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Abstract. We consider properties of determinants of some random symmetric ma-
trices issued from multivariate statistics: Wishart/Laguerre ensemble (sample co-
variance matrices), Uniform Gram ensemble (sample correlation matrices) and Ja-
cobi ensemble (MANOVA). If n is the size of the sample, r ≤ n the number of
variates and Xn,r such a matrix, a generalization of the Bartlett-type theorems
gives a decomposition of detXn,r into a product of r independent Gamma or Beta
random variables. For n fixed, we study the evolution as r grows, and then take
the limit of large r and n with r/n = t ≤ 1. We derive limit theorems for the
sequence of processes with independent increments {n−1 log detXn,bntc, t ∈ [0, T ]}n

for T ≤ 1: convergence in probability, invariance principle, large deviations. Since
the logarithm of the determinant is a linear statistic of the empirical spectral dis-
tribution, we connect the results for marginals (fixed t) with those obtained by the
spectral method. Actually, all the results hold true for Coulomb gases or β-models,
if we define the determinant as the product of charges. The classical matrix models
(real, complex, and quaternionic) correspond to the particular values β = 1, 2, 4 of
the Dyson parameter.

1. Introduction

Random determinants of symmetric matrices are of constant use in random ge-
ometry to compute volumes of parallelotopes (see Nielsen (1999), Mathai (1999))
and in multivariate statistics to build tests (see Muirhead (1982), Anderson (2003)).
Twenty years after the book of Girko (1988), recent developments in Random Ma-
trix Theory add a new interest to the study of their asymptotic behavior and invite
to a new insight.
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Let B = [b1, . . . , br] be the n× r matrix with r column vectors b1, . . . , br of Rn.
If B′ denotes its transpose, the determinant of the r× r Gram matrix B ′B satisfies
the well known Hadamard inequality:

detB′B ≤ ‖b1‖2 · · · ‖br‖2 (1.1)

with equality if and only if b1, . . . , br are orthogonal (Hadamard, 1893). It means
that the volume (or r-content) of the parallelotope built from b1, . . . , br is maximal
when the vectors are orthogonal. The quantity

h(B) =
detB′B

‖b1‖2 · · · ‖br‖2

is usually called the Hadamard ratio. If we replace sequentially bi by its projec-

tion b̂i on the orthogonal of the subspace spanned by b1, . . . , bi−1 (Gram-Schmidt
orthogonalization), we have

detB′B =

r∏

i=1

‖b̂i‖2 .

Motivated by basis reduction problems, Schnorr (1986) defined the orthogonality

defect as the quantity 1/
√
h(B) (see also Akhavi (2002) and references therein).

Abbott and Mulders (2001) and Dixon (1984) are concerned with the tightness of
the bound h(B) ≤ 1 when B is random and n = r. For these authors, the random
vectors bi are sampled independently and uniformly on the unit sphere

S
n
R

= {(x1, . . . , xn) ∈ R
n : x2

1 + · · · + x2
n = 1} .

It is known that then the variables ‖b̂i‖2 are independent and Beta distributed
with varying parameters. When the entries of the matrix B are independent and

N (0, 1) the variables ‖b̂i‖2 are independent and Gamma distributed with varying
parameters (Bartlett, 1933).

Writing Bn,r instead of B to emphasize dimensions and Xn,r = B′
n,rBn,r, we are

interested in this paper in the asymptotic behavior of detXn,r when n and r both

tends to infinity in the regime r/n → c ∈ [0, 1]. Since the construction of the b̂i
is recursive, it is possible (for fixed n) to consider the whole sequence of variables
{detXn,r, r = 1, . . . , n} at the same time. It corresponds to the decomposition of
the determinant of a r × r symmetric positive matrix A as

detA =

r∏

j=1

detA[j]

detA[j−1]
,

where A[j] is the j×j upper-left corner of A with the convention detA[0] = 1. When
using this approach we will refer to it as the decomposition method. This method
is also valid when entries of the matrix are complex, considering the Hermitian
conjugate B? and then B?B, and also when the entries are real quaternions, con-
sidering the dual B† and then B†B. In these three cases, and for the above models
of random matrices, Bartlett-type theorems give the determinant as a product of
independent variables, with Gamma or Beta distributions. Passing to logarithms,
it is then possible to consider a triangular array of variables and a process with
independent increments {n−1 log detXn,bntc, t ∈ [0, T ]}n for T ≤ 1 indexed by the
”time” t = r/n. Thanks to the additive structure of the log det, we obtained
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limit theorems: convergence in probability, invariance principle and large devia-
tions. The same is true for random matrices following the Jacobi (or MANOVA)
distribution.

Actually, the whole construction is possible in the so-called β-models, which are
an extension of the above ones, which correspond to the three-fold way β = 1, 2, 4
of Dyson. For other values of β they are not defined as matrix models but Coulomb
gases models, in which the eigenvalues are replaced by charges and determinants
by products of charges. It has be shown recently that they correspond also to
models of tri-diagonal random matrices (see Dumitriu and Edelman (2003), Killip
and Nenciu (2004), Edelman and Sutton (2007)).

Of course, for r fixed, there is also another underlying structure of product: the
determinant as the product of eigenvalues. We may use the asymptotic behavior
of empirical spectral distributions, i.e. convergence to the Marčenko-Pastur distri-
bution in the Wishart/Laguerre case and to the generalized McKay distribution in
the Jacobi case. However, this structure is not ”dynamic”: if you change r, the
whole set of eigenvalues is changing. When using this approach we will refer to it
as the spectral method.

The structure of the article is as follows. In Section 2 we set the framework. We
begin with the matrix models (Wishart-Laguerre, Uniform Gram and Jacobi), and
proceed with the β-models and processes of determinants. The main results of this
paper are in Section 3: laws of large numbers and fluctuations, large deviations
and variational problems. The comparison of results obtained by the two methods
(decomposition and spectral) deserves interest and is the topic of Section 4. Some
extensions to other models are given in Section 4.4. Sections 5, 6 and 7 are devoted
to the proofs. In Appendix 1 we gather some details on Binet’s formula for the
Gamma function which are of constant use in this paper, and Appendix 2 gives
identification of the McKay distribution.

2. Notation and known facts

In this long section, we present our different models whose common feature is
to introduce processes of random determinants with independent multiplicative
factors. The distribution of these factors are recorded in Proposition 2.1 for real
matrix models, and settled in formulae (2.2), (2.3) and (2.4) for the (other) β-
models.

Throughout, |A| stands for detA, and In for the n× n identity matrix. If X , Y
are real random variables and µ a distribution on R, we write

X
(d)
= Y (resp. X

(d)
= µ)

if X and Y have the same distribution (resp. if the distribution of X is µ).

2.1. Real matrix models and Bartlett-type theorems. In the basic model, we consider
independent random vectors bi, i ≥ 1 with the same distribution νn in Rn. The
most important example is the Gaussian one with νn = N (0, In). If B = [b1, . . . , br],
all the entries of B are independent N (0, 1) and the distribution of W = B ′B is
denoted by Wr(n,R) and called the Wishart ensemble. For r ≤ n, its density on
the space Sr of symmetric positive matrix is

1

2rn/2Γr(n/2)
|W |(n−r−1)/2 exp

(
− 1

2
trW

)
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where Γr is the multivariate Gamma function

Γr(α) = πr(r−1)/4Γ(α)Γ
(
α− 1

2

)
· · ·Γ

(
α− r − 1

2

)
.

It is the matrix variate extension of the Gamma distribution. Recall that for
a, c > 0, the Gamma(a, c) distribution has density

ca

Γ(a)
xa−1e−cx (x > 0) .

For r > n, the matrix is singular.
Motivated by Hadamard inequality (1.1), we may choose νn to be the uniform

distribution on the unit sphere Sn
R

. The corresponding ensemble for B is called
Uniform Spherical Ensemble by Tsaig and Donoho (2006). The matrix ensemble
for B′B is called the Gram ensemble by De Cock, Fannes and Spincemaille (1999),
since B′B is the Gram matrix built from the bi’s. To emphasize the distribution,
we call it Uniform Gram ensemble. The diagonal entries are one and for r ≤ n,
the joint density of the non-diagonal entries (rij , 1 ≤ i < j ≤ r) of the matrix
G = B′B is

[Γ (n/2)]
r

Γr (n/2)
|G|(n−r−1)/2 (−1 < rij < 1) (2.1)

(see Gupta and Nagar (2000) Theorem 3.3.24 p.107, Mathai (1997) Ex. 1.25 p.58).
We now introduce Jacobi ensembles. For n1, n2 ≥ 1 and r ≤ n := n1 + n2, we

can decompose every (n1 + n2) × r matrix M in two blocks

M =

(
M1

M2

)

with M1 of type n1 × r and M2 of type n2 × r. If the entries of M are independent
N (0, 1), then W1 := M ′

1M1 and W2 := M ′
2M2 are independent Wishart matrices of

distribution Wr(n1,R) and Wr(n2,R), respectively. It is well known that W1 +W2

is Wr(n1 + n2,R) distributed and a.s. invertible. Denote by (W1 + W2)1/2 the
symmetric positive square root of (W1 +W2). The r × r matrix

X := (W1 +W2)−1/2W1(W1 +W2)−1/2

has a distribution denoted by Jr(n1, n2,R) and called the Jacobi ensemble.
If T is upper triangular with positive diagonal entries and W1 + W2 = T ′T

(Cholesky decomposition) then

Z = (T ′)−1W1T
−1

is also Jr(n1, n2,R) distributed, (see Olkin and Rubin (1964), Muirhead (1982)
p.108).

Another occurrence of the Jacobi ensemble is interesting (see Doumerc (2005),
Collins (2005)). If M is as above, its singular value decomposition is

M = UDV , D =

(
∆
0

)

with D of type n×r, with ∆ diagonal with nonnegative entries, with U ∈ O(n) and
V ∈ O(r) (the orthogonal groups). Although U and V are not uniquely determined,
one can choose them according to the Haar distribution on their respective group
and such that U, V,∆ are independent. Then M ′M = V ′∆2V and

(W1 +W2)1/2 = (M ′M)1/2 = V ′∆V .
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Let Yr = U [n1,r] be the n1 × r upper-left corner of U . Since M1 = Yr∆V we have

M ′
1M1 = V ′∆Y ′

rYr∆V = (MM∗)1/2(V ′Y ′
rYrV )(MM∗)1/2

and then X = (YrV )′(YrV )
(d)
= Y ′

rYr. In other words,

Y :=
(
U [n1,r]

)′
U [n1,r]

is also Jr(n1, n2,R) distributed.
If r ≤ min(n1, n2), the distribution Jr(n1, n2,R) has a density on Sr which is

1

βr

(
n1

2 ,
n2

2

) |Z|
n1−r−1

2 |Ir −Z|
n2−r−1

2 10<Z<Ir
, (2.2)

where

βr (a, b) =
Γr (a) Γr (b)

Γr (a+ b)
,

(see for example Muirhead (1982) Theorem 3.3.1). It is the matrix variate extension
of the Beta distribution. Recall that for a > 0, b > 0, the Beta(a, b) distribution
has density

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 (x > 0) . (2.3)

Until now, we had r fixed. Our purpose is now to consider all values of r
simultaneously to give a ”sample path” study of determinants.

For an n× n matrix B = [b1, . . . , bn], we have for r ≤ n

(B′B)[r] =
(
B[n,r]

)′

B[n,r] ,

and for every j ≤ n, the quantity

ρj,n :=
|(B′B)[j]|

|(B′B)[j−1]| (2.4)

is a measurable function of (b1, . . . , bj) and

|(B′B)[r]| =
r∏

j=1

ρj,n . (2.5)

The same occurs with b̃i := bi/‖bi‖ instead of bi (i = 1, . . . , n) and B̃ := [̃b1, . . . , b̃n]
instead of B. Note that ρ̃1,n = 1 and

ρ̃j,n =
|W̃ [j]|

|W̃ [j−1]|
=

|W [j]|
|W [j−1]|Wjj

=
ρj,n

‖bj‖2
, j = 2, . . . , n , (2.6)

so that

|(B̃′B̃)[r]| =
r∏

j=1

ρ̃j,n . (2.7)

The Wishart case and the Uniform Gram case corresponds to (2.5) and (2.7)
respectively, for r = 1, . . . , n.

In the Jacobi case, r ∈ {1, . . . , n1}. If M = [b1, . . . , bn1 ] , and if T , W1, Z are
defined as above with n1 instead of r, then

Z [r] =
((
T [r]

)′)−1

W
[r]
1

(
T [r]

)−1

.
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For every j, the quantity

ρZj,n1,n2
:=

|Z [j]|
|Z [j−1]|

is a measurable function of (b1, . . . , bj) and

|Z [r]| =

r∏

j=1

ρZj,n1,n2
.

It can be noticed that

ρZj,n1,n2
=

|W [j]
1 |

|W [j]
1 +W

[j]
2 |

× |W [j−1]
1 +W

[j−1]
2 |

|W [j−1]
1 |

.

Besides, the construction with the symmetric square root is different. If

ρXj,n1,n2
:=

|X [j]|
|X [j−1]|

we have

X [r] 6=
(
W

[r]
1 +W

[r]
2

)−1/2

W
[r]
1

(
W

[r]
1 +W

[r]
2

)−1/2

.

(Take n1 = n2 = 2, W1 = I2, W2 =

(
1 s
s 1

)
and r = 1 then

(
W

[1]
1 +W

[1]
2

)−1/2

W
[r]
1

(
W

[r]
1 +W

[r]
2

)−1/2

= 2/(4 − s2) ,

and X [1] = 1/2). Moreover we cannot say that ρXj,n1,n2
is measurable with respect

to b1, . . . , bj .
Consider the construction from contraction of Haar matrices. Since

((
U [n1]

)′

U [n1]
)[n1,r]

=
(
U [n1,r]

)′

U [n1,r] ,

we see that the quantity

ρYn1,n2,j :=

∣∣Y [j]
∣∣

∣∣Y [j−1]
∣∣

depends only on the j first columns of the matrix U , and

|Y [r]| =

r∏

j=1

ρYn1,n2,j .

It is possible to introduce a probability space on which all Uniform Gram and
Wishart matrices are defined for all values of n simultaneously. It is enough to
consider the infinite product space generated by a double infinite sequence of inde-
pendent N (0, 1) variables {bi,j}∞i,j=1, and for every n to perform the above construc-
tions with bi = (b1i, . . . , bn,i)

′. To embed the Jacobi matrices in this framework, we
have to restrict ourselves to the X -type and Z-type ones; however, only the Z one
gives a natural meaning to the dynamic study.

The starting point of our study of random determinants is the following proposi-
tion which gathers known results about the factors entering into the above decom-
positions.
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Proposition 2.1. 1) (Bartlett) The random variables ρj,n, j = 1, . . . , n are
independent and

ρj,n
(d)
= Gamma

(n− (j − 1)

2
,

1

2

)
,

2) The random variables ρ̃j,n, j = 2, . . . , n are independent and

ρ̃j,n
(d)
= Beta

(n− j + 1

2
,
j − 1

2

)
.

3) For J = X (resp. Y, Z), the random variables ρJ
j,n1,n2

, j = 1, . . . , n1 are
independent and

ρJ
j,n1,n2

(d)
= Beta

(n1 − j + 1

2
,
n2

2

)
.

The first claim is known as the celebrated Bartlett decomposition (stated with χ2

distributions) (Bartlett, 1933). It is quoted in many books and articles, in particu-
lar Anderson (2003) pp.170-172, Muirhead (1982) Theorem 3.2.14 p.99, Kshirsagar
(1972), Gupta and Nagar (2000) Theorem 3.3.4 p.91 and ex. 3.8 p.127. The second
claim may be found in Anderson (2003) Theorem 9.3.3. In the third claim, we first
note that it is enough to get the proof for Z since the three random matrices have
the same distribution. It is a consequence of a result quoted in Anderson (2003),
due to Kshirsagar, is proved in Muirhead (1982) Theorem 3.3.1 p.110 under the
assumption r ≤ n1, n2 and in Rao (1973) p.541 under the only assumption r ≤ n1.
Actually (see Muirhead (1982) ex. 3.24 and Anderson (2003) Theorem 8.4.1), some
proofs use probabilistic arguments (as Rao (1973) and Anderson (2003)), Jaco-
bian arguments (as in Gupta and Nagar (2000) Theorem 5.3.24 p.181), or Mellin
transform arguments (as in Mathai (1999) Theorem 2).

Note that for determinants in other ensembles, Mehta (2004), in his Section 15.4
and his Chapter 26, gives Mellin transforms and density functions.

2.2. Distribution of eigenvalues and β-models. In the study of stationary processes,
random matrices of the Wishart type with complex entries play an important role
(Goodman (1963)). In some papers, quaternionic entries are considered (Kabe
(1984), Andersson et al. (1983), Hanlon et al. (1992)). The above constructions
and results can be extended to the complex and quaternionic cases by replacing the
transpose by the adjoint and the dual, respectively and by replacing the factor 1/2
in the parameters of distributions by the factors 1 and 2, respectively. We do not
give details but jump to a general framework.

Popularized by physicists, the modern point of view consists in introducing a
parameter β > 0 taking value 1 in the real case, 2 in the complex case and 4 in the
quaternionic case, this parameter playing the role of an inverse temperature. The
distribution of eigenvalues becomes a distribution of charges and the model is a
Coulomb gas or β-model, see for instance Forrester (2007) Chap. 2. Because of the
connections with orthogonal polynomials in the complex case, the extended families
are called β-Laguerre ensemble (or just Laguerre ensemble) instead of Wishart
ensemble and β-Jacobi ensemble (or just Jacobi ensemble). As mentioned in Section
1, they correspond also to models of tri-diagonal random matrices (see Dumitriu
and Edelman (2003), Killip and Nenciu (2004), Edelman and Sutton (2007)).

For β = 1, 2 and 4, there are two ways of reaching the law of determinants:
a) from the joint distribution of eigenvalues (spectral method).
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b) from the distribution of matrices, and using the decomposition method.
The spectral method is easily extended to β-models, considering products of

charges. We will see in this section that actually a product decomposition holds
true also.

Throughout, we use the symbol β′ for β/2 to simplify displays.

2.2.1. Laguerre. When β = 1, 2, 4 the joint probability density of the eigenvalues
λj , j = 1, . . . , r of W on the orthant λj > 0, j = 1, . . . , r is

1

ZL,β
r (n)

r∏

j=1

(
λ

β′(n−r+1)−1
j e−β′λj

) ∏

1≤j<k≤r

|λk − λj |2β′

, (2.8)

and the normalizing constant is

ZL,β
r (n) =

( 1

β′

)β′rn r∏

j=1

Γ (1 + β′j) Γ (β′(n− j + 1))

Γ (1 + β′)
.

(It is the inverse of the Laguerre form of the Selberg integral, see Mehta (2004)
formula 17.6.5 or Hiai and Petz (2000) p.118).

When β > 0 is not 1, 2, 4, formula (2.8) still gives a density on (0,∞)r. We also
denote the product

∏r
j=1 λj by |W |. Its Mellin transform is

E|W |β′s =
ZL,β

r (n+ s)

ZL,β
r (n)

=
( 1

β′

)β′rs r∏

k=1

Γ (β′(n− k + 1 + s))

Γ (β′(n− k + 1))
.

Recalling that if X
(d)
= Gamma(a, 1/2) then

EXµ = 2µ Γ(µ+ a)

Γ(a)
(µ > −a) ,

we deduce the following proposition from the uniqueness of Mellin transform.

Proposition 2.2. We have

|W | (d)
=

r∏

j=1

ρL,β
j,n ,

where the variables ρL,β
j,n , j = 1, . . . , r are independent and

ρL,β
j,n

(d)
= Gamma (β′(n− j + 1), 1/2) . (2.9)

We point out that our point of view is not compatible with the construction
by (Dumitriu and Edelman (2003)) of matrix models for the (general) β-Laguerre
ensemble. Actually, they define a random r × r matrix B(r) where only diagonal
and subdiagonal terms are nonzero, independent and satisfy (for n fixed):

B
(r)
ii

(d)
=

√
Gamma (β′(n− i+ 1), 1/2) (1 ≤ i ≤ r) ,

B
(r)
i,i−1

(d)
=

√
Gamma (β′(r − i+ 1), 1/2) (2 ≤ i ≤ r) .

They prove that the distribution of eigenvalues of B(r)
(
B(r)

)′
is precisely (2.8).

Of course we recover the determinant as a product of elements with the good
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distribution, but the problem is that we cannot consider all r simultaneously in
their framework, since

(
B(r)

(
B(r)

)′ )[r−1]

6= B(r−1)
(
B(r−1)

)′

.

2.2.2. Uniform Gram. It is useful in the study of correlations. A correlation matrix
is a positive definite matrix with diagonal entries equal to one. Here, there is no
explicit expression for the law of eigenvalues. However, the expression

1

ZG,β
r (n)

|G|β′(n−r+1)−1

with

ZG,β
r (n) = πβ′r(r−1)

r∏

j=1

Γ (β′(n− j + 1))

Γ (β′n)

is a density on the space of symmetric (resp. Hermitian, resp. self-dual) positive
matrices with diagonal entries equal to one, and it coincides with the distribution
of correlation matrix in the real (see (2.1)), complex and quaternion case, for the
appropriate values of β. This yields (Gupta and Nagar (2000) ex. 3.26 p.130) the
Mellin transform

E|G|β′s =
ZG,β

r (n+ s)

ZG,β
r (n)

=

r∏

j=1

Γ (β′(n− j + 1 + s)) Γ (β′n)

Γ (β′(n− j + 1)) Γ (β′(n+ s))
.

From (2.3), it is clear that if X
(d)
= Beta(a, b) then

EXµ =
Γ(a+ µ)Γ(a+ b)

Γ(a)Γ(a+ b+ µ)
(µ > −a) . (2.10)

Again the uniqueness of the Mellin transform leads to the proposition.

Proposition 2.3. We have

|G| (d)
=

r∏

j=2

ρG,β
j,n

where the variables ρG,β
j,n , j = 2, . . . , r are independent and

ρG,β
j,n

(d)
= Beta (β′(n− j + 1), β′(j − 1)) . (2.11)

The above product is meaningful for every β > 0, and then for β 6= 1, 2, 4 we
define |G| as a random variable with the designated distribution.

2.2.3. Jacobi. If Z is distributed as in (2.2), the joint density of eigenvalues on the
set (0 < λj < 1 , j = 1, . . . , r) is given by

1

Zr (n1, n2)

r∏

i=1

λ
n1−r−1

2

i (1 − λi)
n2−r−1

2

∏

1≤i<j≤r

|λj − λi| ,

where Zr (n1, n2) is a normalizing constant (see Muirhead (1982) Theorem 3.3.4).
For n2 < r < n1, W2 is singular and Z has 1 as an eigenvalue of multiplicity

r − n2, so that the distribution of Z has no density. Nevertheless we may study
its determinant. Indeed, the matrix Ir − Z has 0 as an eigenvalue of multiplicity
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r − n2. Actually the density of the law of the non-zero eigenvalues of this matrix
is known (see Srivastava (2003) and Diaz-Garcia and Gutierrez Jaimez (1997)), so
that the non-one eigenvalues of Z have the joint density

1

Z̃r (n1, n2)

n2∏

i=1

λ
n1−r−1

2
i (1 − λi)

r−n2−1
2

∏

1≤i<j≤n2

|λj − λi| ,

where the normalizing constant is Z̃r (n1, n2) = Zn2(n1 + n2 − r, r) .
We now consider matrices with elements in C or H. When r ≤ min(n1, n2), the

distribution of Z has a density proportional to

|Z|β′(n1−r+1)−1 |Ir −Z|β′(n2−r+1)−1 10<Z<Ir
.

where β′ = 1 or 2. The joint density of the eigenvalues of Z is (on [0, 1]r):

fβ
r,n1,n2

(λ1, . . . , λr) = (2.12)

1

Z
(J,β)
r (n1, n2)

r∏

i=1

λ
β′(n1−r+1)−1
i (1 − λi)

β′(n2−r+1)−1
∏

1≤i<j≤r

|λj − λi|2β′

,

where

Z(J,β)
r (n1, n2) =

r∏

j=1

Γ (1 + β′j) Γ (β′(n1 + j − r)) Γ (β′(n2 + j − r))

Γ (1 + β′) Γ (β′(n1 + n2 + j − r))
, (2.13)

is the value of the Selberg integral (see Mehta (2004) formula 17.1.3 or Hiai and
Petz (2000) p.118). In the singular case (n2 ≤ r ≤ n1), the density of the non-one

eigenvalues is fβ
n2,n1+n2−r,r(λ1, . . . , λn2).

We consider an extension of the above models. For every β > 0, we define a
family of distribution densities fβ

r,n1,n2
on [0, 1]min(n2,r):

fβ
r,n1,n2

=

{
fβ

r,n1,n2
if r ≤ min(n1, n2)

fβ
n2,n1+n2−r,r if n2 ≤ r ≤ n1 .

(2.14)

We set by convention

|Z| =

min(n2,r)∏

i=1

λi

in all cases, and we call it the determinant, even if we do not define any matrix.
For r ≤ n1, n2, using (2.12) and (2.13) we obtain

E

(
|Z|β′s

)
=

ZJ,β
r (n1 + s, n2)

ZJ,β
r (n1, n2)

=
r∏

j=1

Γ (β′(n1 + n2 + j − r)) Γ (β′(n1 + j − r + s))

Γ (β′(n1 + j − r)) Γ (β′(n1 + n2 + j − r + s))
. (2.15)

If n2 < r ≤ n1, starting directly from (2.14) and (2.13) we have

E

(
|Z|β′s

)
=

ZJ,β
n2

(n1 + n2 − r + s, r)

ZJ,β
n2 (n1 + n2 − r, r)

=

n2∏

j=1

Γ (β′(n1 + j)) Γ (β′(n1 + j − r + s))

Γ (β′(n1 + j − r)) Γ (β′(n1 + j + s))
. (2.16)
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Multiplying up and down by
∏r

k=n2+1 Γ (β′(n1 + k − r)) Γ (β′(n1 + k − r + s))

yields the right hand side of (2.15). In view of (2.10) and the unicity of the Mellin
transform, we have the proposition.

Proposition 2.4. For r ≤ n1,

|Z| (d)
=

r∏

j=1

ρβ,J
j,n1,n2

,

where ρβ,J
j,n1,n2

, j = 1, . . . , r are independent and

ρβ,J
j,n1,n2

(d)
= Beta (β′(n1 − j + 1), β′n2) . (2.17)

2.3. Processes. In the three ensembles defined above, we have met arrays of in-
dependent variables with remarkable distributions. In Section 2.1, we have dis-
cussed the interest of studying all values of r simultaneously in the matrix cases
(β = 1, 2, 4). Since the structure remains the same in the β-ensembles, it is mean-
ingful to consider the processes (indexed by r) of partial sums. A now classical
asymptotic regime is n, r → ∞ with fixed ratio in the Laguerre and Uniform Gram
case, and n1, n2, r → ∞ with fixed ratios in the Jacobi case. It means that we
consider the asymptotic behavior determinants in a dynamic (or pathwise) way.

For the Laguerre ensemble, we define

log ∆L,β
n,p :=

p∑

k=1

log
ρL,β

k,n

βn
(p ≤ n) (2.18)

and the process

∆L,β
n (t) := ∆L,β

n,bntc, t ∈ [0, 1] . (2.19)

For the Uniform Gram ensemble, we define

log ∆G,β
n,p :=

p∑

k=1

log ρG,β
k,n (p ≤ n) (2.20)

and the process

∆G,β
n (t) := ∆G,β

n,bntc, t ∈ [0, 1] . (2.21)

For the Jacobi ensemble, we fix τ1 and τ2 > 0, set n1 = bnτ1c, n2 = bnτ2c, and
define

log ∆J,β
n,p :=

p∑

k=1

log ρJ,β
k,n1,n2

(p ≤ n1) (2.22)

and the process

∆J,β
n (t) := ∆J,β

n,bntc, t ∈ [0, τ1] . (2.23)

There are some connections between the above processes. For instance, in the
real matrix ensemble (β = 1) we saw in (2.6) that

ρL,1
j,n = ρG,1

j,n ‖bj‖2 .

From elementary properties of the N (0, In) distribution, we know also that ‖bj‖2

is independent of ρG,1
j,n and Gamma(n/2, 1/2) distributed. To see these connections
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in the general case, we use the so-called ”beta-gamma” algebra that will be really
helpful in the sequel. Details can be found in Chaumont and Yor (2003) pp.93-94.
In the following relation, γ(c) denotes a variable with distribution Gamma(c, 1),
and β(a, b) denotes a variable with distribution Beta(a, b). The relation is

(
γ(a), γ(b)

) (d)
=

(
β(a, b)γ(a+ b), (1 − β(a, b))γ(a+ b)

)
, (2.24)

where, on the left hand side the variables γ(a) and γ(b) are independent and on
the right hand side the variables β(a, b) and γ(a+ b) are independent. It entails in
particular

γ(a)

γ(a) + γ(b)

(d)
= β(a, b) . (2.25)

Note that this relation can be extended to the matrix variate level.
From definitions (2.18) and (2.20) and owing to the equalities in distribution

(2.9) and (2.11), we have then

log ∆L,β
n

(d)
= log ∆G,β

n + Sn , (2.26)

where Sn is independent of log ∆G,β
n , and specified by

Sn(t) =

bntc∑

k=1

log ε
(n)
k , t ∈ [0, 1] (2.27)

where ε
(n)
k , k = 1, . . . , n are independent and satisfy ε

(n)
k

(d)
= Gamma (β′n, β′n) .

In the sequel, we begin with the Uniform Gram ensemble and then deduce the
corresponding results for the Laguerre ensemble.

For the Jacobi ensemble, we use definitions (2.18) and (2.22) and equalities in
distribution (2.9) and (2.17). We get, by another application of (2.24)

log ∆L,β
n1,r

(d)
= log ∆J,β

n,r + log ∆L,β
n1+n2,r − r log

n1

n1 + n2
, (2.28)

where this equality holds for all indices r = 1, . . . , n1 simultaneously, and the two

processes log ∆J,β
n and log ∆L,β

n1+n2
are independent. It allows to deduce asymptotic

results for the Jacobi ensemble from those of the Laguerre ensemble.

3. Main results

In this section, we state a law of large numbers and fluctuations for processes
and marginals in our three models (Section 3.1), and then the corresponding large
deviations (Section 3.2).

Let DT = {v ∈ D([0, T ]) : v(0) = 0} denote the set of càdlàg functions on [0, T ]
and D = {v ∈ D([0, 1)) : v(0) = 0} the set of càdlàg functions on [0, T ] and [0, 1),
respectively, starting from 0.

We use often the following entropy function

J (u) =





u logu− u+ 1 if u > 0

1 if u = 0

+∞ if u < 0

(3.1)
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and its primitive:

F (t) =

∫ t

0

J (u) du =
t2

2
log t− 3t2

4
+ t, (t ≥ 0) . (3.2)

We use also the function defined in Hiai and Petz (2006), for s, t ≥ 0:

B(s, t) :=
(1 + s)2

2
log(1 + s) − s2

2
log s+

(1 + t)2

2
log(1 + t) − t2

2
log t

− (2 + s+ t)2

2
log(2 + s+ t) +

(1 + s+ t)2

2
log(1 + s+ t) , (3.3)

which may also be written as

B(s, t) = F (1 + s) − F (s) + F (1 + t) − F (t) − F (2 + s + t) + F (1 + s + t) −
7

4
.

3.1. Law of large numbers and fluctuations.

3.1.1. Uniform Gram ensemble. Define a drift and a diffusion coefficient by

d
G,β(t) :=

1

β
+

(
1

2
− 1

β

)
1

1 − t
, σG,β(t) :=

√
2t

β(1 − t)
(t < 1) . (3.4)

Theorem 3.1. (1) As n→ ∞,

lim
n

sup
p≤n

∣∣∣∣
1

n
E log ∆G,β

n,p + J
(

1 − p

n

)∣∣∣∣ = 0 . (3.5)

(2) For every t ∈ [0, 1), as n→ ∞,

E log ∆G,β
n (t) + nJ

(
1 − bntc

n

)
→

∫ t

0

d
G,β(s) ds (3.6)

and

E log ∆G,β
n (1) + n+

(
1

β
− 1

2

)
logn→ K1

β , (3.7)

where

K1
β :=

1

2
log(2π) +

1 − γ

β
−

∫ ∞

0

sf(s)

eβs/2 − 1
ds , (3.8)

and γ = −Γ′(1) is the Euler constant.
(3) For every t ∈ [0, 1), as n→ ∞,

Var log ∆G,β
n (t) →

∫ t

0

(
σG,β(s)

)2

ds (3.9)

Var log ∆G,β
n (1) − 2

β
logn → K2

β , (3.10)

where

K2
β :=

2(γ − 1)

β
+

∫ ∞

0

s(sf(s) + 1
2 )

eβs/2 − 1
ds . (3.11)
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(4) As n→ ∞,

lim
n

sup
t∈[0,1]

∣∣∣∣
log ∆G,β

n (t)

n
+ J (1 − t)

∣∣∣∣ = 0 . (3.12)

in probability.

For β = 1, formulae (3.7) and (3.10) are due to Abbott and Mulders (2001) (see
their lemmas 4.2 and 4.4), using a variant of the decomposition method.

Theorem 3.2. (1) Let for n ≥ 1

ηG,β
n (t) := log ∆G,β

n (t) + nJ
(

1 − bntc
n

)
, t ∈ [0, 1) .

Then as n→ ∞
(
ηG,β

n (t); t ∈ [0, 1)
)
⇒

(
XG,β

t ; t ∈ [0, 1)
)
, (3.13)

where XG,β is the (Gaussian) diffusion solution of the stochastic differential
equation:

dXG,β
t = d

G,β(t) dt+ σG,β(t) dBt , (3.14)

with XG,β
0 = 0, B is a standard Brownian motion and ⇒ stands for the weak

convergence of distributions in D endowed with the Skorokhod topology.
(2) Let

η̂G,β
n =

log ∆G,β
n (1) + n+

(
1
β − 1

2

)
log n

√
2
β log n

.

Then as n → ∞, η̂G,β
n ⇒ N where N is N (0, 1) and independent of B,

(and ⇒ stands for the weak convergence of distributions in R).

3.1.2. Laguerre ensemble. Define a drift and a diffusion coefficient by

d
L,β(t) :=

(
1

2
− 1

β

)
1

1 − t
, σL,β(t) :=

√
2

β(1 − t)
(t < 1) . (3.15)

Theorem 3.3. (1) As n→ ∞,

lim
n

sup
p≤n

∣∣∣∣
1

n
E log ∆L,β

n,p + J
(

1 − p

n

)∣∣∣∣ = 0 . (3.16)

(2) For every t ∈ [0, 1), as n→ ∞,

E log ∆L,β
n (t) + nJ

(
1 − bntc

n

)
→

∫ t

0

d
L,β(s) ds , (3.17)

and

E log ∆L,β
n (1) + n+

(
1

β
− 1

2

)
logn→ K1

β − 1

β
, (3.18)
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(3) For every t ∈ [0, 1), as n→ ∞,

Var log ∆L,β
n (t) →

∫ t

0

(
σL,β(s)

)2

ds (3.19)

Var log ∆L,β
n (1) − 2

β
logn → K2

β +
2

β
. (3.20)

(4) As n→ ∞,

sup
t∈[0,1]

∣∣∣∣
1

n
log ∆L,β

n (t) + J (1 − t)

∣∣∣∣ → 0 (3.21)

in probability.

Remark 3.4. In the Uniform Gram and Laguerre ensembles, when all the variables
are defined on the same space (i.e. β = 1, 2, 4), an application of the Borel-Cantelli
lemma leads to almost sure convergence.

Theorem 3.5. Let

ηL,β
n (t) := log ∆L,β

n (t) + nJ
(

1 − bntc
n

)
, t ∈ [0, 1) ,

η̂L,β
n =

log ∆L,β
n (1) + n+

(
1
β − 1

2

)
logn

√
2
β logn

.

Then as n→ ∞ (
ηL,β

n (t); t ∈ [0, 1)
)

⇒
(
XL,β

t , t ∈ [0, 1)
)

(3.22)

η̂L,β
n ⇒ N

where XL,β is the Gaussian diffusion solution of the stochastic differential equation:

dXL,β
t = d

L,β(t) dt+ σL,β(t) dBt , (3.23)

with XL,β
0 = 0, where B is a standard Brownian motion and N is N (0, 1) and

independent of B.

The convergence of ηL,1
n (t), for fixed t and of η̂L,1

n were proved by Jonsson (1982)
Theorem 5.1a. Recently and independently the convergence of η̂L,1

n was proved in
Theorem 4 of Rempa la and Weso lowski (2005).

3.1.3. Jacobi ensemble. In this part we use new auxiliary functions. Let

E(x, y, z) = x log x− (x+y) log(x+y)+(x+y−z) log(x+y−z)− (x−z) log(x−z)

or using J defined in (3.1)

E(x, y, z) = J (x) −J (x− z) −J (x+ y) + J (x+ y − z) . (3.24)

The partial derivative of E with respect to x is:

E1(x, y, z) :=
∂

∂x
E(x, y, z) = log

x(x + y − z)

(x− z)(x+ y)
. (3.25)

Let for 0 ≤ t < τ1

σ2(t) :=
∂

∂t
E1(τ1, τ2, t) =

τ2
(τ1 − t)(τ1 + τ2 − t)

. (3.26)
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Again we define drift and diffusion coefficients:

d
J,β(t) =

(
1

2
− 1

β

)
σ2(t) , σJ,β(t) =

√
2

β
σ(t) .

Theorem 3.6. (1) As n→ ∞,

sup
t∈[0,τ1]

∣∣∣∣
1

n
E log ∆J,β

n (t) − E (τ1, τ2, t)

∣∣∣∣ → 0 . (3.27)

(2) For every t ∈ [0, τ1), as n→ ∞,

E log ∆J,β
n (t) − E(bτ1nc, bτ2nc, btnc) −→

∫ t

0

dJ(s) ds , (3.28)

and1

E log ∆J,β
n (τ1) − E(bτ1nc, bτ2nc, bτ1nc) +

(
1

β
− 1

2

)
logn −→

(
1

2
− 1

β

)
log

τ1τ2
τ1 + τ2

+K1
β − 1

β
. (3.29)

.
(3) For every t ∈ [0, τ1), as n→ ∞,

Var log ∆J,β
n (t) →

∫ t

0

(
σJ,β(s)

)2

ds , (3.30)

and1

Var log ∆J,β
n (τ1) − 2

β
logn −→ 2

β
log

( τ1τ2
τ1 + τ2

)
+K2

β +
2

β
. (3.31)

(4) As n→ ∞,

sup
t∈[0,τ1]

∣∣∣∣
1

n
log ∆J,β

n (t) − E(τ1, τ2, t)

∣∣∣∣ → 0 (3.32)

in probability.

Remark 3.7. For β = 1, 2, 4, when all variables are on the same probability space,
the convergence in (4) may be strengthened to almost sure convergence.

Theorem 3.8. Let for n ≥ 1

ηJ,β
n (t) := log ∆J,β

n (t) − E(bτ1nc, bτ2nc, btnc) , t ∈ [0, τ1) ,

η̂J,β
n :=

log ∆J,β
n (τ1) − nE(τ1, τ2, τ1) +

(
1
2 − 1

β

)
logn

√
2
β logn

.

Then as n→ ∞ (
ηJ,β

n (t); t ∈ [0, τ1)
)

⇒
(
XJ

t ; t ∈ [0, τ1)
)
, (3.33)

η̂J,β
n ⇒ N

where XJ,β is the (Gaussian) diffusion solution of the stochastic differential equa-
tion:

dXJ
t = d

J,β(t)dt+ σJ,β(t) dBt , (3.34)

1where K1

β
(resp. K2

β
) was defined in (3.8) (resp. (3.11))
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with XJ,β
0 = 0, B is a standard Brownian motion and N is a standard normal

variable independent of B.

3.2. Large deviations. Throughout this section, we use the notation of Dembo and
Zeitouni (1998). In particular we write LDP for Large Deviation Principle. The
reader may have some interest in consulting Dette and Gamboa (2007) where a
similar method is used for a different model, but here we use a slightly different
topology to be able to catch the marginals in T .

For T < 1, let MT be the set of signed measures on [0, T ] and let M< be the set
of measures whose support is a compact subset of [0, 1). We provide D with the
weakened topology σ(D,M<). So, D is the projective limit of the family, indexed
by T < 1 of topological spaces (DT , σ(DT ,MT )).

Let V` (resp. Vr) be the space of left (resp. right) continuous R-valued functions
with bounded variations. We put a superscript T to specify the functions on [0, T ].
There is a bijective correspondence between V T

r and MT :
- for any v ∈ V T

r , there exists a unique µ ∈ MT such that v = µ([0, ·]); we denote
it by v̇ ,

- for any µ ∈ MT , v = µ([0, ·]) stands in Vr.
For v ∈ D, let v̇ = v̇a + v̇s be the Lebesgue decomposition of the measure v̇ in

absolutely continuous and singular parts with respect to the Lebesgue measure and
let µ be any bounded positive measure dominating v̇s.

For A ⊂ [0, 1) and v ∈ D let

IA(v) =

∫

A

La

(
t,
dv̇a

dt
(t)

)
dt+

∫

A

Ls

(
t,
dv̇s

dµ
(t)

)
dµ(t) if v ∈ Vr , (3.35)

and IA(v) = ∞ if v ∈ D \ Vr, where functions La(t, x) and Ls(t, x) will be defined
later for each of the ensembles of interest.

3.2.1. Uniform Gram ensemble. For the following statement, we need some nota-
tion. Let H be the entropy function:

H(x|p) = x log
x

p
+ (1 − x) log

1 − x

1 − p
,

and put

LG
a (t, y) = H(1 − t|ey) δ(y|(−∞, 0)) ,

LG
s (t, y) = −(1 − t)y δ(y|(−∞, 0)) , (3.36)

where we set δ(y|A) = 0 if y ∈ A and = ∞ if y /∈ A.

Theorem 3.9. The sequence {n−1 log ∆G,β
n (t), t ∈ [0, 1)}n satisfies a LDP in

(D, σ(D,M<)) in the scale 2β−1n−2 with good rate function IG
[0,1).

That means, roughly speaking, that

P(log ∆G,β
n ' nv) ≈ e−

βn2

2 IG
[0,1)(v) .

The proof, in Section 6.1, needs several steps. Let ΘG
n = n−1 log ∆G,β

n , so that

Θ̇G
n =

1

n

n∑

j=1

(
log ρG,β

n,j

)
δj/n . (3.37)
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First we show that {Θ̇G
n } satisfies a LDP in MT equipped with the topology

σ(MT , V`). Then we carry the LDP to (DT , σ(DT ,MT )) with good rate function :

IG
[0,T ](v) =

∫

[0,T ]

LG
a

(
t,
dv̇a

dt
(t)

)
dt+

∫

[0,T ]

LG
s

(
t,
dv̇s

dµ
(t)

)
dµ(t) . (3.38)

To end the proof we apply the Dawson-Gärtner theorem on projective limits (Dembo
and Zeitouni (1998) Theorem 4.6.1, see also Léonard (2000) Proposition A2).

Note that IG
[0,T ](v) vanishes only when v satisfies (essentially)

dv̇a

dt
(t) = log(1 − t) ,

dv̇s

dµ
(t) = 0 , (3.39)

i.e. for v(t) = −J (1 − t), which is consistent with the result (3.12).

The LDP for marginals is given in the following theorem, where a rate function
with affine part appears.

Theorem 3.10. For every T < 1, the sequence
{
n−1 log ∆G,β

n (T )
}

n
satisfies a

LDP in R in the scale 2β−1n−2 with good rate function denoted by

IG
T (ξ) = inf{IG

[0,T ](v) ; v(T ) = ξ} . (3.40)

(1) If ξ ∈ [−T, 0) the equation

J (1 + θ) −J (1 − T + θ) − T log(1 + θ) = ξ , (3.41)

has a unique solution, and we have

IG
T (ξ) = θξ + TJ (1 + θ) (3.42)

+ (F (1) − F (1 − T ) − F (1 + θ) + F (1 − T + θ)) .

(2) If ξ < −T , we have

IG
T (ξ) = IG

T (−T ) − (1 − T )(ξ + T ) . (3.43)

(3) If ξ ≥ 0, IG
T (ξ) = ∞.

3.2.2. Laguerre ensemble. Let

LL
a (t, y) = (ey − 1) − (1 − t)y + J (1 − t)

LL
s (t, y) = −(1 − t)y δ(y|(−∞, 0)) . (3.44)

Theorem 3.11. The sequence {n−1 log ∆L,β
n (t), t ∈ [0, 1)}n satisfies a LDP in

(D, σ(D,M<)), in the scale 2β−1n−2 with good rate function IL
[0,1).

That means, roughly speaking, that

P(log ∆L
n ' nv) ≈ e−

βn2

2 IL
[0,1)(v) .

The proof uses the above result for the Uniform Gram process and the beta-gamma
algebra. Note that IL

[0,T ](v) vanishes only when v satisfies (3.39) (again) i.e. for

v(t) = −J (1 − t), which is consistent with the result (3.21).

The LDP for marginals is given in the following theorem.
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Theorem 3.12. For every T < 1, the sequence {n−1 log ∆L,β
n (T )}n satisfies a

LDP in R in the scale 2β−1n−2 with good rate function denoted by IL
T .

IL
T (ξ) = inf{IL

[0,T ](v) ; v(T ) = ξ} . (3.45)

(1) If ξ ≥ ξT := J (T ) − 1 the equation

J (1 + θ) −J (1 − T + θ) = ξ . (3.46)

has a unique solution, and we have

IL
T (ξ) = θξ + F (1) − F (1 − T ) − F (1 + θ) + F (1 − T + θ) . (3.47)

(2) If ξ < ξT , we have

IL
T (ξ) = IL

T (ξT ) + (1 − T )(ξT − ξ) . (3.48)

3.2.3. Jacobi ensemble. Let, for t < τ1,

LJ
a (t, y) = (τ1 + τ2 − t) H

( τ1 − t

τ1 + τ2 − t

∣∣∣ ey
)

LJ
s (t, y) = −(τ1 − t)y if y < 0 . (3.49)

Theorem 3.13. The sequence {n−1 log ∆J,β
n (t), t ∈ [0, τ1)}n satisfies a LDP in

(D, σ(D,M<)) in the scale 2β−1n−2 with good rate function I[0,τ1).

That means, roughly speaking, that

P(log ∆J,β
n ' nv) ≈ e−

βn2

2 IJ
[0,1)(v) .

Note that IJ
[0,T ](v) vanishes only when v satisfies (essentially)

dv̇a

dt
(t) = log

τ1 − t

τ1 + τ2 − t
,
dv̇s

dµ
(t) = 0 ,

i.e. for v(t) = E(τ1, τ2, t), which is consistent with the result (3.32).
The LDP for marginals is given in the following theorem.

Theorem 3.14. Let T ∈ [0, τ1), and ξJ
T = J (τ2) + J (T ) − J (T + τ2) − 1.

(1) The sequence {n−1 log ∆J,β
n (T )}n satisfies a LDP in R in the scale 2β−1n−2

with good rate function IJ
T where

IJ
T (ξ) := inf{IJ

[0,T ](v) ; v(T ) = ξ} . (3.50)

(2) If ξ ∈ [ξJ
T , 0), the equation

E(θ + τ1, τ2, T ) = ξ (3.51)

has a unique solution θ ≥ T − τ1, and we have

IJ
T (ξ) = θξ − [F (θ + τ1) − F (θ + τ1 − T )] − [F (τ1 + τ2) − F (τ1 + τ2 − t)]

+ [F (τ1) − F (τ1 − T )]

+ [F (θ + τ1 + τ2) − F (θ + τ1 + τ2 − T )] . (3.52)

(3) If ξ < ξJ
T , we have

IJ
T (ξ) = IJ

T (ξJ
T ) + (ξJ

T − ξ)(τ1 − T ) . (3.53)

(4) If ξ ≥ 0, then IJ
T (ξ) = ∞.
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4. Connections with the spectral method

The logarithm of the determinant of a non singular matrix is a linear statistic
of the empirical distribution of its eigenvalues, so that we may compare the above
result with those obtained by this spectral approach.

4.1. Laguerre/Wishart. We start with

1

n
log ∆L,β

n,r =
r

n

∫
(logx) dµn,r(x)

where

µn,r =
1

r

r∑

k=1

δλk
(4.1)

is the so-called empirical spectral distribution (ESD). For c > 0 and σ > 0, let πc
σ2

be the distribution on R defined by

πc
σ2 (dx) = (1 − c−1)

+
δ0(dx) +

(
(x− σ2a(c))(σ2b(c) − x)

)1/2

+

2πσ2cx
dx , (4.2)

where δ0 is the Dirac mass in 0, x
+

= max(x, 0) and

a(c) = (1 −√
c)2 , b(c) = (1 +

√
c)2 . (4.3)

It is called the Marčenko-Pastur distribution with ratio index c and scale index σ2

(Bai (1999) p.621).
It is well known (Marčenko and Pastur (1967), Bai (1999) Section 2.1.2 for the

cases β = 1 and β = 2) that as n, r → ∞ with r/n → T ∈ (0,∞), the family of
ESD (µn,r) converges a.s. weakly to πT

1 . If we replace the common law N (0, 1) by
N (0, σ2) then the limiting distribution is πT

σ2 .
To conclude that

lim
n

∫
(logx) dµn,r(x) =

∫
(logx) dπT

1 (x) , (4.4)

an additional control is necessary, since x 7→ logx is not bounded.
Actually, the largest and the smallest eigenvalue converge a.s. to b(T ) <∞ and

a(T ) > 0, respectively. For comments on these results and references, one may
consult Bai (1999) Sections 2.1.2 and 2.2.2., (see also Johnstone (2001)). In our
context, this implies easily that a.s.

1

n
log ∆L,β

n,r =
r

n

∫
(log x) dµn,r(x) → T

∫
(logx) dπT

1 (x) (4.5)

Moreover, it is known (Jonsson (1982) p.31 and Bai and Silverstein (2004) p.596-
597) that:

T

∫
(logx) dπT

1 (x) =

∫ b(T )

a(T )

logx

2πx

√
(x− a(T ))(b(T ) − x) dx

= (T − 1) log(1 − T ) − T = −J (1 − T ) (4.6)

which implies that claim (4.5) is consistent with (3.21).
Recently, Bai and Silverstein (2004) proved a CLT for linear statistics of sample

covariance matrices (non necessarily Gaussian), with the meaningful example of
determinants. They consider the real and complex case, and their results (Theorem
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1.1 ii) and iii) are consistent with the marginal version of (3.22). It is likely that
β = 4 can also be handled under their assumptions.

Let us end with the large deviations. Hiai and Petz (1998), (see also Hiai and
Petz (2000) Section 5.5) proved1 that if n → ∞ and r/n → T < 1, then {µn,r}
satisfies a LDP in M1([0,∞)) - the set of probability measures on [0,∞) endowed
with the weak topology - in the scale 2β−1n−2 with some explicit good rate function

IspL
T given below in (4.8, 4.9, 4.10). If the contraction µ 7→

∫
(logx) dµ(x) were

continuous, we would claim that {n−1 log ∆L
n,bnT c}n satisfies a LDP in R in the

same scale, with good rate function

ĨL
T (ξ) = inf

{
ĨspL
T (µ) ; T

∫
(logx) dµ(x) = ξ

}
. (4.7)

Actually,

IspL
T (µ) = −T 2Σ(µ) + T

∫
(x− (1 − T ) logx) dµ(x) + 2B(T ) (4.8)

where

Σ(µ) :=

∫ ∫
log |x− y| dµ(x)dµ(y) (4.9)

is the so-called logarithmic entropy and for T ∈ (0, 1)

2B(T ) = −1

2

(
3T − T 2 logT + (1 − T )2 log(1 − T )

)
. (4.10)

We do not know if the contraction µ 7→
∫

(logx) dµ(x) does work, although not
continuous. However we will prove the following result, where for u ∈ R we put

A(u) = {µ :

∫
(logx) dµ(x) = u} . (4.11)

Proposition 4.1. For ξ ≥ ξT and θ solution of (3.46), let σ2 = 1 + θ. Then the

infimum of IspL
T (µ) over A(ξ/T ) is uniquely achieved for π

T/σ2

σ2 and

IL
T (ξ) = IspL

T (π
T/σ2

σ2 ) = inf{IspL
T (µ); µ ∈ A(ξ/T )} . (4.12)

Remark 4.2. (1) The endpoint is ξT = J (T ) − 1, with σ2 = T .
(2) For ξ < ξT we do not know what happens. We can imagine that the

infimum in (4.12) has a solution in some extended space.

4.2. Uniform Gram. Let λ̃k , k = 1, . . . , r be the eigenvalues of G in the Uniform
Gram ensemble, and set

µ̃n,r =
1

r

r∑

k=1

δeλk
. (4.13)

For β = 1, De Cock et al. (1999) proved that, as n → ∞ and r/n → T ∈ (0,∞),
the family (µ̃n,r) converges a.s. to πT

1 . More recently, Jiang (2004) proved that
the same result holds true in a complex Gram ensemble not necessarily uniform.
Again, like in Section 4.1, we may write

1

n
log ∆G,β

n,r =
r

n

∫
(logx) dµ̃n,r(x)

1Their β is our β′.
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and use the weak convergence of µ̃n,r towards πT
1 . Jiang (2004) proved that the

largest and the smallest eigenvalue converge a.s. as r/n→ T < 1 to b(T ) <∞ and
a(T ) > 0 respectively. So, we have

lim
n

∫
(logx) dµ̃n,r(x) =

∫
(logx) dπT

1 (x) . (4.14)

In view of (4.6), this coincides with the result (3.12).
No result on fluctuations or large deviations seems to be known on µ̃n,r.

4.3. Jacobi. In the matrix models (β = 1, 2 or 4), take r ≤ n1 and let λk, k =
1, . . . , r be the eigenvalues of Z . The ESD is

νn1,n2,r =
1

r

r∑

k=1

δλk
.

When n2 ≤ r ≤ n1 we have

νn1,n2,r =
n2

r
µn1,n2,r +

(
1 − n2

r

)
δ1 ,

where µn1,n2,r is the ESD built with eigenvalues different from 1. We can write in
all cases

log ∆J,β
n,r = min(r, n2)

∫
(logx) µn1,n2,r(dx) . (4.15)

It is then possible to carry asymptotic results of this empirical distribution to
log ∆J,β

n,r .
Capitaine and Casalis (2004) studied the complex case in the regime n1/r →

u′, n2/r → v′ with u′ + v′ ≥ 1. They prove2 that Eνn1,n2,r converges (in moments
hence) in distribution. To give the expression of the limiting distribution, which
we denote CCu′,v′ and to compare with known results in some other contexts with
coherent notation, we will use in the following, four functions:
for (b, c) ∈ (0, 1) × (0, 1) we put

σ±(b, c) =
1

2

[
1 +

√
bc±

√
(1 − b)(1 − c)

]
, (4.16)

and for (x, y) ∈ (0, 1) × (0, 1)

a±(x, y) = (1 − x− y + 2xy) ± 2
√
x(1 − x)y(1 − y)

=
(√

(1 − x)(1 − y) ±√
xy

)2

. (4.17)

The mappings σ± and a± are inverse in the following sense:

{(b, c) : 0 < b < c < 1}
(σ−,σ+)−−−−−⇀↽−−−−−
(a−,a+)

{(x, y) : 0 < x < y < 1 and x+ y > 1} (4.18)

For 0 < a− < a+ < 1, let πa−,a+ be the distribution on R defined by

πa−,a+(dx) = Ca−,a+

√
(x− a−)(a+ − x)

2πx(1 − x)
1[a−,a+](x) dx , (4.19)

2They use the notation α and β but we change not to confuse with β already defined.



Asymptotic behavior of random determinants 203

where Ca−,a+ is the normalization constant. Since we found some mistakes in
the literature, let us compute explicitly the constant Ca−,a+ . From the obvious
decomposition

1

x(1 − x)
=

1

x
+

1

1 − x
we get

(Ca−,a+)−1 = I(a−, a+) + I(1 − a+, 1 − a−)

where, for 0 < u < v

I(u, v) =

∫ v

u

√
(x − u)(v − x)

2πx
dx

This last integral could be calculated by elementary method, but it is shorter to
connect it with the Marčenko-Pastur distribution. Taking

σ2 =

√
v +

√
u

4
,

√
c =

√
v −√

u√
v +

√
u

the simple fact that πc
σ2 , given in (4.2), is a probability distribution yields

I(u, v) =
(
√
v −√

u)
2

4
(0 < u < v) .

Finally, we get:

(Ca−,a+)−1 =
1

2

[
1 −√

a−a+ −
√

(1 − a−)(1 − a+)
]
. (4.20)

The distribution CCu′,v′ is then (recall u′ + v′ ≥ 1) :

CCu′,v′ := (1 − u′)+δ0 + (1 − v′)+δ1 (4.21)

+
[
1 − (1 − u′)+ − (1 − v′)+

]
πa−,a+ ,

where

(a−, a+) = a±

(
u′

u′ + v′
, 1 − 1

u′ + v′

)
. (4.22)

Remark 4.3. The case (v′ < 1) corresponds to r > n2, the second matrix W2 is
singular and the case (v′ ≥ 1) corresponds to r ≤ n2, the second matrix is non-
singular.

For particular values of the parameters and up to an affine change to make the
distribution symmetric, the distribution πa−,a+ was introduced by Kesten (1959) as
limit distribution for random walks on some classical groups. It was (independently)
introduced by McKay (1981) as a limit distribution in a graph problem. It is
sometimes called the generalized McKay distribution. Some important connections
are in Section 9.

For the LLN, the same remarks as above are relevant. Recall the notation

r ≤ n1 , n→ ∞ ,
r

n
→ T ,

n1

n
→ τ1 ,

n2

n
→ τ2 , u

′ =
τ1
T
, v′ =

τ2
T
.

The weak convergence of the ESD (Capitaine and Casalis (2004)) and the control
on the extremal eigenvalues (Ledoux (2004), Collins (2005) and references therein),
yield, if u′ ≥ 1

lim
n

1

r
log ∆J,β

n (T ) =

∫
(log x) CCu′,v′(dx) = min(v′, 1)

∫
(logx) πa−,a+(dx) (4.23)
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where a± are in (4.22). Nevertheless a computation of this integral by elementary
methods is not so easy. After some attempts, we choose to consider the above result
as an indirect way to compute this integral and we obtain the following result.

Proposition 4.4. For 0 < a− < a+ < 1,
∫

(logx) πa−,a+(dx) = (4.24)

=
σ+ logσ+ + σ− logσ− − (σ+ + σ− − 1) log(σ+ + σ− − 1)

1 − σ+

where σ± are specified by (4.16).

Proof: From (3.32),

lim
n

1

r
log ∆J,β

n (T ) =
1

T
lim
n

1

n
log ∆J,β

n (T ) =
1

T
E(τ1, τ2, T ) = E(u′, v′, 1) ,

where for the last equality we noticed that E is homogeneous. With the help of
(4.23) we get

min(v′, 1)

∫
(logx) πa−,a+(dx) = E(u′, v′, 1) . (4.25)

From (4.18) we see that if u′ ≥ 1 then

{σ−, σ+} =

{
u′

u′ + v′
,
u′ + v′ − 1

u′ + v′

}

We have two cases. When v′ > 1

σ− =
u′

u′ + v′
, σ+ =

u′ + v′ − 1

u′ + v′
,

so that (4.25) yields
∫

(log x) πa−,a+(dx) = E(u′, v′, 1) = E
( σ−

1 − σ+
,

1 − σ−
1 − σ+

, 1
)

(4.26)

When v′ < 1

σ+ =
u′

u′ + v′
, σ− =

u′ + v′ − 1

u′ + v′
,

so that (4.25) yields
∫

(log x)πa−,a+(dx) =
1

v′
E(u′, v′, 1) =

1 − σ−
1 − σ+

E
( σ+

1 − σ−
,

1 − σ+

1 − σ−
, 1

)
(4.27)

and together (4.26-4.27) provide (4.24). This ends the proof. �

Let us end with the large deviations. In the complex case (β = 2), Hiai and Petz
(2006) proved that if n → ∞, n1/n → τ1, n2/n → τ2 > τ1, r/n → T < τ1, then
{µn1,n2,r}n satisfies a LDP in M1([0, 1]) - the set of probability measures on [0, 1]
endowed with the weak topology - in the scale n−2, with the good rate function

IspJ
T (µ) := −T 2Σ(µ) − T

∫ 1

0

((τ1 − T ) logx+ (τ2 − T ) log(1 − x)) dµ(x)

+ T 2B
(τ1 − T

T
,
τ2 − T

T

)
, (4.28)

where B is defined in (3.3) (it is the limiting free energy). A computation similar
to Hiai and Petz (2006) p.10 gives the same result for general β.



Asymptotic behavior of random determinants 205

Proposition 4.5. If T < τ1 ≤ τ2, the family {µbnτ1c,bnτ2c,bnT c} satisfies a LDP in

M1([0, 1]) in the scale 2β−1n−2 and good rate function IspJ
T .

If the contraction µ 7→
∫

(logx) dµ(x) from the set M1([0, 1]) to R were contin-

uous, we would claim that {n−1 log ∆J,β
n (T )}n satisfies a LDP in R with good rate

function ĨJ
T where

ĨJ
T (ξ) = inf

{
IspJ
T (µ) ; µ ∈ A(ξT−1)

}
(4.29)

with A(u) as defined in (4.11).
Like in the Laguerre case we will prove the following result.

Proposition 4.6. Let T < min(τ1, τ2), ξ ∈ [ξJ
T , 0) and θ solution of (3.51). Then

the infimum of IspJ
T (µ) over A(ξT−1) is uniquely achieved at µ = πã−,ã+ where

(ã−, ã+) = a±(s̃−, s̃+)

with

s̃− =
τ1 + θ

τ1 + τ2 + θ
, s̃+ =

τ1 + θ + τ2 − t

τ1 + τ2 + θ
, (4.30)

and

IJ
T (ξ) = IspJ

T (πã−,ã+) = inf{IspJ
T (µ); µ ∈ A(ξT−1)} . (4.31)

Remark 4.7. The endpoint is ξJ
T , which corresponds to θ = T − τ1, i.e.

ã− = 0 , ã+ =
4τ2T

(τ2 + T )2
.

For ξ < ξJ
T we do not know what happens. We can imagine that the infimum in

(4.29) has a solution in some extended space.

Remark 4.8. In the range τ2 ≤ T < τ1 we have a similar result, exchanging s̃− and
s̃+ in (4.30). We omit the details.

4.4. Extensions. We already mentioned that in the Wishart and Gram models,
limiting results exist for marginals when we leave the Gaussian/Uniform world, in
particular for fluctuations in Bai and Silverstein (2004).

The Bartlett decomposition is not possible in the general case. Nevertheless, a
product formula for the determinant is well known (see for example Lemma 3.1 p.9
and formula 4.3 p.15 in Friedland et al. (2004)), but nothing can be said about the
distribution of the components of the product in general.

Nevertheless, if the columns (or the rows) of the matrix B are i.i.d. and isotropic,
the previous results extend easily.

Begin with the ”column” case. The beta-gamma algebra allowed us to pass from
the Uniform Gram ensemble to the Wishart ensemble. The polar decomposition
allows to obtain similar results as for the Wishart ensemble under convenient as-
sumptions on the radial distribution. Let εn = log ‖b1‖2 − log E‖b1‖2 (remember
that we omit the dimension index n). To get convergence and fluctuations it is
enough to assume

nEεn → a1 , nVar εn → a2 , nE(εn − Eεn)4 → 0 . (4.32)

To get large deviations, it would be sufficient to assume that, for some convenient
functions ϕ, the quantity n−2

∑n
k=1 log E exp (nϕ(k/n)εn) has a limit. Akhavi



206 Alain Rouault

(2002) uses the uniform distribution in the unit ball, so that the distribution of
‖b1‖2 is Beta(n/2, 1) and (4.32) is satisfied with a1 = −2, a2 = 0. The contribution
of the radial part is then roughly ”deterministic” since E‖b1‖2 is bounded.

In the ”row” case, we can use the results of the ”column” case since the eigen-
values of BB′ are (except 0 with multiplicity n− r) the same as those of B ′B.

5. Proofs of Theorems of Section 3.1

5.1. Proof of Theorem 3.1. We will use Mellin transforms and their first two deriva-
tives at θ = 0. From the decomposition (2.20) we have

log E|∆G,β
n,r |β

′θ =
r∑

k=1

ΛG,β
n,k (θ) (5.1)

with

ΛG,β
n,k (θ) := log E

[
ρG,β

n,k

]β′θ

(5.2)

and from (2.11)

ΛG,β
n,k (θ) = `

(
β′(n− k + 1 + θ)

)
−`

(
β′(n− k + 1)

)
+`(β′n)−` (β′(n+ θ)) (5.3)

where we set

`(x) = log Γ(x) .

We will use in the sequel some expansions of ` and of its derivative, the digamma
function

Ψ(x) =
Γ′(x)

Γ(x)
;

all these properties are based on Binet’s first formula and are given in Section 8.

Proof of 1) and 2) Differentiating once, we get

E log ∆G,β
n,r =

r∑

j=1

[Ψ (β′(n− j + 1)) − Ψ (β′n)] ,

and from formula (8.5),

E log ∆G,β
n,r = log

(n)r

nr
+

1

β
(Hn−r −Hn) +

r

βn
− δ1n,r . (5.4)

in which
1) (p)r = p(p− 1) · · · (p− r + 1) is the falling factorial
2) H0 = 0 and Hp = 1 + 1

2 + · · · + 1
p are the harmonic numbers

3) the delta term is

δ1n,r =

∫ ∞

0

sf(s)

r∑

k=1

[e−β′(n−k+1)s − e−ns] ds . (5.5)

Using now formula (8.1) twice, we have for r < n

log
(n)r

nr
= −

(
n− r +

1

2

)
log

(
1 − r

n

)
− r −

∫ ∞

0

f(s)[e−s(n−r) − e−sn]ds

= −nJ
(

1 − r

n

)
− 1

2
log

(
1 − r

n

)
−

∫ ∞

0

f(s)[e−s(n−r) − e−sn]ds .
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For r = n the Stirling formula gives

log
(n)n

nn
= −n+

1

2
log(2πn) + o(1) .

The harmonic contribution in (5.4) is

Hn−r −Hn = log
(

1 − r

n

)
+ o(1)

as soon as n− r → ∞. For r = n, we have H0 −Hn = − logn− γ+ o(1) . Applying
the dominated convergence theorem and (8.4), we see that the delta contribution
satisfies:

sup
r≤n

δ1n,r = δ1n,n →
∫ ∞

0

sf(s)

eβ′s − 1
ds ,

and limn δ
1
n,bntc = 0 for t < 1. Gathering all these estimates, and applying again

the dominated convergence theorem, we get (for n− r → ∞)

E log ∆G,β
n,r = −nJ

(
1 − r

n

)
+

r

βn
+

(
1

β
− 1

2

)
log

(
1 − r

n

)
+ o(1) ,

and for r = n

E log ∆G,β
n,n = −n−

(
1

β
− 1

2

)
logn+K1

β + o(1) .

Moreover, for the supremum, we have

sup
r≤n

∣∣∣∣E log ∆G,β
n,r − log

(n)r

nr

∣∣∣∣ = O(log n)

sup
r≤n

∣∣∣∣log
(n)r

nr
+ nJ

(
1 − r

n

)∣∣∣∣ = O(log n)

so that (3.5), (3.6) and (3.7) are proved.
3) Taking logarithms in (5.1) and differentiating twice, we get

Var log ∆G,β
n,r =

r∑

j=1

Ψ′ (β′(n− j + 1)) − Ψ′(β′n)

and owing to (8.9) and (8.8)

Var log ∆G,β
n,r =

1

β′
(Hn −Hn−r) − r

β′n
+ δ2n,r ,

where

|δ2n,r| ≤
n∑

n−r+1

2

β′2j2
,

δ2n,n =

∫ ∞

0

s

(
sf(s) +

1

2

) n∑

k=1

[e−β′(n−k+1)s − e−β′ns] ds .

On the one hand lim δ2n,bntc = 0 for t < 1 and we get (3.9). On the other hand,

applying the dominated convergence theorem and (8.4) we have

lim
n
δ2n,n =

∫ ∞

0

s
(
sf(s) + 1

2

)

eβ′s − 1
ds .

and we get (3.10).
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To prove 4), let us note that since J is uniformly continuous on [0, 1] we have

lim
n

sup
t∈[0,1]

∣∣∣∣J
(

1 − bntc
n

)
−J (1 − t)

∣∣∣∣ = 0 ,

so that, owing to (3.5), it is enough to prove that in probability

sup
1≤p≤n

∣∣log ∆G,β
p,n − E log ∆G,β

p,n

∣∣ = o(n) .

Actually this convergence is a consequence of Doob’s inequality and of the variance
estimate Var n−1∆G,β

n,n = O(n−2 logn) coming from (3.10). �

5.2. Proof of Theorem 3.2. First note that, thanks to the estimations of expecta-
tions in (3.6) and (3.7), we can reduce the problem to the centered process and
centered variable:

δn(t) := log ∆G,β
n (t) − E log ∆G,β

n (t) , δ̂n = δn(1)/
√

(2/β) logn .

1) We have δn(t) =
∑bntc

k=1 ηn,k where

ηn,k := (log ρG,β
k,n ) − E(log ρG,β

k,n ), k ≤ n (5.6)

is a row-wise independent arrow. To prove (3.13) it is enough to prove the con-
vergence in distribution in D([0, T ]), for every T < 1, of δn to a centered Gaussian

process with independent increments, and variance
∫ t

0

(
σG,β(s)

)2
ds. To this pur-

pose we apply a version of the Lindeberg-Lévy-Lyapunov criterion (see Dacunha-
Castelle and Duflo (1986) Volume II Theorem 7.4.28, or Jacod and Shiryaev (1987,
Chap. 3 c)). For t < 1, from (3.9) it is enough to prove that

lim
n

bntc∑

k=1

E (η4
n,k) = 0 . (5.7)

From definitions (5.6) and (5.2) we have:

β′4
E(η4

n,k) = (ΛG,β
n,k )(4)(0) + 3[(ΛG,β

n,k )(2)(0)]2 . (5.8)

On the one hand, differentiating four times in (5.3) yields

(ΛG,β
n,k )(4)(0) = β′4[Ψ(3)(β′(n− k + 1)) − Ψ(3)(β′n)]

and using Binet estimates (8.8), (8.9) for q = 4:
∣∣∣∣∣

p∑

k=1

(ΛG,β
n,k )(4)(0) − 6β′

p∑

k=1

[
1

(n− k + 1)3
− 1

n3

]∣∣∣∣∣ ≤ 6

p∑

k=1

1

(n− k + 1)4
. (5.9)

Fixing 0 < t < 1 and taking p = bntc we get limn

∑bntc
k=1

(
ΛG,β

n,k

)(4)

(0) = 0 .

On the other hand,
p∑

k=1

[(ΛG,β
n,k )′′(0)]2 ≤

(
sup
j≤p

(ΛG,β
n,j )′′(0)

) p∑

k=1

(ΛG,β
n,k )′′(0) . (5.10)

We already know, from (3.9) that

β′−2

bntc∑

k=1

(ΛG,β
k,n )′′(0) = Var log ∆G,β

n (t) →
∫ t

0

(
σG,β(s)

)2

ds .
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Now since (ΛG,β
n,k )′′(0) = β′2[Ψ′(β′(n − k + 1)) − Ψ′(β′n)] and since Ψ′ is non-

increasing (see (8.8)) we obtain

sup
j≤bntc

(ΛG,β
j,n )′′(0) ≤ β′2Ψ′ (β′(n− bntc + 1)) ,

and from (8.9) (again), this term tends to 0. We just checked (5.7), which proves
that the sequence of processes {δn(t), t ∈ [0, 1)}n converges to a Gaussian centered
process W with independent increments and the convenient variance. It is now
straightforward to get equation (3.14).

2) When t = 1 most of the sums studied above explode when n tends to infinity
and we need a renormalization. In fact, for every n, the process (δn(t), t ∈ [0, 1])
has independent increments. For t1 < · · · < tr, the variable δn(1), conditionally
upon δn(t1) = ε1, . . . , δn(tr) = εr, has the same distribution as εr +

∑n
[ntr ]+1 ηk,n.

Formulae (3.9) and (3.10) yield

n∑

[ntr]+1

E(η2
k,n) = (2/β) logn+ O(1) . (5.11)

In order to apply the Lindeberg-Lyapunov theorem to the triangular array of ran-
dom variables η̂k,n = ηk,n/

√
(2/β) logn with with k = [ntr] + 1, . . . , n, we want to

prove

lim
n

n∑

k=1

E(η̂4
k,n) = 0 . (5.12)

We start again with the decomposition (5.8). From the above estimate (5.9), the

sum
∑n

k=1(ΛG,β
n,k )(4)(0) is bounded. In (5.10), we have

n∑

k=1

(ΛG,β
n,k )′′(0) = β′−2Var log ∆G,β

n (1)

which is equivalent to 2 logn (see (3.10)) and the supremum in (5.10) with p = n
is bounded. This yields

n∑

k=1

E(η̂4
k,n) = β′2(log n)−2

n∑

k=1

E(η4
k,n) = O((log n)−1)

which proves (5.12). Then the distribution of
∑n

[ntr ]+1 η̂k,n converges to N (0, 1),

and the same is true for the conditional distribution of δ̂n knowing δn(t1) =
ε1, . . . , δn(tr) = εr. Since the limiting distribution does not depend on ε1, . . . , εr,

we have proved that δ̂n converges in distribution to a random variable which is
N (0, 1) and independent of W . �

5.3. Proof of Theorems 3.3 and 3.5. It is of course possible to follow the same
schemes of proof. Actually we prefer, at least for the beginning, exploit the beta-
gamma algebra and the fundamental relation (2.26). So, for instance

E

[
ε
(n)
k

]β′θ

=
( 1

β′n

)β′θ Γ(β′(n+ θ))

Γ(β′n)
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hence

log E

[
ε
(n)
k

]β′θ

= ` (β′(θ + n)) − ` (β′n) − β′θ log (β′n) , (5.13)

which provides estimates for the expectation and the variance. Differentiating once
and taking θ = 0, we see that

E log ε
(n)
k = Ψ (β′n) − log (β′n) = − 1

βn
+O

( 1

n2

)

(see (8.7)), which gives

sup
p≤n

∣∣∣∣ESn,p +
p

nβ

∣∣∣∣ = O
( 1

n

)
. (5.14)

Besides, differentiating (5.13) twice and taking θ = 0 again, we have

Var
(

log ε
(n)
k

)
= Ψ′ (β′n) =

2

βn
+O

( 1

n2

)

(see (8.9)), which yields

sup
p≤n

∣∣∣∣VarSn,p −
2p

βn

∣∣∣∣ = O
( 1

n

)
. (5.15)

From (5.14) and (5.15) it is easy to check (via a fourth moment estimate) that Sn

converges in distribution in D([0, 1]) to
(
− (t/β) +

√
2/β B̃t, t ∈ [0, 1]

)

where B̃ is a Brownian motion independent of (∆G,β
n , n ∈ N). Finally the family of

processes ∆L,β
n = ∆G,β

n + Sn converges in distribution towards
(
XG,β

t − (t/β) +
√

2/β B̃t, t ∈ [0, 1)
)
.

It is a Gaussian process, whose drift and variance coefficients are

d
G,β(t) − 1

β
=

(
1

2
− 1

β

)
1

1 − t
= d

L,β(t) ,
(
σG,β(t)

)2

+
2

β
=

(
σL,β(t)

)2

.

which identify the process XL,β.
Besides, we have

η̂L,β
n (1) = η̂G,β

n (1) +
Sn(1)√
2 logn

,

so that the convergence of η̂L,β
n (1) is clear. Moreover the independence properties

seen in Theorem 3.2 remain true. �

5.4. Proof of Theorem 3.6. Again, we could follow the same schemes as in the Gram
section. Actually we take again the benefit of beta-gamma algebra. We delete the
superscript β for the sake of simplicity.

Recall the equality in law (2.28)

log ∆L
n1,r

(d)
= log ∆J

n,r + log ∆L
n1+n2,r − r log

n1

n1 + n2

with independence in the left hand side.
We deduce easily

E log ∆J
n,r = E log ∆L

n1,r − E log ∆L
n1+n2,r + r log

n1

n1 + n2
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and

Var log ∆J
n,r = Var log ∆L

n1,r − Var log ∆L
n1+n2,r

The results are now straightforward and we let the proof to the reader. We just
note that since r/n1 → t/τ1 and r/(n1 + n2) → t/(τ1 + τ2) then

E log ∆L
n1,r + n1J

(
1 − r

n1

)
→

∫ t/τ1

0

d
L,β(s)ds

E log ∆L
n1+n2,r + (n1 + n2)J

(
1 − r

n1 + n2

)
→

∫ t/(τ1+τ2)

0

d
L,β(s)ds

hence

d
J,β(t) =

1

τ1
d

L

(
t

τ1

)
− 1

τ1 + τ2
d

L

(
t

τ1 + τ2

)
.

In the same vein
(
σJ (t)

)2

=
1

τ1

(
σL

(
t

τ1

) )2

− 1

τ1 + τ2

(
σL

(
t

τ1 + τ2

) )2

.

5.5. Proof of Theorem 3.8. Again, it is possible to follow the classical scheme.
Instead let us look at the situation we are faced to. Put

Un = log ∆L
n1,r − E∆L

n1,r , Vn = log ∆L
n1+n2,r − E log ∆L

n1+n2,r ,

Wn = log ∆J
n,r − E log ∆J

n,r . (5.16)

so that Un = Vn + Wn with Un ⇒ U and Vn ⇒ V , where U and V are Gaussian
processes with independent increments, and Vn and Wn are independent. Looking
for instance at characteristic functions, it is clear that Wn converges in the sense
of finite distributions to a Gaussian process with independent increments. Its drift
and variance are the difference of the corresponding ones. Moreover, since {Un}n

and {Vn}n are tight, {Un − Vn}n is tight.

6. Proofs of Theorems of Section 3.2

6.1. Proof of Theorem 3.9. Recall the notation ΘG
n = n−1 log ∆G,β

n . As mentioned
after the statement of the theorem, we are going to prove at first the LDP for the
restriction of Θ̇G

n to [0, T ], viewed as an element of MT , in the scale β′−1n−2 with
rate function

ĨG
[0,T ](m) :=

∫ T

0

LG
a

(
t,
dma

dt
(t)

)
dt+

∫ T

0

LG
s

(
t,
dms

dµ
(t)

)
dµ(t) . (6.1)

Recall that V` is the set of functions from [0, T ] to R which are left continuous
and have bounded variation. Let V ∗

` be its topological dual when V` is equipped

with the uniform convergence topology. Actually Θ̇G
n ∈ MT may be identified with

an element of V ∗
` (see Léonard (2000) Appendix B): owing to (3.37) its action on

ϕ ∈ V` is given by

〈Θ̇G
n , ϕ〉 :=

1

n

bnT c∑

k=1

ϕ(k/n) log ρG,β
n,k .
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The proof of Theorem 3.9 is based on the ideas of Baldi theorem (Dembo and
Zeitouni (1998) p.157). The main tool is the normalized cumulant generated func-
tion (n.c.g.f.) which here takes the form

LG,β
n,bnT c(ϕ) :=

1

β′n2
log E

[
exp

(
β′n2〈Θ̇G

n , ϕ〉
)]

. (6.2)

Owing to (6.1) we have

LG,β
n,bnT c(ϕ) =

1

β′n2

bnT c∑

k=1

ΛG,β
n,k (nϕ(k/n)) (6.3)

and from (5.2) it is finite iff ϕ(k/n) > −(n− k + 1)/n for every 1 ≤ k ≤ bnT c.
In Section 6.1.1, we prove the convergence of this sequence of n.c.g.f. for a large

class of functions ϕ. It will be sufficient, jointly to the variational formula given
in Section 6.1.2 to get the upper bound for compact sets. Then Section 6.1.3 is
devoted to exponential tightness, which allows to get the upper bound for closed
sets. However, since the limiting n.c.g.f. is not defined everywhere, the lower bound
(for open sets) is more delicate than in Baldi theorem. Actually a careful study of
exposed points as in Gamboa et al. (1999) is managed in Section 6.1.4. We end the
proof in Section 6.1.5.

6.1.1. Convergence of the n.c.g.f. Let, for t ∈ [0, 1] and θ > −(1 − t)

gG(t, θ) := J (1 − t+ θ) −J (1 − t) −J (1 + θ) . (6.4)

Lemma 6.1. If ϕ ∈ V` satisfies ϕ(t) + 1 − t > 0 for every t ∈ (0, T ], then

lim
n

LG,β
n,bnT c(ϕ) = ΛG

[0,T ](ϕ) :=

∫ T

0

gG(t, ϕ(t)) dt . (6.5)

Proof: The key point is a convergence of Riemann sums. From (5.3) and (8.1) we
have, for every θ > −n−k+1

n ,

ΛG,β
n,k (nθ) = β′(n− k + nθ) log

(
1 − k

n
+ θ +

1

n

)
− β′(n− k) log

(
1 − k

n
+

1

n

)

−β′(n− 1 + nθ) log(1 + θ) +Rn,k(θ)

where the quantity

Rn,k(θ) =

∫ ∞

0

f(s)e−β′s
[
e−β′(n−k+nθ)s − e−β′(n−k)s

]
ds

−
∫ ∞

0

f(s)
[
e−β′(n−1+nθ)s − e−β′se−β′(n−1)s

]
ds

is bounded by 2
∫ ∞

0 e−β′sf(s) ds. If we set

Φn(t) := (1 − t+ ϕ(t)) log
(

1 − t+ ϕ(t) +
1

n

)

−(1 − t) log(1 − t+
1

n
) −

(
1 − 1

n
+ ϕ(t)

)
log(1 + ϕ(t))
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then, making θ = ϕ(k/n), and taking the sum over k, we get from (6.3)

1

β′n2

(
LG

n,bntc(ϕ) −
bntc∑

2

Rn,k(ϕ(k/n))
)

=
1

n

bntc∑

1

Φn

(
k

n

)
=

=

∫ bntc/n

1/n

Φn

(bnsc
n

)
ds+

1

n
Φn

(bntc
n

)
.

On the one hand, since ϕ is left continuous, limn Φn

(
bntc

n

)
= g(t, ϕ(t)) for every

t ∈ [0, T ]. On the other hand the following double inequality holds true:

Φn(t) ≥ (1 − t+ ϕ(t)) log (1 − t+ ϕ(t)) − (1 − t) log(2 − t)

− (1 + ϕ(t)) log (1 + ϕ(t)) − | log (1 − t+ ϕ(t)) |
Φn(t) ≤ (1 − t+ ϕ(t)) log (2 − t+ ϕ(t)) − (1 − t) log(1 − t)

− (1 + ϕ(t)) log (1 + ϕ(t)) + | log (1 − t+ ϕ(t)) | ,
and with our assumptions on ϕ, these bounds are both integrable. This allows to
apply the dominated convergence theorem which ends the proof of Lemma 6.7. �

If there exists s < T such that ϕ(s) < −(1 − s) then for n large enough,
Ln,bnT c(ϕ) = +∞ and we set ΛG

[0,T ](ϕ) = ∞. In the other cases we do not know

what happens, but as in Gamboa et al. (1999), we will study the exposed points.
Before, we need another expression of the dual of ΛG

[0,T ].

6.1.2. Variational formula. Define ΛG
[0,T ](ϕ) = +∞ if ϕ does not satisfy the as-

sumption of Lemma 6.1. The dual of ΛG
[0,T ] is then

(
ΛG

[0,T ]

)?

(ν) = sup
ϕ∈V`

{
〈ν, ϕ〉 − ΛG

[0,T ](ϕ)
}

(6.6)

for ν ∈ V ∗
` . Mimicking the method of Léonard (2000) p. 112-113, we get

(
ΛG

[0,T ]

)?

(ν) = sup
ϕ∈C

{
〈ν, ϕ〉 − ΛG

[0,T ](ϕ)
}

(6.7)

where C is the set of continuous functions from [0, T ] into R vanishing at 0. Then
we apply Theorem 5 of Rockafellar (1971) and get

(
ΛG

[0,T ]

)?

(ν) =

∫ T

0

g?
(
t,
dνa

dt

)
dt+

∫ T

0

r
(
t,
dνs

dµ
(t)

)
dµ(t)

where

g?(t, y) = sup
λ

{
λy − gG(t, λ)δ(λ|(−1,∞))

}
, (6.8)

and r is the recession function:

r(t, y) = lim
κ→∞

g?(t, κy)

κ
.

Actually, if y < 0, the supremum is achieved for

λG(t, y) := −
(

1 − t

1 − ey

)
(6.9)
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and we have

g?(t, y) = λG(t, y)y − gG
(
t, λG(t, y)

)

= −y(1 − t) + (1 − t) log(1 − t) + t log t− t log(1 − ey)

= H (1 − t|ey) . (6.10)

If y ≥ 0, then g?(t, y) = ∞. The recession is now r(t, y) = −(1 − t)y if y ≤ 0, and
r(t, y) = ∞ si y > 0. As a result

g?(t, y) = LG
a (t, y) , r(t, y) = LG

s (t, y) . (6.11)

So we proved the identification
(

ΛG
[0,T ]

)?

= ĨG
[0,T ] (recall (6.1)).

6.1.3. Exponential tightness. In this paragraph and in Section 6.2 we use the func-
tion defined for θ > −(1 − T ) by

LG
T (θ) :=

∫ T

0

gG(t, θ) dt . (6.12)

If V ∗
` is equipped with the topology σ(V ∗

` , V`), the set

Ba := {µ ∈ V ∗
` : |µ|[0,T ] ≤ a}

is compact according to the Banach-Alaoglu theorem. Now −Θ̇G
n is a positive

measure and its total mass is −Θ̇G
n ([0, T ]) = −Ξn(T ). We have then

P

(
Θ̇G

n /∈ Ba

)
= P

(
ΘG

n (T ) < −a
)
.

Now for θ < 0

P
(
ΘG

n (T ) < −a
)
≤ eβ′θn2a

E exp{n2β′θΘG
n (T )}

so that, taking logarithm and applying Lemma 6.1 we get, for θ ∈ (−(1 − T ), 0)

lim sup
n

1

β′n2
log P

(
ΘG

n (T ) < −a
)
≤ θa+ LG

T (θ) .

It remains to let a→ ∞ and we have proved the exponential tightness.
Note that the restriction T < 1 is crucial in the above proof.

6.1.4. Exposed points. Let R be the set of functions from [0, T ] into R which are
positive, continuous and with bounded variation. Let F be the set of those m ∈ V ∗

`

(identified with MT as in Léonard (2000)) which are absolutely continuous and
whose density ρ is such that −ρ ∈ R. Let us prove that such a m is exposed,
with exposing hyperplane fm(t) = λ(t, ρ(t)) (recall (6.9)). Actually we follow the
method of Gamboa et al. (1999). For fixed t, g?(t, .) is strictly convex on (−∞, 0)
so that, if z 6= ρ(t), we have

g?(t, ρ(t)) − g?(t, z) < λ(t, ρ(t))(ρ(t) − z) .

Let dξ = l̃(t)dt + ξ⊥ the Lebesgue decomposition of some element ξ ∈ MT such

that ĨG
[0,T ](ξ) <∞. Taking z = l̃(t) and integrating, we get

∫ T

0

g?(t, ρ(t)dt−
∫ T

0

g?(t, l̃(t))dt <

∫ T

0

λ(t, ρ(t))ρ(t)dt −
∫ T

0

λ(t, ρ(t))l̃(t) dt
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and since
∫ T

0
g?(t, l̃(t))dt =

∫ T

0
LG

a (t, l̃(t))dt ≤ ĨG
[0,T ](ξ) this yields

ĨG
[0,T ](m) − ĨG

[0,T ](ξ) <

∫ T

0

fmdm−
∫ T

0

fmdξ .

The following lemma says that this set of exposed points is rich enough.

Lemma 6.2. Let m ∈ Vr such that ĨG
[0,T ](m) < ∞. There exists a sequence of

functions ln ∈ R such that

(1) limn ln(t)dt = −m in V ∗
` with the σ(V ∗

` , V`) topology,

(2) limn Ĩ
G
[0,T ](−ln(t)dt) = ĨG

[0,T ](m) .

Proof: The method may be found in Gamboa et al. (1999) and in Dette and Gamboa
(2007). The only difference is in the topology because we want to recover marginals.
We will use the basic inequality which holds for every ε ≤ 0:

LG
a (t, v + ε) ≤ LG

a (t, v) − ε(1 − t) (6.13)

Let m = ma +ms such that ĨG
[0,T ](m) <∞. From (3.38) and (3.36) it is clear that

−ma and −ms must be positive measures.

First step We assume that m = −l(t)dt− η with l ∈ L1([0, T ]; dt) and η a singular
positive measure. One can find a sequence of nonnegative continuous functions hn

such that hn(t)dt → η for the topology σ(V ∗
` , V`). Indeed every function ψ ∈ V`

may be written as a difference ψ1 − ψ2 of two increasing functions. There exists
a unique (positive) measure α1 such that ψ1(t) = α1([t, T ]) for every t ∈ [0, T ].
Moreover, the function g = η([0, ·]) ∈ Vr is non decreasing and may be approached
by a sequence of continuously derivable and non decreasing functions (gn) such that
gn ≤ g. Setting hn := g′n and νn = hn(t)dt, the dominated convergence theorem
gives

〈ψ
1
, νn〉 =

∫ T

0

νn([0, t])α1(dt) →
∫ T

0

η([0, t])α1(dt) .

With the same result for ψ2 we get

〈ψ, νn〉 =

∫ T

0

νn([0, t])α1(dt) −
∫ T

0

νn([0, t])α2(dt)

→
∫ T

0

η([0, t])α1(dt) −
∫ T

0

η([0, t])α2(dt) .

or limn〈ψ, νn〉 = 〈ψ, η〉. On the one hand, the lower semi-continuity of ĨG
[0,T ] yields

lim inf
n

ĨG
[0,T ] (−(l(t) + hn(t))dt) ≥ ĨG

[0,T ](m) .

On the other hand, integrating (6.13) yields

ĨG
[0,T ](−(l(t) + hn(t))dt) ≤

∫ T

0

LG
a (t,−l(t))dt+

∫ T

0

(1 − t)hn(t)dt

→
∫ T

0

LG
a (t,−l(t))dt+

∫ T

0

(1 − t)η(dt) = ĨG
[0,T ](m) .
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Second step Assume that m = −l(t)dt with l ∈ L1([0, T ]; dt) and for every n, let us
set ln = max(l, 1/n). It is clear that as n → ∞, then ln ↓ l. On the one hand the
lower semi-continuity gives

lim inf
A

ĨG
[0,T ](−ln(t)dt) ≥ IG

[0,T ](−l(t)dt) .

On the other hand, by integration of inequality (6.13), since ln − l ≤ 1/n

IG
[0,T ](−ln(t)dt) ≤ IG

[0,T ](−l(t)dt) +
1

n
.

It is then possible to reduce the problem to the case of functions bounded below.

Third step Assume that m = −l(t)dt with l ∈ L1([0, T ]; dt) and bounded below by
A > 0. One can find a sequence of continuous functions (hn) with bounded variation
such that hn ≥ A/2 for every n and such that hn → l a.e. and in L1([0, T ], dt).
We have hn(t)dt → l(t)dt in σ(V ∗

` , V`) and since LG
a (t, ·) is uniformly Lipschitz on

(−∞,−A/2], say with constant κ, we get

|ĨG
[0,T ](−hn(t)dt) − ĨG

[0,T ](−l(t)dt)| ≤ κ

∫ T

0

|hn(t) − l(t)|dt→ 0 .

Actually, hn ∈ R and ϕn(t) := λ(t,−hn(t)) satisfies the assumption of Lemma 6.1
since

1 + ϕn(t) − t ≥ t

1 − e−A/2
.

6.1.5. End of the proof of Theorem 3.9. The first step is the upper bound for com-
pact sets. We use Theorem 4.5.3 b) in Dembo and Zeitouni (1998) and the following
lemma.

Lemma 6.3. For every δ > 0 and m ∈ V ∗
` , there exists ϕδ fulfilling the conditions

of Lemma 6.1 and such that
∫ T

0

ϕδdm− ΛG
T (ϕδ) ≥ min

[
IG
[0,T ](m) − δ, δ−1

]
. (6.14)

The second step is the upper bound for closed sets: we use the exponential
tightness. The third step is the lower bound for open sets. The method is classical
(see Dembo and Zeitouni (1998) Theorem 4.5.20 c)), owing to Lemma 6.2.

To prove Lemma 6.3, we start from the definition (6.6) or (6.7). One can find
ϕ̄δ ∈ V` satisfying (6.14). If ϕ̄δ does not check assumptions of the lemma we add
ε > 0 to ϕ̄δ which allows to check them and satisfy (6.14) up to a change of δ. �

6.2. Proof of Theorem 3.10. We use the contraction from the LDP for paths. Since
the mapping m 7→ m([0, T ]) is continuous from D to R, the family ΘG

n (T ) satisfies
the LDP with good rate function specified by (3.40):

IG
T (ξ) = inf{IG

[0,T ](v) ; v(T ) = ξ} .
Since the process ΘG

n takes its values in (−∞, 0] (remember Hadamard inequality),
it is clear that IG

T (ξ) = ∞ for ξ > 0.
Fixing ξ ≤ 0, we can look for optimal v. Let θ > −(1− T ) (playing the role of a

Lagrange multiplier). By the duality property (6.8)

g?
(
t,
dv̇a

dt
(t)

)
≥ θ

dv̇a

dt
(t) − gG(t, θ) .
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Integrating and using (6.1), (6.11) and (6.5) we get

IG
[0,T ](v) ≥ θv̇a([0, T ]) − LG

T (θ) −
∫ T

0

(1 − t) dv̇s(t) . (6.15)

For every v such that v(T ) = ξ it turns out that

IG
[0,T ](v) ≥ θξ − LG

T (θ) −
∫ T

0

(1 − t+ θ) dv̇s(t) ≥ θξ − LG
T (θ) . (6.16)

Besides, from Section 6.1.2 the Euler-Lagrange equation is

λG(t, φ′(t)) = θ

φ(0) = 0 .

This ordinary differential equation admits for unique solution in C1([0, T ])

t 7→ φ(θ; t) := J (1 + θ) −J (1 − t+ θ) − t log(1 + θ) .

Now, since

∂

∂θ
φ(θ;T ) = −

[
log

(
1 − T

1 + θ

)
+

T

1 + θ

]
> 0

we see that the mapping θ 7→ φ(θ;T ) is bijective from [−(1 − T ),∞) onto [−T, 0).
Moreover, by duality

g?
(
t,
∂

∂t
φ(θ, t)

)
= θ

∂

∂t
φ(θ, t) − gG(t, θ) .

There are three cases.
• If ξ ∈ [−T, 0), there exists a unique θξ such that φ(θξ , T ) = ξ (i.e. the relation

(3.41) is satisfied). For vξ := φ(θξ , ·), we get from (6.1), (6.11) and (6.12) again

IG
[0,T ](v

ξ) = θξξ − LG
T (θξ)

so that vξ realizes the infimum in (3.40). A simple computation ends the proof of
the first statement of Theorem 3.10.

Note that at the end point ξ = −T , we have

θξ = −(1 − T ) , vξ(t) = J (T ) −J (T − t) − t logT , (vξ)′(t) = log(1 − t/T ) .

Finally

IG
T (−T ) = 2T (1 − T ) +

(
F (1) − F (1 − T ) − F (T ) + T 2 log T

)

=
T (1 − T )

2
+
T 2 logT

2
− (1 − T )2 log(1 − T )

2
+

3

4
.

• If ξ < −T , set ε = −T − ξ. Plugging θ = −(1 − T ) in (6.16) yields, for every
v such that v(T ) = ξ

IG
[0,T ](v) ≥ −(1 − T )ξ − LG

T (−(1 − T )) = (1 − T )ε+ IG
T (−T ) ,

and this lower bound is achieved by the measure ṽ = (v−T )′(t)dt− εδT (t), since

∫ T

0

LG
a

(
t, (v−T )′(t)

)
dt = IG

T (T ) ,

∫ T

0

(1 − t) ε dδT (t) = (1 − T ) ε .
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• If ξ = 0, make ξ = 0 in (6.16). We get IG
T (0) ≥ −LG

T (θ) for every θ ≥ −(1−T ).
Now, from (6.4) and (6.12) we may write

−LG
T (θ) =

∫ T

0

(1 − t) log(1 − t) dt+

∫ T

0

(1 + θ) log
(

1 − t

1 + θ

)
dt

+

∫ T

0

t log(1 − t+ θ) dt .

When θ tends to infinity the second term tends to zero and the third, which is
larger than (T 2/2) log(1 − T + θ), tends to infinity. Finally IG

T (0) = ∞.
That ends the proof of the second statement of Theorem 3.10. �

Remark 6.4. It is possible to try a direct method to get (3.42), (3.43) using Gärtner-
Ellis’ theorem (Dembo and Zeitouni (1998), Theorem 2.3.6). From Lemma 6.1
the limiting n.c.g.f. of ΘG

n (T ) is LG
T which is analytic on (−(1 − T ),∞). When

θ ↓ −(1 − T ) we have (LG
T )′(θ) ↓ −T . We meet a case of so-called non steepness.

To proceed in that direction we could use the method of time dependent change
of probability (see Dembo and Zeitouni (1995)). We will not give details here.
Nevertheless, this approach allows to get one-sided large deviations in the critical
case T = 1. Actually we get

lim
n

1

β′n2
log P(ΘG

n (1) ≥ ξ) = −IG
1 (ξ)

for ξ ≥ −1. The function IG
1 is obtained in the same way as in (3.41, 3.42). The

value ξ = −1 corresponds to the limit of ΘG
n (1). Note that the second (right)

derivative of IG
1 at this point is zero (or equivalently lim(LG

1 )′′(θ) = ∞ as θ ↓ 0),
which is consistent with previous results on the variance. I do not know the rate of
convergence to 0 of P(ΘG

n (1) ≤ ξ) for ξ < −1.

6.3. Proof of Theorem 3.11 and Theorem 3.12. Again, the three routes are possible
to tackle the problem of large deviations for determinant of Wishart matrices. A
direct method would use the cumulant generating function from (5.13) and would
meet computations similar to those seen in the Uniform Gram case. To avoid
repetitions, we use the decomposition (2.26), drawing benefit from an auxiliary
study of Sn,r.

Lemma 6.5. The sequence {n−1 Sn(t), t ∈ [0, 1)}n satisfies a LDP in the space
(D, σ(D,M<)) in the scale 2β−1n−2 with good rate function

IS
[0,1)(v) =

∫

[0,1)

LS
a

(dv̇a

dt
(t)

)
dt+

∫

[0,1)

LS
s

(dv̇s

dµ
(t)

)
dµ(t) (6.17)

where

LS
a (y) = (ey − y − 1) , LS

s (y) = −yδ(y|(−∞, 0)) , (6.18)

and µ is any measure dominating dv̇s.

We stress that the instantaneous rate functions are time homogeneous and then
we may write [0, 1] instead of [0, 1).
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6.3.1. Proof of Lemma 6.5. It is a route similar to the proof of Theorem 3.9 in
Section 6.1 (see also Najim (2002)). We start from (2.27) so that

1

n
Ṡn =

n∑

j=1

(
log ε

(n)
k

)
δj/n .

With the help of (5.13) this yields:

log E exp〈β′nṠn, γ〉 =

n∑

k=1

[
`

(
β′n

(
1 + γ

(k
n

)))
− β′γ

(k
n

)
log(β′n)

]

−n`(β′n)

if γ(s) + 1 > 0 for every s ∈ [0, 1]. A little computation shows that the limiting
n.c.g.f. is

LS(γ) =

∫ 1

0

J (1 + γ(t))dt , (6.19)

which yields (6.18) by duality (see Rockafellar (1971) again). �

6.3.2. Proof of Theorem 3.11. Let ΘL
n = n−1 log ∆L,β

n . We deduce from Lemma 6.5

and Theorem 3.9 that the sum Θ̇L
n = Θ̇G

n + 1
n Ṡn satisfies a LDP in the same scale

with good rate function IG
[0,T ]�I

S
[0,T ] where � denotes the infimum convolution:

(f�g)(x) = inf{f(x1) + g(x2) | x1 + x2 = x} .
The two characteristics of the rate function are then

LL
a = inf

v
{LG

a (v) + LS
a (u− v)}

LL
s = inf

v
{LG

s (v) + LS
s (u− v)} .

which yield (3.44) by an explicit computation. �

Alternatively, it is possible to sum the two n.c.g.f. ((6.5) and (6.19)) and get the
rate function by duality. We claim: if γ(s) + 1 > 0 for every s ∈ [0, 1]

1

β′n2
log E exp〈β′n2Θ̇L

n , γ〉 →
∫ T

0

gL(t, γ(t)) dt , (6.20)

where

gL(t, γ) = gG(t, γ) + J (1 + γ) = J (1 − t+ γ) −J (1 − t) . (6.21)

6.3.3. Proof of Theorem 3.12. We may either use the contraction ΘL
n 7→ ΘL

n(T )
or establish a LDP for the marginal Sn(T ) and then perform an inf-convolution.
We leave the details of the proof to the reader. We just give the expression of the
optimal path when it exists.

For θ > −(1 − T ), the function

t 7→ φ(θ; t) := J (1 + θ) −J (1 − t+ θ) .

is in C1([0, T ]) and the mapping θ 7→ φ(θ;T ) is bijective from [−(1 − T ),∞) onto
[ξT ,∞), where ξT = J (T ) − 1. Fixing ξ ≥ ξT , we can look for optimal v. There
exists a unique θξ such that φ(θξ , T ) = ξ. Then vξ := φ(θξ , ·) is the optimal path
(vξ realizes the infimum in (3.45). Note that at the end point ξ = ξT , we have

θξ = −(1 − T ) , vξ(t) = J (T ) −J (T − t) , (vξ)′(t) = log(T − t) . �
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Remark 6.6. It is possible to get (3.47), (3.48) using Gärtner-Ellis’ theorem (Dembo
and Zeitouni (1998), Theorem 2.3.6). We are in the same situation as in Remark
6.4. This approach allows to get one-sided large deviations in the critical case
T = 1. Actually we get

lim
n

2

βn2
log P(ΘL

n(1) ≥ ξ) = −IL
1 (ξ)

for ξ ≥ −1. The value ξ = −1 corresponds to the limit of . Note that the second
(right) derivative of IL

1 at this point is zero (or equivalently lim(LL
1 )′′(θ) = ∞ as

θ ↓ 0), which is consistent with previous results on the variance. I do not know the
rate of convergence to 0 of P(ΘL

n(1) ≤ ξ) for ξ < −1.

6.4. Proof of Theorem 3.13 and Theorem 3.14. We may try again to use the beta-
gamma algebra, but we do not succeed to go until the end. Let, as in Section 5.5,
Un and Vn be the two Laguerre variables. From the exponential tightness of Un

and Vn, we deduce easily the exponential tightness of Wn. From Puhalskii (2001),
the sequence Wn contains subsequences satisfying LDP. If for such a subsequence
we call Ip the rate function, the independence gives

IU = IV
�Ip

This equation has many solutions and only one convex solution, which is

Ip = IU
� IV

defined by

(f � g)(x) = sup{f(x1) − g(x2) | x1 − x2 = x}
(Mazure and Volle (1991)). But we do not know a priori that Ip is convex.

The alternate (and classical) route needs the study of the n.c.g.f. For that point
we use the beta-gamma trick. For the remaining we do not give details since it is
similar to the above cases and again based on the ideas of Baldi theorem (Dembo
and Zeitouni (1998)) and a variational formula.

6.4.1. Convergence of the n.c.g.f. Put ΘJ
n = n−1 log ∆J,β

n so that

Θ̇J
n =

1

n

n1∑

k=1

(
log ρJ,β

j,n

)
δj/n ,

and put for T ≤ τ1 and ϕ ∈ V T
` :

LJ
n,bnT c(ϕ) =

2

βn2
log E expn〈Θ̇J

n, ϕ〉 .

Lemma 6.7. If ϕ ∈ V τ1

` satisfies ϕ(s) + τ1 − s > 0 for every s ∈ (0, T ], then

lim
n

LJ
n,bnT c(ϕ) = ΛJ

[0,T ](ϕ) :=

∫ T

0

gJ(s, ϕ(s)) ds , (6.22)

where, for θ + τ1 − s > 0

gJ(s, θ) = E (τ1 − s+ θ, τ2, θ) . (6.23)
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Proof: From (2.28) we have

〈nΘ̇J
n, γ〉 + 〈(n1 + n2)Θ̇L

n1+n2
, γ((n1 + n2) · /n)〉 =

〈n1Θ̇L
n1
, γ(n1 · /n)〉 + log

n1

n1 + n2

bnT c∑

k=1

γ(k/n)

and then, by independence,

log E exp〈β′n2Θ̇J
n, γ〉 = log E exp〈β′nn1Θ̇L

n1
, γ(n1 · /n)〉

− log E exp〈β′n(n1 + n2)Θ̇L
n1+n2

, γ((n1 + n2) · /n)〉

+n log
n1

n1 + n2

( bnT c∑

k=1

γ(k/n)
)
.

By a slight modification of (6.20) we have, for p/n→ τ

1

β′p2
log E exp〈β′npΘ̇L

r , γ(p · /n)〉 → 1

τ

∫ T

0

gL
( s
τ
,
γ(s)

τ

)
ds , (6.24)

so that taking τ = τ1 and τ = τ1 + τ2 and subtracting, we get

1

β′n2
log E exp〈β′n2Θ̇J

n, ϕ〉 →
∫ T

0

gJ (s, γ(s)) ,

where

gJ (s, θ) = τ1g
L
( s

τ1
,
θ

τ1

)
− (τ1 + τ2)gL

( s

τ1 + τ2
,

θ

(τ1 + τ2)

)

+θ log
τ1

τ1 + τ2
,

and this is equivalent to (6.23). �

6.4.2. Duality. Define ΛJ
[0,T ](ϕ) = +∞ if ϕ does not satisfy the assumption of

Lemma 6.7. The dual of ΛJ
[0,T ] is then

(
ΛJ

[0,T ]

)?

(ν) = sup
ϕ∈V`

{
< ν, ϕ > −ΛJ

[0,T ](ϕ)
}

(6.25)

for ν ∈ V ∗
` . Mimicking the method of Léonard (2000) p. 112-113, we get

(
ΛJ

[0,T ]

)?

(ν) = sup
ϕ∈C

{
< ν, ϕ > −ΛJ

[0,T ](ϕ)
}

(6.26)

where C is the set of continuous functions from [0, T ] into R vanishing at 0. Then
we apply Theorem 5 of Rockafellar (1971). We get

(
ΛJ

[0,T ]

)?

(ν) =

∫ T

0

(
gJ

)?(
t,
dνa

dt

)
dt+

∫ T

0

rJ
(
t,
dνs

dµ
(t)

)
dµ(t) (6.27)

where (
gJ

)?

(s, y) = sup
λ

{
λy − gJ(s, λ)δ(λ|(−τ1,∞))

}
. (6.28)

This supremum is achieved by

λJ (s, y) = −(τ1 − s) +
τ2

e−y − 1
(6.29)
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and we have
(
gJ

)?

(s, y) = λJ (s, y)y − gJ(s, λJ (s, y)) (6.30)

= (τ1 + τ2 − s) H
( τ1 − s

τ1 + τ2 − s

∣∣∣ ey
)
. (6.31)

The recession is rJ (s; y) = −(τ1 − s)y if y < 0.

6.4.3. Proof of Theorem 3.10. We use the contraction from the LDP for paths.
Since the mapping m 7→ m([0, T ]) is continuous from D to R, the family {ΘJ

n(T )}n

satisfies the LDP with good rate function given by (3.50). Since the process Θn

takes its values in (−∞, 0] , it is clear that IJ
T (ξ) = ∞ for ξ > 0. Fixing ξ < 0,

we can look for optimal v, i.e. a path (v(t), t ∈ [0, T ]) such that v(T ) = ξ and v
achieves the infimum in (3.50). Fix θ ≥ T − τ1 (playing the role of a Lagrange
multiplier). In view of (6.27), (6.28) and (6.29), it is clear that (in the generic case)
the Euler-Lagrange equation is

λJ (s, φ′(s)) = θ

φ(0) = 0 .

This ordinary differential equation admits for unique solution in C1([0, T ])

s 7→ φJ (θ; s) := E(θ + τ1, τ2, s) .

To know if the path φJ may have ξ as its terminal value, look at

E ′(θ + τ1, τ2, T ) =
∂

∂τ
E(τ, τ2, T )|τ=θ+τ1

= log
(

1 − T

θ + τ1 + τ2

)
− log

(
1 − T

θ + τ1

)
;

since it is positive, we see that the mapping

θ 7−→ E(θ + τ1, τ2, T )

is continuous and increasing from [T − τ1,∞) onto DT = [ξJ
T , 0). If ξ ∈ [ξJ

T , 0), we
call θξ the unique solution of φJ (θ, T ) = ξ or in other words,

E(θξ + τ1, τ2, T ) = ξ ,

and we set vξ := φJ (θξ , ·).
To end the proof, let us now consider some inequalities. The duality property

(6.28) gives, for every v and t

(
gJ

)?(
t,
dv̇a

dt
(t)

)
≥ θ

dv̇a

dt
(t) − gJ(t, θ) . (6.32)

Setting

LJ
T (θ) :=

∫ T

0

gJ(t, θ) dt , (6.33)

integrating (6.32) and using (3.35), (3.49) and (6.33) we get

IJ
[0,T ](v) ≥ θv̇a([0, T ]) − LJ

T (θ) −
∫ T

0

(τ1 − t) dv̇s(t) .
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For every v such that v(T ) = ξ it turns out that

IJ
[0,T ](v) ≥ θξ − LJ

T (θ) −
∫ T

0

(τ1 − T + θ) dv̇s(t) ≥ θξ − LJ
T (θ) . (6.34)

There are three cases.
• If ξ ∈ [ξJ

T , 0) , we get

IJ
[0,T ](v

ξ) = θξξ − LJ
T (θξ)

so that vξ realizes the infimum in (3.50). A simple computation leads to (3.42)
which ends the proof of the first statement of Theorem 3.10.

Note that at the end point ξ = ξJ
T , we have

θξ = (T − τ1) , vξ(t) = E(T, τ2, t) , (vξ)′(t) = log
T − t

τ1 + τ2 − t
.

• If ξ < ξJ
T set ε = ξJ

T − ξ. Plugging θ = T − τ1 in (6.34) yields, for every v such
that v(T ) = ξ

IJ
[0,T ](v) ≥ (T − τ1)ξJ

T − LJ
T (T − τ1) − ε(T − τ1) = IJ

T (ξJ
T ) − ε(T − τ1) ,

and this lower bound is achieved by the measure ṽ =
(
vξJ

T

)′

(t)dt− εdδT (t), since

∫ T

0

LJ
a

(
t,

(
vξJ

T

)′

(t)
)
dt = IJ

T (ξJ
T ) ,

∫ T

0

(τ1 − t)εdδT (t) = (τ1 − T )ε .

• If ξ = 0, make ξ = 0 in (6.34). We get IJ
[0,T ](0) ≥ −LJ

T (θ) for every θ ≥ T − τ1.

Now, from (6.23) and (6.33), we may write (after some calculation)

−LJ
T (θ) =

∫ T

0

−E(τ1 − t+ θ, τ2, θ)dt =

∫ T

0

∫ θ

0

log
(

1 +
τ2

τ1 − t+ s

)
ds

≥ T

∫ θ

0

log
(

1 +
τ2

τ1 + s

)
ds ,

which tends to infinity as θ → ∞. We conclude IJ
[0,T ](0) = ∞. �

7. Proofs of Propositions 4.1 and 4.6

7.1. Proof of Proposition 4.1. Let θ ∈ R (Lagrangian multiplier). We begin with a
minimization of

IspL
T (µ) − θT

∫
(log x) dµ(x) = T 2

[
−Σ(µ) + 2

∫
qλ,s(x) dµ(x)

]
+ 2B(T )

where

qλ,s(x) = λx− s logx, λ =
1

2T
, s =

1 − T + θ

2T
. (7.1)

In the book of Saff and Totik (1997) p.43 example 5.4, it is stated that for λ > 0
and 2s+ 1 > 0 fixed, the infimum

inf
µ

−Σ(µ) + 2

∫
qλ,s(x) dµ(x)

is achieved by the unique extremal measure πc
σ2 with

σ2 =
2s+ 1

2λ
, c =

1

2s+ 1
.
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We see from (7.1) that if θ > −1 we can take:

σ2 = 1 + θ, c =
T

σ2
=

T

1 + θ
.

Now it remains to look for θ such that the constraint µ ∈ A(ξ/T ) is saturated.
Since ∫

(log x) dπc
σ2 (x) = logσ2 +

∫
(logx) dπc

1(x)dx ,

and thanks to (4.6), we see that θ must satisfy

ξ = T logσ2 − T
J (1 − c)

c
= J (1 + θ) −J (1 − T + θ) ,

which is exactly (3.46).

To compute IspL
T (πc

σ2 ), we start from the definition (4.8):

IspL
T (πc

σ2 ) = −T 2Σ(πc
σ2 ) + T

∫
(x − (1 − T ) logx) dπc

σ2 (x) + 2B(T ) ,

and transform πc
σ2 to πc

1 using the dilatation. In particular, (4.9) yields

Σ(πc
σ2) = logσ2 + Σ(πc

1)

and Σ(πc
1) may be picked from formula (13) p.10 in Hiai and Petz (1998):

Σ(πc
1) = −1 +

1

2

(
c−1 + log c + (c−1 − 1)2 log(1 − c)

)
.

Besides we have easily
∫
x dπc

1(x) = 1. After some tedious but elementary compu-
tations we get exactly the RHS of (3.47), which yields

IspL
T (πc

σ2 ) = IL
T (ξ) ,

and ends the proof of (4.12). �

7.2. Proof of Proposition 4.6. Let θ < T − τ1 (Lagrangian multiplier). We begin
with a minimization of

IspJ
T (µ) − θT

∫
(logx) dµ(x) (7.2)

= T 2

[
−Σ(µ) − 2ζ1

∫
(log x) dµ(x) − 2ζ2

∫
log(1 − x) dµ(x)

]
+ C

where

2ζ1 =
τ1 + θ − T

T
, 2ζ2 =

τ2 − T

T
and C = T 2B

(τ1 − T

T
,
τ2 − T

T

)
.

We use the following lemma.

Lemma 7.1. For ζ1, ζ2 > 0, the infimum of

−Σ(µ) − 2ζ1

∫
(logx) dµ(x) − 2ζ2

∫
log(1 − x) dµ(x)

among the probability measures µ on [0, 1] is achieved by πa−,a+ where

(a−, a+) = λ±(s−, s+)

with

s− =
1 + 2ζ1

2(1 + ζ1 + ζ2)
, s+ =

1 + 2ζ1 + 2ζ2
2(1 + ζ1 + ζ2)

.
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The infimum in (7.2) is achieved by πξ̃,η̃, where

(ξ̃, η̃) = λ±(s̃−, s̃+) , s̃− =
τ1 + θ

τ1 + τ2 + θ
, s̃+ =

τ1 + θ + τ2 − t

τ1 + τ2 + θ
.

It should be clear that

Σ(πξ̃,η̃) +
τ1 + θ − T

T

∫
(log x) dπξ̃,η̃(x) +

τ2 − T

T

∫
log(1 − x) dπξ̃,η̃(x)

= B
(τ1 + θ − T

T
,
τ2 − T

T

)

and then, on A(ξT−1) the infimum is uniquely realized in πξ̃,η̃ and its value is

θξ + T 2

[
B

(τ1 − T

T
,
τ2 − T

T

)
−B

(τ1 + θ − T

T
,
τ2 − T

T

)]
.

Finally a small computation leads to (3.52) and (4.31).

Proof of Lemma 7.1. In Saff and Totik (1997) p.241, it is proved that the infimum
of∫ ∫

− log |x− y|dµ(x)dµ(y) − 2ζ1

∫
log(1 − x) dµ(x) − 2ζ2

∫
log(1 + x) dµ(x)

among the probability measures µ on [−1,+1] is achieved by

dµ(y) = K(b−, b+)

√
(y − b−)(b+ − y)

2π(1 − y2)
1[b−,b+](y) dy ,

where b± = θ22 − θ21 ±
√

∆ with

θi =
ζi

1 + ζ1 + ζ2
, i = 1, 2 , ∆ =

[
1 − (θ1 + θ2)2

] [
1 − (θ1 − θ2)2

]
,

andK(b−, b+) is a normalizing constant. With the push forward under the mapping
x→ (x+ 1)/2, we get the result. �

8. Appendix 1 : Some properties of ` = log Γ and Ψ

From Binet’s formula (Abramowitz and Stegun (1972) pp. 258-259 or Erdélyi
et al. (1981) p.21), we have

`(x) =
(
x− 1

2

)
logx− x+ 1 +

∫ ∞

0

f(s)[e−sx − e−s] ds (8.1)

=
(
x− 1

2

)
logx− x+

1

2
log(2π) +

∫ ∞

0

f(s)e−sx ds . (8.2)

where the function f is defined by

f(s) =

[
1

2
− 1

s
+

1

es − 1

]
1

s
= 2

∞∑

k=1

1

s2 + 4π2k2
, (8.3)

and satisfies for every s ≥ 0

0 < f(s) ≤ f(0) = 1/12 , 0 <
(
sf(s) +

1

2

)
< 1 . (8.4)

By differentiation

−Ψ(x) =
1

2x
+

∫ ∞

0

sf(s)e−sx ds =

∫ ∞

0

e−sx
(
sf(s) +

1

2

)
ds . (8.5)
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As easy consequences, we have, for every x > 0

0 < x
(

logx− Ψ(x)
)
≤ 1 , (8.6)

0 < logx− Ψ(x) − 1

2x
≤ 1

12x2
. (8.7)

Differentiating again we see that for q ≥ 1

Ψ(q)(z) = (−1)q−1q!z−q + (−1)q−1

∫ ∞

0

e−szsq
(
sf(s) +

1

2

)
ds (8.8)

and then

|Ψ(q)(z) − (−1)q−1q!z−q| ≤ z−q−1q! . (8.9)

9. Appendix 2 : Identification of the McKay distribution

The reader is recalled that, for u′ and v′ positive numbers3 such that u′ +v′ > 1,
Capitaine and Casalis (2004) defined the probability measure

CCu′,v′ := (1 − u′)+δ0 + (1 − v′)+δ1 +
[
1 − (1 − u′)+ − (1 − v′)+

]
πa−,a+ ,

where

(a−, a+) = a±

( u′

u′ + v′
, 1 − 1

u′ + v′

)
.

We present now three identifications of this distribution connected with free prob-
ability.

For k 6= 0, let Dk the dilatation operator by factor k. For p ≤ 1, let bp denote the
Bernoulli distribution of parameter p. At last, let � (resp. �) denote the additive
(resp. multiplicative) free convolution.

1) Rewriting the distribution with the notation of Demni (2006), we find four cases
• Situation I : min(u′, v′) ≥ 1, no Dirac mass,

σ− =
u′

u′ + v′
, σ+ = 1 − 1

u′ + v′
, u′ =

σ−
1 − σ+

, v′ =
1 − σ−
1 − σ+

CCu′ ,v′ = πa−,a+ = D1−σ+(bσ−
)
�

1
1−σ+

• Situation II : u′ < 1 ≤ v′, one Dirac mass at 0

σ− =
1

u′ + v′
, σ+ = 1 − u′

u′ + v′
, u′ =

1 − σ+

σ−
, v′ =

σ+

σ−

CCu′,v′ = (1 − u′)δ0 + u′πa−,a+

= Dσ−
(b1−σ+)

�
1

σ
−

• Situation III : v′ < 1 ≤ u′, one Dirac mass at 1

σ− = 1 − 1

u′ + v′
, σ+ =

u′

u′ + v′
, u′ =

σ+

1 − σ−
, v′ =

1 − σ+

1 − σ−

CCu′,v′ = (1 − v′)δ1 + v′πa−,a+

= D1−σ−
(bσ+)

�
1

1−σ
−

3we use the symbol v′ (hence u′) not to confuse with β already defined.



Asymptotic behavior of random determinants 227

• Situation IV : max(u′, v′) < 1, two Dirac masses (at 0 and at 1)

σ− = 1 − u′

u′ + v′
, σ+ =

1

u′ + v′
, u′ =

1 − σ−
σ+

, v′ =
σ−
σ+

CCu′,v′ = (1 − u′)δ0 + (1 − v′)δ1 + (u′ + v′ − 1)πa−,a+

= Dσ+(b1−σ−
)
�

1
σ+ .

2) There is a connection with the family of free Meixner law (Bozejko and Bryc
(2005), Bryc and Ismail (2006), Bryc and Ismail (2005)). Indeed, computing the
mean m and variance V of the distribution CCu′ ,v′ , we get

Situation m V
I σ− σ−(1 − σ−)(1 − σ+)
II 1 − σ+ σ−σ+(1 − σ+)
III σ+ (1 − σ−)σ+(1 − σ+)
IV 1 − σ− σ−σ+(1 − σ−)

so that, in all cases

m =
u′

u′ + v′
, V =

u′v′

(u′ + v′)3
.

We see that fixing u′ + v′ = s−1, we get V = s2m(1 − m), and then up to an
affine transformation we find the ”free binomial type law” as in Bryc and Ismail
(2005) example vi p.18 or Bozejko and Bryc (2005) example 6 p.8. It could also be
seen starting from the above formulae using dilatations and free convolutions and
comparing with formula (7) page 6 in Bozejko and Bryc (2005).

3) Finally, we quote the correspondence with the results of Collins (2005) who
claimed that for 0 < p− < p+ < 1

bp−
� bp+ = (1 − p−)δ0 + (p− + p+ − 1)+δ1 + C−1

a−,a+
πa−,a+

where a± = a±(1 − p−, p+). In Hiai and Petz (2006), formula (2.8) the authors
consider the same distribution.

• Situation II : p− + p+ − 1 < 0, σ− = p+ , σ+ = 1 − p−

bp−
� bp+ = σ+δ0 + (1 − σ+)πa−,a+

= σ−CCu′ ,v′ + (1 − σ−)δ0

• Situation IV : p− + p+ − 1 > 0, σ− = 1 − p− , σ+ = p+

bp−
� bp+ = σ−δ0 + (σ+ − σ−)δ1 + (1 − σ+)πa−,a+

= σ+CCu′,v′ + (1 − σ+)δ0 . �
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A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi. Higher transcendental
functions, volume I. Robert E. Krieger Publishing Co. Inc., Melbourne, Fla.
(1981).

P. J. Forrester. Log-gases and random matrices (2007). Book available at
http://www.ms.unimelb.edu.au/∼matpjf/matpjf.html.

S. Friedland, B. Rider and O. Zeitouni. Concentration of permanent estimators for
certain large matrices. The Annals of Applied Probab. 14 (3), 1559–1576 (2004).

F. Gamboa, A. Rouault and M. Zani. A functional large deviation principle for
quadratic forms of Gaussian stationary processes. Stat. and Probab. Letters 43,
299–308 (1999).

V. L. Girko. Theory of random determinants. Kluwer Academic Publishers, Dor-
drecht (1988). Transl. from the Russian.

N. R. Goodman. Statistical analysis based on a certain multivariate complex gauss-
ian distribution (An introduction). Ann. Math. Stat. 34, 152–177 (1963).

A. K. Gupta and D. K. Nagar. Matrix variate distributions. Chapman & Hall
(2000).

J. Hadamard. Résolution d’une question relative aux déterminants. Bull. Sci. Math.
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V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues of some sets of
random matrices. Math. USSR Sb. 1, 457–483 (1967).

A. M. Mathai. Jacobians of matrix transformations and functions of matrix argu-
ment. World scientific, Singapore (1997).

A. M. Mathai. Random p-content of a p-parallelotope in Euclidean n-space. Adv.
Appl. Prob. 31, 343–354 (1999).

M.-L. Mazure and M. Volle. Equations inf-convolutives et conjugaison de Moreau-
Fenchel. Ann. Fac. Sci. Toulouse, V. Sér., Math. 12, 103–126 (1991).

B. McKay. The expected eigenvalue distribution of a large regular graph. Linear
Algebra Appl. 40, 203–216 (1981).

M. L. Mehta. Random matrices, volume 142 of Pure and Applied Mathematics
(Amsterdam). Elsevier/Academic Press, Amsterdam, third edition (2004).

R. J. Muirhead. Aspects of multivariate statistical theory. John Wiley (1982).
J. Najim. A Cramér type theorem for weighted random variables. Electronic Journal

of Probability 7 (4), 1–32 (2002).
J. Nielsen. The distribution of volume reductions. Adv. Appl. Prob. 31, 985–994

(1999).
I. Olkin and H. Rubin. Multivariate Beta distribution and independence properties

of the Wishart distribution. Annals of Math. Statist. 35, 261–269 (1964).
A. Puhalskii. Large deviations and idempotent probability. In Chapman &

Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, volume
119. Chapman & Hall/CRC, Boca Raton, FL (2001).

C. R. Rao. Linear statistical inference and its application. Wiley (1973).
G. Rempa la and J. Weso lowski. Asymptotics for products of independent sums

with an application to Wishart determinants. Stat. Probab. Lett. 74 (2), 129–138
(2005).

R. T. Rockafellar. Integrals which are convex functionals, II. Pacific J. Math.
39 (2), 439–469 (1971).

E. B. Saff and V. Totik. Logarithmic potentials with external fields. Springer (1997).
C. P Schnorr. A hierarchy of polynomial time basis reduction algorithms. In
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