−v‖2
logN the “branching scale”. By the Gibbs-Markov

property of the DGFF, increments ∇φNu (s), ∇φNv (s) beyond bN (u, v) are independent. By (1.5),
one has

E
[
ψNu ψ

N
v

]
=

∫ 1

0

∫ 1

0
σ(s)σ(t)E

[
∇φNu (s)∇φNv (t)

]
dsdt. (A.12)

To compute the discrete gradients, it suffices to consider E
[
φNu (s)φNv (t)

]
, for s, t ∈ [0, 1]. Let S

be a simple random walk with hitting times τ∂A = inf{r ≥ 0 : Sr ∈ ∂A}, for A ⊂ Z2. Let
c : ∂[−1

2 ,
1
2 ]2 → R2 be the continuous function, encoding the relative position on the boundary, such
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that, for x ∈ (0, 1), u ∈ Z2 and z ∈ ∂[xN+u]λi , z = xN+u+c(z)N1−λi . In particular, the function
c is in both components absolutely bounded away from zero by 1/2 and from above by

√
1/2. For

0 ≤ s < t ≤ 1, we have

E
[
φNu (s)φNv (t)

]
=

∑
x∈∂[u]s
y∈∂[v]t

Pu
(
Sτ∂[u]s

= x
)
Pv
(
Sτ∂[v]t

= y
)
E
[
φNu+c(x)N1−sφ

N
v+c(y)N1−t

]

=
∑

x∈∂[u]s
y∈∂[v]t

Pu
(
Sτ∂[u]s

= x
)
Pv
(
Sτ∂[v]t

= y
) [
−a
(
u− v +N1−s(c(x)− c(y)N s−t)

)

+
∑
z∈∂VN

Pu+c(x)N1−s

(
Sτ∂VN = z

)
a(z − v − c(y)N1−t)

 , (A.13)

where a denotes the Potential kernel, which satisfies the asymptotics

a(x) = log ‖x‖2 + c0 +O(‖x‖−2
2 ), (A.14)

as ‖x‖2 → ∞. Using this asymptotics and the approximate uniformity of the harmonic measure
away from the boundary Biskup and Louidor (2018, Lemma B.5), the second sum in is about
log(N) + O(1), and the first is about log(N1−s) + O(1) if s < t and if ‖u − v‖2 � N1−s, i.e.
bN (u, v) ≤ s− εN with εN = 4/ logN . In particular,∫ 1

s+εN

E
[
φNu (s)∇φNv (t)

]
dt = 0, (A.15)

and, if ‖u− v‖2 < N1−t,∫ t−εN

0
E
[
∇φNu (s)φNv (t)

]
ds = (t− εN ) log(N) +O(1), (A.16)

where the constant order term is uniform in N . (A.15) and (A.16) imply that the integral in (A.12)
concentrates on the diagonal. Then, by independence of increments beyond the branching scale,

E
[
ψNu ψ

N
v

]
=

∫ 1

0
σ2(s)E

[
∇φNu (s)∇φNv (s)

]
ds =

∫ bN (u,v)−εN

0
σ2(s)E

[
∇φNu (s)∇φNv (s)

]
ds

+

∫ bN (u,v)

bN (u,v)−εN
σ2(s)E

[
∇φNu (s)∇φNv (s)

]
ds. (A.17)

By Cauchy-Schwarz, the second integral in (A.17) is absolutely bounded by a constant C which
depends on σ but is independent of N . To bound the first integral in (A.17) with s = t, note
that in (A.13) there are 2π‖u − v‖2 many pairs, x ∈ ∂[u]s, y ∈ [v]s that have distance less than
‖u− v‖2 at scale bN (u, v)− εN . By Biskup and Louidor (2018, Lemma B.5) the harmonic measures
evaluate to approximately 1/4‖u − v‖2. Thus, the sum over these particles is at most of order
O
(

log+ ‖u−v‖
‖u−v‖2

)
= O(1). For summands x ∈ ∂[u]s, y ∈ [v]s and ‖x− y‖2 ≥ ‖u− v‖2, we use (A.14)

and Biskup and Louidor (2018, Lemma B.5), to deduce that the first integral in (A.17) equals

logN

∫ bN (u,v)−εN

0
σ2(s)ds+O(1) = logNIσ2

(
1−

log+ (‖u− v‖2)

logN

)
+O(1). (A.18)

This concludes the proof of the extension. �

Proof of Lemma 3.4: We start with the proof of the first statement. First note that by Lemma 3.3
iii., for xN + u, xN + v ∈ V δ

N , it holds that

E
[
ψNxN+uψ

N
xN+v

]
= log(N) +O(1). (A.19)
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Thus, one has to show that, as N → ∞, the constant order contribution may depend on u, v, but
not on x and apart from this, has fluctuations which vanish as N →∞. By (1.5), one has

E
[
ψNxN+uψ

N
xN+v

]
=

∫ 1

0
σ2(s)E

[
∇φNxN+u(s)∇φNxN+v(s)

]
ds

=

∫ λ0

0
σ2(s)E

[
∇φNxN+u(s)∇φNxN+v(s)

]
ds

+

∫ 1−λ1

λ0

σ2(s)E
[
∇φNxN+u(s)∇φNxN+v(s)

]
ds+

∫ 1

1−λ1

σ2(s)E
[
∇φNxN+u(s)∇φNxN+v(s)

]
ds. (A.20)

We choose λ0, λ1 = O
(

log logN
logN

)
, such that

σ2(0)λ0 + σ2(1)λ1 +

∫ 1−λ1

λ0

σ2(s)ds = 1. (A.21)

Note that we have by assumptions ‖u − v‖2 ≤ L, for L � N and thus, we can assume bN (xN +
u, xN + v) > 1 − λ1. For the first integral in (A.20), we use a Taylor expansion of σ2 at 0, i.e.
σ2(s) = σ2(0) + 2σ(0)σ′(0)s+ o(σ(0)σ′(0)s), for s ≥ 0 small. Thus, the first integral becomes∫ λ0

0
σ2(0)E

[
∇φNxN+u(s)∇φNxN+v(s)

]
ds+O(λ2

0 logNσ(0)σ′(0))

= σ2(0)E
[
φNxN+u(λ0)φNxN+v(λ0)

]
+O(λ2

0 logNσ(0)σ′(0)), (A.22)

where the error term vanishes as N → ∞, since λ2
0 logN = O

(
log logN

logN

)
. Similarly, by a Taylor

expansion of σ2 at 1, i.e. σ(s) = σ2(1)− 2σ(1)σ′(1)(1− s) + o(σ(1)σ′(1)(1− s)), for s < 1 close to
one, the last integral in (A.20) can be computed as∫ 1

1−λ1

σ2(1)E
[
∇φNxN+u(s)∇φNxN+v(s)

]
ds+O(λ2

1 logNσ(1)σ′(1))

= σ2(1)E
[(
φNxN+u(1)− φNxN+u(1− λ1)

) (
φNxN+v(1)− φNxN+v(1− λ1)

)]
+O(λ2

1 logNσ(1)σ′(1)).
(A.23)

Similarly as in (A.22), the error term vanishes as N →∞. In all three cases in (A.20), using (A.22)
and (A.23), it suffices to compute quantities of the form E

[
φNxN+u(s)φNxN+v(s)

]
. The case when

s = 0 is trivial since, for any v ∈ VN , φNv (0) = 0, as the harmonic average of the value zero is zero.
Note that by Biskup and Louidor (2018, (B.5),(B.6),(B.7)) one has, for v, w ∈ VN ,

E
[
φNv φ

N
w

]
= −a(v − w) +

∑
z∈∂VN

Pv
(
Sτ∂VN = w

)
a(z − w), (A.24)

where a denotes the potential kernel, with representation as in (A.14). First, consider the case
when 0 < s < 1. Note that the discrete harmonic measure converges weakly to the harmonic
measure associated to Brownian motion (Biskup, 2020, Lemma 1.23), i.e. to the measure Π(x,A) :=

Px
(
Bτ∂[0,1]2

∈ A
)
, where (Bt)t≥0 is Brownian motion in R2 killed upon exiting [0, 1]2. Moreover,

since the logarithm is continuous and bounded in a neighbourhood of ∂[0, 1]2, using (A.24) and the
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weak convergence of the discrete harmonic measure, one obtains

E
[
φNxN+u(s)φNxN+v(s)

]
=

∑
z∈∂[xN+u]s
y∈∂[xN+v]s

PxN+u

(
Sτ∂[xN+u]s

= z
)
PxN+v

(
Sτ∂[xN+v]λi

= y
)
E
[
φNz φ

N
y

]

=
∑

z∈∂[xN+u]s
y∈∂[xN+v]s

PxN+u

(
Sτ∂[xN+u]s

= z
)
PxN+v

(
Sτ∂[xN+v]s

= y
) (
−a(u− v +N1−s(c(z)− (y)))

+
∑

w∈∂VN

PxN+u+N1−s

(
Sτ∂VN = w

)
a(w − xN − v −N1−sc(y))


= − logN1−s + logN + f(x) + o(1) = s logN + f(x) + o(1),

(A.25)

where f(x) =
∫
z∈∂[0,1]2 Π(x,dz) log ‖z − x‖2. In particular, f is continuous. Using (A.25) and

(A.22), the first integral in (A.20) can be rewritten as

σ2(0) (λ0 logN + f(x)) + o(1). (A.26)

For the remaining case, s = 1, call ei the i−th unit vector. By (A.24) and using weak convergence
of the discrete harmonic measure (Biskup, 2020, Lemma 1.23),

E
[
φNxN+u(1)φNxN+v(1)

]
= E

[
φNxN+uφ

N
xN+v

]
= logN + f(x)− a(u, v) + o(1). (A.27)

Using (A.23) and (A.27) allows to rewrite the third integral in (A.20) as

σ2(1) (λ1 logN − a(u, v)) + o(1). (A.28)

Inserting (A.26), (A.28) into (A.20), using (A.25), (A.21) and Iσ2(1) = 1, one obtains,

E
[
ψNxN+uψ

N
xN+v

]
= logN + σ(0)2f(x) + σ(1)2g(u, v) + o(1), (A.29)

with g(u, v) = −a(u, v) and where o(1) → 0, as N → ∞. This concludes the proof of statement i.
in Lemma 3.4.

The covariances in the off-diagonal case, i.e. when x 6= y ∈ (0, 1)2, ‖x − y‖2 ≥ 1/L, can
be computed similarly, now by Taylor expansion of the variance σ2(s) at 0. First note that, for
λ = log logN

logN and N large enough, λ > bN (xN, yN). Thus,

E
[
ψNxNψ

N
yN

]
=

∫ λ

0
σ2(s)E

[
∇φNxN (s)∇φNyN (s)

]
ds = σ2(0)E

[
φNxN (λ)φNyN (λ)

]
+O(σ(0)σ′(0)λ2 logN).

(A.30)

By choice of λ, O (σ(0)σ′(0)λ logN) = O
(
σ(0)σ′(0) log logN

logN

)
= o(1).

σ2(0)E
[
φNxN (λ)φNyN (λ)

]
= σ2(0)

∑
u∈∂[xN ]λ
v∈∂[xN ]λ

PxN
(
Sτ∂[xN ]λ

= u
)
PyN

(
Sτ∂[yN ]λ1

= v
)
E
[
φNu φ

N
v

]
.

(A.31)



Convergence of the centred maximum of the 2d scale-inhomogeneous DGFF 1917

Using (A.24) and previous notation allows to reformulate (A.31) as

σ2(0)
∑

u∈∂[xN ]λ
v∈∂[xN ]λ

PxN
(
Sτ∂[xN ]λ

= u
)
PyN

(
Sτ∂[yN ]λ

= v
)(
−a(N(x− y +N−λ(c(u)− c(v))))

+
∑

w∈∂VN

PxN
(
Sτ∂VN = w

)
a(w − yN)

 . (A.32)

Using (A.14), we rewrite (A.32) as

σ2(0)
∑

u∈∂[xN ]λ
v∈∂[xN ]λ

PxN
(
Sτ∂[xN ]λ

= u
)
PyN

(
Sτ∂[yN ]λ

= v
)

(− logN − log ‖x− y‖2 − c0 + o(1)

+
∑

w∈∂VN

PxN
(
Sτ∂VN = w

)
(logN + log ‖c(w)− y‖2 + c0 + o(1))


= σ2(0)h(x, y) + o(1), (A.33)

where h(x, y) = − log ‖x−y‖2+
∫
∂[0,1]2 Π(x,dz) log ‖z−y‖2, by the weak convergence of the harmonic

measure to Π. In particular, h is continuous on [0, 1]2 \ {(x, x) : x ∈ [0, 1]}. This concludes the
proof of the second statement and thus, of Lemma 3.4. �

Proof of Lemma 5.3: We start with the proof of (i). Let i′ be such that u, v ∈ BL′,i ⊂ BK′L′,i′ . By
(5.9), one has

SNu − SNv =
(
SN,cu − SN,cv

)
+
(
SN,mu − SN,mv

)
+
(
SN,bu − SN,bv

)
+ Φi′

(
aK′L′,ū − aK′L′,v̄

)
= SN,bu − SN,bv + Φi′

(
aK′L′,ū − aK′L′,v̄

)
. (A.34)

In particular, by (5.19), |aK′L′,ū − aK′L′,v̄| ≤ εN,KL,K′L′ , and so∣∣∣E [(SNu − SNv )2]−E [(ψNu − ψNv )2]∣∣∣
≤ 4εN,KL,K′L′ +

∣∣∣∣σ2(1)E

[(
φK
′L′

u−vK′L′,i′ − φ
K′L′
v−vK′L′,i′

)2
]
−E

[(
ψNu − ψNv

)2]∣∣∣∣ . (A.35)

Using the tower property of conditional expectation, conditioning {ψNv }v∈VN on
σ
(
φNw : w ∈ [vK′L′,i′ ]

c
K′L′

)
and using (A.27) and Lemma 3.4 ii., it follows that

lim sup
(L,K,L′,K′,N)⇒∞

sup
u,v∈BL′,i∩V ∗N,δ
1≤i≤(N/L′)2

∣∣∣∣σ2(1)E

[(
φK
′L′

u−vK′L′,i′ − φ
K′L′
v−vK′L′,i′

)2
]
−E

[(
ψNu − ψNv

)2]∣∣∣∣ = 0.

(A.36)

Statement i. follows from (A.36) together with (A.35). Next, we prove ii.. Let i′ 6= j′ be such that
u ∈ BN/KL,i′ , v ∈ BN/KL,j′ and assume without loss of generality that N � K ′ � L′ � K � L�
1/δ. Since vertices u and v belong to distinct boxes of side length N/KL and thus, also to distinct
K ′L′−boxes, both E

[
SN,mu SN,mv

]
= 0 and E

[
SN,bu SN,bv

]
= 0. Using these observations, scaling the

DGFF from VKL to VN and by (A.24),

E
[
SNu S

N
v

]
= E

[
SN,cu SN,cv

]
= σ2(0)E

[
φKLwi′ φ

KL
wj′

]
= σ2(0)E

[
φNvN/KL,i′φ

N
vN/KL,j′

]
+ o(1). (A.37)
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Since ‖vN/KL,i′−uN ‖2, ‖
vN/KL,j′−v

N ‖2 = O
(

1
KL

)
, Biskup and Louidor (2018, Lemma B.14) implies

lim sup
(L,K,L′,K′,N)⇒∞

sup
u∈BN/KL,i′∩V ∗N,δ

v∈BN/KL,j′∩V ∗N,δ, i
′ 6=j′

∣∣E [SNu SNv ]− σ2(0)E
[
φNu φ

N
v

]∣∣ = 0. (A.38)

On the other hand, the vertices u, v are at distance of order N/KL away from each other. Since
considering limits of the form (L,K,L′,K ′, N) ⇒ ∞, one can assume that N/KL � N1−λ1 , and
thus E

[
φNu φ

N
v

]
= E

[
φNu (λ1)φNv (λ1)

]
. Therefore, by a Taylor expansion of σ2 at 0 as in (A.30),∣∣E [ψNu ψNv ]− σ2(0)E

[
φNu φ

N
v

]∣∣ =
∣∣σ2(0)E

[
φNu (λ1)φNv (λ1)

]
− σ2(0)E

[
φNu φ

N
v

]∣∣+ o(1)→ 0, (A.39)

as N → ∞. (A.38) together with (A.39) implies statement ii.. Note that for statement iii., one
has ‖u − v‖2 = O(N/L). This allows to approximate as in (A.39). Note that in this case, there
is a constant L ≥ c(u, v) > 0, such that the leading order of the first covariance is given by
log(‖u−v‖2 +N1−λ1)− log(‖u−v‖2) = log

(
1 + cL

Nλ1

)
. In the following, we distinguish three cases:

(1) u, v ∈ BK′L′,i but u ∈ BL′,i′ and v ∈ BL′,j′
(2) u, v ∈ BN/KL,i, but u ∈ BK′L′ ,̃i and v ∈ BK′L′,j̃
(3) u ∈ BN/KL,i ∩BL′,i′ and v ∈ BN/KL,j ∩BL′,j′ .

In case (1), SN,cu = SN,cv and SN,mu = SN,mv and so, using notation from the proof of Lemma 3.4, by
(A.24), (5.13), (5.17) and as in (A.27),

E
[
SNu S

N
v

]
= Var

[
SN,cu SN,cv

]
+ Var

[
SN,mu

]
+E

[
SN,bu SN,bv

]
+ aK′L′,ūaK′L′,v̄ + o(1)

= logN + σ2(0)f
( u
N

)
+ σ2(1)

(
−a(u− v) +

∫
∂[0,1]2

Π
( u
N
,dz
)
a
(
z − v

K ′L′

))
+ aK′L′,ūaK′L′,v̄ + o(1). (A.40)

Since u, v ∈ V ∗N,δ are away from the boundary, the integral in (A.40) is bounded by a constant Cδ,
depending on δ. Thus, (A.40) can be written as logN−σ2(1) log+ ‖u−v‖2+O(1), where the constant
order term is bounded by 8α+Cδ. By Lemma 3.3 iii., E

[
ψNu ψ

N
v

]
= logN−σ2(1) log+ ‖u−v‖2+O(1),

where the constant order term is bounded by α. Thus, statement ii. follows in case (1). In case (2),
E
[
SN,bu SN,bv

]
= 0. Thus, there is a constant c1 > 0, such that

E
[
SNu S

N
v

]
= E

[
SN,cu SN,cv

]
+ E

[
SN,mu SN,mv

]
+ c1. (A.41)

To estimate the first covariance in (A.41), apply (A.24) and for the second, note that {SN,mv }v∈VN
is a MIBRW, and thus, using Lemma 3.3 i. and iii., statement ii. follows, in case (2). In case (3),
E
[
SN,mu SN,mv

]
= 0 and E

[
SN,bu SN,bv

]
= 0. By scaling the DGFF as in (A.37) and using (A.24),

E
[
SNu S

N
v

]
= E

[
SN,cu SN,cv

]
= σ2(0)

(
log(N)− log+(‖u− v‖2)

)
+ c+ o(1), (A.42)

where c is a bounded constant depending on δ and where the error o(1) vanishes as N → ∞. The
same reasoning applied to E

[
ψNu ψ

N
v

]
as in (A.39), implies the claim in this remaining case and

thereby concludes the proof Lemma 5.3. �

Appendix B. Proof of Lemma 5.5 and Lemma 5.6

We prove Lemma 5.5 in the case of the scale-inhomogeneous DGFF. The proof for the approx-
imating field, {SNv }V ∈VN , is essentially identical. This is due to Lemma 5.3, which allows to use
Gaussian comparison to reduce the proof to the one we provide.
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Lemma B.1. Let {gNv : u ∈ VN} be a collection of random variables, independent of the centred
Gaussian field, {ψ̄Nu : u ∈ VN}, and the 2d scale-inhomogeneous DGFF, {ψNu : u ∈ VN}, such that

P
(
gNu ≥ 1 + y

)
≤ e−y2 ∀u ∈ VN . (B.1)

Assume further that there is some δ > 0, such that, for all v, w ∈ VN , E
[
ψ̄Nv ψ̄

N
w

]
−E

[
ψNv ψ

N
w

]
| ≤ δ.

Then, there is a constant C = C(α), such that, for any ε > 0, N ∈ N and x ≥ −
√
ε,

P

(
max
v∈VN

(
ψ̄Nv + εgNv

)
≥ mN + x

)
≤ P

(
max
v∈VN

ψ̄Nv ≥ mN + x−
√
ε

)(
Ce−C

−1ε−1
)
. (B.2)

Proof : Let Γy := {v ∈ VN : y/2 ≤ εgNv ≤ y}. Then,

P
(

max
v∈VN

(
ψ̄Nv + εgNv

)
≥ mN + x

)
≤P

(
max
v∈VN

ψ̄Nv ≥ mN + x−
√
ε

)
+
∞∑
i=0

E

[
E

[
1maxv∈Γ

2i
√
ε
ψ̄Nv ≥mN+x−2i

√
ε

∣∣∣∣Γ2i
√
ε

]]
. (B.3)

By Proposition 5.1, the last sum in (B.3) can be bounded from above by

c̃e−2x
∞∑
i=0

E

[
|Γ2i

√
ε|/|VN |

]
e2i+1√ε, (B.4)

with c̃ > 0 being a finite constant. By assumption (B.1), one has

E

[
|Γ2i

√
ε|/|VN |

]
≤ e−4i(Cε)−1

. (B.5)

Thus, (B.4) is bounded from above by c̃e−2xe−(Cε)−1 . This concludes the proof of Lemma B.1. �

Proposition B.2. Let {ϕNv }v∈VN , {ϕ̃Nv }v∈VN be two independent centred Gaussian fields satisfying
the covariance estimates in Lemma 5.3, and let {gB : B ⊂ VN} be a family of independent standard
Gaussians. Moreover, let σ̃ = (σ̃1, σ̃2) ∈ R2

+ and {ϕN,r,σ̃v : v ∈ VN} and {ϕN,σ̃,∗v : v ∈ VN} be two
centred Gaussian fields, given by

ϕN,r1,r2,σ̃v = ϕNv + σ̃1gBv,r1 + σ̃2gBv,N/r2 , (B.6)

and

ϕN,σ̃,∗v = ϕNv +

√
‖σ̃‖22
logN

ϕ̃Nv , (B.7)

for v ∈ VN . Set MN,r1,r2,σ̃ = max
v∈VN

ϕN,r1,r2,σ̃v , and likewise, MN,σ̃,∗ = max
v∈VN

ϕN,σ̃,∗v . Then, for any

fixed σ̃ ∈ (0,∞)2,

lim
r1,r2→∞

lim sup
N→∞

d (MN,r1,r2,σ̃ −mN ,MN,σ̃,∗ −mN ) = 0. (B.8)

Proof : Partition VN into boxes of side length N/r2 and denote by B the collection of these boxes.
Fix arbitrary δ > 0, for B ∈ B denote by Bδ the box with the same centre as B, but with side length
(1 − δ)N/r2. The union of such restricted boxes, we call VN,δ =

⋃
B∈B

Bδ. The maxima over these

sets, we denote by MN,r1,r2,σ̃,δ = max
v∈VN,δ

ϕN,r1,r2,σ̃v and MN,σ̃,∗,δ = max
v∈VN,δ

ϕN,σ̃,∗v . By Proposition 5.1,

lim
δ→0

lim
N→∞

P (MN,r1,r2,σ̃,δ 6= MN,r1,r2,σ̃) = lim
δ→0

lim
N→∞

P (MN,σ̃,∗,δ 6= MN,σ̃,∗) = 0. (B.9)

Thus, it suffices to show equation (B.8) with MN,r1,r2,σ̃,δ −mN and MN,σ̃,∗,δ −mN . Next, we show
that the main contribution to the maximum is given by {ϕNv }v∈VN , while the perturbation fields only
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have a negligible influence. For B ∈ B, let zb ∈ B the maximizing element, i.e. maxv∈Bδ ϕ
N
v = ϕNzB .

The claim is that

lim
r1,r2→∞

lim sup
N→∞

P

(
|MN,r1,r2,σ̃,δ −max

B∈B
ϕN,r1,r2,σ̃zB

| ≥ 1

log n

)
= lim sup

N→∞
P

(
|MN,σ̃,∗,δ −max

B∈B
ϕN,σ̃,∗zB

| ≥ 1

log n

)
= 0. (B.10)

We first show how Proposition B.2 follows from (B.10). Assuming (B.10), conditioning on the posi-
tions of the maximum, {zB}B∈B, one deduces that the centred Gaussian field{√
‖σ̃‖22/ logNϕ̃NzB

}
B∈B

has pairwise correlations of order at most O(1/ logN). Thus, the con-

ditional covariance matrices of
{√

‖σ̃‖22
log(N) ϕ̃

N
zB

}
B∈B

and {σ̃1gBzB,r1 + σ̃2gBzB,N/r2}B∈B are within

O(1/ logN) of each other entry-wise. In combination with (B.10) this proves Proposition B.2. It
remains to prove (B.10). Suppose that on the contrary, either of the events considered in the
probabilities in (B.10) occurs. By (2.2) and Gaussian comparison, we know that E1 = E1(C) =
{ω : MN,r1,r2,σ̃,δ /∈ (mN − C,mN + C)} ∪ {MN,σ̃,∗,δ /∈ (mN − C,mN + C)} has a probability
tending to 0, i.e. lim

C→∞
lim sup
N→∞

P (E1) = 0. Moreover, Theorem 2.3 implies that also the event

E2 = {ω : ∃u, v ∈ VN : ‖u − v‖2 ∈ (r,N/r) and min(ϕNu , ϕ
N
v ) > mN − c log log r} cannot occur,

i.e. lim
r→∞

lim sup
N→∞

P (E2) = 0. Note that Theorem 2.3 is stated only for the scale-inhomogeneous

DGFF. However, using the covariance assumptions and Gaussian comparison, it is possible to re-
place {ψNv }v∈VN with {ϕNv }v∈VN throughout the proof of Theorem 2.3. This allows to assume the
event Ec1 ∩ Ec2. To show (B.10), we consider the following events:

– E3 = Ẽ3∪E∗3 , where Ẽ3 = {ω : ∃v ∈ VN : ϕN,r1,r2,σ̃= MN,r1,r2,σ̃,δ, ϕ
N
v ≤ mN−c log log r} and

E∗3 = {ω : ∃v ∈ VN : ϕN,σ̃,∗v = MN,σ̃,∗,δ, ϕ
N
v ≤ mN − c log log r}.

– E4 = {ω : ∃v ∈ B,B ∈ B : ϕNv ≥ mN − c log log r and
√
‖σ̃‖22
logN

(
ϕ̃Nv − ϕ̃NzB

)
≥ 1/ log n}.

E3: Let Γx = {v ∈ VN : ϕN,r1,r2,σ̃v −ϕNv ∈ (x, x+1)}. The idea is that, by localizing and conditioning
on the difference of the two Gaussian fields through the set Γx, one can use Proposition 5.1 to bound
max
v∈Γx

ϕNv from above, i.e.

P
(
Ec1 ∩ Ẽ3

)
≤ P

(
max

x≥c log(n)−C
max
v∈Γx

ϕN,r1,r2,σ̃v ≥ mN − C
)
≤

∑
x≥c log(n)−C

P

(
max
v∈Γx

ϕN,r1,r2,σ̃v ≥ mN − C
)

≤
∑

x≥c log(n)−C

E

[
P
(

max
v∈Γx

ϕNv ≥ mN − x− C|Γx
)]
≤ c̃

∑
x≥c log(n)−C

E [|Γx|/|VN |] e2x.

(B.11)

By a first moment bound for Gaussian random variables, one has

E

[
|Γx|1/2/|VN |1/2

]
≤E

[
|{v ∈ VN : σ̃1gBv,r1 + σ̃2gBv,N/r2 ∈ (x, x+ 1)}|1/2

]
/|VN |1/2

≤P
(
σ̃1gBv,r1 + σ̃2gBv,N/r2 ∈ (x, x+ 1)

)1/2
≤ e−c

′
x2
/c
′
, (B.12)

for some constant c′ = c
′
(σ, σ̃) > 0. Thus,

lim sup
C→∞

lim sup
r→∞

lim sup
N→∞

P

(
Ec1(C) ∩ Ẽ3

)
= 0. (B.13)
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In the same way, one can prove an analogue estimate for E∗3 in place of Ẽ3, which gives

lim sup
C→∞

lim sup
r→∞

lim sup
N→∞

P (Ec1(C) ∩ E3) = 0. (B.14)

E4: Let Γ
′
r = {v ∈ VN : ϕNv ≥ mN − c log log r}. In VN , there can be at most r2 particles at

minimum distance N/r, and around each of these, one can find approximately r2 particles in VN
which are within distance r. Thus, on Ec2, one has |Γ′r| ≤ 2r4. Further, for each v ∈ B ∩ Γ

′
r and

in the event of Ec2, one has ‖v − zB‖2 ≤ r. Thus, by independence between the Gaussian fields
{ϕNv }v∈VN and {ϕN,

′
v }v∈VN , and using 2nd order Chebychev’s inequality,

P

√ ‖σ̃‖22
logN

(
ϕN,

′
v − ϕN,′zB

)
≥ 1

log logN

 ≤ (c̃(σ, σ̃) log r + c1) (log logN)2

logN
, (B.15)

where c̃, c1 > 0 are finite constants. Therefore, and by a union bound,

lim sup
r→∞

lim sup
N→∞

P (E4 ∩ Ec2) ≤ lim sup
r→∞

lim sup
N→∞

2r4[c̃(σ, σ̃) log r + c1]
(log logN)2

logN
= 0. (B.16)

This concludes the proof of equation (B.10) and thereby, the proof of Proposition B.2. �

Proof of Lemma 5.5: We prove Lemma 5.5 in the case of the scale-inhomogeneous DGFF.
Lemma 5.5 for the approximating field follows from Gaussian Define ψ̄N,σ̃ =

(
1 +

‖σ̃‖22
2 logN

)
ψNv ,

for v ∈ VN , and set MN = maxv∈VN ψ
N
v and M̄N,σ̃ = max

v∈VN
ψ̄N,σ̃. One has M̄N,σ̃ =

(
1 +

‖σ̃‖22
logN

)
MN .

Using (2.2), this gives us both

E
[
M̄N,σ̃

]
= E [MN ] + 2‖σ̃‖22 + o(1), (B.17)

and

lim
N→∞

d
(
MN −E [MN ] , M̄N,σ̃ −E

[
M̄N,σ̃

])
= 0. (B.18)

Further, let {ψN,σ̃,∗v : v ∈ VN} be defined as in (B.7) and set MN,σ̃,∗ = maxv∈VN ψ
N,σ̃,∗
v . In the

distributional sense,
{
ψ̄N,σ̃v

}
v∈VN

can be considered as a sum of
{
ψN,σ̃,∗v

}
v∈VN

and an independent

centred Gaussian field with variances of order O((1/ logN)3). Thus, by Gaussian comparison, it
follows that

E
[
M̄N,σ̃

]
= E [MN,σ̃,∗] + o(1), (B.19)

as well as

lim
N→∞

d
(
M̄N,σ̃ −E

[
M̄N,σ̃

]
,MN,σ̃,∗ −E [MN,σ̃,∗]

)
= 0. (B.20)

By (B.20), Proposition B.2, and using the triangle inequality, one concludes the proof of Lemma 5.5.
�

Proof of Lemma 5.6: Recall that we want to prove asymptotic stochastic domination. The basic
idea is to use Slepian’s Lemma. Let Φ, {ΦN

v }v∈VN be independent standard Gaussian random
variables and for some ε∗ > 0, set

ψN,lw,ε
∗

v =

(
1− ε∗

logN

)
ψNv + εN,′v Φ (B.21)

ψ̄N,up,ε
∗

v =

(
1− ε∗

logN

)
ψ̄Nv + εN,′′v ΦN

v , (B.22)
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where εN,′v = εN,′v (ε, ε∗) and εN,′′v = εN,′′v (ε, ε∗) are chosen such that

Var
[
ψN,lw,ε

∗
v

]
=

(
1− ε∗

logN

)2

Var
[
ψNv
]

+ (εN,′v )2 = Var
[
ψNv
]

+ ε (B.23)

and

Var
[
ψ̄N,up,ε

∗
v

]
=

(
1− ε∗

logN

)2

Var
[
ψ̄Nv
]

+ (εN,′′v )2 = Var
[
ψNv
]

+ ε. (B.24)

Solving for εN,′v in (B.23), gives

(εN,′v )2 =
ε∗

logN
Var

[
ψNv
]

+ ε. (B.25)

Moreover, for u 6= v ∈ VN ,

E

[
ψN,lw,ε

∗
u ψN,lw,ε

∗
v

]
=

(
1− ε∗

logN

)2

E
[
ψNu ψ

N
v

]
+ εN,′u εN,′v (B.26)

and by (B.24),

E

[
ψ̄N,up,ε

∗
u ψ̄N,up,ε

∗
v

]
=

(
1− ε∗

logN

)2

E
[
ψ̄Nu ψ̄

N
v

]
≤
(

1− ε∗

logN

)2

E
[
ψNu ψ

N
v

]
+ ε

(
1− ε∗

logN

)2

.

(B.27)

We want that, for all u, v ∈ VN , E
[
ψN,lw,ε

∗
u ψN,lw,ε

∗
v

]
≥ E

[
ψ̄N,up,ε

∗
u ψ̄N,up,ε

∗
v

]
. Considering (B.26)

and (B.27), this holds, provided

εN,′u εN,′v ≥ ε
(

1− ε∗

logN

)2

. (B.28)

Combining (B.28) with (B.25) and as ε → 0, one sees that it is possible to choose first ε∗(ε) and
then both {εN,′v (ε, ε∗)}v∈VN and {εN,′′v (ε, ε∗)}v∈VN , such that ε∗ → 0, and that at the same time,
all requirements (B.23), (B.24) and (B.28) hold. Observe further, that in this case, by (B.23) and
(B.24), maxv∈VN ε

N,′
v → 0, as well as maxv∈VN ε

N,′′
v → 0. With this choice, one can apply Slepian’s

lemma to obtain

d̃

(
max
v∈VN

ψN,lw,ε
∗

v −mN , max
v∈VN

ψ̄N,up,ε
∗

v −mN

)
= 0. (B.29)

As ε→ 0, the distribution of the Gaussian field {ψN,lw,ε
∗

v }v∈VN tends to that of {ψNv }v∈VN . Applying
Lemma B.1 to {ψ̄N,up,ε

∗
v }v∈VN , one deduces

P

(
max
v∈VN

ψ̄N,up,ε
∗

v −mN ≥ x
)
≤ P

(
max
v∈VN

ψ̄Nv −mN ≥ x−
√

max
w∈VN

εN,′′w

)(
Ce−(C maxw∈VN εN,′′w )−1

)
.

(B.30)

Since max
w∈VN

εN,′′w → 0, as ε → 0, this allows to conclude the proof of (5.28). (5.29) can be proved

in the same way, by switching the roles of {ψNv }v∈VN and {ψ̄Nv }v∈VN in the proof above. Further
details are omitted. �
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Appendix C. Proof of Proposition 5.8

We outline the strategy of the proof: First, we localize the position of SN,mv , for particles v ∈ VN
that satisfy SNv ≥ mN + z. This reduces the computation of the asymptotic right-tail distribution
to the computation of an expectation of a sum of indicators, which is significantly simpler, as it
essentially boils down to computing a single probability. In the second step, we prove that the
asymptotic behaviour of the right-tail of the maximum of the auxiliary field does not depend on
the parameter N , so that any possible constant also depends only on the remaining parameters,
K ′, L′ and z. In the third step, we investigate how the limit scales in z, which allows us to factorize
the dependence on the variable z in the above obtained constants, reducing the dependence of the
constants to the parameters, K ′, L′. We further show that the constants can be bounded uniformly
from below and from above, which then concludes the proof. Recall that SN,fv = SNv − S

N,c
v , for

v ∈ VN . For the entire proof, fix the index i along with a box BN/KL,i. The field {S
N,f
v }v∈BN/KL,i is

constructed in such a way (see (5.9)), that it is independent of the integers K,L and i. In particular,
the sequence {β∗K′,L′}K′L′ does not depend on these. For a fixed v ∈ BN/KL,i, and for SN,mv , consider
XN
v as the associated variable speed Brownian motion. To be more precise, recall the definition of

SN,mv in (5.6). To each Gaussian random variable bNi,j,B in (5.6), associate an independent Brownian

motion bNi,j,B(t) that runs for 2−2j time with rate σ
(
n−j
n

)
and ends at the value of σ

(
n−j
n

)
bNi,j,B.

Each variable speed Brownian motion, {XN
v (t)}0≤t≤n−k−l−k′−l′ , is defined by concatenating the

Brownian motions associated to earlier times, which correspond to larger scales. Until the end of
the proof, in order to shorten notation, simply write N̄ = N/KL, n∗ = n − k − l − k′ − l′ and
analogously, n̄ = n−k− l as well as l̄ = l′+k′, k̄ = k+ l. As in (5.5), we consider the partitioning of
BN/KL,i into a collection ofK ′L′-boxes BK′L′ and refer to BK′L′(v) ∈ BK′L′ as the uniqueK ′L′−box
that contains v. The set of all left bottom corners of these K ′L′−boxes is called ΞN̄ . We further
write Mn(k, t) = 2 log(2)Iσ2

(
k
n ,

t
n

)
n− ((t)∧(n−l̄)) log(n)

4(n−l̄) , for t ∈ [k, n]. Let

Ev,N (z) =
{
XN
v (t)−Mn(k̄, t) ∈ [−iγ(t, n∗),max(iγ(t, n∗), z)], ∀0 ≤ t ≤ n∗,

max
u∈BK′L′ (v)

Y N
u ≥ 2 log(2)Iσ2

(
k̄

n
, 1

)
n− log(n)/4− k̄γ + z −XN

v (n∗)

}
, (C.1)

where Y N
u

law∼ SNu − SN,cu − SN,mu = SN,fu − SN,mu is an independent Gaussian field. The first
restriction is that all particles have to stay within a tube around 2 log(2)Iσ2

(
k̄
n ,

k̄+t
n

)
n, which is

due to Proposition 4.2. Moreover, it ensures that at the beginning, particles cannot be too large.
The second event ensures that there are particles reaching the relevant level. We consider the
number of particles satisfying the event Ev,N (z), namely

ΛN (z) :=
∑
v∈ΞN̄

1Ev,N (z) (C.2)

and claim that

lim sup
z→∞

lim sup
(L,K,L′,K′,N)⇒∞

∣∣∣∣∣∣∣∣∣
P

(
max

v∈BN/KL,i
SN,fv ≥Mn(k̄, n) + z − kγ

)
E [ΛN (z)]

∣∣∣∣∣∣∣∣∣ = 1. (C.3)

This reduces the analysis to compute the asymptotics of the expectation, which is much simpler, as
this only needs precise right-tail asymptotic of a single vertex. We start proving the claim (C.3).
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By a first moment bound and using Lemma 4.4, one obtains

lim sup
z→∞

lim sup
(L,K,L′,K′,N)⇒∞

P

(
max

v∈BN/KL,i
SN,fv ≥Mn(k̄, n) + z − k̄γ

)
≤ E [ΛN (z)] , (C.4)

which implies that the quotient is bounded from above by 1. In order to obtain equality, one shows

lim sup
z→∞

lim sup
(L,K,L′,K′,N)⇒∞

E
[
ΛN (z)2

]
/E [ΛN (z)] = 1. (C.5)

Assuming (C.5) and using the Cauchy-Schwarz inequality, one has

P

(
max

v∈BN/KL,i
SN,fv ≥Mn(k̄, n) + z

)
≥ E [ΛN (z)] , (C.6)

which, together with (C.4), then implies (C.3). Thus, we turn to the proof of equation (C.5). First,
decompose the second moment along the branching scale, bN (v, w) = max{λ ≥ 0 : [v]λ ∩ [w]λ 6= ∅},
beyond which increments are independent, i.e.

E
[
ΛN (z)2

]
= E [ΛN (z)] +

∑
v,w∈ΞN̄

P (Ev,N (z) ∩ Ew,N (z))

= E [ΛN (z)] +
n∗−1∑
ts=0

∑
v,w:d(v,w)=ts

P (Ev,N (z) ∩ Ew,N (z)) (C.7)

Note that, for v ∈ ΞN̄ fixed, there are 22(n∗−(k̄+ts)) many w ∈ ΞN̄ with d(v, w) = ts. The probabili-
ties in (C.7) can be bounded from above by

P (Ev,N (z) ∩ Ew,N (z)) ≤
∑

xs∈[−iγ(k̄+ts,n∗),max(iγ(k̄+ts,n∗),z)]
x1,x2∈[−l̄γ ,l̄γ ]

P
(
XN
v (ts)−Mn(k̄, ts) ∈ [xs − 1, xs]

)
×P

(
XN
v (n∗)−XN

v (ts)−Mn(ts, n− l̄) + k̄γ + xs ∈ [x1 − 1, x1]
)

×P
(

max
u∈BK′L′ (v)

Y N
u ≥ 2 log(2)σ2(1)l̄ + z − x1

)
×P

(
XN
w (n∗)−XN

w (ts)−Mn(ts, n− l̄) + k̄γ + xs ∈ [x2 − 1, x2]
)

×P
(

max
u∈BK′L′ (w)

Y N
u ≥ 2 log(2)σ2(1)l̄ + z − x2

)
(C.8)

Similarly, one can expand E [ΛN (z)], i.e.

E [ΛN (z)] = 22n∗
∑

xs∈[−iγ(k̄+ts,n∗),max(iγ(k̄+ts,n∗),z)]
x1,x2∈[−l̄γ ,l̄γ ]

P
(
XN
v (ts)−Mn(k̄, ts) ∈ [xs − 1, xs]

)
×P

(
XN
v (n∗)−XN

v (ts)−Mn(k̄ + ts, n− l̄) + k̄γ + xs ∈ [x1 − 1, x1]
)

×P
(

max
u∈BK′L′ (v)

Y N
u ≥ 2 log(2)σ2(1)l̄ + z − x1

)
. (C.9)

For each summand, there is an additional factor appearing in (C.8) compared to (C.9). If one can
show that all these vanish uniformly over xs, when summing over ts and then taking the limits,
(z, L̄,N) ⇒ ∞, one obtains (C.5), and thereby (C.3). Thus, one needs to estimate the additional
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factors,

∑
x2∈[−l̄γ ,l̄γ ]

P
(
XN
w (n∗)−XN

w (ts)−Mn(k̄ + ts, n− l̄) + k̄γ + xs ∈ [x2 − 1, x2]
)

× P
(

max
u∈BK′L′ (w)

Y N
u ≥ 2 log(2)σ2(1)l̄ + z − x2

)
≤ 2−2(n∗−(k̄+ts))

∑
x2∈[−l̄γ ,l̄γ ]

2 log(2)l̄σ(1) + z−x2
σ(1)√

2π log(2)Iσ2

(
k̄+ts
n , n−l̄n

)
n
√
l̄ log 2

× exp

[
−2 log(2)(k̄ + ts − Iσ2

(
k̄ + ts
n

)
n)− 2

(
z − xs −

n− k̄ − l̄ − ts
4(n− k̄ − l̄)

log(n)− k̄γ
)]

× exp

−2 log(2)l̄ −

(
x2 − xs − n−k̄−l̄−ts

4(n−k̄−l̄) log(n)− k̄γ
)2

2 log(2)Iσ2

(
k̄+ts
n , n−l̄n

)
n

−

(
z−x2
σ(1)

)2

2 log(2)l̄

 . (C.10)

Note that there are 22(n∗−(k̄+ts)) vertices w ∈ ΞN̄ with d(v, w) = ts, for fixed v ∈ ΞN̄ , which cancels
with the prefactor in (C.10) when taking the sum in (C.7). To show that the sum in ts is finite, first
note that the relevant term in (C.10) is given by exp

[
−2 log(2)(k̄ + ts − Iσ2

(
k̄+ts
n

)
n)
]
. Recall the

assumption Iσ2(x) < x, for x ∈ (0, 1). In particular, for any δ > 0, there exists ε > 0 such that
Iσ2(x) < x − ε, for x ∈ (δ, 1 − δ). Since one is interested in the limit, as (z,K ′, L′, N) ⇒ ∞, it is
possible to assume k̄(1−σ2(0))

n < ε/2 and l̄(σ2(1)−1)
n < ε/2. In this case it holds, for ts ∈ (0, n− k̄− l̄),

Iσ2

(
k̄ + ts
n

)
<
k̄ + ts
n
− ε/2. (C.11)

Using (C.11) in (C.10), implies that (C.10) is summable in ts ∈ (0, n−k̄− l̄), when considering limits
(z,K ′, L′, N)⇒∞. The sum in x2 in (C.10) is bounded by its number of summands, i.e. one gets
a prefactor of leading order 4 log(2)l̄γ+1/2σ(1), where one can choose γ ∈ (1

2 , 1). Note that there
is still the term exp

[
−2 log(2)l̄

]
which ensures that (C.10) tends to zero, as (z,K ′, L′, N) ⇒ ∞.

Altogether, this proves (C.5). In the second step, we show that it is possible to choose the sequence
of constants independently of N . More explicitly, in the following, we show that there are constants
βK′,L′,z > 0, such that

lim
z→∞

lim sup
(L′,K′,N)⇒∞

E [ΛN (z)]

βK′,L′,z
= lim

z→∞
lim inf

(L′,K′,N)⇒∞

E [ΛN (z)]

βK′,L′,z
= e2 log(2)k̄(σ2(0)−1)e2k̄γ . (C.12)
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Since XN
v (n∗) ∼ N

(
0, log(2)Iσ2

(
k̄
n ,

n∗

n

)
n
)
, and using Lemma 4.4, which allows to ignore the

restriction to stay below the maximum at all times, E [ΛN (z)] reads

22(n−k̄−l̄)
P

(
XN
v (n̄)−Mn(k̄, n− l̄) ∈ [−l̄γ , l̄γ ], max

u∈BK′L′ (v)
Y N
u ≥Mn(k̄, n)−XN

v (n∗)− k̄γ + z

)

=

l̄γ∫
−l̄γ

22(n−k̄−l̄)√
2π log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n

exp

− (
Mn(k̄, n− l̄) + x

)2
2 log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n


×P

(
max

u∈BK′L′ (v)
Y N
u ≥ 2 log(2)l̄σ2(1) + z − k̄γ − x

)
dx

=

l̄γ∫
−l̄γ

22k̄(σ2(0)−1)22l̄(σ2(1)−1)√n√
2π log(2)Iσ2

(
k̄
n
n−l̄
n

)
n

exp

−2x−

(
x− log(n)

4

)2

2 log(2)(n− σ2(0)k̄ − σ2(1)l̄)


×P

(
max

u∈BK′L′ (v)
Y N
u ≥ 2 log(2)l̄σ2(1) + z − k̄γ − x

)
dx. (C.13)

By definition of SNu (see (5.9)), maxu∈BK′L′ (v) Y
N
u has the same law as maxu∈VK′L′ S

N,b
u + aK′L′,ūΦj

and is therefore independent of N (cp. (5.5) and (5.9)). Note further that
√
n√

Iσ2

(
k̄
n
,n−l̄
n

)
n

n→∞→ 1,

and by Borell’s inequality for Gaussian processes (see Ledoux and Talagrand, 2011, Lemma 3.1),

P
(∣∣∣∣ max

u∈BK′L′ (v)
Y N
u ≥ 2 log(2)l̄σ2(1) + z − x− k̄γ

∣∣∣∣) ≤ C2−2l̄(σ(1)−1)2
l̄−

3
2

(σ(1)−1)e
−2

σ(1)−1
σ(1)

(z−k̄γ)
.

(C.14)

As σ(1) > 1, (C.14), together with (C.13), implies (C.12) and thus, the third claim. In particular,
one can read off (C.13) that the sequence {βK′,L′,z} depends only on the very last variance parameter
and on k̄γ . In the last step, we analyse how the right tail probability scales in z, namely we want
to show

lim
z1,z2→∞

lim sup
(L̄,N)⇒∞

e−2z2E [ΛN (z1)]

e−2z1E [ΛN (z2)]
= lim

z1,z2→∞
lim inf

(L̄,N)⇒∞

e−2z2E [ΛN (z1)]

e−2z1E [ΛN (z2)]
= 1. (C.15)

For v ∈ VN , set νv,N (·) be the density, such that for any interval I ⊂ R,∫
I
νv,N (y)dy = P

(
XN
v (n∗) ∈ I +Mn(k̄, n− l̄)

)
. (C.16)

Using this notation, we can rewrite

P (Ev,N (z)) =

l̄γ∫
−l̄γ

νv,N (z + x)P

(
max

u∈BK′L′ (v)
Y N
u ≥ 2 log(2)l̄σ2(1)− k̄γ − x

)
dx. (C.17)

Note that in (C.17) only νv,N (z+ x) depends on z. For z1, z2 > 0, one has to compute the quotient
E [ΛN (z1)] /E [ΛN (z2)], for which we use the reformulation in (C.17). The strategy is to compute the
asymptotic limit of the integral involving z1 in terms of the integral involving z2 and an additional
correction factor. As l̄→∞, prior to z1, z2 →∞, there is no need to shift the limits of the integrals.
For the remaining factors in both integrals, one obtains the relative density with respect to z1, z2,
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i.e.

νv,N (z1 + x)

νv,N (z2 + x)
= exp

−2(z1 − z2)−
z2

1 − z2
2 − (z1 − z2) log(n)

2

2 log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n
− x (z1 − z2)

log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n

 . (C.18)

Thus, we can rewrite P (Ev,N (z1)) as∫ l̄γ

−l̄γ
νv,N (z2 + x)e2(z1−z2)

P

(
max

u∈BK′L′ (v)
Y N
u ≥ 2 log(2)l̄σ2(1)− k̄γ − x

)

× exp

z2
1 − z2

2 − (z1 + z2) log(n)
2

2 log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n

+ x
(z1 − z2)

log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n

dx, (C.19)

where the last factor tends to 1, as (L̄, N) ⇒ ∞. Computing the quotient E [ΛN (z1)] /E [ΛN (z2)]
using (C.19) and summing over all vertices, one obtains, when turning to limits, that (C.15)
holds. Combining the above steps, in particular (C.15) with (C.12), completes the proof of (5.43),
with some non-negative sequence {βK′,L′}K′,L′≥0. In the final step, we show that this sequence is
bounded. Using Lemma 5.7, one has for some ε > 0, being at most of order O

(
e−2k̄2γ−1/(2σ2(0) log 2)

)
,

cαe
−2z ≤

∫ k̄γ

−k̄γ
νcv,N (x)22k̄P

(
max

v∈BN/KL,i
SN,fv ≥ 2 log 2Iσ2

(
k̄

n
, 1

)
n− log n

4
+ z − x

)
+ ε. (C.20)

Using the asymptotics (C.13) for the probability in the integral in (C.20), one can instead compute
the integral

∫ k̄γ

−k̄γ

exp

[
−
(

2 log 2Iσ2

(
k̄
n

)
n+x

)2

2 log 2Iσ2

(
k̄
n

)
n

]
√

2π log 2Iσ2

(
k̄
n

)
n

22k̄βK′,L′e
−2z+2x+2 log 2k̄(σ2(0)−1)dx

= βK′,L′e
−2z

∫ k̄γ

−k̄γ

exp

[
− x2

2 log 2Iσ2

(
k̄
n

)
n

]
√

2π log 2Iσ2

(
k̄
n

)
n

dx. (C.21)

The integral in (C.21) is bounded by 1 and thus, when considering the lower bound in (C.20), one
can deduce that cα ≤ βK′,L′ , for K ′, L′ ≥ 0. The upper bound, i.e. βK′,L′ ≤ Cα, for K ′, L′ ≥ 0 and
for some constant Cα > 0, follows from a union and a Gaussian tail bound, i.e.

P
(

max
v∈BN/KL,i

SN,fv ≥ 2 log 2Iσ2

(
k̄

n
, 1

)
n− log n

4
+ z − k̄γ

)

≤ Cα
22(n−k̄)

√
n

exp

−2 log 2Iσ2

(
k̄

n
, 1

)
n− 2

(
z − k̄γ +

log n

4

)
−

(
z − k̄γ − log

4

)2

2 log 2Iσ2

(
k̄
n , 1
)
n


≤ Cα exp

[
2 log(2)k̄(σ2(0)− 1) + 2k̄γ − 2z

]
, (C.22)

This concludes the proof of Proposition 5.8. �
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