
Alea 7, 377–450 (2010)

A strictly stationary, “causal,” 5–tuplewise

independent counterexample to the

central limit theorem

Richard C. Bradley

Department of Mathematics, Indiana University, Bloomington, Indiana 47405, U.S.A.
E-mail address: bradleyr@indiana.edu

Abstract. A strictly stationary sequence of random variables is constructed with
the following properties: (i) the random variables take the values −1 and +1 with
probability 1/2 each, (ii) every five of the random variables are independent of each
other, (iii) the sequence is “causal” in a certain sense, (iv) the sequence has a trivial
double tail σ-field, and (v) regardless of the normalization used, the partial sums do
not converge to a (nondegenerate) normal law. The example has some features in
common with a recent construction (for an arbitrary fixed positive integer N), by
Alexander Pruss and the author, of a strictly stationary N -tuplewise independent
counterexample to the central limit theorem.

1. Introduction

For a given integer N ≥ 2 and a given sequence X := (Xk, k ∈ Z) of random
variables defined on a probability space (Ω,F , P ), the random variables Xk, k ∈ Z
are said to be “N -tuplewise independent” if for every choice of N distinct integers
k(1), k(2), . . . , k(N), the random variablesXk(1), Xk(2), . . . , Xk(N), are independent.
For N = 2 (resp. N = 3), the word “N -tuplewise” is also expressed as “pairwise”
(resp. “triplewise”).

Etemadi (1981) proved a strong law of large numbers for sequences of pair-
wise independent, identically distributed random variables with finite absolute
first moment. Janson (1988) showed with several classes of counterexamples that
for strictly stationary sequences of pairwise independent, nondegenerate, square-
integrable random variables, the Central Limit Theorem (henceforth abbreviated
CLT) need not hold. Subsequently, Bradley (1989, Theorem 1) constructed another
such counterexample, a 3-state one that has the additional property of satisfying
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the absolute regularity (weak Bernoulli) condition. (The definition of that con-
dition will be given later in this Introduction.) Yet another counterexample was
constructed by Cuesta and Matrán (1991, Section 2.3), a construction based on el-
ementary number-theoretic properties of addition on {0, 1, . . . , p−1} mod p, where
p is a prime number.

For an arbitrary fixed integer N ≥ 3, Pruss (1998) constructed a (not strictly
stationary) sequence of bounded, nondegenerate, N -tuplewise independent, identi-
cally distributed random variables for which the CLT fails to hold. In that paper,
Pruss left open the question whether, for any integer N ≥ 3, a strictly stationary
counterexample exists. For N = 3, Bradley (2007b, Theorem 1) answered that
question affirmatively by showing that the counterexample in Bradley (1989, The-
orem 1) alluded to above is in fact triplewise independent. Recently, Bradley and
Pruss (2009) have answered that question affirmatively for arbitrary N ≥ 3, with a
(strictly stationary) counterexample adapted from the (nonstationary) one in Pruss
(1998).

In a similar spirit, for an arbitrary integer N ≥ 2, Flaminio (1993) constructed a
(nondegenerate) strictly stationary, finite-state, N -tuplewise independent random
sequence X := (Xk, k ∈ Z) which also has zero entropy and is mixing (in the
ergodic-theoretic sense). That paper explicitly left open the question of whether
those examples satisfy the CLT.

In this paper here, a (nondegenerate) strictly stationary, 5-tuplewise independent
counterexample to the CLT will be constructed which is finite-state and has the
extra property of being “causal” and therefore “Bernoulli.” The interest in the
property of “Bernoulli,” for (finite-state)N -tuplewise independent counterexamples
to the CLT, was suggested to the author by Jon Aaronson and Benjamin Weiss.
There does not seem to be a visible way of constructing such a (strictly stationary)
finite-state Bernoulli counterexample which is N -tuplewise independent for any
given N ≥ 6. The techniques in the example given here do not appear to adapt
effectively to N ≥ 6; and there is no visible way of adapting the recent example
of Bradley and Pruss (2009) alluded to above, into one that is (finite-state and)
Bernoulli. The example given here will also have the further property of possessing
a trivial double tail σ-field. (The terms “causal,” “Bernoulli,” and “double tail
σ-field” will be defined below.)

The main result and discussions. Before the result is stated, some notations will
be needed.

Let N denote the set of all positive integers. Let R denote the Borel σ-field on
the real number line R. The notation ⇒ will mean convergence in distribution.

Suppose X := (Xk, k ∈ Z) is a sequence of random variables on a probability
space (Ω,F , P ). For each positive integer n, define the partial sum

Sn := S(X,n) := X1 +X2 + · · · +Xn. (1.1)

Also, for −∞ ≤ J ≤ L ≤ ∞, let FL
J denote the σ-field ⊂ F generated by the

random variables Xk, J ≤ k ≤ L (k ∈ Z). The “double tail σ-field” of the sequence
X is

Tdouble(X) :=
⋂

n∈N

(F−n
−∞ ∨ F∞

n ). (1.2)

A σ-field A ⊂ F is said to be “trivial” if P (A) = 0 or 1 for every A ∈ A.
Here is our main result:
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Theorem 1.1. There exists a strictly stationary sequence X := (Xk, k ∈ Z)
of random variables (on some probability space (Ω,F , P )) with the following six
properties:

(A) The random variables Xk take just the values −1 and 1, with P (X0 =
−1) = P (X0 = 1) = 1/2 (and hence EX0 = 0 and EX2

0 = 1).
(B) For every five distinct integers k(1), k(2), k(3), k(4), and k(5), the five

random variables Xk(1), Xk(2), Xk(3), Xk(4), and Xk(5) are independent.
(C) There exist a sequence (ηk, k ∈ Z) of independent, identically distributed

real-valued random variables (on (Ω,F , P )), and a Borel function f : R ×
R × R × · · · → {−1, 1}, such that for every k ∈ Z,

Xk = f(ηk, ηk−1, ηk−2, . . . ) a.s. (1.3)

(D) The double tail σ-field of X is trivial (that is, P (A) = 0 or 1 for every
A ∈ Tdouble(X)).

(E) One has that lim supn→∞E(Sn/
√
n )6 < 15.

(F) For every infinite set Q ⊂ N, there exist an infinite set T ⊂ Q and
a nondegenerate, non-normal probability measure µ on (R,R) such that
Sn/

√
n⇒ µ as n→ ∞, n ∈ T .

Here are some comments on the various properties in this theorem — starting
with properties (A), (B), (E), and (F), the ones most closely tied to the central
limit question.

First, by property (A), in our look at the central limit question in connection
with this example, the natural normalization of the partial sums is Sn/

√
n.

Property (B) in Theorem 1.1 is of course 5-tuplewise independence. For N ≥ 6,
the question of possible existence of a similar, strictly stationary, N -tuplewise inde-
pendent counterexample — including properties (C) and (D) — remains open. The
techniques in the construction for Theorem 1.1 do not appear to extend effectively
to N ≥ 6. As a comparison, for a given arbitrary fixed positive integer N , the paper
of Bradley and Pruss (2009) gives a construction of a strictly stationary sequence in

which (i) the random variables are uniformly distributed on the interval [−
√

3,
√

3 ]
(and hence have mean 0 and variance 1), (ii) the sequence satisfies N -tuplewise
independence, and (iii) the sequence satisfies property (F) (as well as a variant of
property (E)) in Theorem 1.1; that sequence satisfies ergodicity (as was shown in
Bradley and Pruss, 2009), but does not satisfy property (C) (suitably reformulated)
or property (D) in Theorem 1.1.

Property (E) may seem rather pointless at first. However, property (F) is an
elementary consequence of properties (A), (B), and (E) together with the fact that
a N(0, 1) random variable Z satisfies EZ6 = 15. (The argument will be given in
detail in Section 9 below. An analogous argument, involving moments of a high
even order, was used by Bradley and Pruss, 2009.)

In property (F), the probability measure µ may depend on the set Q.
(As a comparison, in a couple of the pairwise independent counterexamples al-

luded to above — one of those in Janson (1988) and the one in Cuesta and Matrán
(1991, Section 2.3) — the partial sums, appropriately normalized, converge in dis-
tribution to a nondegenerate, non-normal law as n→ ∞ along the entire sequence
of positive integers.)

The formulation of property (F) may seem somewhat awkward. However, prop-
erties (E) and (F) indirectly give the following information:



380 Richard C. Bradley

(i) The family of distributions of the random variables (Sn/
√
n, n ∈ N) is

tight.
(ii) There does not exist an infinite set Q ⊂ N such that Sn/

√
n converges to

0 (or to any other constant) in probability as n→ ∞, n ∈ Q.
(iii) There does not exist an infinite set Q ⊂ N such that Sn/

√
n converges in

distribution to a (nondegenerate) normal law as n→ ∞, n ∈ Q.
(iv) By (F) and the Theorem of Types (see e.g. Billingsley, 1995, Theorem 14.2),

there do not exist an infinite set Q ⊂ N and real numbers an, bn, n ∈ Q,
with bn → ∞ as n → ∞, n ∈ Q, such that (Sn − an)/bn converges in
distribution to a nondegenerate normal law as n→ ∞, n ∈ Q.

One can describe property (C) by saying that the random sequenceX is “causal.”
Such uses of that term are well known in the literature. See e.g. Brockwell and
Davis (1991) for its use in the context of linear models in time series analysis.

Properties (C) and (D) are motivated partly by the general question of what
properties from ergodic theory can help insure that a CLT holds. In order to
elaborate on that, we will need to give some more definitions and background
information.

The “Bernoulli” property. Suppose A is nonempty finite set, and X := (Xk, k ∈
Z) is a nondegenerate strictly stationary sequence of random variables taking their
values in A. This sequence X is said to be “Bernoulli” if, without changing its
distribution (on AZ), it can be represented as a stationary coding of a finite-state
i.i.d. sequence — that is, if X can be represented in the form

Xk = h
(
(. . . , Yk−1, Yk), (Yk+1, Yk+2, . . . )

)
(1.4)

for k ∈ Z, where Y := (Yk, k ∈ Z) is a sequence of independent, identically dis-
tributed random variables taking their values in a finite set B, and h : BZ → A is
a Borel function. (Here, a given “two sided” sequence b := (bk, k ∈ Z) of elements
of B is written as ((. . . , b−1, b0), (b1, b2, . . . )) as a convenient way to avoid ambigu-
ity.) This is one of numerous equivalent ways of formulating the class of (strictly
stationary, finite-state) random sequences that are “Bernoulli.” For a list of some
others, see e.g. Shields (1996, p. 235, lines 12-15).

By a special case of a classic theorem of Ornstein (see Ornstein, 1970a, p. 350,
line 11, with reference to Ornstein, 1970b), properties ((A) and) (C) in Theorem 1.1
imply the Bernoulli property. That is:

Remark 1.2. Automatically, the random sequence X in Theorem 1.1 is Bernoulli.

In ergodic theory, it is well known that a nondegenerate strictly stationary, finite-
state sequence with zero entropy is not Bernoulli; see e.g. Petersen (1989, section
6.4). It follows that the examples of Flaminio (1993) alluded to above are not
Bernoulli. Consequently, even if those examples of Flaminio turn out to be coun-
terexamples to the CLT (apparently still an open question), Theorem 1.1 (with
Remark 1.2) still gives new information (beyond the examples given by Flaminio
(1993) and by Bradley and Pruss, 2009) in that it provides a 5-tuplewise indepen-
dent counterexample which has the additional property of being Bernoulli.

Two strong mixing conditions. Next, we would like to use Theorem 1.1 to ob-
tain some perspective on a classic CLT (stated in Theorem 1.4 below) involving
the Rosenblatt (1956) “strong mixing” condition. This will require some more
definitions and background information.
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Again suppose X := (Xk, k ∈ Z) is a strictly stationary sequence of (real-valued,
not necessarily finite-state) random variables on a probability space (Ω,F , P ).

For any two σ-fields A and B ⊂ F , define the measures of dependence

α(A,B) := sup
A∈A, B∈B

|P (A ∩B) − P (A)P (B)| and

β(A,B) := sup (1/2)

I∑

i=1

J∑

j=1

|P (Ai ∩Bj) − P (Ai)P (Bj)|

where the latter supremum is taken over all pairs of finite partitions {A1, . . . , AI}
and {B1, . . . , BJ} of Ω such that Ai ∈ A for each i and Bj ∈ B for each j. (The
factor of 1/2 in the definition of β(A,B) is of no significance, but has become
standard in the literature.) For each positive integer n, define the dependence
coefficients

α(n) := α(X,n) := α(F0
−∞,F∞

n ) and

β(n) := β(X,n) := β(F0
−∞,F∞

n ).

By strict stationarity, α(F j
−∞,F∞

j+n) = α(n) and β(F j
−∞,F∞

j+n) = β(n) for every
integer j. The (strictly stationary) sequence X is said to satisfy the Rosenblatt
(1956) “strong mixing” condition, or “α-mixing,” if α(n) → 0 as n→ ∞; and it is
said to satisfy the “absolute regularity” (Volkonskĭı and Rozanov, 1959) condition
if β(n) → 0 as n → ∞. For the first of those conditions, the term “α-mixing” will
be used here in order to avoid ambiguity from conflicting uses of the phrase “strong
mixing” in the literature.

Obviously absolute regularity implies α-mixing. For strictly stationary, finite-
state sequences, one also has the following:

(i) First, α-mixing does not imply absolute regularity (see e.g. Bradley, 2007a,
Vol. 1, Theorem 9.10(II)).

(ii) The “weak Bernoulli” condition, defined and studied by Friedman and Orn-
stein (1970), is equivalent to absolute regularity, and (as was shown in that
paper) it implies the Bernoulli property.

(iii) It is unknown (an open problem posed by Donald Ornstein in the 1970s)
whether α-mixing implies the Bernoulli property.

(iv) The Bernoulli property does not imply α-mixing (and hence also does not
imply absolute regularity); that was shown by Smorodinsky (1971).

The strictly stationary, 3-state, triplewise independent, absolutely regular coun-
terexample (to the CLT) developed in Bradley (1989, 2007b), alluded to above, is
in two respects “optimal” under absolute regularity: First, with its random vari-
ables being bounded (in fact, finite-state), its “mixing rate” β(n) = O(1/n) (as
n → ∞) is essentially as rapid as possible (it cannot satisfy β(n) = o(1/n) or
even α(n) = o(1/n)), by a CLT of Merlevède and Peligrad (2000). Second, as was
pointed out in Bradley (2007b, section 1) with a brief explanation, if a given strictly
stationary sequence of nondegenerate, square-integrable random variables satisfies
both α-mixing (or absolute regularity) and 4-tuplewise independence, then it sat-
isfies the CLT. (This fact is an elementary corollary, via a truncation argument, of
the CLT under α-mixing given in Theorem 1.4 below.) As a consequence:
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Remark 1.3. The random sequence X in Theorem 1.1 cannot satisfy α-mixing (or
absolute regularity).

In the latter part of the book Bradley (2007a, Vol. 3), there is a detailed pre-
sentation of a large collection of strictly stationary, absolutely regular (but in most
cases not pairwise independent or finite-state) counterexamples to the CLT, in-
cluding examples of Davydov (1973), and also including a (slightly embellished)
presentation of the well known example of Herrndorf (1983) in which the random
variables are uncorrelated.

The double tail σ-field. Let us digress to take a quick look at some of the ways
property (D) in Theorem 1.1 fits in with the various dependence conditions above,
for strictly stationary sequences.

(i) First, it is well known and elementary (see e.g. Bradley, 2007a, Vol. 1,
Proposition 5.17) that absolute regularity implies a trivial double tail σ-
field.

(ii) Next, α-mixing does not imply a trivial double tail σ-field. See for example
the counterexample in Bradley (1986) or Bradley (2007a, Vol. 2, Theorem
24.14) with real state space, or the finite-state counterexample constructed
by Burton et al. (1996). Each of those examples is “bilaterally determinis-
tic” (that is, the entire random sequence is, modulo null-sets, measurable
with respect to its double tail σ-field).

(iii) In the finite-state case, the Bernoulli property does not imply a trivial dou-
ble tail σ-field. Ornstein and Weiss (1975) showed instead that within the
class of strictly stationary, finite-state random sequences that are Bernoulli,
the ones that are also bilaterally deterministic are in a certain sense “ubiq-
uitous.”

(iv) In the finite-state case, a trivial double tail σ-field does not imply α-mixing
(see e.g. Bradley, 2007a, Vol. 1, Theorem 9.11(II)), and hence also does
not imply absolute regularity.

A classic CLT under α-mixing. Now let us take a quick look at the following
classic theorem:

Theorem 1.4. Suppose X := (Xk, k ∈ Z) is a strictly stationary sequence of (real-
valued) random variables such that EX0 = 0, EX2

0 < ∞, σ2
n := ES2

n → ∞ as
n → ∞, and α(n) → 0 as n → ∞. Then the following two conditions (I), (II) are
equivalent:

(I) The family of random variables (S2
n/σ

2
n, n ∈ N) is uniformly integrable.

(II) Sn/σn ⇒ N(0, 1) as n→ ∞.

Even if the assumption of α-mixing were omitted altogether, (II) implies (I), by
a well known, elementary argument (see e.g. Denker, 1986 or Mori and Yoshihara,
1986 or Bradley, 2007a, Vol. 1, top half of p. 38). The interest here in Theorem 1.4
is the fact that under all of the given assumptions, (I) implies (II). That fact was
shown by Cogburn (1960, Theorem 13) (with α-mixing replaced by a similar but
technically weaker condition), a reference that did not seem to be well known for a
long time; and its proof was also given by Denker (1986) and by Mori and Yoshihara
(1986). (A proof of Theorem 1.4 is spelled out in generous detail in Bradley, 2007a,
Vol. 1, Theorem 1.19.)

By properties (A), (B), and (E) in Theorem 1.1, the sequence X in Theorem 1.1
satisfies EX0 = 0, EX2

0 < ∞, σ2
n := ES2

n = n for n ∈ N, as well as the uniform
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integrability of (S2
n/n, n ∈ N). Hence by properties (A), (C), (D), and (F) in

Theorem 1.1, together with Remark 1.2, one has the following:

Remark 1.5. In Theorem 1.4 (for the assertion that (I) implies (II)), even if the
random variables Xk are finite-state and 5-tuplewise independent, the assumption
of α-mixing cannot be replaced by either (or both) of the assumptions that

(i) X is Bernoulli (or even that Property (C) in Theorem 1.1 holds),
(ii) X has a trivial double tail σ-field.

Suppose the hypothesis of Theorem 1.4 holds, along with the extra assumptions
that (i) σ2

n = n · h(n) where h : (0,∞) → (0,∞) is slowly varying at ∞, and (ii)
lim supn→∞ ‖Sn‖2/[(π/2)1/2E|Sn| ] ≤ 1. Then the CLT (specifically, conclusion
(II) of Theorem 1.4) holds. That is a result of Dehling et al. (1986, Theorem 4).
(For an exposition of their argument in generous detail, see Bradley, 2007a, Vol.
2, Theorem 17.11.) It seems to be an open question whether that still holds if
the assumption of α-mixing is replaced by (say) properties (B), (C), and (D) in
Theorem 1.1. Because of the absolute-value signs, the quantities E|Sn| seem to be
hard to estimate effectively for the construction given below for Theorem 1.1.

The rest of this paper is devoted to the proof of Theorem 1.1 Here is how that
proof will be organized, in Sections 2 through 10:

• §2 Some basic notations
• §3 Some special probability measures on {−1, 1}m with m being powers

of 6
• §4 A particular class of functions on certain infinite sequences of vectors
• §5 A special Markov chain (based on Section 4) and a related random

sequence

• §6 Scaffolding: primarily a random field (W
(n)
k , n ∈ N, k ∈ Z) based on

Section 5
• §7 More scaffolding: including the random sequence X for Theorem 1.1

• §8 More scaffolding: random sequences (X
(n)
k , k ∈ Z) and (Y

(n)
k , k ∈ Z) for

n ∈ N
• §9 The proofs of most properties in Theorem 1.1
• §10 Proof of property (D) in Theorem 1.1

2. Notations and conventions

This section gives some specific notations and conventions that will be used
throughout this paper.

The cardinality of a set S will be denoted cardS.
For a given probability space (Ω,F , P ), the indicator function (on Ω) of a given

event A will be denoted I(A), and the σ–field (⊂ F) generated by a given collection
(Vj , j ∈ J) of random variables (where J is an index set) will be denoted σ(Vj ,
j ∈ J).

A “left-infinite sequence” (of elements of some set) is a family of elements (xk,
k ≤ j) where j is an integer (and k is restricted to integers). Often j = 0 in that
context.
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Notations 2.1.
(A) For typographical convenience, for a given nonnegative integer n, when-

ever the integer 6n appears in a subscript or superscript, we shall use the
notation

sxtp(n) := 6n. (2.1)

(The letters “sxtp” are an abbreviation of the word “sextuple.”)
(B) For a given n ∈ N and a given vector a := (a1, a2, . . . , an) ∈ Rn, the sum

and product of the elements will be denoted by

sum(a) :=
n∑

k=1

ak and prod(a) :=
n∏

k=1

ak. (2.2)

(C) Suppose m ∈ N, and for each u ∈ {1, 2, . . . , 6}, vu := (vu,1, vu,2, . . . , vu,m)
is a vector with m coordinates. Then the notation 〈v1, v2, v3, v4, v5, v6〉 will
mean the vector w := (w1, w2, . . . , w6m) with 6m coordinates such that
for each u ∈ {1, 2, . . . , 6} and each j ∈ {1, 2, . . . ,m}, w(u−1)m+j = vu,j .
That is, in the vector 〈v1, v2, v3, v4, v5, v6〉, with 6m coordinates, the first
m coordinates are (in order) the coordinates of v1, the next m coordinates
are those of v2, and so on, with the last m coordinates being those of v6.

(D) On the family of all nonempty finite subsets of Z, the following partial
ordering will be used: For such sets A and B, the notation A < B (or
B > A) means that maxA < minB (equivalently, a < b for all a ∈ A,
b ∈ B).

(E) Suppose S is a nonempty finite set of integers. If (ak, k ∈ S) is a family of
elements of some set A, then the notation aS denotes the vector defined by

aS :=
(
as(1), as(2), . . . , as(n)

)
(2.3)

where n = card S and s(1) < s(2) < · · · < s(n) are in increasing order the
elements of S. Similarly, if (Xk, k ∈ S) is a family of random variables on
a probability space (Ω,F , P ), then the notation XS denotes the random
vector defined by

XS :=
(
Xs(1), Xs(2), . . . , Xs(n)

)
(2.4)

where the s(j)’s are as above. The vector aS in (2.3) and the random vector
XS in (2.4) will also be expressed respectively as (as(i), 1 ≤ i ≤ n) and
(Xs(i), 1 ≤ i ≤ n).

(F) (i) A set S ⊂ Z is said to be “doubly infinite” if it contains infinitely
many negative integers and infinitely many positive integers.

(ii) If (ak, k ∈ Z) is a (“two-sided”) sequence of elements of some set A,
and S is a doubly infinite subset of Z, then the notation (aj , j ∈ S)
refers to the sequence (as(ℓ), ℓ ∈ Z) where

· · · < s(−2) < s(−1) < s(0) ≤ 0 < 1 ≤ s(1) < s(2) < s(3) < . . .

and S = { . . . , s(−1), s(0), s(1), . . . }.
(G) If (ak, k ∈ Z) is a (“two-sided”) sequence of elements of some set A, and S

is a subset of Z which is both infinite and bounded above, then a convention
“opposite” to that of sections (E) and (F) will be used: The notation
(aj , j ∈ S) refers to the sequence (as(0), as(−1), as(−2), . . . ) where s(0) >
s(−1) > s(−2) > . . . and S = {s(0), s(−1), s(−2), . . .}.
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(H) Suppose E = {E1, E2, E3, . . . } is a nonempty family of finitely many or
countably many sets Ei ⊂ Z. (The sets Ei themselves can be countable
or finite, or even empty, and they need not be disjoint.) Then define the
notation

union E := E1 ∪ E2 ∪E3 ∪ . . . ,
the union of all sets ∈ E .

Definition 2.2.
(A) For each n ∈ {0, 1, 2, . . .}, we shall define a function

ψn : {0, 1, 2, 3, 4, 5, 6}N −→ {0, 1, 2, . . .}.
Suppose a := (a0, a1, a2, . . . ) is a sequence of elements of {0, 1, . . . , 6}. If
the set {k ≥ 0 : ak = 1} is infinite, then define the nonnegative integers
ψ0(a), ψ1(a), ψ2(a), . . . (uniquely) by the conditions

0 ≤ ψ0(a) < ψ1(a) < ψ2(a) < . . . and

{k ≥ 0 : ak = 1} = {ψ0(a), ψ1(a), ψ2(a), . . . }.
If instead the set {k ≥ 0 : ak = 1} is finite, then ψn(a) := 0 for all n ≥ 0.
(This last sentence will be an irrelevant formality.)

(B) Remark. In that definition (both cases), if a0 = 1 then ψ0(a) = 0.

Definition 2.3.
(A) A (“two-sided”) sequence w := (wk, k ∈ Z) of elements of {0, 1, 2, 3, 4, 5, 6}

satisfies “Condition S” if the following three statements hold:
(i) For each i ∈ {1, 2, 3, 4, 5, 6} the set {k ∈ Z : wk = i} is doubly infinite.

(That is not required for i = 0.)
(ii) For each i ∈ {1, 2, 3, 4, 5} and each ℓ ∈ Z such that wℓ = i, either

(a) wℓ+1 = i+ 1 or (b) for some m ≥ 2, one has that wℓ+1 = wℓ+2 =
· · · = wℓ+m−1 = 0 and wℓ+m = i+ 1.

(iii) For each ℓ ∈ Z such that wℓ = 6, either (a) wℓ+1 = 1 or (b) for some
m ≥ 2, one has that wℓ+1 = wℓ+2 = · · · = wℓ+m−1 = 0 and wℓ+m = 1.

That is, the sequence w satisfies Condition S if “from time immemorial,”
the non-zero elements in w cycle through 1, 2, . . . , 6 in order, over and over
again, with perhaps some 0’s in between.

(B) Remark. Suppose w := (wk, k ∈ Z) is a sequence of elements of {0, 1, . . . , 6}
that satisfies Condition S. Then for any two integers J and L such that
J ≤ L, one has that

card{k ∈ Z : J ≤ k ≤ L and wk = 1} (2.5)

≤ 1 + (1/6) · card{k ∈ Z : J ≤ k ≤ L and wk 6= 0}.
The point is that between any two “consecutive 1’s,” there are (exactly)

five non-zero elements (2, 3, 4, 5, 6, each once). Hence, if the left side of (2.5)
equals ℓ for some ℓ ≥ 2, then the set in the right side of (2.5) has at least
ℓ + 5(ℓ − 1) elements, and thus (2.5) holds. Equation (2.5) holds trivially
when its left side is 0 or 1.

(C) Remark. Suppose S := { . . . , s(−1), s(0), s(1), . . . } is a doubly infinite
set of integers where · · · < s(−1) < s(0) < s(1) < . . . . Suppose w :=
(wk, k ∈ Z) is a (“two-sided”) sequence of elements of {0, 1, . . . , 6} such
that (i) wk = 0 for all k ∈ Z − S, and (ii) the (“two-sided”) sequence



386 Richard C. Bradley

( . . . , ws(−1), ws(0), ws(1), . . . ) satisfies Condition S. Then the entire se-
quence w satisfies Condition S.

(In words, if a given two-sided sequence satisfies Condition S, and one sticks some
zeros between its entries, the resulting new sequence still satisfies Condition S.)

Notations 2.4.
(A) The 6 × 6 identity matrix will be denoted I6.
(B) The transpose of a vector v will be denoted vt.
(C) The elements of {0, 1}6 will be represented as “row” vectors. Suppose m is

a positive integer, and for each i ∈ {1, 2, . . . ,m}, αi := (αi1, αi2, . . . , αi6)
is an element of {0, 1}6. Then for the 6×m matrix whose columns are the
transposes of the αi’s respectively, we shall use the following notation:

[
αt

1 | αt
2 | · · · | αt

m

]
:=




α11 α21 · · · αm1

α12 α22 · · · αm2

...
...

...
...
...

...
α16 α26 · · · αm6


 . (2.6)

(D) A (“left-infinite”) sequence (β0, β−1, β−2, . . . ) of elements of {0, 1}6 is said
to be “back-standard” if

[
βt

ℓ−5 | βt
ℓ−4 | · · · | βt

ℓ

]
= I6 (2.7)

holds for infinitely many integers ℓ ≤ 0. A (“two-sided”) sequence (βk,
k ∈ Z) of elements of {0, 1}6 is said to be “two-sided standard” if the set
{ℓ ∈ Z : (2.7) holds} is doubly infinite (see Section 2.1(F)).

(E) In the proofs of lemmas, we shall often use the notation

βℓ
j := (βj , βj+1, . . . , βℓ) (2.8)

when j ≤ ℓ are integers and βk ∈ {0, 1}6 for each k ∈ {j, . . . , ℓ}, and also
the (“reverse”) notation

βℓ
−∞ := (βℓ, βℓ−1, βℓ−2, . . . ) (2.9)

when ℓ ∈ Z and βk ∈ {0, 1}6 for each k ≤ ℓ.

Notations 2.5.
(A) Suppose that on a probability space (Ω,F , P ), η is a random variable (or

random vector, etc.) taking its values in a measurable space (A,A). The
distribution (or “law”) of η (on (A,A)) will be denoted L(η). For any event
F such that P (F ) > 0, the conditional distribution of η given F will be
denoted L(η | F ).

(B) Suppose m is a positive integer and λ is a probability measure on {−1, 1}m.
Then λ[6] will denote the six-fold “product measure” of λ. That is, λ[6] is
the distribution (on {−1, 1}6m) of a {−1, 1}6m–valued random vector

〈Z1, Z2, . . . , Z6〉
(in Notation 2.1(C)) where Z1, Z2, . . . , Z6 are six independent {−1, 1}m–
valued random vectors, each having distribution λ.

(C) Suppose (Ω,F , P ) is a probability space. For two events A and B, the no-
tation A =̇B will mean that P (A△B) = 0, where △ denotes the symmetric
difference. If A is an event and B is a σ-field ⊂ F , then the notation A ∈̇ B
will mean that there exists an event B ∈ B such that A=̇B. If A and B are
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σ–fields ⊂ F , the notation A⊂̇B will mean that for every A ∈ A, one has
that A ∈̇ B.

In arguments below, we shall sometimes simply show A⊂̇B with a quick verifica-
tion, in place of A ⊂ B, when that latter literal inclusion is not needed and requires
a longer argument.

Definition 2.6.
(A) Suppose that on a probability space (Ω,F , P ), Y := (Yk, k ∈ Z) is a

sequence of random variables taking their values in a measurable space
(A,A) and Z := (Zk, k ∈ Z) is a sequence of random variables taking their
values in a measurable space (B,B). The ordered pair (Y, Z) is said to
satisfy “Condition M” if the following two conditions are satisfied:
(i) The sequence Z is strictly stationary.
(ii) There exists a measurable function f : BN → A (that is, f−1(H) ∈ BN

for every H ∈ A, for the “infinite product” σ–field BN := B×B×B×
. . . ) such that for each k ∈ Z, Yk = f(Zk, Zk−1, Zk−2, . . . ) a.s.

(B) Remark. Obviously, if (Y, Z) satisfies Condition M, then (i) the sequence
Y is strictly stationary, and (ii) σ(Y ) ⊂̇σ(Z) (see section 2.5(C)).

Notations 2.7. Suppose (Ω,F , P ) is a probability space.

(A) An ordered triplet (A,B, C) of σ–fields ⊂ F is a “Markov triplet” if one has
that for all A ∈ A and all C ∈ C, P (A ∩ C|B) = P (A|B) · P (C|B) a.s.

A “restricted” version of (A) will also be needed for some random se-
quences that are not Markov chains but have some “limited” Markov prop-
erties:

(B) Suppose B ∈ F , and suppose A and C are σ–fields ⊂ F . The ordered triplet
(A, B, C) is a “restricted Markov triplet” if (i) P (B) > 0, and (ii) for all
A ∈ A and all C ∈ C, P (A ∩C|B) = P (A|B) · P (C|B).

(C) Remark. If (A, B, C) is a restricted Markov triplet, A ∈ A, P (A ∩B) > 0,
and C ∈ C, then (by a trivial calculation) P (C|A ∩B) = P (C|B).

(D) Remark. Suppose G and H are independent σ–fields ⊂ F . Suppose G ∈ G,
and G1 and G2 are σ–fields ⊂ G, and (G1, G,G2) is a restricted Markov
triplet. Suppose H ∈ H, and H1 and H2 are σ–fields ⊂ H, and (H1, H,H2)
is a restricted Markov triplet. Then (G1∨H1, G∩H , G2∨H2) is a restricted
Markov triplet.
Proof of (D). Of course P (G ∩ H) = P (G) · P (H) > 0. By a simple
calculation, if G1 ∈ G1, G2 ∈ G2, H1 ∈ H1, and H2 ∈ H2, then

P (G1 ∩G2 ∩H1 ∩H2 | G ∩H) = P (G1 ∩G2 | G) · P (H1 ∩H2 | H)

= P (G1|G) · P (G2|G) · P (H1|H) · P (H2|H)

= P (G1 | G ∩H) · P (G2 | G ∩H) · P (H1 | G ∩H) · P (H2 | G ∩H).

Thus under the probability measure Q( . ) := P ( . |G∩H) on (Ω,F), the
four σ–fields G1, G2, H1, and H2 are independent, and hence (under Q) the
σ–fields G1 ∨H1 and G2 ∨H2 are independent. Thus (D) holds.

Remark 2.8. (a standard trivial but useful fact). Suppose (Ω,F , P ) is a probability
space, C =

⋃
iCi where C1, C2, C3, . . . is a finite or countable sequence of (pairwise)

disjoint events, P (Ci) > 0 for at least one i, D is an event, p ∈ [0, 1], and P (D|Ci) =
p (resp. ≥ p resp. ≤ p) for every i such that P (Ci) > 0. Then P (D|C) = p (resp.
≥ p resp. ≤ p).
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3. Some key probability measures

This section is devoted to the definitions and key properties of certain discrete
probability measures that will play a pervasive role in the construction for Theo-
rem 1.1.

In connection with the design of error-correcting codes, the book by MacWilliams
and Sloane (1977) includes an extensive treatment of constructions, for a given pos-
itive integer k, of “big”k-tuplewise independent random vectors from “small” ones.
The material here in Section 3 fits into that general framework (in a somewhat
hidden way). However, the details will need to be spelled out here, in order to facil-
itate the proofs of certain properties (in particular, the bounds on sixth moments
of partial sums) in Theorem 1.1.

The main tool in this section is a well known, elementary “parity” trick, built
into Definitions 3.1 and 3.3 below. The same general type of “parity” trick was used
(with different distributions) by Pruss (1998) and by Bradley and Pruss (2009) in
the constructions in those papers, and was also used (for different purposes) in the
book MacWilliams and Sloane (1977) alluded to above.

In this section, for convenience, for a given n ∈ N and a given element x ∈
{−1, 1}sxtp(n) (see (2.1)), x will be represented as (x0, x1, . . . , xsxtp(n)−1) (instead
of x1, x2, . . . , xsxtp(n))).

Definition 3.1. Referring to (2.2), define the set

Υ := {x := (x0, x1, . . . , x5) ∈ {−1, 1}6 : prod(x) = −1}.

That is, Υ is the set of all 6-tuples of −1’s and +1’s with an odd number of −1’s.
For a given x := (x0, x1, . . . , x5) ∈ Υ, sum(x) (see (2.2)) is −4 (resp. 0 resp. 4) if
exactly 5 (resp. 3 resp. 1) of the xi’s are −1.

Let νkey denote the uniform probability measure on Υ. That is, νkey({x}) = 1/32
for each x ∈ Υ.

Remark 3.2. If V := (V0, V1, . . . , V5) is a {−1, 1}6–valued random vector with dis-
tribution νkey (thus V ∈ Υ a.s.), then by trivial arguments, the following statements
hold:

(A) The distribution of the random vector −V is νkey.
(B) For any permutation σ of {0, 1, . . . , 5}, the distribution of the random vector

(Vσ(0), Vσ(1), . . . , Vσ(5)) is νkey.
(C) For each i ∈ {0, 1, . . . , 5}, P (Vi = −1) = P (Vi = 1) = 1/2.
(D) For every set S ⊂ {0, 1, . . . , 5} such that card S = 5, the random variables

Vi, i ∈ S are independent.
(E) prod(V ) = −1 a.s. (see (2.2)).
(F) P (sum(V ) = 0) = 5/8 and P (sum(V ) = −4) = P (sum(V ) = 4) = 3/16

(see (2.2)).
(G) For each i ∈ {0, 1, . . . , 5}, P (Vi = 1|sum(V ) = 4) = 5/6 and

P (Vi = −1|sum(V ) = 4) = 1/6, and hence E(Vi|sum(V ) = 4) = 2/3.

Definition 3.3. Refer to (2.1) and (2.2). For each n ∈ N, we shall define four

probability measures ν
(n)
ord, ν

(n)
cen, ν

(n)
fri , and ν

(n)
pos on the set {−1, 1}sxtp(n), such that

the following holds:
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If W :=
(
W0,W1, . . . ,Wsxtp(n)−1

)
is a {−1, 1}sxtp(n)–valued

random vector with distribution ν(n)
pos, then sum(W ) = 4n a.s.

(3.1)

(The subscripts “ord”, “cen,” “fri,” and “pos” are respectively abbreviations of
the words “ordinary” “center,” “fringe,” and “positive.” The relevance of those
subscripts will become clear below.) For n = 0, we shall also define two probability

measures ν
(0)
fri and ν

(0)
pos on the set {−1, 1}, such that (3.1) holds for n = 0. The

definition is recursive and is as follows:
Start with n = 0. On the set {−1, 1}, define the probability measures ν

(0)
fri and

ν
(0)
pos by ν

(0)
fri ({−1}) = ν

(0)
fri ({1}) = 1/2 and ν

(0)
pos({1}) = 1. Trivially (3.1) holds for

n = 0.
Now suppose n ≥ 0, and suppose the probability measure ν

(n)
pos on {−1, 1}sxtp(n)

has already been defined such that (3.1) holds. Let

W (i) := (W
(i)
0 ,W

(i)
1 , . . . ,W

(i)
sxtp(n)−1),

i ∈ {0, 1, . . . , 5} be six independent {−1, 1}sxtp(n)–valued random vectors, each

having distribution ν
(n)
pos. Let V := (V0, V1, . . . , V5) be a {−1, 1}6-valued random

vector which is independent of the family (W (i), 0 ≤ i ≤ 5) and has distribution νkey

(see Definition 3.1). Let Z := (Z0, Z1, . . . , Zsxtp(n+1)−1) be the {−1, 1}sxtp(n+1)-
valued random vector defined as follows:

∀ i ∈ {0, 1, . . . , 5}, ∀ j ∈ {0, 1, . . . , 6n − 1},
Zi·sxtp(n)+j := Vi ·W (i)

j .
(3.2)

Then (see (2.2), (3.1), and (3.2)) with probability 1,

sum(Z) =
5∑

i=0

sxtp(n)−1∑

j=0

ViW
(i)
j = (sum(V )) · 4n, (3.3)

and hence (see Remark 3.2(F)) sum(Z) takes the value 0 resp. −4n+1 resp. 4n+1

with probability 5/8 resp. 3/16 resp. 3/16.

Let ν
(n+1)
ord denote the distribution on {−1, 1}sxtp(n+1) of the random vector

Z. Let ν
(n+1)
cen resp. ν

(n+1)
fri resp. ν

(n+1)
pos denote the conditional distribution on

{−1, 1}sxtp(n+1) of the random vector Z given the event {sum(Z) = 0} resp.
{|sum(Z)| = 4n+1} resp. {sum(Z) = 4n+1}. Thus (3.1) holds with n replaced
by n+ 1. This completes the recursive definition.

Remark 3.4. For each n ∈ N, ν
(n)
ord = (5/8)ν

(n)
cen + (3/8)ν

(n)
fri .

Proof. If Z is a {−1, 1}sxtp(n)–valued random vector with distribution ν
(n)
ord , and

B ⊂ {−1, 1}sxtp(n), then (see the comments after (3.3), but with n+ 1 replaced by
n)

ν
(n)
ord(B) = P (Z ∈ B)

= P (Z ∈ B|sum(Z) = 0) · P (sum(Z) = 0)

+P (Z ∈ B| |sum(Z)| = 4n) · P (|sum(Z)| = 4n)

= ν(n)
cen(B) · (5/8) + ν

(n)
fri (B) · (3/8).
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The various distributions in Definition 3.3 have pervasive symmetries. We will
need later on, and will verify in the next two sections, only a couple of mild aspects
or manifestations of those symmetries.

Remark 3.5.
(A) For a given n ≥ 0, if the random vectors W (i), i ∈ {0, 1, . . . , 5}, V ,

and Z are as in Definition 3.3, then the distribution of the random col-
lection (V,W (0),W (1), . . . ,W (5)) is (by independence) a product measure
on {−1, 1}6 × ({−1, 1}sxtp(n))6, and (by Remark 3.2(A)) is the same as
that of (−V,W (0),W (1), . . . ,W (5)), and hence by (3.2) the distribution on
{−1, 1}sxtp(n+1) of the random vector −Z is the same as that of Z.

(B) By an elementary argument, it follows that for any given n ∈ N, the distri-

butions ν
(n)
ord, ν

(n)
cen, and ν

(n)
fri on {−1, 1}sxtp(n) satisfy the symmetry condi-

tions ν
(n)
ord({−x}) = ν

(n)
ord({x}), ν(n)

cen({−x}) = ν
(n)
cen({x}), and ν

(n)
fri ({−x}) =

ν
(n)
fri ({x}). For n = 0, this holds trivially for ν

(0)
fri .

(C) Here for convenient reference are a few other features and elementary con-
sequences of Definition 3.3, for a given n ≥ 0 and a given x ∈ {−1, 1}sxtp(n):

(i) If sum(x) = 4n then ν
(n)
fri ({−x}) = ν

(n)
fri ({x}) = (1/2)ν

(n)
pos({x}). (ii) If

ν
(n)
pos({x}) > 0 then sum(x) = 4n. (iii) If ν

(n)
fri ({x}) > 0 then sum(x) = −4n

or 4n. (iv) If (n ≥ 1 and) ν
(n)
cen({x}) > 0 then sum(x) = 0. (v) If (n ≥ 1

and) ν
(n)
ord({x}) > 0 then sum(x) = −4n, 0, or 4n.

Lemma 3.6. Suppose n ≥ 0. Suppose Y := (Y0, Y1, . . . , Ysxtp(n)−1) is a

{−1, 1}sxtp(n)–valued random vector whose distribution is ν
(n)
pos. Then EYk = (2/3)n

for every k ∈ {0, 1, . . . , 6n − 1}.
Proof. Lemma 3.6 holds trivially for n = 0. Now for induction, suppose it holds
for a given n ≥ 0. Let the random vectors W (i), i ∈ {0, 1, . . . , 5}, V , and Z be
as in Definition 3.3. By (3.3), the events {sum(Z) = 4n+1} and {sum(V ) = 4}
are identical (modulo a null set). By (3.2), Remark 3.2(G), and our induction
hypothesis, for each i ∈ {0, 1, . . . , 5} and each j ∈ {0, 1, . . . , 6n − 1},

E
(
Zi·sxtp(n)+j

∣∣∣ sum(Z) = 4n+1
)

= E
(
Vi ·W (i)

j

∣∣∣ sum(V ) = 4
)

= EW
(i)
j ·E(Vi|sum(V ) = 4) = (2/3)n · (2/3) = (2/3)n+1.

That is, E(Zk|sum(Z) = 4n+1) = (2/3)n+1 for every k ∈ {0, 1, . . . , 6n+1 − 1}.
By Definition 3.3 itself, Lemma 3.6 holds for n+ 1. That completes the induction
step and the proof.

Lemma 3.7. Suppose n ≥ 0. Suppose Y := (Y0, Y1, . . . , Ysxtp(n+1)−1) is a

{−1, 1}sxtp(n+1)–valued random vector with distribution (ν
(n)
fri )[6] (section 2.5(B)).

Suppose Z := (Z0, Z1, . . . , Zsxtp(n+1)−1) is a {−1, 1}sxtp(n+1)–valued random vector

with the distribution ν
(n+1)
ord . Then the following three statements hold:

(A) For every set S ⊂ {0, 1, . . . , 6n+1 − 1} such that card S = 5, the random
vectors YS and ZS (see (2.4)) have the same distribution on {−1, 1}5.

(B) For every nonempty set Q ⊂ {0, 1, . . . , 6n+1 − 1}, one has that

E

(∑

k∈Q

Yk

)6

≥ E

(∑

k∈Q

Zk

)6

. (3.4)
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(C) Also,

E(sum(Y ))6 = E(sum(Z))6 + 720 · 46n. (3.5)

Proof. Suppose n ≥ 0. Without loss of generality, to prove Lemma 3.7, we
shall construct particular convenient random vectors Y and Z with the required
distributions, and then prove statements (A), (B), and (C) for those two random
vectors.

Let the random vectors W (i), i ∈ {0, 1, . . . , 5}, V , and Z be as in Definition 3.3.
In that context, let Ui, i ∈ {0, 1, . . . , 5} be independent, identically distributed
{−1, 1}–valued random variables with P (Ui = −1) = P (Ui = 1) = 1/2, with the
family (Ui, 0 ≤ i ≤ 5) being independent of the family (V ; W (i), 0 ≤ i ≤ 5).
Define the {−1, 1}sxtp(n+1)–valued random vector Y := (Y0, Y1, . . . , Ysxtp(n+1)−1)
as follows:

∀ i ∈ {0, 1, . . . , 5}, ∀ j ∈ {0, 1, . . . , 6n − 1},
Yi·sxtp(n)+j := Ui ·W (i)

j .
(3.6)

By Remark 3.5(B)(C), Definition 3.3, and a simple argument, for each i ∈
{0, 1, . . . , 5}, the distribution on {−1, 1}sxtp(n) of the random vector (Ui · W (i)

j ,

0 ≤ j ≤ 6n − 1) (see the sentence after (2.4)) is ν
(n)
fri . From this and the definition

of ν(n+1) in Definition 3.3, the random vectors Y and Z constructed here have the
distributions specified in the statement of Lemma 3.7.

Just for this proof, define for each i ∈ {0, 1, . . . , 5} the set

Ki = K
(n)
i := {k ∈ Z : i · 6n ≤ k ≤ (i+ 1) · 6n − 1}. (3.7)

These sets K0,K1, . . . ,K5 form a partition of the set {0, 1, . . . , 6n+1 − 1}. As
a consequence of Remark 3.2(C)(D) and the above conditions, for any set Λ ⊂
{0, 1, . . . , 5} with card Λ = 5, the random family (Vi, i ∈ Λ; W (i), i ∈ Λ) has the
same distribution—a ten-fold product measure on {−1, 1}5×({−1, 1}sxtp(n))5 — as
the random family (Ui, i ∈ Λ; W (i), i ∈ Λ). Hence by (3.2) and (3.6), for every set
Λ ⊂ {0, 1, . . . , 5} with card Λ = 5 (see section 2.5(A) and the sentence after (2.4)),

L
(
Yk, k ∈

⋃

i∈Λ

Ki

)
= L

(
Zk, k ∈

⋃

i∈Λ

Ki

)
(3.8)

(an equality of distributions on {−1, 1}5·sxtp(n)).
Now if S ⊂ {0, 1, . . . , 6n+1 − 1} is such that card S = 5, then S ⊂ ⋃i∈ΛKi for

some set Λ ⊂ {0, 1, . . . , 5} with card Λ ≤ 5. Hence statement (A) in Lemma 3.7
follows from (3.8).
Proof of statements (B) and (C). For any nonempty set Q ⊂ {0, 1, . . . ,
6n+1 − 1},

E

(∑

k∈Q

Yk

)6

− E

(∑

k∈Q

Zk

)6

=
∑

k(0)∈Q

∑

k(1)∈Q

· · ·
∑

k(5)∈Q

[
E

(
5∏

i=0

Yk(i)

)
− E

(
5∏

i=0

Zk(i)

)]
.

(3.9)

For any set Λ ⊂ {0, 1, . . . , 5} with card Λ = 5, and any choice of (not necessarily
distinct) elements k(0), k(1), . . . , k(5) of

⋃
i∈ΛKi, the term in the brackets in (3.9)
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equals 0 by (3.8). On the other hand, if k(i) ∈ Ki for every i ∈ {0, 1, . . . , 5}, then
representing k(i) = i · 6n + j(i) where j(i) ∈ {0, 1, . . . , 6n − 1}, one has

E

(
5∏

i=0

Yk(i)

)
=

[
5∏

i=0

EUi

]
·
[

5∏

i=0

EW
(i)
j(i)

]
= 0

by (3.6) and the trivial fact EUi = 0, and one also has

E

(
5∏

i=0

Zk(i)

)
=

[
E

(
5∏

i=0

Vi

)]
·
[

5∏

i=0

EW
(i)
j(i)

]
= −1 · [(2/3)n]6 = −(2/3)6n

by (3.2), Remark 3.2(E), and Lemma 3.6. Hence by (3.9) for any nonempty set
Q ⊂ {0, 1, . . . , 6n+1 − 1},

[Left side of (3.9)] = (2/3)6n · 6! ·
5∏

i=0

card(Q ∩Ki). (3.10)

Statement (B) in Lemma 3.7 follows. Since card Ki = 6n for each i, statement
(C) follows from (3.10) with Q = {0, 1, . . . , 6n+1 − 1} itself. That completes the
proof.

4. Some particular functions

A key “building block” in the construction of the random sequence X in The-
orem 1.1 will be a particular strictly stationary, finite-state, irreducible, aperiodic
Markov chain. It will be given a particular, explicit representation as a “causal
moving function” (à la eq. (1.3)) of an i.i.d. finite-state sequence. This represen-
tation will be spelled out in detail in Section 4 here and Section 5 together (the
Markov chain itself will be identified in Lemma 5.3), in order to facilitate trans-
parent proofs (in Sections 7 and 10 respectively) of property (C) and (especially)
property (D) in Theorem 1.1. The particular form of the representation that will
be used here is an old one that goes back several decades; its origin is hard to trace.
Its spirit goes back at least to a paper of Rosenblatt (1960) in which it is shown
that every strictly stationary, countable-state, irreducible, aperiodic Markov chain
can be represented as a “causal moving function” of an i.i.d. sequence.

Definition 4.1. For each n ∈ N, we shall define a function hn : ({0, 1}6)n →
{1, 2, 3, 4, 5, 6}. The definition will be recursive and is as follows:

First, define the function h1 : {0, 1}6 → {1, 2, . . . , 6} as follows: For α :=
(α1, α2, . . . , α6) ∈ {0, 1}6,

h1(α) :=

{
6 if α1 = 0

1 if α1 = 1.
(4.1)

Now suppose n ≥ 2, and the function hn−1 : ({0, 1}6)n−1 → {1, 2, . . . , 6} has
already been defined. Define the function hn : ({0, 1}6)n → {1, 2, . . . , 6} as follows:

Suppose that for each i ∈ {1, 2, . . . , n}, βi := (βi,1, βi,2, . . . , βi,6) ∈ {0, 1}6. If
hn−1(β1, β2, . . . , βn−1) = j ∈ {1, 2, 3, 4, 5}, then

hn(β1, β2, . . . , βn) :=

{
j if βn,j+1 = 0

j + 1 if βn,j+1 = 1.
(4.2)
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If instead hn−1(β1, β2, . . . , βn−1) = 6, then

hn(β1, β2, . . . , βn) :=

{
6 if βn,1 = 0

1 if βn,1 = 1.
(4.3)

That completes the recursive definition of the functions hn.

Lemma 4.2. Suppose ℓ ∈ {−5,−6,−7, . . .}, and βℓ, βℓ+1, . . . , β−1 are each an
element of {0, 1}6, and that

[
βt
−5 | βt

−4 | βt
−3 | βt

−2 | βt
−1

]
=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




(4.4)

(the first five columns of the identity matrix I6 — see Section 2.4(A)(B)(C)). Then

h−ℓ(βℓ, βℓ+1, . . . , β−1) = 5. (4.5)

Proof. Consider first the case ℓ = −5. By (4.4), (4.1), and then four applica-
tions of (4.2), one obtains h1(β−5) = 1, h2(β−5, β−4) = 2, h3(β−5, β−4, β−3) = 3,
h4(β

−2
−5) = 4 (we start using the Notations 2.4(E)), and finally h5(β

−1
−5) = 5, which

is (4.5).
Now consider the case where ℓ ≤ −6. We shall give the argument for the case

where
h−5−ℓ(βℓ, βℓ+1, . . . , β−6) = 3. (4.6)

The argument is similar for the other possible values (1, 2, 4, 5, and 6) for the right
hand side of (4.6).

Now β−5,4 = 0 by (4.4), and hence h−4−ℓ(β
−5
ℓ ) = 3 by (4.6) and (4.2). Next,

β−4,4 = 0 by (4.4), and hence h−3−ℓ(β
−4
ℓ ) = 3 now follows from (4.2). Similarly

β−3,4 = 0 and hence h−2−ℓ(β
−3
ℓ ) = 3. Next, β−2,4 = 1 by (4.4), and hence

h−1−ℓ(β
−2
ℓ ) = 4 by (4.2). Finally, β−1,5 = 1, and hence (4.5) now follows from (4.2).

That completes the proof of Lemma 4.2.
In Definitions 4.3 and 4.5 below, two closely related functions on

({0, 1}6)N will be defined. Because of the way those functions will be used, “left-
infinite” sequences will be used in their definitions.

Definition 4.3. Define the function gbasic({0, 1}6)N → {1, 2, 3, 4, 5, 6} as follows:
Suppose β0, β−1, β−2, . . . each ∈ {0, 1}6.
If the sequence (β0, β−1, β−2, . . . ) is not back-standard (see Section 2.4 (A) (B)

(C) (D)), then define gbasic(β0, β1, β−2, . . . ) := 6.
Now suppose instead that the sequence (β0, β−1, β−2, . . . ) is back-standard (again

see Section 2.4). Let L denote the greatest integer ∈ {0,−1,−2, . . .} such that
[βt

L−5 | βt
L−4 | · · · | βt

L] = I6.

(i) If L = 0 (that is, if [βt
−5 | βt

−4 | . . . |βt
0] = I6), then define gbasic(β0, β−1,

β−2, . . . ) := 6.
(ii) If instead L ≤ −1, then referring to Definition 4.1, define

gbasic(β0, β−1, β−2, . . . ) := h−L(βL+1, βL+2, . . . , β0). (4.7)

Lemma 4.4. Suppose (β0, β−1, β−2, . . . ) is a (“left-infinite”) back-standard se-
quence of elements of {0, 1}6 (see Section 2.4(D)).
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(A) If gbasic(β−1, β−2, β−3, . . . ) = j ∈ {1, 2, 3, 4, 5}, then

gbasic(β0, β−1, β−2, . . . ) =

{
j if β0,j+1 = 0

j + 1 if β0,j+1 = 1.
(4.8)

(B) If instead gbasic(β−1, β−2, β−3, . . . ) = 6, then

gbasic(β0, β−1, β−2, . . . ) =

{
6 if β0,1 = 0

1 if β0,1 = 1.
(4.9)

Proof. Let L denote the greatest negative integer (the integer 0 is excluded here)
such that (see Section 2.4(A)(B)(C))

[
βt

L−5 | βt
L−4 | · · · | βt

L

]
= I6. (4.10)

The proofs of statements (A) and (B) in Lemma 4.4 will be handled together, and
will be divided into three cases. The Notations 2.4(E) (both eqs. (2.8) and (2.9))
will be used.

Case 1: [βt
−5 | βt

−4 | · · · | βt
0] = I6. Then βℓ,6 = 0 for ℓ ∈ {−5,−4, . . . ,−1}, and

hence by (4.10) (which implies βL,6 = 1) and its entire sentence, L ≤ −6 must hold.

By Definition 4.3 and Lemma 4.2, gbasic(β
−1
−∞) = h−L−1(β

−1
L+1) = 5. Hence here in

Case 1, the hypothesis of statement (A) (in Lemma 4.4) holds with j = 5 there,
and statement (B) there is vacuous. Since (by the definition of I6) β0,6 = 1, the
right side of (4.8) equals 6. Also, by Definition 4.3(i), the left side of (4.8) equals 6.
Hence (4.8) holds, and statement (A) is verified. That completes the argument for
Case 1.

Case 2: [βt
−5 | βt

−4 | · · · | βt
0] 6= I6 and L = −1 (redundant — see (4.10)).

Then by Definition 4.3(i) (see (4.10)), gbasic(β
−1
−∞) = 6, and hence the hypothesis

of statement (B) (in Lemma 4.4) is satisfied, and statement (A) there is vacuous.
By Definition 4.3(ii) and Definition 4.1, gbasic(β

0
−∞) = h1(β0) = 6 resp. 1 if β0,1 =

0 resp. 1. Thus (4.9) holds, and statement (B) is verified. That completes the
argument for Case 2.

Case 3: [βt
−5 | βt

−4 | · · · | βt
0] 6= I6 and L ≤ −2. By Definition 4.3(ii),

gbasic(β
−1
−∞) = h−L−1(β

−1
L+1) (4.11)

and

gbasic(β
0
−∞) = h−L(β0

L+1). (4.12)

If the hypothesis of statement(A) (in Lemma 4.4) holds for some j ∈ {1, 2, . . . ,
5}, then (for that j) h−L−1(β

−1
L+1) = j by (4.11), and then h−L(β0

L+1) = j resp.
j + 1 if β0,j+1 = 0 resp. 1 by equation (4.2) in Definition 4.1, and then (4.8) — the
conclusion of statement (A) — holds by (4.12).

If instead the hypothesis of statement (B) holds, then h−L−1(β
−1
L+1) = 6 by (4.11),

h−L(β0
L+1) = 6 resp. 1 if β0,1 = 0 resp. 1 by (4.3) in Definition 4.1, and then (4.9) —

the conclusion of statement (B) — holds by (4.12). That completes the argument
for Case 3, and the proof of Lemma 4.4.

Definition 4.5. Define the function gspaced({0, 1}6)N → {0, 1, 2, 3, 4, 5, 6} as fol-
lows: For any given (“left-infinite”) sequence (β0, β−1, β−2, . . . ) of elements of
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{0, 1}6, define

gspaced(β0, β−1, β−2, . . . ) (4.13)

:=






gbasic(β0, β−1, β−2, . . . ) if gbasic(β0, β−1, β−2, . . . )

6= gbasic(β−1, β−2, β−3, . . . )

0 otherwise.

(The subscript “spaced” in (4.13) is motivated by conclusion (A) in the next
lemma—think of elements {1, . . . , 6} “spaced apart” with 0’s in between.)

Lemma 4.6. Refer to Sections 2.4(D) and 2.3(A). Suppose (βk, k ∈ Z) is a two-
sided standard sequence of elements of {0, 1}6. For each k ∈ Z, define the numbers

uk := gbasic(βk, βk−1, βk−2, . . . ) (4.14)

and (see (4.13))

wk := gspaced(βk, βk−1, βk−2, . . . ) =

{
uk if uk 6= uk−1

0 if uk = uk−1.
(4.15)

Then (A) the sequence (wk, k ∈ Z) satisfies condition S; and (B) one has that

{k ∈ Z : wk = 1} = {k ∈ Z : uk−1 = 6 and uk = 1}, (4.16)

and for each i ∈ {2, 3, 4, 5, 6},
{k ∈ Z : wk = i} = {k ∈ Z : uk−1 = i− 1 and uk = i}. (4.17)

Proof. By (4.14) and Lemma 4.4(A)(B), for each k ∈ Z,

uk − uk−1 ≡ 0 or 1 mod 6. (4.18)

Hence by (4.15),

{k ∈ Z : wk = 6} = {k ∈ Z : uk−1 = 5 and uk = 6}. (4.19)

Also, for each ℓ ∈ Z such that [βℓ−5 | βℓ−4 | · · · | βℓ] = I6, one has that uℓ = 6
by (4.14) and Definition 4.3(i) and uℓ−1 = 5 by (4.14), Definition 4.3(ii), and
Lemma 4.2. Hence (by the hypothesis of Lemma 4.6) the set in (4.19) is doubly
infinite (see Section 2.1(F)). Hence also the (“larger”) set {k ∈ Z : uk−1 6= uk} is
doubly infinite.

Now suppose k ∈ Z is such that wk = 6. Then uk = 6 by (4.19). Now
by (4.18), either uk+1 = 1 or there exists m ≥ 2 such that (uk+1, uk+2, . . . , uk+m) =
(6, 6, . . . , 6, 1). Hence by (4.15), either wk+1 = 1 or there exists m ≥ 2 such that
(wk+1, wk+2, . . . , wk+m) = (0, 0, . . . , 0, 1).

By a similar argument, if i ∈ {1, 2, 3, 4, 5} and k ∈ Z is such that wk = i,
then either wk+1 = i + 1 or there exists m ≥ 2 such that (wk+1, . . . , wk+m) =
(0, 0, . . . , 0, i+ 1).

Since the set {k ∈ Z : wk = 6} in (4.19) is doubly infinite (as was noted above),
it now follows (by trivial induction) that for each i ∈ {1, 2, 3, 4, 5}, the set {k ∈ Z :
wk = i} is also doubly infinite. From the preceding two paragraphs, we now have
that the sequence (wk, k ∈ Z) satisfies Condition S (again see Definition 2.3(A)).
Equation (4.16) and (for 2 ≤ i ≤ 6) equation (4.17) now follow from (4.14), (4.15),
and (4.18). Lemma 4.6 is proved.
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Lemma 4.7. For each n ∈ N, there exist functions ρn : ({0, 1}6)n → {1, 2, 3, 4, 5, 6}
and ϕn : ({0, 1}6)n → {0, 1, 2, 3, 4, 5, 6} such that following holds:

For any (“left infinite”) back-standard sequence (βn, βn−1, βn−2, . . . ) of elements
of {0, 1}6 (see Section 2.4(D)) such that

[
βt
−5 | βt

−4 | · · · | βt
0

]
= I6, (4.20)

one has that

gbasic(βn, βn−1, βn−2, . . . ) = ρn(β1, β2, . . . , βn) (4.21)

and

gspaced(βn, βn−1, βn−2, . . . ) = ϕn(β1, β2, . . . , βn). (4.22)

Proof. Again the Notations 2.4(E) will be used.
In the arguments below, keep in mind that the equality

[
βt

ℓ−5 | βt
ℓ−4 | · · · | βt

ℓ

]
= I6 (4.23)

cannot hold for ℓ ∈ {1, 2, . . . , 5}, for that would contradict (4.20).
The first task is to define the functions ρn, n ∈ N.
For each n ∈ {1, 2, 3, 4, 5}, define the function ρn : ({0, 1}6)n → {1, 2, . . . , 6} by

ρn = hn from Definition 4.1. If 1 ≤ n ≤ 5 and (4.20) holds, then (4.21) holds by
Definition 4.3(ii).

Now suppose instead that n ≥ 6. Define the function ρn({0, 1}6)n → {1, 2, . . . , 6}
as follows: Suppose β1, β2, . . . , βn each ∈ {0, 1}6. Let S denote the set of all
integers ℓ ∈ {6, 7, . . . , n} such that (4.23) holds. If that set S is empty, then define
ρn(βn

1 ) := hn(βn
1 ) (from Definition 4.1). If that set S is nonempty but does not

contain n, then define ρn(βn
1 ) := hn−L(βn

L+1) where L is the greatest element of S.
If n ∈ S, then define ρn(βn

1 ) := 6. That completes the definition of ρn. Now using
Definition 4.3(i)(ii), one can verify, case by case, that if (4.20) holds then (4.21)
holds.

Our next task is to define the functions ϕn, n ∈ N.
Define the function ϕ1 : {0, 1}6 → {0, 1, . . . , 6} as follows:

For α := (α1, α2, . . . , α6) ∈ {0, 1}6,

ϕ1(α) := α1 =

{
1 if α1 = 1

0 if α1 = 0
(4.24)

Now for each n ≥ 2, define the function ϕn : ({0, 1}6)n → {0, 1, . . . , 6} as follows:
If β1, β2, . . . , βn each ∈ {0, 1}6, define

ϕn(βn
1 ) :=

{
ρn(βn

1 ) if ρn(βn
1 ) 6= ρn−1(β

n−1
1 )

0 otherwise.
(4.25)

That completes the definition of ϕn for n ∈ N.
For n ≥ 2, if (4.20) holds, then (4.22) holds by (4.25), (4.21), and Definition 4.5.

For n = 1, note that if (4.20) holds, then gbasic(β
0
−∞) = 6 by Definition 4.3(i),

gbasic(β
1
−∞) = 6 resp. 1 if β1,1 = 0 resp. 1 by Lemma 4.4(B), gspaced(β

1
−∞) = 0

resp. 1 if β1,1 = 0 resp. 1 by Definition 4.5, and hence (4.22) holds by (4.24). That
completes the proof of Lemma 4.7
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Lemma 4.8. Suppose (βk, k ∈ Z) is a two-sided standard sequence of elements
of {0, 1}6 (see Section 2.4(D)). Suppose m is a positive integer, and for each u ∈
{1, 2, . . . ,m}, zu := (0, 0, 0, 0, 0, 0). Then

∀ u ∈ {1, . . . ,m}, gspaced(zu, zu−1, . . . , z1, β0, β−1, β−2, . . . ) = 0; (4.26)

and

∀ n ∈ N, gspaced(βn, βn−1, . . . , β1, zm, zm−1, . . . , z1, β0, β−1, β−2, . . . )

= gspaced(βn, βn−1, . . . , β1, β0, β−1, β−2, . . . ). (4.27)

Proof. It suffices to prove this lemma for the case m = 1, for then the lemma as
stated follows by induction on m.

Accordingly, let z := z1 = (0, 0, 0, 0, 0, 0). Then

gbasic(z, β0, β−1, β−2, . . . ) = gbasic(β0, β−1, β−2, . . . ) (4.28)

by Lemma 4.4 ((A) or (B), whichever applies). Hence gspaced(z, β0, β−1, β−2, . . . ) =
0 by Definition 4.5, giving (4.26) (in the case u = m = 1). Our remaining task is
to prove (4.27) (for m = 1).

If gbasic(β0, β−1, β−2, . . . ) = j ∈ {1, 2, . . . , 5}, then by (4.28) and Lemma 4.4(A),

gbasic(β1, z, β0, β−1, β−2, . . . ) = gbasic(β1, β0, β−1, β−2, . . . ), (4.29)

with the common value being j resp. j + 1 if β1,j+1 = 0 resp. 1. If instead
gbasic(β0, β−1, β−2, . . . ) = 6, then (4.29) holds similarly by (4.28) and Lemma 4.4(B).

Starting with (4.29) and applying induction on n, using Lemma 4.4(A)(B) one
obtains that

∀ n ∈ N, gbasic(βn, βn−1, . . . , β1, z, β0, β−1, β−2, . . . ) (4.30)

= gbasic(βn, βn−1, . . . , β1, β0, β−1, β−2, . . . ).

By (4.28), (4.30), and Definition 4.5, one has that for all n ∈ N, (4.30) holds
with the subscript “basic” replaced on both sides by “spaced.” That is, (4.27) holds
for m = 1. That completes the proof.

5. A Markov chain and a related process

This section will build on section 4, and will give a study of two particular strictly
stationary sequences — one a Markov chain, and the other closely related to it —
that together will play a key role as a “ building block” in the construction of the
random sequence X for Theorem 1.1.

Throughout this section, the setting is a probability space (Ω,F , P ), rich enough
to accommodate all random variables defined in Construction 5.1 below.

Construction 5.1.
(A) On the probability space (Ω,F , P ), let (ξk,i, k ∈ Z, i ∈ {1, 2, 3, 4, 5, 6})

be an array of independent, identically distributed {0, 1}–valued random
variables such that for each (k, i),

P (ξk,i = 0) = 5/8 and (ξk,i = 1) = 3/8. (5.1)

For each k ∈ Z, define the random vector

ξk := (ξk,1, ξk,2, ξk,3, ξk,4, ξk,5, ξk,6) (5.2)
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(with the above ξk,i’s). Then ξ := (ξk, k ∈ Z) is a sequence of independent,
identically distributed {0, 1}6–valued random vectors.

(For technical convenience, we assume that the random variables ξk,i are
all defined in {0, 1} at every ω ∈ Ω, not just on a set of probability 1.)

(B) Refer to Definitions 4.3 and 4.5. Define the sequence U := (Uk, k ∈ Z) of
{1, 2, 3, 4, 5, 6}–valued random variables, and the sequence of W := (Wk,
k ∈ Z) of {0, 1, 2, 3, 4, 5, 6}–valued random variables as follows: For each
k ∈ Z,

Uk := gbasic (ξk, ξk−1, ξk−2, . . . ) and (5.3)

Wk := gspaced (ξk, ξk−1, ξk−2, . . . ) (5.4)

= Uk · I(Uk 6= Uk−1)

where the second equality in (5.4) comes from (5.3) and Definition 4.5.
(C) For convenient reference, here is a list (with some redundancy) of some

basic properties of these random variables. First,

∀ k ∈ Z, ∀ ω ∈ Ω, Uk(ω) ∈ {1, 2, 3, 4, 5, 6} and (5.5)

Wk(ω) ∈ {0, 1, 2, 3, 4, 5, 6}
by (5.3), (5.4), and Definitions 4.3 and 4.5. Next,

∀ k ∈ Z, ∀ ω ∈ Ω, Uk(ω) − Uk−1(ω) ≡ 0 or 1 mod 6. (5.6)

For any ω ∈ Ω such that the (“left-infinite”) sequence (ξj(ω), ξj−1(ω),
ξj−2(ω), . . . ) of elements of {0, 1}6 is back-standard (see Section 2.4(D))
for some (hence every) j ∈ Z, (5.6) holds by (5.3), (5.5), and Lemma 4.4.
For all other ω ∈ Ω, (5.6) holds trivially (with Uk(ω) = 6 for all k ∈ Z)
by (5.3) and the third paragraph of Definition 4.3. Also, referring to (5.5),
one has that for each k ∈ Z, by (5.3), (5.4), (5.6), and Definition 4.5,

{Wk = 0} = {Uk = Uk−1};
{Wk = 1} = {Uk = 1} ∩ {Uk−1 = 6}; and

∀ i ∈ {2, 3, 4, 5, 6}, {Wk = i} = {Uk = i} ∩ {Uk−1 = i− 1}.
(5.7)

Lemma 5.2. In the context of Construction 5.1, the following statements hold (see
Section 2.4(A)(D)):

(A) One has that P ([ξt
−5 | ξt

−4 | · · · | ξt
0] = I6) = (5/8)30 · (3/8)6.

(B) The sequence ξ is two-sided standard a.s.
(C) Defining the random variable

τ := min
{
n ≥ 6 :

[
ξt
n−5 | ξt

n−4 | · · · | ξt
n

]
= I6

}
(5.8)

(note that that set is a.s. nonempty, in fact infinite, by (B)), one has that
Eτ ≤ 6 · (8/5)30 · (8/3)6.

(D) Suppose A is a σ-field (⊂ F , in the underlying probability space (Ω,F , P ))
such that A is independent of the sequence ξ. Suppose

κ := (. . . , κ(−1), κ(0), κ(1), . . . )

is a random, A–measurable, strictly increasing sequence of integers. Then

(i) ξ̃ := (ξ̃j , j ∈ Z) := (ξκ(j), j ∈ Z) is a sequence of independent, iden-

tically distributed {0, 1}6–valued random variables with the same marginal
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distribution as that of the random variables ξk, k ∈ Z; (ii) this sequence ξ̃

is independent of the σ-field A; (iii) this sequence ξ̃ is two-sided standard
a.s.; and (iv) defining the random variable τ̃ to be the analog of the right

hand side of (5.8), with ξt
n−ℓ replaced by ξ̃t

n−ℓ for each ℓ ∈ {0, 1, . . . , 5},
one has that Eτ̃ ≤ 6 · (8/5)30 · (8/3)6.

Proof. Statement (A) holds trivially by (5.1) and its entire sentence (since the
6 × 6 identity matrix I6 has 30 0’s and 6 1’s).

Next, the {0, 1}–valued random variables

Zk := I
([
ξt
k−5 | ξt

k−4 | · · · | ξt
k

]
= I6

)
, (5.9)

k ∈ {. . . ,−12,−6, 0, 6, 12, . . .} are independent and identically distributed with
P (Zk = 1) = (5/8)30 · (3/8)6 > 0. Hence by two applications of the strong law of
large numbers, statement (B) holds.

Next, defining the random variable T := min{m ≥ 1 : Z6m = 1} (see (5.9)),
one has that τ ≤ 6T a.s. by (5.8), and hence Eτ ≤ 6 · ET . Of course T is finite
a.s. and has a geometric distribution: For each n ∈ N, P (T = n) = (1 − p)n−1p
where p := (5/8)30 · (3/8)6. Hence as a standard fact (see e.g.Pitman, 1993, p. 212,
Example 3, Problem 1), ET = 1/p = (8/5)30 · (8/3)6. Statement (C) follows.
Proof of statement (D). Suppose first that m is a positive integer.

Next, suppose A ∈ A is such that P (A) > 0.
Next, suppose j(−m), j(−m+1), . . . , j(m) are 2m+1 integers such that the event

F :=
⋂m

u=−m{κ(u) = j(u)} satisfies P (F ∩A) > 0. Then (see Section 2.5(A)), since
F ∩A ∈ A,

L
(
ξ̃−m, ξ̃−m+1, . . . , ξ̃m | A ∩ F

)

= L
(
ξκ(−m), ξκ(−m+1), . . . , ξκ(m) | A ∩ F

)

= L
(
ξj(−m), ξj(−m+1), . . . , ξj(m) | A ∩ F

)

= L
(
ξj(−m), ξj(−m+1), . . . , ξj(m)

)

= λ× · · · × λ,

the (2m + 1)-order product measure (here and below), where λ is the marginal
distribution (on {0, 1}6) of the ξκ’s.

It follows from a simple application of Remark 2.8 that L(ξ̃−m, ξ̃−m+1, . . . , ξ̃m |
A) = λ× · · · × λ. By the same argument with A replaced by Ω,

L(ξ̃−m, ξ̃−m+1, . . . , ξ̃m) = λ× · · · × λ.

Since A ∈ A (with P (A) > 0) was arbitrary, it now also follows that the random

vector (ξ̃−m, ξ̃−m+1, . . . , ξ̃m) is independent of the σ–field A.
Since m ∈ N was arbitrary, conclusions (i) and (ii) in statement (D) now follow

from standard measure–theoretic arguments. Finally, conclusions (iii) and (iv) in
statement (D) now follow from an application of statements (B) and (C) to the

sequence ξ̃. This completes the proof of statement (D), and of Lemma 5.2

Lemma 5.3. The random sequence U in Construction 5.1(B) (equation (5.3)) is
a strictly stationary, irreducible, aperiodic Markov chain with state space {1, 2, 3,
4, 5, 6}, with invariant marginal distribution given by

P (U0 = j) = 1/6 ∀ j ∈ {1, 2, 3, 4, 5, 6}, (5.10)
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and with one-step transition probability matrix (pij , 1 ≤ i, j ≤ 6) (where pij =
P (U1 = j | U0 = i)) given by

pii := 5/8 for i ∈ {1, 2, 3, 4, 5, 6},
pi,i+1 := 3/8 for i ∈ {1, 2, 3, 4, 5},
p61 := 3/8, and

pij := 0 for all other ordered pairs(i, j).

(5.11)

Proof. Since the sequence ξ := (ξk, k ∈ Z) of {0, 1}6–valued random variables is
i.i.d., the strict stationarity of the sequence U is a standard consequence of (5.3).
Also, the random variables Uk, k ∈ Z take their values in the set {1, 2, . . . , 6} by
e.g. (5.5).

Our next task is to show the following: If i and j are each an element of
{1, 2, . . . , 6}, K is an integer, A ∈ σ(UK , UK−1, UK−2, . . . ) is an event, and P (A ∩
{UK = i}) > 0, then

P (UK+1 = j | A ∩ {UK = i})
= P (UK+1 = j | UK = i) = pij

(5.12)

where pij is as defined in (5.11). Once that is established, it will follow that the
sequence U is a Markov chain with one-step transition probability matrix (5.11).
From that matrix, it will then be easy to see that the Markov chain U is irreducible
(by the second and third lines in (5.11)) and aperiodic (by the first line in (5.11)).
Also, it is easy to show that the (unique) invariant distribution on the state space
{1, 2, . . . , 6} for the one-step transition probability matrix (5.11) is the uniform
distribution on {1, 2, . . . , 6} (as in (5.10)). Thus, once (5.12) is verified, the proof
of Lemma 5.3 will be complete.

We shall verify (5.12) for the case where K = 0, i ∈ {1, 2, 3, 4, 5}, and j = i+ 1.
By similar arguments and strict stationarity, one can verify (5.12) in the other
cases.

Suppose A ∈ σ(U0, U−1, U−2, . . . ) and P (A∩{U0 = i}) > 0. For any ω ∈ Ω such
that U0(ω) = i, one has by (5.3) and Lemma 4.4(A) that

U1(ω) =

{
i if ξ1,i+1(ω) = 0

i+ 1 if ξ1,i+1(ω) = 1.
(5.13)

Also, the event A∩{U0 = i} is a member of the σ-field σ(ξ0, ξ−1, ξ−2, . . . ) (see (5.3)
again) and is therefore independent of the ({0, 1}6–valued) random variable ξ1.
Hence by (5.13) and (5.1),

P (U1 = i+ 1 | A ∩ {U0 = i}) = P (ξ1,i+1 = 1 | A ∩ {U0 = i}) (5.14)

= P (ξ1,i+1 = 1) = 3/8.

Applying the same argument with A replaced by Ω, one has that P (U1 = i + 1 |
U0 = i) = 3/8. Since pi,i+1 := 3/8 by (5.11), one now has by (5.14) that (5.12)
holds (for the case K = 0, i ∈ {1, 2, . . . , 5}, and j = i + 1). That completes the
proof of Lemma 5.3.

Lemma 5.4. The random sequence W in Construction 5.1(B) (equation (5.4)) is
strictly stationary and has the following properties:

(A) The sequence W satisfies Condition S a.s. (see Definition 2.3(A)).
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(B) The (marginal) distribution of W0 (on {0, 1, 2, 3, 4, 5, 6}) is given by
P (W0 = 0) = 5/8 and P (W0 = i) = 1/16 for all i ∈ {1, 2, 3, 4, 5, 6}.

(C) For each j ∈ Z, the {0, 1}–valued random variable I(Wj 6= 0) is independent
of the σ–field σ(Uk,Wk, k ≤ j − 1).

(D) The {0, 1}–valued random variables I(Wk 6= 0), k ∈ Z are independent
and identically distributed, each taking the value 0 resp. 1 with probability
5/8 resp. 3/8. In fact for each j ∈ Z, the random sequence (I(Wk 6= 0),
k ∈ {j, j+1, j+2, . . . }) is independent of the σ–field σ(Uk,Wk, k ≤ j−1).

The redundancies here (statement (C) is a special case of (D), and σ(Uk,Wk,
k ≤ j − 1) = σ(Uk, k ≤ j − 1) by (5.4)) are for convenient reference.
Proof. Since the sequence ξ := (ξk, k ∈ Z) of {0, 1}6–valued random variables is
i.i.d., the strict stationarity of the sequence W is a standard consequence of (5.4).
Also, statement (D) (in Lemma 5.4) follows from statements (B) and (C), strict
stationarity, and an elementary induction argument. Our remaining task is to prove
statements (A), (B), and (C).

Statement (A) holds by Lemma 5.2(B), equation (5.4), and Lemma 4.6(A).

To prove statement (B), first note that (see (5.5)) P (W0 = 0) = 1−∑6
i=1 P (W0 =

i). Hence to prove (B) it suffices to prove that P (W0 = i) = 1/16 for each i ∈
{1, 2, . . . , 6}. But that holds by (5.7) and Lemma 5.3; for example, for i = 6 one
thereby has

P (W0 = 6) = P (U0 = 6, U−1 = 5) = P (U−1 = 5) · P (U0 = 6 | U−1 = 5)
= (1/6) · (3/8) = 1/16.

Thus statement (B) holds.
Proof of statement (C). The argument is the same for any j ∈ Z. We shall give
it for j = 1. By (5.7), σ(Uk,Wk, k ≤ 0) = σ(Uk, k ≤ 0). Our task is to prove that
the {0, 1}–valued random variable I(W1 6= 0) is independent of the σ-field σ(Uk,
k ≤ 0).

Let m ∈ N be arbitrary but fixed. By a standard measure–theoretic argument, it
suffices to show that the random variable I(W1 6= 0) is independent of the random
vector (U0, U−1, U−2, . . . , U−m).

Referring to (5.5), suppose i0, i1, . . . , im are each an element of {1, 2, . . . , 6},
and that the event F :=

⋂m
k=0{U−k = ik} satisfies P (F ) > 0. It suffices to show

that

P (I(W1 6= 0) = 0 | F ) = P (I(W1 6= 0) = 0). (5.15)

(For then by taking complements, one also obtains P (I(W1 6= 0) = 1 | F ) =
P (I(W1 6= 0) = 1).) The right side of (5.15) is of course simply P (W1 = 0), which
is 5/8 by statement (B). By (5.7) and Lemma 5.3, the left side of (5.15) is simply

P (W1 = 0 | F ) = P (U1 = U0 | F ) = P (U1 = i0 | F )
= P (U1 = i0 | U0 = i0) = 5/8.

Thus (5.15) holds. That completes the proof of statement (C), and of Lemma 5.4

Lemma 5.5. Refer to Construction 5.1(B), Lemma 5.4(A)(B), and Defini-
tion 2.3(A). Define the random variable

T := min{k ∈ N : Wk = 1}. (5.16)

Then E(T | W0 = 1) = 16 and Var(T |W0 = 1) = 80/3.
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Proof. For convenience, for each k ≥ 1, define the {0, 1}–valued random variable
Vk := I(Wk 6= 0). By Lemma 5.4(D) (both sentences of it), conditional on the event
{W0 = 1}, the random variables V1, V2, V3, . . . are independent and identically
distributed, each taking the value 0 resp. 1 with probability 5/8 resp. 3/8. By
Lemma 5.4(A) (see Definition 2.3(A)) and (5.16), for P–a.e. ω ∈ {W0 = 1},

T (ω) = min

{
n ∈ N :

n∑

k=1

Vk(ω) = 6

}
.

Hence conditional on the event {W0 = 1}, the random variable T has the “negative
binomial” distribution with parameters r = 6 and p = 3/8. Hence by standard
elementary calculations (see e.g.Pitman, 1993, pp. 213–215, Example 4, Problem
2), E(T | W0 = 1) = r/p = 16 and Var(T | W0 = 1) = r(1 − p)/p2 = 80/3. Thus
Lemma 5.5 holds.

Lemma 5.6. Refer to Section 2.7(B) and the sequence W in Construction 5.1(B).
For any given J ∈ Z, the ordered triplet

(σ(Wk , k ≤ J), {WJ = 1}, σ(Wk, k ≥ J)) (5.17)

is a restricted Markov triplet.

Proof. By strict stationarity (see Lemma 5.4), it suffices to give the argument for
J = 0.

Refer to Section 2.7(A). We shall use some standard elementary properties of
Markov triplets (see e.g. Bradley, 2007a, Vol. 1, Appendix, Section A701). By
Lemma 5.3,

(σ(Uk, k ≤ −2), σ(U−1, U0), σ(Uk, k ≥ 1))

is a Markov triplet. Hence so is

(σ(Uk, k ≤ 0), σ(U−1, U0), σ(Uk, k ≥ −1)).

Hence (trivially) by (5.7), so is

(σ(Wk, k ≤ 0), σ(U−1, U0), σ(Wk, k ≥ 0)). (5.18)

Now by (5.7), {W0 = 1} = {U0 = 1} ∩ {U−1 = 6}, which is an atom of the σ–field
σ(U−1, U0). Hence from the Markov triplet (5.18), one has that (5.17) is (for J = 0)
a restricted Markov triplet. That completes the proof.

6. Scaffolding (part 1)

Throughout the rest of this paper, the context will be a particular probability
space (Ω,F , P ), rich enough to accommodate all random variables defined hence-
forth. With or without explicit mention, many of those “random variables” will
be random vectors or random sequences, taking their values in spaces such as
({0, 1}6)N or {−1, 1}sxtp(n).

Sections 6 (here), 7, and 8 will provide “scaffolding” that will be used for the
definition (in Section 7) of the random sequence X for Theorem 1.1 and for the
proofs of the various properties of X stated in that theorem.
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Construction 6.1.
(A) On our probability space (Ω,F , P ), let ξ

(n)
ki , n ∈ N, k ∈ Z, i ∈ {1, 2, 3,

4, 5, 6} be an array of independent, identically distributed {0, 1}–valued
random variables such that for each (n, k, i),

P
(
ξ
(n)
ki = 0

)
= 5/8 and P

(
ξ
(n)
ki = 1

)
= 3/8. (6.1)

From those random variables, for convenient reference, for each n ∈ N and
each k ∈ Z, define the {0, 1}6–valued random variable (random vector)

ξ
(n)
k :=

(
ξ
(n)
k1 , ξ

(n)
k2 , . . . , ξ

(n)
k6

)
. (6.2)

Of course those random variables ξ
(n)
k , n ∈ N, k ∈ Z are independent and

have the same distribution (a product measure) on {0, 1}6. From those
random variables, again for convenient reference, for each n ∈ N, define

the random sequence ξ(n) := (ξ
(n)
k , k ∈ Z).

(B) For each n ∈ N, the random sequence ξ(n) here has (trivially) the same
distribution (on ({0, 1}6)Z) as the random sequence ξ in Construction 5.1.
Henceforth, theorems involving the random sequence ξ in Section 5 will be
applied freely to each of the random sequences ξ(n), n ∈ N here.

(C) Referring to (6.2), for each n ∈ N and each k ∈ Z, define the ({0, 1}6)n–
valued random variable

ξ
(n)

k :=
(
ξ
(1)
k , ξ

(2)
k , . . . , ξ

(n)
k

)
. (6.3)

Of course, for any particular n ∈ N, those random variables ξ
(n)

k , k ∈ Z are
independent and identically distributed. For convenient reference, for each

n ∈ N, define the resulting random sequence ξ
(n)

:= (ξ
(n)

k , k ∈ Z).
(D) Again referring to (6.2), for each k ∈ Z, define the ({0, 1}6)N–valued ran-

dom variable

ξ
(∞)

k :=
(
ξ
(1)
k , ξ

(2)
k , ξ

(3)
k , . . .

)
. (6.4)

Of course those random variables ξ
(∞)

k are independent and identically dis-

tributed. Define the resulting random sequence ξ
(∞)

:= (ξ
(∞)

k , k ∈ Z).

Construction 6.2. For each n ∈ N, we shall define a sequence W (n) := (W
(n)
k ,

k ∈ Z) of {0, 1, 2, 3, 4, 5, 6}–valued random variables such that (see Section 2.6 and
Construction 6.1(C))

the ordered pair (W (n), ξ
(n)

) satisfies Condition M. (6.5)

Also, for each n ∈ N, we shall define an event Ω
(n)
good such that

P
(
Ω

(n)
good

)
= 1 (6.6)

and (see Section 2.3)

for each ω ∈ Ω
(n)
good, the sequence W (n)(ω) (6.7)

of elements of {0, 1, . . . , 6} satisfies condition S.

Also, for each n ∈ N, we shall define nonnegative integer–valued random variables
Ψ(n, k, j), k ∈ Z, j ∈ {0, 1, 2, . . .}, such that for each j ∈ {0, 1, 2, . . .}, defining
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the random sequence Ψ(n, j) := (Ψ(n, k, j), k ∈ Z), one has that (see Section 2.6
again)

the ordered pair (Ψ(n, j), W (n)) satisfies Condition M. (6.8)

The definition will be recursive — starting with just W (1) and Ω
(1)
good, and then (for

the recursion step) set up with Ψ(n, j) defined together with W (n+1) and Ω
(n+1)
good .

Initial step. First, define the sequence W (1) := (W
(1)
k , k ∈ Z) of {0, 1, . . . , 6}–

valued random variables as follows: For each k ∈ Z (see (6.2) and Definition 4.5),

W
(1)
k := gspaced

(
ξ
(1)
k , ξ

(1)
k−1, ξ

(1)
k−2, . . .

)
. (6.9)

Obviously (see Sections 6.1(B) and 2.6) equation (6.5) holds for n = 1.

Also, let Ω
(1)
good denote the set of all ω ∈ Ω such that the sequence ξ(1)(ω) :=

(ξ
(1)
k (ω), k ∈ Z) of elements of {0, 1}6 (see the very end of Construction 6.1(A))

is two-sided standard (see Notations 2.4(D)). Equation (6.6) holds for n = 1 by
Lemma 5.2(B), and equation (6.7) holds for n = 1 by Lemma 4.6(A).

Recursion step. Now suppose n ∈ N, and the event Ω
(n)
good and the sequence

W (n) := (W
(n)
k , k ∈ Z) of {0, 1, . . . , 6}–valued random variables are already defined

and satisfy (6.5), (6.6), and (6.7).

(A) For each k ∈ Z and each j ∈ {0, 1, 2, . . .}, define the nonnegative integer–
valued random variable Ψ(n, k, j) by (see Definition 2.2)

Ψ(n, k, j) := ψj

(
W

(n)
k ,W

(n)
k−1,W

(n)
k−2, . . .

)
. (6.10)

Now by (6.5) and Definition 2.6, the sequence W (n) is strictly stationary.
Hence by (6.10), equation (6.8) holds for every j ≥ 0.

(B) Next, define the sequence W (n+1) := (W
(n+1)
k , k ∈ Z) of {0, 1, . . . , 6}–

valued random variables as follows: For each k ∈ Z and each ω ∈ Ω,
referring to Definition 4.5 and (6.10),

W
(n+1)
k (ω) :=





0 if W
(n)
k (ω) 6= 1

gspaced

(
ξ
(n+1)
k (ω), ξ

(n+1)
k−Ψ(n,k,1)(ω)(ω),

ξ
(n+1)
k−Ψ(n,k,2)(ω)(ω),

ξ
(n+1)
k−Ψ(n,k,3)(ω)(ω), . . .

)
if W

(n)
k (ω) = 1.

(6.11)

Verification of (6.5) with n replaced by n+ 1. For each j ≥ 0, each k ∈ Z,
and each ω ∈ Ω, by (6.10),

ξ
(n+1)
k−Ψ(n,k,j)(ω)(ω) =

∞∑

u=0

ξ
(n+1)
k−u (ω) · I (Ψ(n, k, j) = u) (ω). (6.12)

Now by (6.8), (6.5), and Definition 2.6 (and a trivial argument), for each j ≥
0, the ordered pair (Ψ(n, j), ξ

(n)
) satisfies Condition M. Hence by (6.12)

and Construction 6.1(C), for each j ≥ 0, the ordered pair
((
ξ
(n+1)
k−Ψ(n,k,j), k ∈ Z

)
, ξ

(n+1)
)
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satisfies Condition M. Hence by (6.5) for the given n, (6.11), and Con-
struction 6.1(C), equation (6.5) holds with n replaced by n+ 1.

(C) Our final task in the recursion step is to define the event Ω
(n+1)
good and then

to verify (6.6) and (6.7) with n replaced by n + 1. To facilitate this, we
shall define a couple of other random sequences.

Define the random strictly increasing sequence κ(n) := (κ(n, j), j ∈ Z)
of integers as follows: Referring to (6.6) and (6.7) (for the given n) and

to Section 2.3, for each ω ∈ Ω
(n)
good, define the integers κ(n, j)(ω), j ∈ Z

(uniquely) by

· · · < κ(n,−2)(ω) < κ(n,−1)(ω) < κ(n, 0)(ω) ≤ 0

< 1 ≤ κ(n, 1)(ω) < κ(n, 2)(ω) < κ(n, 3)(ω) < . . .
(6.13)

and
{
k ∈ Z : W

(n)
k (ω) = 1

}
=

{. . . , κ(n,−1)(ω), κ(n, 0)(ω), κ(n, 1)(ω), . . .}.
(6.14)

(The sequence κ(n) can be left undefined on the null set (Ω
(n)
good)c.) By (6.5)

and (6.13)–(6.14), σ(κ(n)) ⊂̇ σ(ξ
(n)

), and hence by Construction 6.1(A)(C),
the sequence κ(n) is independent of the sequence ξ(n+1). Hence by
Lemma 5.2(D) (and Section 6.1(B)),

the sequence (ξ
(n+1)
κ(n,j), j ∈ Z) is i.i.d. with the

same marginal distribution as the ξk’s in Construction 5.1;
(6.15)

the sequence (ξ
(n+1)
κ(n,j), j ∈ Z)

is independent of the σ-fieldσ(ξ
(n)

);
(6.16)

and

the sequence (ξ
(n+1)
κ(n,j), j ∈ Z) is

two-sided standard a.s. (see Section 2.4(D)) .
(6.17)

Let Ω
(n+1)
good denote the set of all ω ∈ Ω

(n)
good such that the sequence

(ξ
(n+1)
κ(n,j)(ω)(ω), j ∈ Z) of elements of {0, 1}6 is two-sided standard. Then

by (6.17), equation (6.6) holds with n replaced by n+ 1.

Verification of (6.7) with n replaced by n + 1. Refer to (6.10), (6.13)–(6.14), and

Definition 2.2. For each ω ∈ Ω
(n+1)
good , each ℓ ∈ Z, and each j ≥ 0,

Ψ(n, κ(n, ℓ)(ω), j)(ω) = κ(n, ℓ)(ω) − κ(n, ℓ− j)(ω)

and hence

κ(n, ℓ)(ω) − Ψ(n, κ(n, ℓ)(ω), j)(ω) = κ(n, ℓ− j)(ω).

Hence for each ω ∈ Ω
(n+1)
good and each ℓ ∈ Z, by (6.11) and (6.14),

W
(n+1)
κ(n,ℓ)(ω)(ω) = gspaced

(
ξ
(n+1)
κ(n,ℓ)(ω)(ω), ξ

(n+1)
κ(n,ℓ−1)(ω)(ω), ξ

(n+1)
κ(n,ℓ−2)(ω)(ω), . . .

)
. (6.18)
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By (6.18), the definition of Ω
(n+1)
good , and Lemma 4.6(A), one has that for each ω ∈

Ω
(n+1)
good , the sequence (W

(n+1)
κ(n,ℓ)(ω)(ω), ℓ ∈ Z) of elements of {0, 1, . . . , 6} satisfies

Condition S. Also, by (6.11) and (6.14), for each ω ∈ Ω
(n+1)
good , one has that

W
(n+1)
k (ω) = 0

for all k ∈ Z− {. . . , κ(n,−1)(ω), κ(n, 0)(ω), κ(n, 1)(ω), . . .}.
(6.19)

Hence by Remark 2.3(C), equation (6.7) holds with n replaced by n + 1. This
completes the recursion step and Construction 6.2.

Construction 6.3. This builds on the material in Constructions 6.1 and 6.2

(A) Referring to the events Ω
(n)
good, n ∈ N in Construction 6.2, define the event

Ω0 :=

∞⋂

n=1

Ω
(n)
good. (6.20)

Then by (6.6),

P (Ω0) = 1. (6.21)

Also, by (6.7), (6.14), and the definitions of the events Ω
(n)
good, n ∈ N in

Construction 6.2, one has the following:

(i) For each ω ∈ Ω0 and each n ∈ N, the sequence (W
(n)
k (ω), k ∈ Z) of

elements of {0, 1, . . . , 6} satisfies Condition S. (Again recall Defini-
tion 2.3(A).)

(ii) For each ω ∈ Ω0, the sequence (ξ
(1)
k (ω), k ∈ Z) of elements of {0, 1}6

is two-sided standard.
(iii) For each ω ∈ Ω0 and each n ∈ N, the sequence (ξ

(n+1)
j (ω), j ∈ {k ∈

Z : W
(n)
k (ω) = 1}) (see Section 2.1(F)(ii)) is two-sided standard.

(B) Remark. From (6.11), one has that for a given n ∈ N, k ∈ Z, and ω ∈ Ω, if

W
(n)
k (ω) 6= 1 then W

(n+1)
k (ω) = 0. Thus for a given k ∈ Z and ω ∈ Ω, the

sequence (W
(1)
k (ω),W

(2)
k (ω),W

(3)
k (ω), . . . ) of elements of {0, 1, . . . , 6} will

have one of the following five forms:
(i) (0, 0, 0, . . . ),
(ii) (i, 0, 0, 0, . . . ) where i ∈ {2, 3, 4, 5, 6},
(iii) (1, 1, . . . , 1, 0, 0, 0, . . . ),
(iv) (1, 1, . . . , 1, i, 0, 0, 0, . . . ) where i ∈ {2, 3, 4, 5, 6},
(v) (1, 1, 1, . . . ).
(In (iii) and (iv), the number of 1’s can be any positive integer.)

(C) Remark. Recall the first sentence of Remark (B) above. By Remark 2.3(B)
and remark (i) in Section (A) above, one has the following: For any n ∈ N,
any ω ∈ Ω0 (see (6.20)), and any pair of integers J and L such that J ≤ L,
one has that

card{k ∈ Z : J ≤ k ≤ L and W
(n+1)
k (ω) = 1} (6.22)

≤ 1 + (1/6) · card{k ∈ Z : J ≤ k ≤ L and W
(n+1)
k (ω) 6= 0}

≤ 1 + (1/6) · card{k ∈ Z : J ≤ k ≤ L and W
(n)
k (ω) = 1}.
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(D) Remark. For each n ∈ N, each k ∈ Z and each ω ∈ Ω0,

Ψ(n, k, 0)(ω) = min
{
i ≥ 0 : W

(n)
k−i(ω) = 1

}

≤ min
{
i ≥ 0 : W

(n+1)
k−i (ω) = 1

}
= Ψ(n+ 1, k, 0)(ω)

(6.23)

by (6.10) and Definition 2.2, since (again see Remark (B) above) the second
set in (6.23) is a subset of the first; equivalently

k − Ψ(n, k, 0)(ω) ≥ k − Ψ(n+ 1, k, 0)(ω). (6.24)

(E) Referring to (6.9) and (6.11), for each n ∈ N and each k ∈ Z, define the
{0, 1, . . . , 6}n–valued random variable

W
(n)

k :=
(
W

(1)
k ,W

(2)
k , . . . ,W

(n)
k

)
. (6.25)

Accordingly, for each n ∈ N, define the random sequence W
(n)

:= (W
(n)

k ,
k ∈ Z). By (6.5) and Definition 2.6(A) (and Construction 6.1(C)), for each
n ∈ N,

The ordered pair (W
(n)
, ξ

(n)
) satisfies Condition M. (6.26)

(F) Remark. Of course the random sequence W (1) in (6.9) has the same
distribution (on {0, 1, . . . , 6}Z) as the random sequence W in Construc-
tion 5.1(B), by (6.9), (5.4), and Construction 6.1(B).

(G) Remark. For each n ∈ N, the random sequence (W
(n+1)
κ(n,j) , j ∈ Z) (re-

call (6.20), (6.21), (6.13), (6.14), and (6.18)) has the same distribution (on
{0, 1, . . . , 6}Z) as the random sequence W := (Wj , j ∈ Z) in Construc-
tion 5.1(B). (This holds by (6.15), (6.18), (5.4), and a standard measure–
theoretic argument.)

(H) Remark. For each n ∈ N, the random sequence (W
(n+1)
κ(n,j) , j ∈ Z) (recall

(G) above) is independent of the sequence ξ
(n)

, by (6.18) and (6.16).

Lemma 6.4.
(A) For each i ∈ {1, 2, . . . , 6}, P (W

(1)
0 = i) = 1/16.

(B) If n ∈ N and A ∈ σ(W
(n)

) (see section 6.3(E)) are such that P (A∩{W (n)
0 =

1}) > 0, then for each i ∈ {1, 2, . . . , 6}, P (W
(n+1)
0 = i | A∩ {W (n)

0 = 1}) =
1/16.

(C) For each n ∈ N and each i ∈ {1, 2, . . . , 6}, P (W
(n)
0 = i) = 16−n.

(D) Suppose n ∈ N. Suppose S is a nonempty finite set ⊂ Z. Suppose A ∈
σ(W

(n)
). Suppose also that the event

F := A
⋂
[
⋂

k∈S

{
W

(n)
k = 1

}]
(6.27)

satisfies P (F ) > 0. Then conditional on F , the {0, 1}–valued random vari-

ables I(W
(n+1)
k 6= 0), k ∈ S are independent and identically distributed,

each taking the value 0 resp. 1 with probability 5/8 resp. 3/8.

Proof. Statement (A) holds by Lemma 5.4(B) and Remark 6.3(F).
To prove statement (B), note first that by (6.13)–(6.14), κ(n, 0)(ω) = 0 for each

ω ∈ Ω0 ∩ {W (n)
0 = 1} (recall (6.20)–(6.21)). By (6.25), (6.26), and the hypothesis
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of statement (B), A ∩ {W (n)
0 = 1} ∈ σ(W

(n)
) ⊂̇ σ(ξ

(n)
). Hence for a given i ∈

{1, 2, . . . , 6}, by Remark 6.3(H), Remark 6.3(G), and Lemma 5.4(B),

P
(
W

(n+1)
0 = i

∣∣∣A ∩ {W (n)
0 = 1}

)
= P

(
W

(n+1)
κ(n,0) = i

∣∣∣A ∩ {W (n)
0 = 1}

)

= P
(
W

(n+1)
κ(n,0) = i

)
= P (W0 = i) = 1/16

(where W0 is as in Construction 5.1(B)). Thus statement (B) holds.
Statement (C) holds for n = 1 by statement (A). Also, for a given n ∈ N for

which Statement (C) holds, and a given i ∈ {1, 2, . . . , 6}, one has that {W (n+1)
0 =

i} ⊂ {W (n)
0 = 1} by Remark 6.3(B), and hence by statement (B) (in Lemma 6.4),

P (W
(n+1)
0 = i) = P (W

(n)
0 = 1) · P (W

(n+1)
0 = i |W (n)

0 = 1)

= P (W
(n)
0 = 1) · 1/16 = (1/16)n+1.

Now statement (C) holds for all n ∈ N by induction.
Proof of (D). Let m := card S. Let λ denote the “Bernoulli” probability measure
on {0, 1} given by λ({0}) = 5/8 and λ({1}) = 3/8. In the argument below, the
notation λ× · · · × λ will mean the m–fold product measure on {0, 1}m.

Let the elements of S be denoted by s(i), 1 ≤ i ≤ m where s(1) < s(2) <
· · · < s(m). Refer to (6.13)–(6.14) and to (6.20)–(6.21). For each m–tuple j :=
(j(1), j(2), . . . , j(m)) of integers such that j(1) < j(2) < · · · < j(m), define the
event

F (j) := F
⋂

Ω0

⋂
[

m⋂

u=1

{κ(n, j(u)) = s(u)}
]
.

Those events F (j) are (pairwise) disjoint (and some of them will be empty), and
by (6.27) and (6.13)–(6.14) their union is F ∩Ω0

.
= F . Also, for each such j, one has

that F (j)∈̇σ(W
(n)

) ⊂̇ σ(ξ
(n)

) by (6.25), (6.26), and the hypothesis of statement (D)
(since by (6.13)–(6.14) the random variables κ(n, i), i ∈ Z are σ(W (n))–measurable
modulo the null-set Ωc

0).
Hence by Remark 6.3(H), Remark 6.3(G), and Lemma 5.4(D) (section 2.5(A)),

for each such m-tuple j,

L
(
I(W

(n+1)
s(1) 6= 0), I(W

(n+1)
s(2) 6= 0), . . . , I(W

(n+1)
s(m) 6= 0)

∣∣∣F (j)
)

= L
(
I(W

(n+1)
κ(n,j(1)) 6= 0), I(W

(n+1)
κ(n,j(2)) 6= 0), . . . , I(W

(n+1)
κ(n,j(m)) 6= 0)

∣∣∣F (j)
)

= L
(
I(W

(n+1)
κ(n,j(1)) 6= 0), I(W

(n+1)
κ(n,j(2)) 6= 0), . . . , I(W

(n+1)
κ(n,j(m)) 6= 0)

)

= λ× · · · × λ.

Hence by Remark 2.8,

L
(
I(W

(n+1)
s(1) 6= 0), I(W

(n+1)
s(2) 6= 0), . . . , I(W

(n+1)
s(m) 6= 0)

∣∣∣F
)

= λ× · · · × λ.

Thus statement (D) holds. Lemma 6.4 is proved.

Lemma 6.5. Suppose n ∈ N. Then for each integer J , the ordered triplet
(
σ(W

(n)

k , k ≤ J), {W (n)
J = 1}, σ(W

(n)

k , k ≥ J + 1)
)

is a restricted Markov triplet (see Section 2.7(B)).
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The slight “asymmetry” in this statement is just a matter of convenience. This
statement is slightly stronger than what will be needed in its application later on.
Proof. For n = 1, this holds by Lemma 5.6 and Remark 6.3(F).

Now for induction, suppose N is a positive integer and Lemma 6.5 holds for
n = N . Our task is to show that it holds for n = N + 1.

Of course by (6.26) (with n = N+1) and Definition 2.6(A), the sequenceW
(N+1)

is strictly stationary. Hence it suffices to carry out the argument in the case where
(n = N + 1 and) J = 0.

Refer to (6.13)–(6.14) for n = N . For convenient notation, define the sequence
Z∗ := (Z∗

j , j ∈ Z) of {0, 1, . . . , 6}–valued random variables as follows: For each
j ∈ Z

Z∗
j := W

(N+1)
κ(N,j) . (6.28)

By the induction hypothesis,
(
σ(W

(N)

k , k ≤ 0), {W (N)
0 = 1}, σ(W

(N)

k , k ≥ 1)
)

is a restricted Markov triplet. By (6.28), Remark 6.3(G), and Lemma 5.6,
(
σ(Z∗

j , j ≤ 0), {Z∗
0 = 1}, σ(Z∗

j , j ≥ 0)
)

is a restricted Markov triplet. Hence by (6.26), Remark 6.3(H), and Remark 2.7(D),
(
σ(W

(N)

k , k ≤ 0) ∨ σ(Z∗
j , j ≤ 0), {W (N)

0 = 1} ∩ {Z∗
0 = 1},

σ(W
(N)

k , k ≥ 1) ∨ σ(Z∗
j , j ≥ 1)

) (6.29)

is a restricted Markov triplet.
Next, by (6.13)–(6.14) and a simple argument,

σ(κ(N, j), j ≤ 0)⊂̇σ(W
(N)
k , k ≤ 0) and (6.30)

σ(κ(N, j), j ≥ 1)⊂̇σ(W
(N)
k , k ≥ 1). (6.31)

Of course by (6.13)–(6.14), (6.28), and (6.11), for a given k ≤ 0 and a given
ω ∈ Ω0 (see (6.20)–(6.21)),

W
(N+1)
k (ω) =

{
0 if k 6∈ {κ(N, 0)(ω), κ(N,−1)(ω), κ(N,−2)(ω), . . .}
Z∗

j (ω) if k = κ(N, j)(ω) for some j ≤ 0

(6.32)
Hence by (6.30) (and (6.25)),

σ(W
(N+1)
k , k ≤ 0) ⊂̇ σ(κ(N, j), j ≤ 0) ∨ σ(Z∗

j , j ≤ 0)

⊂̇σ(W
(N)

k , k ≤ 0) ∨ σ(Z∗
j , j ≤ 0).

(6.33)

Hence by (6.25) again,

σ(W
(N+1)

k , k ≤ 0) ⊂̇ σ(W
(N)

k , k ≤ 0) ∨ σ(Z∗
j , j ≤ 0). (6.34)

Next, as an analog of (6.32), one has that for k ≥ 1 and ω ∈ Ω0, W
(N+1)
k (ω) = 0

resp. Z∗
j (ω) if k 6∈ {κ(N, 1)(ω), κ(N, 2)(ω), κ(N, 3)(ω), . . . } resp. k = κ(N, j)(ω) for

some j ≥ 1. Then by (6.31), one obtains an analog of (6.33) with the inequalities
k ≤ 0 and j ≤ 0 replaced by k ≥ 1 and j ≥ 1. Thereby one obtains the following
analog of (6.34):

σ(W
(N+1)

k , k ≥ 1) ⊂̇ σ(W
(N)

k , k ≥ 1) ∨ σ(Z∗
j , j ≥ 1). (6.35)
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Now by Remark 6.3(B) and (6.13)–(6.14) and a simple argument,

{W (N+1)
0 = 1} ⊂ {W (N)

0 = 1} .
= {κ(N, 0) = 0}.

As a trivial consequence, by (6.28) for j = 0,

{W (N+1)
0 = 1} .

= {W (N+1)
0 = 1} ∩ {W (N)

0 = 1} ∩ {κ(N, 0) = 0}
= {W (N+1)

κ(N,0) = 1} ∩ {W (N)
0 = 1} ∩ {κ(N, 0) = 0}

= {Z∗
0 = 1} ∩ {W (N)

0 = 1} ∩ {κ(N, 0) = 0}
.
= {Z∗

0 = 1} ∩ {W (N)
0 = 1}.

(6.36)

Now by (6.34), (6.35), (6.36), and the entire sentence containing (6.29), one has
that (

σ(W
(N+1)

k , k ≤ 0), {W (N+1)
0 = 1}, σ(W

(N+1)

k , k ≥ 1)
)

is a restricted Markov triplet. That completes the induction step and the proof of
Lemma 6.5.

Lemma 6.6. Suppose n ∈ N. Referring to section 6.3(A) (equations (6.20)
and (6.21) and statement (i)), Definition 2.3(A), and Lemma 6.4(C), define the
positive integer–valued random variable

T (n) := min{k ∈ N : W
(n)
k = 1}. (6.37)

Then

E
(
T (n)

∣∣∣W (n)
0 = 1

)
= 16n, (6.38)

Var
(
T (n)

∣∣∣W (n)
0 = 1

)
≤ 162n, and (hence) (6.39)

E
(
(T (n))2

∣∣∣W (n)
0 = 1

)
≤ 2 · 162n. (6.40)

Proof. For n = 1, this holds by Lemma 5.5 and Remark 6.3(F). Now for induction
suppose N ∈ N and Lemma 6.6 holds for n = N . Our task is to show that it holds
for n = N + 1.

By (6.13)–(6.14),

T (N) = κ(N, 1) a.s. (6.41)

and also {
W

(N)
0 = 1

}
.
= {κ(N, 0) = 0}. (6.42)

As in the proof of Lemma 6.5, define the sequence Z∗ := (Z∗
j , j ∈ Z) of

{0, 1, . . . , 6}–valued random variables by (6.28). Then (6.36) holds. We shall refer
to both (6.28) and (6.36) freely below.

By (6.28), Remark 6.3(G), and Lemma 5.4(A), the sequence Z∗ satisfies Condi-
tion S a.s. (see Definition 2.3(A) again). Accordingly, define the positive integer–
valued random variable M as follows:

M := min{j ∈ N : Z∗
j = 1}. (6.43)

By (6.28), Remark 6.3(G), and Lemma 5.5,

E(M | Z∗
0 = 1) = 16 and Var(M | Z∗

0 = 1) = 80/3. (6.44)

Next, by (6.28), Remark 6.3(H), and (6.5), the sequences W (N) and Z∗ are
independent of each other. It follows from (6.36), (6.43), and a simple calculation
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that E(M | Z∗
0 = 1) = E(M | W (N+1)

0 = 1) and Var(M | Z∗
0 = 1) = Var(M |

W
(N+1)
0 = 1). Hence by (6.44),

E(M |W (N+1)
0 = 1) = 16 and Var(M | W (N+1)

0 = 1) = 80/3. (6.45)

Now for every ω ∈ Ω0 (see (6.20)–(6.21) again), one has the following: For any

j ∈ {1, 2, . . . ,M(ω) − 1} (if M(ω) ≥ 2), W
(N+1)
κ(N,j)(ω)(ω) = Z∗

j (ω) 6= 1 by (6.28)

and (6.43). For any k ∈ Z− {κ(N, j)(ω) : j ∈ Z}, W (N+1)
k (ω) = 0 by (6.13)–(6.14)

and Remark 6.3(B). Hence (for ω ∈ Ω0), for all k ∈ {1, 2, . . . , κ(N,M(ω))(ω) − 1},
W

(N+1)
k (ω) 6= 1. Also (for ω ∈ Ω0), W

(N+1)
κ(N,M(ω))(ω)(ω) = Z∗

M(ω)(ω) = 1 by (6.28)

and (6.43).
By the preceding two sentences (see (6.20)–(6.21) again) and (6.37),

T (N+1) = κ(N,M) a.s. (6.46)

Now let us look at the random variables κ(N, j) − κ(N, j − 1), j ∈ N. By
Lemma 6.5 and the strict stationarity of the sequence W (N) (recall (6.5) and Re-
mark 2.6(B)), one has the following: For any positive integers J and ℓ, and any

event A ∈ σ(W
(N)
k , k ≤ J − 1) such that P (A ∩ {W (N)

J = 1}) > 0, one has that
(see Remark 2.7(C))

P
(
W

(N)
J+i 6= 1 ∀ i ∈ {1, . . . , ℓ− 1} and W

(N)
J+ℓ = 1

∣∣∣A ∩ {W (N)
J = 1}

)

= P
(
W

(N)
J+i 6= 1 ∀ i ∈ {1, . . . , ℓ− 1} and W

(N)
J+ℓ = 1

∣∣∣W (N)
J = 1

)

= P
(
W

(N)
i 6= 1 ∀ i ∈ {1, . . . , ℓ− 1} and W

(N)
ℓ = 1

∣∣∣W (N)
0 = 1

)
.

(Of course for ℓ = 1, omit the phrases W
(N)
J+i 6= 1 resp. W

(N)
i 6= 1 ∀ i ∈ {1, . . . , ℓ−

1}.) Hence (see (6.13)–(6.14) again), by a standard induction argument, one can

show that conditional on the event {W (N)
0 = 1}, the random variables κ(N, 1) (or

κ(N, 1) − κ(N, 0) — see (6.42)), κ(N, 2) − κ(N, 1), κ(N, 3) − κ(N, 2), κ(N, 4) −
κ(N, 3), . . . are independent and identically distributed, with (see (6.42), (6.41),
and (6.13)–(6.14))

L(κ(N, 1) − κ(N, 0) | W (N)
0 = 1) = L(κ(N, 1) |W (N)

0 = 1)

= L(T (N) |W (N)
0 = 1).

Hence by (6.36), the sentence after (6.44) (recall that σ(κ(N, i))⊂̇σ(W (N)) for i ∈
Z by (6.13)–(6.14)), and a standard trivial calculation, conditional on the event

{W (N+1)
0 = 1}, the random variables κ(N, j)− κ(N, j − 1), j ∈ N are independent

and identically distributed, with

L(κ(N, 1) − κ(N, 0) |W (N+1)
0 = 1) (6.47)

= L(κ(N, 1) − κ(N, 0) |W (N)
0 = 1) = L(T (N) |W (N)

0 = 1). (6.48)

Hence by the induction hypothesis of (6.38) and (6.39) for n = N ,

E(κ(N, 1) − κ(N, 0) |W (N+1)
0 = 1) = 16N and (6.49)

Var(κ(N, 1) − κ(N, 0) |W (N+1)
0 = 1) ≤ 162N . (6.50)

Now recall again from (6.13)–(6.14) that σ(κ(N, i), i ∈ Z)⊂̇σ(W (N)). By that
fact, (6.43), and the sentence after (6.44), and equation (6.36), together with a

standard simple argument, conditional on the event {W (N+1)
0 = 1}, the random
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variable M is independent of the random sequence (κ(N, j) − κ(N, j − 1), j ∈ N).
Hence by (6.46), (6.45), (6.49), (6.50), the entire sentence containing (6.47), and
a well known elementary calculation (see e.g.Feller, 1968, p. 301, Exercise 1), one
has that (recall (6.42) and (6.36))

E(T (N+1) |W (N+1)
0 = 1) = E(κ(N,M) |W (N+1)

0 = 1)

= E

( M∑

j=1

[κ(N, j) − κ(N, j − 1)]

∣∣∣∣W
(N+1)
0 = 1

)

= E(M |W (N+1)
0 = 1) · E(κ(N, 1) − κ(N, 0) |W (N+1)

0 = 1)

= 16 · 16N = 16N+1

and

Var(T (N+1) |W (N+1)
0 = 1) = Var(κ(N,M) |W (N+1)

0 = 1)

= Var

( M∑

j=1

[κ(N, j) − κ(N, j − 1)]

∣∣∣∣W
(N+1)
0 = 1]

)

= E(M |W (N+1)
0 = 1) · Var(κ(N, 1) − κ(N, 0) |W (N+1)

0 = 1)

+ Var(M |W (N+1)
0 = 1) ·

[
E(κ(N, 1) − κ(N, 0) |W (N+1)

0 = 1)
]2

≤ 16 · 162N + (80/3) · (16N)2 < 162(N+1).

Thus (6.38) and (6.39) (and hence also (6.40)) hold for n = N +1. That completes
the induction step and the proof of Lemma 6.6.

Lemma 6.7. Suppose n ∈ N. Let pn denote the probability that there exist at least

two distinct integers i, j ∈ {1, 2, . . . , 6 · 16n} such that W
(n)
i = W

(n)
j = 1. Then

pn ≥ 1/2.

Proof. Suppose n ∈ N. Refer to (6.13)–(6.14). It suffices to prove that P (κ(n, 2) ≤
6 · 16n) ≥ 1/2, or

P (κ(n, 2) > 6 · 16n) ≤ 1/2. (6.51)

Recall (from (6.5) and Remark 2.6(B)) that the sequence W (n) is strictly sta-
tionary. Recall from (6.13)–(6.14) that κ(n, 1) = T (n) a.s., where T (n) is as in

Lemma 6.6, and that {κ(n, 0) = 0} .
= {W (n)

0 = 1}. From (6.13)–(6.14) and a trivial
argument, followed by Lemma 6.4(C), one has that for each positive integer j,

P (κ(n, 1) = j) =

∞∑

ℓ=0

P (κ(n, 0) = −ℓ and κ(n, 1) = j)

=

∞∑

ℓ=0

P (κ(n, 0) = 0, κ(n, 1) = j + ℓ)

=

∞∑

ℓ=0

P (κ(n, 1) = j + ℓ | κ(n, 0) = 0) · P (κ(n, 0) = 0)

= P (W
(n)
0 = 1) · P (κ(n, 1) ≥ j | κ(n, 0) = 0)

= 16−n · P (T (n) ≥ j | W (n)
0 = 1).

(6.52)
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Now for (say) any positive integer–valued random variable Z, one has by a simple
argument that

∑∞
j=1 j · P (Z ≥ j) ≤ EZ2. Hence by (6.52) and Lemma 6.6,

Eκ(n, 1) =

∞∑

j=1

j · 16−n · P (T (n) ≥ j |W (n)
0 = 1)

≤ 16−n · E
(
(T (n))2

∣∣∣W (n)
0 = 1

)
≤ 16−n · 2 · 162n = 2 · 16n.

(6.53)

Now by strict stationarity of the sequence W (n), and a standard elementary ar-
gument using Remark 2.8 (akin to certain arguments in the proof of Lemma 6.6),
the random variable κ(n, 2) − κ(n, 1) is independent of κ(n, 1) and L(κ(n, 2) −
κ(n, 1)) = L(κ(n, 1) | W (n)

0 = 1). Recall again from the paragraph after (6.51) that

κ(n, 1) = T (n), from Lemma 6.6. One now has by Lemma 6.6 that

E(κ(n, 2) − κ(n, 1)) = E(T (n) |W (n)
0 = 1) = 16n.

Hence by (6.53), Eκ(n, 2) ≤ 3 · 16n. Now (6.51) holds by Markov’s inequality.
Lemma 6.7 is proved.

7. Scaffolding (part 2)

Among other things, this section will include (in Construction 7.5 below) the
construction of the random sequence X itself for Theorem 1.1 This section will
build on Section 6. Recall from that section the given probability space (Ω,F , P ).

Construction 7.1. Refer to Construction 6.2, including equation (6.10). Define

the {0, 1, 2, 3, 4, 5, 6}–valued random variables δ
(n)
k , n ∈ N, k ∈ Z as follows:

δ
(1)
k := W

(1)
k (7.1)

and for n ≥ 2,

δ
(n)
k := W

(n)
k−Ψ(n−1,k,0). (7.2)

By (7.1), (7.2), and (6.10), one has that for all k ∈ Z,

σ(δ
(1)
k ) ⊂ σ(W (1)), and ∀n ≥ 2, σ(δ

(n)
k ) ⊂ σ(W (n−1),W (n)). (7.3)

Define the ({0} ∪ N ∪ {∞})–valued random variables Nk, k ∈ Z as follows: For
each ω ∈ Ω,

Nk(ω) :=





0 if δ
(1)
k (ω) = 0 (that is, W

(1)
k (ω) = 0)

m ∈ N if δ
(u)
k (ω) 6= 0∀u ∈ {1, . . . ,m} and δ

(m+1)
k (ω) = 0

∞ if δ
(u)
k (ω) 6= 0 for all u ∈ N.

(7.4)

By (7.4) and (7.3) (and (6.25)), for each m ∈ N and each k ∈ Z,

{Nk ≥ m} =

m⋂

u=1

{δ(u)
k 6= 0} ⊂ σ(W

(m)
); (7.5)

and for each integer m ≥ 0,

{Nk = m} ⊂ σ(W
(m+1)

). (7.6)
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Also, define the integer-valued random variables J(m, k), m ∈ N, k ∈ Z as follows:

J(m, k) :=

m∑

u=1

6u−1
(
δ
(u)
k − 1

)
. (7.7)

By (7.3), for each m ∈ N and each k ∈ Z,

σ(J(m, k)) ⊂ σ(W
(m)

). (7.8)

Remark 7.2. Recall from Construction 7.1 that the random variables δ
(n)
k , n ∈ N,

k ∈ Z take their values in the set {0, 1, . . . , 6}.
(A) Suppose m ∈ N, ω ∈ Ω, k ∈ Z, and W

(m)
k (ω) = 1; then (i) W

(n)
k (ω) = 1

for all n ∈ {1, . . . ,m} by Remark 6.3(B), (ii) for each n ∈ {1, . . . ,m},
Ψ(n, k, 0)(ω) = 0 by (6.10) and Remark 2.2(B), hence (iii) δ

(n)
k (ω) = 1 for

all n ∈ {1, . . . ,m} by (7.1) and (7.2), and hence (iv) Nk(ω) ≥ m by (7.5).
(B) For each m ∈ N, each k ∈ Z, and each ω ∈ Ω such that Nk(ω) ≥ m,

one has that (i) δ
(u)
k (ω) ∈ {1, 2, . . . , 6} for all u ∈ {1, . . . ,m} by (7.5),

hence (ii) δ
(u)
k (ω) − 1 ∈ {0, 1, . . . , 5} for all u ∈ {1, . . . ,m}, and hence

(iii) J(m, k)(ω) ∈ {0, 1, 2, . . . , 6m − 1} by (7.7) and a simple argument.

Construction 7.3.
(A) Refer to Definition 3.3. On the given probability space (Ω,F , P ), let

ζ
(n,ord)
k , ζ

(n,cen)
k , ζ

(n,fri)
k , n ∈ N, k ∈ Z be an array of independent ran-

dom variables, with this array being independent of the entire collection of

random variables ξ
(n)
k W

(n)
k , Ψ(n, k, j), δ

(n)
k , Nk, J(n, k), n ∈ N, k ∈ Z,

j ∈ {0, 1, 2, . . .} in Section 6 and Construction 7.1 (the redundancy here is
for emphasis), such that for each n ∈ N and each k ∈ Z, (i) all three random

vectors ζ
(n,ord)
k , ζ

(n,cen)
k , ζ

(n,fri)
k take their values in the set {−1, 1}sxtp(n)

(see (2.1)), and (ii) the distribution of ζ
(n,ord)
k resp. ζ

(n,cen)
k resp. ζ

(n,fri)
k is

ν
(n)
ord resp. ν

(n)
cen resp. ν

(n)
fri .

(B) For a given n ∈ N, the random vector ζ
(n,ord)
k will be represented by

ζ
(n,ord)
k :=

(
ζ
(n,ord)
k,0 , ζ

(n,ord)
k,1 , . . . , ζ

(n,ord)
k,sxtp(n)−1

)
,

that is, with the 6n indices running through 0, 1, . . . , 6n − 1 (instead of
1, 2, . . . , 6n); and exactly the same convention will be used for the random

vectors ζ
(n,cen)
k and ζ

(n,fri)
k . (This fits the convention in Section 3 where,

for a given n ∈ N, the elements x ∈ {−1, 1}sxtp(n) were represented as
x := (x0, x1, . . . , xsxtp(n)−1).

(C) For each n ∈ N and each k ∈ Z, define the ({−1, 1}sxtp(n))3–valued random
vector

ζ
(n)
k :=

(
ζ
(n,ord)
k , ζ

(n,cen)
k , ζ

(n,fri)
k

)
. (7.9)

Of course for a given fixed n, these random vectors are independent and
identically distributed. For each n ∈ N, define the resulting random se-

quence ζ(n) := (ζ
(n)
k , k ∈ Z).

(D) For each n ∈ N and each k ∈ Z, define the ({−1, 1}6)3 × ({−1, 1}36)3

× · · · × ({−1, 1}sxtp(n))3–valued random vector

ζ
(n)

k :=
(
ζ
(1)
k , ζ

(2)
k , . . . , ζ

(n)
k

)
. (7.10)
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For any given fixed value of n ∈ N, these random vectors ζ
(n)

k , k ∈ Z
are independent and identically distributed. For each n ∈ N, define the

resulting random sequence ζ
(n)

:= (ζ
(n)

k , k ∈ Z).
(E) For each k ∈ Z, define the random item (sequence)

ζ
(∞)

k :=
(
ζ
(1)
k , ζ

(2)
k , ζ

(3)
k , . . .

)
. (7.11)

These random items ζ
(∞)

k , k ∈ Z are independent and identically dis-

tributed. Define the resulting random sequence ζ
(∞)

:= (ζ
(∞)

k , k ∈ Z).
(F) Refer to (B) above. Purely as a formality, for each n ∈ N, each k ∈ Z,

and each u ∈ Z − {0, 1, . . . , 6n − 1}, define the constant random variables

ζ
(n,ord)
k,u := ζ

(n,cen)
k,u := ζ

(n,fri)
k,u := 1. (This formality will ultimately turn out

to be frivolous.)

Construction 7.4.
(A) Let X(0) := (X

(0)
k , k ∈ Z) be a sequence of independent, identically dis-

tributed {−1, 1}–valued random variables such that (for each k ∈ Z),

P
(
X

(0)
k = −1

)
= P

(
X

(0)
k = 1

)
= 1/2, (7.12)

with this sequence X(0) being independent of the entire array of random

variables ξ
(n)
k , ζ

(n)
k , n ∈ N, k ∈ Z (and hence independent of the entire

collection of random variables in Section 6 and Constructions 7.1 and 7.3).
(B) Refer to (A) above and to (6.4) and (7.11). For each k ∈ Z, define the

random ordered triplet

ηk :=
(
X

(0)
k , ξ

(∞)

k , ζ
(∞)

k

)
. (7.13)

Note that for any given k ∈ Z, the three components of ηk are independent
of each other. These random ordered triplets ηk, k ∈ Z are independent
and identically distributed. Define the resulting random sequence η := (ηk,
k ∈ Z).

Construction 7.5. Now on our given probability space (Ω,F , P ), define the se-
quence X := (Xk, k ∈ Z) of {−1, 1}–valued random variables for Theorem 1.1 as
follows: For each k ∈ Z and each ω ∈ Ω (see Remark 7.2(B)),

Xk(ω) :=





X
(0)
k (ω) if Nk(ω) = 0

ζ
(ℓ,cen)
k−Ψ(ℓ,k,0)(ω),J(ℓ,k)(ω)(ω) if Nk(ω) = ℓ ∈ N

1 if Nk(ω) = ∞.

(7.14)

Lemma 7.6. Refer to Constructions 7.4 and 7.5 and Definition 2.6(A). The or-
dered pair (X, η) satisfies Condition M.

Proof. In what follows, keep in mind the three sentences after (7.13).
For each n ∈ N, the ordered pair (W (n), η) satisfies Condition M by (6.3), (6.4),

(6.5), and (7.13). Hence for each n ∈ N and each j ≥ 0, the ordered pair (Ψ(n, j), η)
satisfies Condition M by (6.8) (see (6.10) and the phrase right before (6.8)).

Next, for each n ≥ 2 and each k ∈ Z,

W
(n)
k−Ψ(n−1,k,0) =

∞∑

u=0

W
(n)
k−uI(Ψ(n− 1, k, 0) = u).
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Hence by (7.1), (7.2), and both sentences in the preceding paragraph above, for

each n ∈ N, the ordered pair ((δ
(n)
k , k ∈ Z), η) satisfies Condition M.

Next, by (7.4), for each k ∈ Z,

Nk = 0 · I(δ(1)k = 0)

+
∑

m∈N

m ·
[

m∏

u=1

I
(
δ
(u)
k 6= 0

)]
· I
(
δ
(n+1)
k = 0

)

+ ∞ ·
∏

u∈N

I
(
δ
(u)
k 6= 0

)
.

Hence by the last sentence of the preceding paragraph, the ordered pair ((Nk,
k ∈ Z), η) satisfies Condition M. Similarly, from (7.7), for each m ∈ N, the
ordered pair ((J(m, k), k ∈ Z), η) satisfies condition M.

Next, for each ℓ ∈ N and each k ∈ Z, by Remark 7.2(B) (see also (2.1)),

I(Nk = ℓ) · ζ(ℓ,cen)
k−Ψ(ℓ,k,0),J(ℓ,k)

=

∞∑

u=0

sxtp(ℓ)−1∑

v=0

I(Nk = ℓ) · ζ(ℓ,cen)
k−u,v · I(Ψ(ℓ, k, 0) = u) · I(J(ℓ, k) = v).

(7.15)

(If ω ∈ Ω is such that Nk(ω) 6= ℓ, then trivially (7.15) holds for that ω with both
sides being 0; for the formal definition of the left side of (7.15) for such ω, recall
Construction 7.3(F) to cover the possible case J(ℓ, k)(ω) < 0.) By (7.15) and the
observations made so far, together with equations (7.9), (7.11), and (7.13), for each
ℓ ∈ N, the ordered pair

((
I(Nk = ℓ) · ζ(ℓ,cen)

k−Ψ(ℓ,k,0),J(ℓ,k), k ∈ Z
)
, η
)

satisfies Condition M.
Finally, for each k ∈ Z, by (7.14),

Xk = X
(0)
k · I(Nk = 0) + 1 · I(Nk = ∞)

+
∑

ℓ∈N

I(Nk = ℓ) · ζ(ℓ,cen)
k−Ψ(ℓ,k,0),J(ℓ,k).

Hence by observations in the preceding two paragraphs together with (7.13), the
ordered pair (X, η) satisfies Condition M. Lemma 7.6 is proved.

Remark 7.7. Of course by Lemma 7.6 (and Definition 2.6(A)), the random sequence
X is strictly stationary. Also, by (7.13), (7.12), (7.11), (7.9), and (6.4), the random
variables ηk, k ∈ Z in (7.13) can be regarded as taking their values in the set
S := {−1, 1}×{0, 1}N×{−1, 1}N. Trivially that set is bimeasurably isomorphic to
the set {0, 1}N, and that set in turn is well known to be bimeasurably isomorphic to
the open unit interval (0, 1) (with its Borel σ-field) and hence also to the real line R
(with its Borel σ-field R). Applying a particular bimeasurable isomorphism Θ : S →
R to each of the random variables ηk in (7.13), one has that the random sequence
η can thereby be “coded” as a sequence of independent, identically distributed
real-valued random variables. Thus by Lemma 7.6, property (C) in Theorem 1.1
holds.
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The other properties in Theorem 1.1 will be verified in sections 9 and 10, after
some further preparation in Section 8. The following technical lemma will be needed
in Section 9.

Lemma 7.8. For each n ∈ N and each k ∈ Z, P (Nk ≥ n) = (3/8)n.

Proof. For each k ∈ Z, by (7.4) (or (7.5)), (7.1), and Lemma 6.4(A) (and station-
arity),

P (Nk ≥ 1) = P (δ
(1)
k 6= 0) = P (W

(1)
k 6= 0) = 3/8.

Now for induction, suppose that n ∈ N, k ∈ Z, and P (Nk ≥ n) = (3/8)n. If it is
shown that P (Nk ≥ n+ 1 | Nk ≥ n) = 3/8, then (since {Nk ≥ n+ 1} ⊂ {Nk ≥ n})
it will follow that P (Nk ≥ n + 1) = (3/8)n+1. Then Lemma 7.8 will hold by
induction.

Suppose j ∈ {0, 1, 2, . . .} and that P ({Nk ≥ n} ∩ {Ψ(n, k, 0) = j}) > 0. If

ω ∈ Ω0 (see (6.20)–(6.21)) is such that Ψ(n, k, 0)(ω) = j, then W
(n)
k−j(ω) = 1

by (6.10) and Definition 2.2 (and Statement 6.3(i) and Definition 2.3(A)). Also,

{Nk ≥ n} ∈ σ(W
(n)

) by (7.5), and {Ψ(n, k, 0) = j} ∈ σ(W
(n)

) by (6.10). Hence
by (7.4) (see the equality in (7.5) with m = n and with m = n + 1), (6.21), (7.2),
and Lemma 6.4(D),

P (Nk ≥ n+ 1 | {Nk ≥ n} ∩ {Ψ(n, k, 0, ) = j})

= P
(
δ
(n+1)
k 6= 0

∣∣∣ {Nk ≥ n} ∩ {Ψ(n, k, 0) = j} ∩ {W (n)
k−j = 1}

)

= P
(
W

(n+1)
k−j 6= 0

∣∣∣ {Nk ≥ n} ∩ {Ψ(n, k, 0) = j} ∩ {W (n)
k−j = 1}

)
= 3/8.

Hence by Remark 2.8, P (Nk ≥ n + 1 | Nk ≥ n) = 3/8. That completes the
induction argument and the proof.

8. Scaffolding (part 3)

In this section, some more foundations will be laid for the proofs, in sections 9
and 10, of the properties in Theorem 1.1 not verified in Remark 7.7.

Definition 8.1. Refer to (7.4), section 6.3(A), and Definition 2.3(A). For each
m ∈ N and each ω ∈ Ω0, let Em(ω) denote the family of all sets E ⊂ Z such that
the following holds:

There exist integers j and ℓ such that

j < ℓ, W
(m)
j (ω) = W

(m)
ℓ (ω) = 1, and

W
(m)
k (ω) 6= 1 for all k ∈ {j + 1, j + 2, . . . , ℓ− 1},

(8.1)

and
E = {k ∈ {j, j + 1, . . . , ℓ− 1} : Nk(ω) ≥ m}. (8.2)

(Note that the “inner set” in (8.2) contains j but not ℓ.)
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Remark 8.2.
(A) Refer to Definition 8.1. Suppose m ∈ N, ω ∈ Ω0, E ∈ Em(ω), and j and ℓ

are integers such that (8.1) and (8.2) hold. Since W
(m)
j (ω) = 1 (see (8.1)),

one has that Nj(ω) ≥ m by Remark 7.2(A)(iv), and hence j ∈ E (see (8.2)).
In fact (for the j in (8.1))

j = minE. (8.3)

Thus trivially the set E is nonempty and also (see (8.2)) finite.
(B) For a given m ∈ N, ω ∈ Ω0, and E ∈ Em(ω), the integers j and ℓ in (8.1)

are unique, by (8.3) and (8.1) itself.

(C) If m ∈ N, ω ∈ Ω0, E ∈ Em(ω), and also Ẽ ∈ Em(ω), then (see Sec-

tion 2.1(D)) either E < Ẽ, E = Ẽ, or E > Ẽ.
(D) Refer to Definition 8.1 and Section 2.1(H). Suppose m ∈ N and ω ∈ Ω0.

Then (recall Statement 6.3(A)(i))

{k ∈ Z : Nk(ω) ≥ m} = union Em(ω). (8.4)

From this and (C) above and a simple argument (recall
Statement 6.3(A)(i)), (i) one has a representation of the form Em(ω) :=
{. . . , E−1, E0, E1, . . . } (the Ei’s depend onm and ω) where (section 2.1(D))
· · · < E−1 < E0 < E1 < . . . , and (ii) those sets Ei, i ∈ Z form a partition
of the set {k ∈ Z : Nk(ω) ≥ m}.

(E) Suppose m ∈ N, ω ∈ Ω0, and E ∈ Em(ω). (i) If W
(m+1)
minE (ω) = 0, then

Nk(ω) = m for all k ∈ E. (ii) If instead W
(m+1)
minE (ω) 6= 0, then Nk(ω) ≥

m + 1 for all k ∈ E. (Note that by (i) and (ii) together, the respective
converses of (i) and (ii) each hold.)

Proof of (E). Let the integers j and ℓ be as in (8.1)–(8.2). For each k ∈ {j, j +
1, . . . , ℓ− 1}, Ψ(m, k, 0)(ω) = k− j by (8.1)–(8.2), (6.10), and Definition 2.2, hence

j = k − Ψ(m, k, 0)(ω), and hence δ
(m+1)
k (ω) = W

(m+1)
j (ω) by (7.2). Of course for

each k ∈ E, one has that δ
(n)
k (ω) 6= 0 for all n ∈ {1, . . . ,m} by (8.2) and (7.4). If

W
(m+1)
j (ω) = 0, then for all k ∈ E, δ

(m+1)
k (ω) = 0 and hence (see (7.4))Nk(ω) = m.

If instead W
(m+1)
j (ω) 6= 0, then for all k ∈ E, δ

(m+1)
k (ω) 6= 0 and hence (see (7.4))

Nk(ω) ≥ m+ 1. Thus (recall (8.3) once more) statement (E)(i)(ii) holds.

Definition 8.3.
(A) Refer to (6.20)–(6.21) and (7.4). For each ω ∈ Ω0, let D0(ω) denote the

family of all “singleton” sets {k} (with k ∈ Z) such that Nk(ω) = 0.
(B) For each m ∈ N and each ω ∈ Ω0, let Dm(ω) denote the family of all sets

E ∈ Em(ω) such that (see Remark 8.2(E)) Nk(ω) = m for all k ∈ E.

Remark 8.4.
(A) Refer to Definition 8.3(B), Remark 8.2(D)(E), and section 2.1(H). For each

m ∈ N and each ω ∈ Ω0,

{k ∈ Z : Nk(ω) = m} = union Dm(ω), (8.5)

and in fact the members of Dm(ω) form a partition of the set {k ∈ Z :
Nk(ω) = m}. That sentence also holds trivially for m = 0 and ω ∈ Ω0; see
Definition 8.3(A).
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(B) Refer to Remark 8.2(A), Definition 8.3(A)(B), and equations (8.4) and (8.5).
(i) For a given ω ∈ Ω0, none of the families Dm(ω) (m ≥ 0) or Em(ω)
(m ≥ 1) contains the empty set as a member. (ii) If ω ∈ Ω0 and 0 ≤ m < n,
then for anyD ∈ Dm(ω) and anyE ∈ En(ω) (in particular, anyE ∈ Dn(ω)),
one has that D ∩ E = ∅.

(C) By (A) and (B) above and Remark 8.2(C)(D), the following holds: Ifm ∈ N
and ω ∈ Ω0, then the family

[D0(ω) ∪ D1(ω) ∪ · · · ∪ Dm−1(ω)] ∪ Em(ω)

gives a partition of the set Z itself into countably many nonempty finite
sets.

Lemma 8.5. Suppose m ∈ N, ω ∈ Ω0, and E ∈ Em(ω). Then the following
statements hold:

(A) One has that cardE = 6m.
(B) Representing the set E by E = {i(1), i(2), . . . , i(6m)} where i(1) < i(2) <

i(3) < · · · < i(6m), one has (see (7.7)) that J(m, i(v))(ω) = v − 1 for each
v ∈ {1, 2, . . . , 6m}.

(C) If also m ≥ 2, then there exist six sets E1, E2, . . . , E6 ∈ Em−1(ω) such that
E1 < E2 < · · · < E6 (see Section 2.1(D)) and E = E1 ∪E2 ∪ · · · ∪ E6.

Proof. We shall first prove statements (A) and (B) for the case m = 1.
Suppose ω ∈ Ω0 and E ∈ E1(ω).
Let j and ℓ denote the integers such that (8.1) and (8.2) hold (with m = 1).
For a given k ∈ Z, the following three inequalities are equivalent by (7.4)

and (7.1): Nk(ω) ≥ 1, δ
(1)
k (ω) 6= 0, and W

(1)
k (ω) 6= 0. Hence by (8.2),

E = {k ∈ {j, j + 1, . . . , ℓ− 1} : W
(1)
k (ω) 6= 0}. (8.6)

Since ω ∈ Ω0 (by hypothesis), the sequence (W
(1)
k (ω), k ∈ Z) of elements of

{0, 1, . . . , 6} satisfies Condition S (see Statement 6.3(A)(i) and Definition 2.3(A)
again). Hence by (8.1), there exist integers i(1), i(2), . . . , i(6) such that
(see also (8.3)) j = i(1) < i(2) < · · · < i(6) < ℓ,

W
(1)
i(v)(ω) = v for each v ∈ {1, 2, . . . , 6}, (8.7)

and W
(1)
k (ω) = 0 for all other elements k ∈ {j, j + 1, . . . , ℓ − 1}. Hence by (8.6),

E = {i(1), i(2), . . . , i(6)}. Hence card E = 6. Also, by (7.7), (7.1), and (8.7), for
each v ∈ {1, 2, . . . , 6},

J(1, i(v))(ω) = δ
(1)
i(v)(ω) − 1 = W

(1)
i(v)(ω) − 1 = v − 1.

All parts of statements (A) and (B) (of Lemma 8.5) have now been verified for the
case m = 1.

The induction step. Now suppose M ∈ N, and statements (A) and (B) in
Lemma 8.5 hold for the case m = M . To complete the proof of Lemma 8.5 by
induction, it suffices to prove that all three statements (A), (B), and (C) hold for
the case m = M + 1.

Suppose ω ∈ Ω0 and E ∈ EM+1(ω).
Referring to (8.1) and (8.2), let j and ℓ be the integers such that (for the given

ω and E)

j < ℓ, W
(M+1)
j (ω) = W

(M+1)
ℓ (ω) = 1, and (8.8)
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W
(M+1)
k (ω) 6= 1 for all k ∈ {j + 1, j + 2, . . . , ℓ− 1},

and
E = {k ∈ {j, j + 1, . . . , ℓ− 1} : Nk(ω) ≥M + 1}. (8.9)

By (8.8) and Remark 6.3(B), W
(M)
j (ω) = W

(M)
ℓ (ω) = 1. Let a(0), a(1), . . . ,

a(p) (where p is a positive integer) denote the integers such that

j = a(0) < a(1) < a(2) < · · · < a(p) = ℓ and (8.10)

{k ∈ {j, j + 1, . . . , ℓ− 1} : W
(M)
k (ω) = 1} = {a(0), a(1), a(2), . . . , a(p− 1)}. (8.11)

Recall that since ω ∈ Ω0 (by hypothesis), the sequence (W
(M+1)
k (ω), k ∈ Z) of

elements of {0, 1, . . . , 6} satisfies Condition S (see Statement 6.3(A)(i) and Defi-
nition 2.3(A) again). Hence by (8.8), there exist integers i(1), i(2), . . . , i(6) with
j = i(1) < i(2) < · · · < i(6) < ℓ such that

W
(M+1)
i(u) (ω) = u for u ∈ {1, 2, . . . , 6} and

W
(M+1)
k (ω) = 0 for all other k ∈ {j, j + 1, . . . , ℓ− 1}.

(8.12)

By (8.12) and Remark 6.3(B), W
(M)
i(u) (ω) = 1 for each u ∈ {1, 2, . . . , 6}. Referring

to (8.10) and (8.11), for each u ∈ {1, 2, . . . , 6}, let e(u) denote the element of
{0, 1, . . . , p− 1} such that

i(u) = a(e(u)). (8.13)

Then by (8.10), (8.13), and the equality j = i(1) just before (8.12), one has that
a(0) = j = i(1) = a(e(1)); and hence (see (8.10) and the inequalities right be-
fore (8.12) again)

0 = e(1) < e(2) < · · · < e(6) ≤ p− 1. (8.14)

For each u ∈ {1, 2, . . . , 6}, referring to the inequality a(e(u)) < a(e(u) + 1) from
(8.10) (see (8.14)), define the set

Eu := {k ∈ Z : a(e(u)) ≤ k < a(e(u) + 1) and Nk(ω) ≥M}. (8.15)

For each u ∈ {1, 2, . . . , 6}, from (8.10) and (8.11) (and the sentence right after (8.9)),

one has that W
(M)
a(e(u))(ω) = W

(M)
a(e(u)+1)(ω) = 1 and W

(M)
k (ω) 6= 1 for all k ∈ Z such

that a(e(u)) < k < a(e(u) + 1). Hence by (8.15) and Definition 8.1 with m = M ,

Eu ∈ EM (ω) for each u ∈ {1, 2, . . . , 6}. (8.16)

Hence by the induction assumption of Lemma 8.5(A)(B) for the case m = M ,

card Eu = 6M for each u ∈ {1, 2, . . . , 6}. (8.17)

For each t ∈ {0, 1, . . . , p−1} (see (8.10) and (8.11)), one has the following: For each
k ∈ Z such that a(t) ≤ k < a(t+1), Ψ(M,k, 0)(ω) = k−a(t) by (8.10), (8.11), (6.10),
and Definition 2.2, hence a(t) = k − Ψ(M,k, 0)(ω), and hence by (7.2),

δ
(M+1)
k (ω) = W

(M+1)
k−Ψ(M,k,0)(ω)(ω) = W

(M+1)
a(t) (ω). (8.18)

For each u ∈ {1, 2, . . . , 6}, W (M+1)
a(e(u)) (ω) = u by (8.12) and (8.13), and hence

by (8.18) (and its entire sentence) one has that

δ
(M+1)
k (ω) = W

(M+1)
a(e(u)) (ω) = u 6= 0

for all k ∈ Z such that a(e(u)) ≤ k < a(e(u) + 1).
(8.19)
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For each u ∈ {1, 2, . . . , 6} and each k ∈ Eu, Nk(ω) ≥ M by (8.15), and hence
Nk(ω) ≥M+1 by (8.19) and (7.4)–(7.5). Hence by (8.15), for each u ∈ {1, 2, . . . , 6},

Eu = {k ∈ Z : a(e(u)) ≤ k < a(e(u) + 1) and Nk(ω) ≥M + 1} . (8.20)

For any t ∈ {0, 1, . . . , p − 1} − {e(1), e(2), . . . , e(6)} (see (8.13) and its entire
sentence), one has that j ≤ a(t) < ℓ by (8.10), a(t) 6= a(e(u)) = i(u) for each

u ∈ {1, 2, . . . , 6} by (8.10) and (8.13), and hence W
(M+1)
a(t) (ω) = 0 by (8.12). Hence

for each t ∈ {0, 1, . . . , p − 1} − {e(1), e(2), . . . , e(6)} and each k ∈ Z such that

a(t) ≤ k < a(t + 1), one has that δ
(M+1)
k (ω) = 0 by (8.18) and its entire sentence,

and hence Nk(ω) ≤ M by (7.4). Hence by (8.9), (8.10), and (8.20), the set E has
no elements other than the ones in the sets Eu, u ∈ {1, 2, . . . , 6}. In fact by (8.9)
and (8.20), one now has that

E = E1 ∪ E2 ∪ · · · ∪ E6, (8.21)

and by (8.10), (8.14), and (8.20) (see also (8.17)),

E1 < E2 < · · · < E6 (8.22)

(see section 2.1(D)). Hence by (8.17),

cardE = 6M+1. (8.23)

Thus statement (A) in Lemma 8.5 holds (for the given ω and E) with m = M+1.
By (8.16), (8.21), and (8.22), statement (C) in Lemma 8.5 holds (for the given ω and
E) with m = M + 1. To complete the induction step and the proof of Lemma 8.5,
our task now is to verify statement (B) (for the given ω and E) with m = M + 1.

Now refer to (8.16) and our induction assumption of statements (A) and (B) for
the case m = M . For each u ∈ {1, 2, . . . , 6}, referring to (8.17), representing the
set Eu by

Eu =
{
α(u, 1), α(u, 2), α(u, 3), . . . , α(u, 6M )

}

with α(u, 1) < α(u, 2) < · · · < α(u, 6M ),
(8.24)

one has that

J(M,α(u, v))(ω) = v − 1 for all v ∈ {1, 2, . . . , 6M}. (8.25)

Referring to (8.23), represent the set E by

E =
{
β(1), β(2), β(3), . . . , β(6M+1)

}
with β(1) < β(2) < · · · < β(6M+1). (8.26)

Then for each u ∈ {1, 2, . . . , 6}, by (8.17), (8.21), (8.22), and (8.26), the set Eu con-
tains precisely the elements β(6M (u− 1) + v), v ∈ {1, 2, . . . , 6M}. Hence by (8.24),

∀ u ∈ {1, 2, . . . , 6}, ∀ v ∈ {1, 2, . . . , 6M}, β
(
6M (u− 1) + v

)
= α(u, v). (8.27)

Now suppose r ∈ {1, 2, . . . , 6M+1}. Let u ∈ {1, 2, . . . , 6} and v ∈ {1, 2, . . . , 6M}
be such that

r = 6M (u − 1) + v. (8.28)

Then β(r) ∈ Eu by the sentence preceding (8.27), hence a(e(u)) ≤ β(r) < a(e(u)+

1) by (8.15), and hence δ
(M+1)
β(r) (ω) = W

(M+1)
a(e(u)) (ω) = u by (8.19). Also, β(r) =
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α(u, v) by (8.28) and (8.27). Hence by (7.7) (applied twice) and then (8.25)
and (8.28),

J(M + 1,β(r))(ω) =

M+1∑

q=1

6q−1
(
δ
(q)
β(r)(ω) − 1

)

= 6M ·
(
δ
(M+1)
β(r) (ω) − 1

)
+

M∑

q=1

6q−1
(
δ
(q)
β(r)(ω) − 1

)

= 6M (u− 1) +

M∑

q=1

6q−1
(
δ
(q)
α(u,v)(ω) − 1

)

= 6M (u− 1) + J(M,α(u, v))(ω)

= 6M (u− 1) + v − 1

= r − 1.

Since r ∈ {1, 2, . . . , 6M+1} was arbitrary, one has (see (8.26) again) that state-
ment (B) in Lemma 8.5 holds (for the given ω and E) with m = M + 1. That
completes the induction step and the proof of Lemma 8.5.

Definition 8.6. Recall from Definitions 8.1 and 8.3 and Lemma 8.5(A) that for
each ω ∈ Ω0 (see (6.20)), one has that (i) card E = 1 for each E ∈ D0(ω), and
(ii) for each m ∈ N and each E ∈ Em(ω) (and in particular, for each E ∈ Dm(ω)),
card E = 6m. Recall also Remarks 8.2(D)(E) and 8.4(B)(C).

(A) For each ℓ ∈ {0, 1, 2, . . .} and each set D ⊂ Z such that card D = 6ℓ, define
the set FD ⊂ Ω0 (see (6.20)) as follows:

FD := {ω ∈ Ω0 : D ∈ Dℓ(ω)}. (8.29)

(B) For each m ∈ N and each set E ⊂ Z such that card E = 6m, define the set
GE ⊂ Ω0 as follows:

GE := {ω ∈ Ω0 : E ∈ Em(ω)}. (8.30)

Remark 8.7. Refer to Lemma 8.5. Suppose m ∈ N, and E ⊂ Z is a set such that
card E = 6m.

(A) The set GE in (8.30) is the set of all ω ∈ Ω0 for which there exist integers
j and ℓ such that (8.1) and (8.2) hold. It follows that GE is an event (that
is, a member of the σ-field F in our given probability space (Ω,F , P )); and
further, by (7.5),

GE ∈ σ(W
(m)

). (8.31)

By the same argument, but with the inequalityNk(ω) ≥ m in (8.2) replaced
by Nk(ω) = m (see Remark 8.2(E) and Definition 8.3(B)), the set FE

in (8.29) is an event, and by (7.6),

FE ∈ σ(W
(m+1)

). (8.32)

(B) By Definitions 8.1, 8.3(B), and 8.6 (recall Remark 8.2(E) again),

FE ⊂ GE ; (8.33)

∀ ω ∈ FE , ∀ k ∈ E, Nk(ω) = m; and (8.34)

∀ ω ∈ GE − FE , ∀ k ∈ E, Nk(ω) ≥ m+ 1. (8.35)
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Remark 8.8. Equations (8.32) and (8.34) hold with m = 0 for any singleton set
E = {k} where k ∈ Z, by (8.29), Definition 8.3(A), and (7.6).

Definition 8.9. Refer to Constructions 7.3 and 7.4, to equations (6.10), (7.4),
and (7.7), and also particularly to Remark 7.2(B).

For each n ∈ N, define the sequences Y (n) := (Y
(n)
k , k ∈ Z) and X(n) := (X

(n)
k ,

k ∈ Z) of {−1, 1}–valued random variables as follows: For each k ∈ Z and each
ω ∈ Ω,

Y
(n)
k (ω) :=





X
(0)
k (ω) if Nk(ω) = 0

ζ
(ℓ,cen)
k−Ψ(ℓ,k,0)(ω),J(ℓ,k)(ω)(ω) if Nk(ω) = ℓ ∈ {1, 2, . . . , n− 1}
ζ
(n,ord)
k−Ψ(n,k,0)(ω),J(n,k)(ω)(ω) if Nk(ω) ≥ n,

(8.36)

and

X
(n)
k (ω) :=






X
(0)
k (ω) if Nk(ω) = 0

ζ
(ℓ,cen)
k−Ψ(ℓ,k,0)(ω),J(ℓ,k)(ω)(ω) if Nk(ω) = ℓ ∈ {1, 2, . . . , n}
ζ
(n,fri)
k−Ψ(n,k,0)(ω),J(n,k)(ω)(ω) if Nk(ω) ≥ n+ 1.

(8.37)

Of course in the right hand side of (8.36), the “middle” case is vacuous (and should
be omitted) if n = 1.

Remark 8.10. If k ∈ Z and D = {k}, then by Remark 8.8 (see equation (8.34))
and (8.36) and (8.37), for every ω ∈ FD, one has that

Y
(n)
k (ω) = X

(n)
k (ω) = X

(0)
k (ω) for all n ∈ N. (8.38)

Lemma 8.11. Suppose m ∈ N, and E ⊂ Z is a set such that

cardE = 6m. (8.39)

Then in the terminology of (2.3) and (2.4), the following statements hold:

(A) For every ω ∈ GE (see (8.30)),

Y
(m)
E (ω) = ζ

(m,ord)
min E (ω) (8.40)

and

X
(m)
E (ω) =ζ

(m,cen)
min E (ω) · I

(
W

(m+1)
min E = 0

)
(ω)

+ ζ
(m,fri)
min E (ω) · I

(
W

(m+1)
min E 6= 0

)
(ω).

(8.41)

(B) For every ω ∈ FE (see (8.29) and (8.33)),

Y
(n)
E (ω) = X

(n)
E (ω) = X

(m)
E (ω) = ζ

(m,cen)
min E (ω) for all n ≥ m+ 1. (8.42)

Proof. We shall prove statements (A) and (B) together.
Suppose ω ∈ GE .
Then by (8.39) and Definition 8.6(B), E ∈ Em(ω). Referring again to (8.39),

represent the set E by

E = {e(1), e(2), e(3), . . . , e(6m)} where e(1) < e(2) < · · · < e(6m). (8.43)

Also, referring to Definition 8.1 and Remark 8.2(B), let j and ℓ be the integers such
that (8.1) and (8.2) hold. We shall refer freely to (8.1) and (8.2) in the arguments
below. By Remark 8.2(A), (8.2), and (8.43),

j = min E = e(1) and ℓ > e(6m). (8.44)
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For each k ∈ E, by (8.1), (8.2), (6.10), and Definition 2.2, Ψ(m, k, 0)(ω) = k − j.
Hence by (8.43),

∀ u ∈ {1, 2, . . . , 6m}, j = e(u) − Ψ(m, e(u), 0)(ω). (8.45)

Also, by (8.43) and (8.2),

∀ u ∈ {1, 2, . . . , 6m}, Ne(u)(ω) ≥ m. (8.46)

Proof of (8.40). For each u ∈ {1, 2, . . . , 6m}, by (8.46) and (8.36), followed
by (8.45), (8.43), and Lemma 8.5(B) (recall also section 7.3(B)),

Y
(m)
e(u) (ω) = ζ

(m,ord)
e(u)−Ψ(m,e(u),0)(ω),J(m,e(u))(ω)(ω) = ζ

(m,ord)
j,u−1 (ω). (8.47)

Hence by (8.43) and (8.44) (see (2.3), (2.4), and section 7.3(B)), one obtains (8.40)
via

Y
(m)
E (ω) = ζ

(m,ord)
j (ω) = ζ

(m,ord)
min E (ω). (8.48)

Proof of (8.41). If W
(m+1)
min E (ω) = 0, then Ne(u)(ω) = m for all u ∈ {1, 2, . . . , 6m}

by (8.43) and Remark 8.2(E)(i), and following the argument for (8.40) (but us-
ing (8.37) instead of (8.36)), one obtains (8.47) and (8.48) with the letters “Y ”
and “ord” replaced by “X” and “cen,” and in this case (8.41) holds. If instead

W
(m+1)
min E (ω) 6= 0, then Ne(u)(ω) ≥ m+1 for all u ∈ {1, 2, . . . , 6m} by (8.43) and Re-

mark 8.2(E)(ii), and with the same argument, one obtains (8.47) and (8.48) with
“Y ” and “ord” replaced by “X” and “fri,” and in this case too equation (8.41)
holds.
Proof of (8.42). Suppose ω ∈ FE (assumed for (8.42)). Then E ∈ Dm(ω) by
Definition 8.6(A), and hence Ne(u)(ω) = m for all u ∈ {1, 2, . . . , 6m} by (8.43) and
Definition 8.3(B). Hence by (8.36) and (8.37) (applied twice), for each n ≥ m+ 1
and each u ∈ {1, 2, . . . , 6m},

Y
(n)
e(u)(ω) = X

(n)
e(u)(ω) = ζ

(m,cen)
e(u)−Ψ(m,e(u),0)(ω),J(m,e(u))(ω)(ω) = X

(m)
e(u)(ω).

Hence (see (8.43) again) for each n ≥ m+ 1, Y
(n)
E (ω) = X

(n)
E (ω) = X

(m)
E (ω). Since

Ne(u)(ω) = m for all u ∈ {1, 2, . . . , 6m} (as was noted above), W
(m+1)
min E (ω) = 0 must

hold by Remark 8.2(E), and the final equality in (8.42) now follows from (8.41).
That completes the proof of Lemma 8.11.

Definition 8.12. Suppose n ∈ N. Suppose Q := {Q(1), Q(2), . . . , Q(L)} (where L
is a positive integer) is a (finite, nonempty) collection of (pairwise) disjoint subsets
of Z such that

cardQ(ℓ) ∈ {1, 6, 62, 63, . . . , 6n} for all ℓ ∈ {1, 2, . . . , L}. (8.49)

(There is no assumption of an “ordering” of these sets; elements of one set Q(i)
may be between elements of another set Q(j). Also, it is tacitly understood that L
can be 1, in which case the phrase “(pairwise) disjoint” is meaningless and should
be omitted.) Define the (possibly empty) set

I := I(n,Q) := {ℓ ∈ {1, . . . , L} : cardQ(ℓ) = 6n}. (8.50)

Define the event H(n)(Q) by (see (8.29)–(8.30))

H(n)(Q) :=




⋂

ℓ∈{1,...,L}−I

FQ(ℓ)




⋂
[
⋂

ℓ∈I

GQ(ℓ)

]
. (8.51)
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Here (if necessary), define the “vacuous intersection” by
⋂

ℓ∈∅(. . . ) := Ω (the sample
space itself).

It is easy to see that this definition of the event H(n)(Q) does not depend on the
particular order in which the sets in Q are labeled (as Q(ℓ), ℓ ∈ {1, . . . , L}).
Lemma 8.13. Suppose n ∈ N. In the context of Definition 8.12, with (8.49)
satisfied and with I and H(n)(Q) defined as in (8.50) and (8.51), suppose

P
(
H(n)(Q)

)
> 0. (8.52)

For each ℓ ∈ {1, 2, . . . , L}, define the integer

q(ℓ) := min Q(ℓ). (8.53)

Then the following statements hold:

(A) One has that H(n)(Q) ∈ σ(W
(n)

). Also, for each ω ∈ H(n)(Q) and each

ℓ ∈ I (if I is nonempty), W
(n)
q(ℓ)(ω) = 1.

(B) For each ω ∈ H(n)(Q) and each ℓ ∈ {1, 2, . . . , L} such that cardQ(ℓ) = 1
(and hence Q(ℓ) = {q(ℓ)}), one has that

X
(n−1)
q(ℓ) (ω) = Y

(n)
q(ℓ)(ω) = X

(n)
q(ℓ)(ω) = X

(0)
q(ℓ)(ω). (8.54)

(C) For each ω ∈ H(n)(Q), each m ∈ {1, . . . , n − 1} (if n ≥ 2), and each
ℓ ∈ {1, . . . , L} such that cardQ(ℓ) = 6m, one has that (see (2.3) and (2.4))

X
(n−1)
Q(ℓ) (ω) = Y

(n)
Q(ℓ)(ω) = X

(n)
Q(ℓ)(ω) = ζ

(m,cen)
q(ℓ) (ω). (8.55)

(D) For any given ω ∈ H(n)(Q) and any given ℓ ∈ I (see (8.50)), representing
the set Q(ℓ) by Q(ℓ) := {z(1), z(2), . . . , z(6n)} where z(1) < z(2) < · · · <
z(6n) (and hence z(1) = q(ℓ)), and denoting y(u) := z((u − 1) · 6n−1 +
1) for u ∈ {1, 2, . . . , 6} (and hence y(1) = z(1) = q(ℓ)), one has (see
section 2.1(C)) that

X
(n−1)
Q(ℓ) (ω) =

〈
ζ
(n−1,fri)
q(ℓ) (ω), ζ

(n−1,fri)
y(2) (ω), ζ

(n−1,fri)
y(3) (ω),

ζ
(n−1,fri)
y(4) (ω), ζ

(n−1,fri)
y(5) (ω), ζ

(n−1,fri)
y(6) (ω)

〉 (8.56)

(with ζ
(0,fri)
k (ω) := X

(0)
k (ω) for all k ∈ Z in the case n = 1),

Y
(n)
Q(ℓ)(ω) = ζ

(n,ord)
q(ℓ) (ω) (8.57)

and

X
(n)
Q(ℓ)(ω) =ζ

(n,cen)
q(ℓ) (ω) · I

(
W

(n+1)
q(ℓ) = 0

)
(ω)

+ ζ
(n,fri)
q(ℓ) (ω) · I

(
W

(n+1)
q(ℓ) 6= 0

)
(ω).

(8.58)

(E) Refer to (8.52) and (8.50). The random variables I(W
(n+1)
q(ℓ) 6= 0), ℓ ∈

I, the random variables X
(0)
k , k ∈ Z, and the random variables ζ

(i,ord)
k ,

ζ
(i,cen)
k , ζ

(i,fri)
k , i ∈ N, k ∈ Z are conditionally independent given the event

H(n)(Q). Also, for each ℓ ∈ I, conditional on H(n)(Q), the random variable

I(W
(n+1)
q(ℓ) 6= 0) takes the value 0 resp. 1 with probability 5/8 resp. 3/8.
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(F) The random vectors X
(n−1)
Q(ℓ) , ℓ ∈ {1, . . . , L} are conditionally independent

given H(n)(Q).

(G) The random vectors Y
(n)
Q(ℓ), ℓ ∈ {1, . . . , L} are conditionally independent

given H(n)(Q).

(H) The random vectors X
(n)
Q(ℓ), ℓ ∈ {1, . . . , L} are conditionally independent

given H(n)(Q).
(I) Refer to (8.50), Section 2.5(A)(B), and Definition 3.3. For each ℓ ∈ I, one

has that

(i) L
(
X

(n−1)
Q(ℓ)

∣∣∣H(n)(Q)
)

=
(
ν

(n−1)
fri

)[6]

and

(ii) L
(
Y

(n)
Q(ℓ)

∣∣∣H(n)(Q)
)

= L
(
X

(n)
Q(ℓ)

∣∣∣H(n)(Q)
)

= ν
(n)
ord.

(J) Recall from Section 2.1(H) the notation union(Q) := Q(1) ∪ Q(2) ∪ · · · ∪
Q(L). One has that L

(
Y

(n)
union(Q)

∣∣∣H(n)(Q)
)

= L
(
X

(n)
union(Q)

∣∣∣H(n)(Q)
)
.

(K) Suppose S is a nonempty finite subset of Z such that S ∩ union(Q) is
nonempty and card(S ∩Q(ℓ)) ≤ 5 for all ℓ ∈ {1, . . . , L}. Then

L
(
X

(n−1)
S ∩ union(Q)

∣∣∣H(n)(Q)
)

= L
(
Y

(n)
S ∩ union(Q)

∣∣∣H(n)(Q)
)
.

(L) For any nonempty set S ⊂ Q(1) ∪Q(2) ∪ · · · ∪Q(L), one has that

E



(
∑

k∈S

X
(n−1)
k

)6 ∣∣∣∣∣H
(n)(Q)


 ≥ E



(
∑

k∈S

Y
(n)
k

)6 ∣∣∣∣∣H
(n)(Q)


 . (8.59)

(M) Suppose ℓ ∈ I (see (8.50)) and S is a set such that Q(ℓ) ⊂ S ⊂ Q(1) ∪
Q(2) ∪ · · · ∪Q(L). Then

E




(
∑

k∈S

X
(n−1)
k

)6 ∣∣∣∣∣H
(n)(Q)





≥ E




(
∑

k∈S

Y
(n)
k

)6 ∣∣∣∣∣H
(n)(Q)



+ 720 · 46(n−1).

(8.60)

Proof. Let us first prove statement (A). For each ℓ ∈ {1, . . . , L} − I, letting
m(ℓ) ∈ {0, 1, . . . , n− 1} denote the integer such that card Q(ℓ) = 6m(ℓ) (see (8.49)

and (8.50)), one has that FQ(ℓ) ∈ σ(W
(m(ℓ)+1)

) ⊂ σ(W
(n)

) by (8.32) (see sec-

tion 6.3(E) again). For each ℓ ∈ I, GQ(ℓ) ∈ σ(W
(n)

) by (8.31) (and (8.50)). Hence

H(n)(Q) ∈ σ(W
(n)

) by (8.51). Also, for each ω ∈ H(n)(Q) and each ℓ ∈ I, one
has that ω ∈ GQ(ℓ) by (8.51), hence Q(ℓ) ∈ En(ω) by (8.50) and Definition 8.6(B),

hence W
(n)
q(ℓ)(ω) = 1 by (8.53), (8.3), and (8.1). Both parts of statement (A) have

been proved.
Proof of (B). For each ω ∈ H(n)(Q) and each ℓ ∈ {1, . . . , L} such that cardQ(ℓ) =
1, one has that ω ∈ FQ(ℓ) by (8.50) and (8.51), and hence (8.54) holds by (8.53)
and (8.38) (regardless of whether n = 1 or n ≥ 2).
Proof of (C). If ω ∈ H(n)(Q), m ∈ {1, . . . , n−1}, ℓ ∈ {1, . . . , L}, and cardQ(ℓ) =
6m, then ω ∈ FQ(ℓ) by (8.50) and (8.51), and hence (8.55) holds by (8.53) and (8.42)
(regardless of whether n− 1 = m or n− 1 > m).
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Proof of (D). Suppose ω ∈ H(n)(Q) and ℓ ∈ I. Then ω ∈ GQ(ℓ) by (8.51). Refer-
ring to (8.53), one can apply (8.40) and (8.41) with m = n (see (8.39) and (8.50)),
and thereby one obtains (8.57) and (8.58). The remaining task is to prove (8.56).

If n = 1, and hence cardQ(ℓ) = 6, then in the terminology of statement (D),
Q(ℓ) := {z(1), z(2), . . . , z(6)} where z(1) < z(2) < · · · < z(6), also y(u) = z(u) for
each u ∈ {1, . . . , 6} (and q(ℓ) = y(1) = z(1)), hence

X
(n−1)
Q(ℓ) (ω) =

(
X

(0)
q(ℓ)(ω), X

(0)
y(2)(ω), X

(0)
y(3)(ω), . . . , X

(0)
y(6)(ω)

)
,

and thus (8.56) holds (see the phrase right after (8.56)).
Now suppose instead that n ≥ 2. Recall again from (8.51) that ω ∈ GQ(ℓ) (since

ℓ ∈ I). By (8.30), Q(ℓ) ∈ En(ω). Hence by (8.2),

∀ k ∈ Q(ℓ), Nk(ω) ≥ n. (8.61)

Applying Lemma 8.5(C) (with m = n), let E(1), E(2), . . . , E(6) be sets ⊂ Z such
that E(1) ∪ E(2) ∪ · · · ∪ E(6) = Q(ℓ), E(1) < E(2) < · · · < E(6), and E(u) ∈
En−1(ω) for each u ∈ {1, . . . , 6}. For each u ∈ {1, . . . , 6}, card E(u) = 6n−1 by
Lemma 8.5(A) (applied with m = n − 1). It follows that in the terminology of
statement (D) (here in Lemma 8.13), for each u ∈ {1, . . . , 6},

E(u) =
{
z((u− 1) · 6n−1 + 1), z((u− 1) · 6n−1 + 2), . . . , z(u · 6n−1)

}
,

and hence also minE(u) = y(u) (recall also that y(1) = q(ℓ)). Also (see sec-
tion 2.1(C))

X
(n−1)
Q(ℓ) (ω) =

〈
X

(n−1)
E(1) (ω), X

(n−1)
E(2) (ω), . . . , X

(n−1)
E(6) (ω)

〉
.

For each u ∈ {1, . . . , 6}, since E(u) ∈ En−1(ω) (as was noted above), one has

by (8.61) and Remark 8.2(E) that W
(n)
y(u)(ω) 6= 0 must hold, and hence by (8.41),

X
(n−1)
E(u) (ω) = ζ

(n−1,fri)
y(u) (ω). Equation (8.56) follows. That completes the proof of

statement (D).

Proof of (E). By statement (A), H(n)(Q) = H(n)(Q)
⋂

[
⋂

ℓ∈I{W
(n)
q(ℓ) = 1}]. Hence

by ((8.52) and) Lemma 6.4(D), conditional on the event H(n)(Q), the {0, 1}–valued

random variables I(W
(n+1)
q(ℓ) 6= 0), ℓ ∈ I are independent, with each taking the value

0 resp. 1 with probability 5/8 resp. 3.8. Also, the random sequences ξ
(∞)

, ζ
(∞)

, and
X(0) are independent by Constructions 7.3 and 7.4; and hence the random sequences

W
(n+1)

, ζ
(∞)

, and X(0) are independent by (6.5) (and Definition 2.6). Also, the

random variables X
(0)
k , k ∈ Z and ζ

(i,ord)
k , ζ

(i,cen)
k , and ζ

(i,fri)
k , i ∈ N, k ∈ Z are

all independent of each other, by Constructions 7.3(A) and 7.4(A). Putting these
pieces (and the first sentence of statement (A)) together, one obtains statement (E)
by an awkward but trivial calculation involving conditional probabilities.
Proof of (F), (G), and (H). We shall just give the argument for (H). The
arguments for (F) and (G) are similar, using (8.56) resp. (8.57) in the places where
(in the argument below for (H)) (8.58) is used. (Keep in mind that here in our
context of Definition 8.12, the sets Q(ℓ), ℓ ∈ {1, 2, . . . , L} are (pairwise) disjoint (if
L ≥ 2).)
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Define the random variables (vectors) Zℓ, ℓ ∈ {1, . . . , L} as follows: For ω ∈ Ω0,

Zℓ(ω) :=





X
(0)
q(ℓ)(ω) if card Q(ℓ) = 1

ζ
(m,cen)
q(ℓ) (ω) if card Q(ℓ) = 6m where m ∈ {1, . . . , n− 1}

[RHS of (8.58)] if ℓ ∈ I
(8.62)

(Of course in the right hand side of (8.62), the “middle” part is vacuous, and should
be omitted, if n = 1.)

By statement (E) (and the trivial fact that I(W
(n+1)
q(ℓ) = 0) = 1− I(W

(n+1)
q(ℓ) 6= 0)

for ℓ ∈ I), the random variables Z1, Z2, . . . , ZL are conditionally independent given

H(n)(Q). Also, by (8.54), (8.55), (8.58), and (8.62), X
(n)
Q(ℓ)(ω) = Zℓ(ω) for each

ω ∈ H(n)(Q) and each ℓ ∈ {1, . . . , L}. Hence (see section 2.5(A))

L
((
X

(n)
Q(1), X

(n)
Q(2), . . . , X

(n)
Q(L)

) ∣∣∣H(n)(Q)
)

= L
(
(Z1, Z2, . . . , ZL)

∣∣∣H(n)(Q)
)

= L
(
Z1

∣∣∣H(n)(Q)
)
× · · · × L

(
ZL

∣∣∣H(n)(Q)
)

= L
(
X

(n)
Q(1)

∣∣∣H(n)(Q)
)
× · · · × L

(
X

(n)
Q(L)

∣∣∣H(n)(Q)
)
.

Thus (H) holds.
Proof of (I). Suppose ℓ ∈ I. Recall the first sentence in statement (A), and

recall from the proof of (E) that the random sequences W
(n+1)

, ζ
(∞)

, and X(0) are
independent of each other. By Construction 7.3(A) and equation (8.56) (see also
Section 2.5(A)(B)),

L
(
X

(n−1)
Q(ℓ)

∣∣∣H(n)(Q)
)

= L
(
[RHS of (8.56)]

∣∣∣H(n)(Q)
)

= L([RHS of (8.56)]) =
(
ν

(n−1)
fri

)[6]

.

Thus statement (i) in (I) holds. The equality L(Y
(n)
Q(ℓ) | H(n)(Q)) = ν

(n)
ord in state-

ment (ii) holds by a similar argument using (8.57) instead of (8.56). To obtain
the final equality in statement (ii), note that for any a ∈ {−1, 1}sxtp(n) (see (2.1)),
by (8.58), statement (E), the first sentence of (A), Construction 7.3(A), and Re-
mark 3.4,

P
(
X

(n)
Q(ℓ) = a

∣∣∣H(n)(Q)
)

= P
(
W

(n+1)
q(ℓ) = 0

∣∣∣H(n)(Q)
)
· P
(
X

(n)
Q(ℓ) = a

∣∣∣
{
W

(n+1)
q(ℓ) = 0

}
∩H(n)(Q)

)

+ P
(
W

(n+1)
q(ℓ) 6= 0

∣∣∣H(n)(Q)
)

· P
(
X

(n)
Q(ℓ) = a

∣∣∣
{
W

(n+1)
q(ℓ) 6= 0

}
∩H(n)(Q)

)

= (5/8) · P
(
ζ
(n,cen)
q(ℓ) = a

∣∣∣
{
W

(n+1)
q(ℓ) = 0

}
∩H(n)(Q)

)

+ (3/8) · P
(
ζ
(n,fri)
q(ℓ) = a

∣∣∣
{
W

(n+1)
q(ℓ) 6= 0

}
∩H(n)(Q)

)

= (5/8) · P
(
ζ
(n,cen)
q(ℓ) = a

)
+ (3/8) · P

(
ζ
(n,fri)
q(ℓ) = a

)

= (5/8) · ν(n)
cen({a}) + (3/8) · ν(n)

fri ({a}) = ν
(n)
ord({a}).
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Thus the last equality in statement (ii) in (I) holds. That completes the proof of
statement (I).
Proof of (J). Recall again that the sets Q(ℓ), ℓ ∈ {1, 2, . . . , L} are (pairwise)
disjoint (if L ≥ 2). By statements (B), (C), and I(ii),

L
(
Y

(n)
Q(ℓ)

∣∣∣H(n)(Q)
)

= L
(
X

(n)
Q(ℓ)

∣∣∣H(n)(Q)
)

for each ℓ ∈ {1, . . . , L}. Hence statement (J) holds by statements (G) and (H).
Proof of (K). By statements (F) and (G), it suffices to prove that for each ℓ ∈
{1, . . . , L} such that S∩Q(ℓ) is nonempty, one has that (see (2.4) and section 2.5(A)
again)

L
(
X

(n−1)
S∩Q(ℓ)

∣∣∣H(n)(Q)
)

= L
(
Y

(n)
S∩Q(ℓ)

∣∣∣H(n)(Q)
)
.

For ℓ 6∈ I (see (8.50)), that holds trivially by (8.54) and (8.55). For ℓ ∈ I, it holds
by statement (I)(i)(ii), Lemma 3.7(A), and the assumption (in statement (K)) that
card(S ∩Q(ℓ)) ≤ 5. Thus (K) holds.
Proof of (L) and (M). First just suppose S is a nonempty subset of Q(1)∪Q(2)∪
· · · ∪Q(L). For a given vector (k(1), k(2), . . . , k(6)) ∈ S6 (the coordinates need not
be distinct), if the set K := {k(1), k(2), . . . , k(6)} intersects at least two of the sets
Q(ℓ) (and hence card(K ∩Q(ℓ)) ≤ 5 for each ℓ ∈ {1, . . . , L}), then by statements
(F), (G), and (K),

E

[
6∏

u=1

X
(n−1)
k(u)

∣∣∣∣H
(n)(Q)

]
= E

[
6∏

u=1

Y
(n)
k(u)

∣∣∣∣H
(n)(Q)

]
. (8.63)

Also, by (8.54) and (8.55), equation (8.63) holds if k(1), . . . , k(6) are elements of
the same set Q(ℓ) where ℓ 6∈ I. Hence the two sides of (8.63) can differ only in
(some) cases where k(1), . . . , k(6) are elements of the same set Q(ℓ) where ℓ ∈ I.
Hence, using the notation T ↑ 6 := T × T × T × T × T × T for a given set T , one
has that

E

[(
∑

k∈S

X
(n−1)
k

)6 ∣∣∣∣∣H
(n)(Q)

]
− E

[(
∑

k∈S

Y
(n)
k

)6 ∣∣∣∣∣H
(n)(Q)

]

=
∑

(k(1),...,k(6))∈S↑6

([LHS of (8.63)] − [RHS of (8.63)])

=
∑

ℓ∈I

∑

(k(1),...,k(6))∈(S∩Q(ℓ))↑6

([LHS of (8.63)] − [RHS of (8.63)])

=
∑

ℓ∈I

[
E

[


∑

k∈S∩Q(ℓ)

X
(n−1)
k




6 ∣∣∣∣∣H

(n)(Q)

]

− E

[


∑

k∈S∩Q(ℓ)

Y
(n)
k




6 ∣∣∣∣∣H

(n)(Q)

] ]
.

(8.64)

Hence by statement I(i)(ii) and Lemma 3.7(B), equation (8.59) holds. Now if also
S ⊃ Q(ℓ) for some ℓ ∈ I, then by (8.64), statement I(i)(ii), and Lemma 3.7(B)(C),
equation (8.60) holds. That completes the proofs of (L) and (M) and of Lemma 8.13.

Definition 8.14. Suppose S is a nonempty finite subset of Z, and n is a positive
integer. A “class C(n) covering of S” is a family Q := {Q(1), Q(2), . . . , Q(L)} of
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finitely many subsets of Z (where L is the number of sets in the family Q) with the
following four properties:

(i) For each ℓ ∈ {1, . . . , L}, card Q(ℓ) ∈ {1, 6, 62, . . . , 6n}.
(ii) The sets Q(1), Q(2), . . . , Q(L) are (pairwise) disjoint (if L ≥ 2).
(iii) S ⊂ Q(1) ∪Q(2) ∪ · · · ∪Q(L).
(iv) For each ℓ ∈ {1, . . . , L}, the set S ∩Q(ℓ) is nonempty.

Lemma 8.15. Suppose S is a nonempty finite subset of Z, n is a positive integer,
and ω ∈ Ω0. Then there exists exactly one class C(n) covering Q of S such that
(see (8.50)–(8.51)) ω ∈ H(n)(Q). That covering Q is the family of all sets

D ∈ [D0(ω) ∪ D1(ω) ∪ · · · ∪ Dn−1(ω)] ∪ En(ω)

such that the set D ∩ S is nonempty

Proof. Suppose S, n and ω are as in the statement of Lemma 8.15. Referring to
Definitions 8.1 and 8.3, define the family Pn of subsets of Z by

Pn := [D0(ω) ∪D1(ω) ∪ · · · ∪ Dn−1(ω)] ∪ En(ω). (8.65)

Then by Remark 8.4(C), Pn is a partition of the set Z itself into countably many
nonempty finite sets.

Let Q∗ denote the family of all sets D ∈ Pn such that the set D∩S is nonempty.
Since the set S is finite and the members of Pn (and hence of Q∗) are (pairwise)
disjoint, the family Q∗ has only finitely many sets. By (8.65), Lemma 8.5(A),
and Definition 8.3(A)(B), the family Q∗ satisfies property (i) in Definition 8.14.
Properties (ii), (iii), and (iv) in Definition 8.14 hold for Q∗ as trivial consequences
of the definition of Q∗ and the fact that Pn is a partition of Z. Thus Q∗ is (by
Definition 8.14) a class C(n) covering of S.

Our next task is to show that ω ∈ H(n)(Q∗). Refer to property (i) in Defini-
tion 8.14 and refer to Lemma 8.5(A) again. For each m ∈ {0, 1, . . . , n − 1} and
each D ∈ Q∗ such that cardD = 6m, one must have that D ∈ Dm(ω) by (8.65)
(since D ∈ Pn but D cannot belong to Du(ω) or even Eu(ω) for any u 6= m by
Lemma 8.5(A)), and hence ω ∈ FD by (8.29). For each D ∈ Q∗ such that card
D = 6n, one similarly has that D ∈ En(ω) by (8.65) and hence ω ∈ GD by (8.30).
Hence by (8.50)–(8.51), ω ∈ H(n)(Q∗) (which is simply the intersection of the
various events FD and GD mentioned above).

By the definition of Q∗ and its properties identified above, all of Lemma 8.15
has been proved except for uniqueness.

Suppose Q is any class C(n) covering of the set S such that ω ∈ H(n)(Q). To
prove uniqueness in Lemma 8.15, our task is to show that Q = Q∗. Refer again to
property (i) in Definition 8.14. For each m ∈ {0, 1, . . . , n−1} and each D ∈ Q such
that cardD = 6m, one has that ω ∈ FD (since H(n)(Q) ⊂ FD by (8.50)–(8.51)),
hence D ∈ Dm(ω) by (8.29), hence D ∈ Pn by (8.65). For each D ∈ Q such
that cardD = 6n, one similarly has that ω ∈ GD (again by (8.50)–(8.51)), hence
D ∈ En(ω) by (8.30), hence D ∈ Pn by (8.65). Hence Q ⊂ Pn.

If D ∈ Pn and the set D∩S is empty, then (by property (iv) in Definition 8.14))
D cannot belong to Q. If D ∈ Pn and (instead) the set D ∩ S is nonempty, then
(by property (iii) in Definition 8.14), D must belong to Q (since no other set in Pn

will contain a given k ∈ D ∩ S). Hence Q = Q∗ (by the definition of Q∗). That
completes the proof of uniqueness, and of Lemma 8.15.
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Lemma 8.16. Suppose n ∈ N. Then the following four statements hold:

(A) The random sequences Y (n) and X(n) have the same distribution
(on {−1, 1}Z).

(B) For any nonempty set S ⊂ Z such that cardS ≤ 5, the random vectors

X
(n−1)
S and Y

(n)
S (see (2.4)) have the same distribution (on {−1, 1}cardS).

(C) For any nonempty finite set S ⊂ Z, E(
∑

k∈S X
(n−1)
k )6 ≥ E(

∑
k∈S Y

(n)
k )6.

(D) For any integer m ≥ 6 · 16n,

E

(
m∑

k=1

X
(n−1)
k

)6

≥ E

(
m∑

k=1

Y
(n)
k

)6

+ 360 · 46(n−1).

Proof. Before addressing any of the four statements (A)—(D) in Lemma 8.16, let
us present some arguments that will be common to the proofs of all four statements.

Let n ∈ N be arbitrary but fixed.
Suppose S is a nonempty finite subset of Z.
Since there are only countably many finite subsets of Z, there exist only count-

ably many finite families of finite subsets of Z, and hence (see Definition 8.14) only
countably many class C(n) coverings Q of S. For each such Q, H(n)(Q) ⊂ Ω0 (again
see (6.20)–(6.21)) by (8.29), (8.30), and (8.50)–(8.51). By Lemma 8.15, the events
H(n)(Q), for class C(n) coverings Q of S, form a countable partition of Ω0. (Some
of those events H(n)(Q) may be empty.)

In the sums below, the index Q ranges over all class C(n) coverings of S such that
P (H(n)(Q)) > 0. By a simple argument (see section 2.5(A) and equation (2.4)),

L
(
Y

(n)
S

)
=
∑

Q

L
(
Y

(n)
S

∣∣∣H(n)(Q)
)
· P
(
H(n)(Q)

)
, (8.66)

and the analogous statements holds with Y
(n)
S replaced by X

(n−1)
S and by X

(n)
S .

For each such covering Q (with P (H(n)(Q)) > 0), one has that

L(Y
(n)

S | H(n)(Q)) = L(X
(n)
S | H(n)(Q))

by Lemma 8.13(J) and property (iii) in Definition 8.14. Hence by (8.66) and its ana-

log for X
(n)
S , one has that L(Y

(n)
S ) = L(X

(n)
S ). Since S was an arbitrary nonempty

finite subset of Z, statement (A) in Lemma 8.16 follows.
Next, in the case where cardS ≤ 5, an exactly analogous argument holds with

X
(n)
S replaced byX

(n−1)
S , using Lemma 8.13(K). Thus statement (B) in Lemma 8.16

holds.
Next (regardless of the (finite) cardinality of S),

E

(
∑

k∈S

X
(n−1)
k

)6

− E

(
∑

k∈S

Y
(n)
k

)6

=
∑

Q

E



(
∑

k∈S

X
(n−1)
k

)6

−
(
∑

k∈S

Y
(n)
k

)6 ∣∣∣∣∣H
(n)(Q)


 · P (H(n)(Q)).

(8.67)

Hence by Lemma 8.13(L), statement (C) in Lemma 8.16 holds.
Proof of statement (D). Suppose (for our given n ∈ N) that m ≥ 6 · 16n. Now
let S := {1, 2, . . . ,m}.
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Let B denote the set (event) of all ω ∈ Ω0 such that there exist distinct integers

i, j ∈ {1, 2, . . . , 6 · 16n} such that W
(n)
i (ω) = W

(n)
j (ω) = 1.

Suppose ω ∈ B. Then by Definition 8.1 and a trivial argument, there exists a
set E ∈ En(ω) such that E ⊂ {1, 2, . . . , 6 ·16n} (and hence E ⊂ {1, 2, . . . ,m}). Now
card E = 6n by Lemma 8.5(A). Also, by Lemma 8.15, E is a member of the unique
class C(n) covering Q of {1, 2, . . . ,m} such that ω ∈ H(n)(Q).

Hence B ⊂ ⋃Q∈J H(n)(Q) where J denotes the family of all class C(n) coverings
Q of {1, 2, . . . ,m} such that Q contains at least one member E such that E ⊂
{1, 2, . . . ,m} and card E = 6n. Let J+ denote the family of all Q ∈ J such that
P (H(n)(Q)) > 0. Now by Lemma 6.7, P (B) ≥ 1/2. Hence

∑
Q∈J+ P (H(n)(Q)) ≥

1/2.
Now by (8.67), together with Lemma 8.13(M) (for Q ∈ J+) and Lemma 8.13(L)

(for the other Q’s such that P (H(n)(Q)) > 0),

[LHS of (8.67)] ≥
∑

Q∈J+

720 · 46(n−1) · P (H(n)(Q)) ≥ 360 · 46(n−1).

Thus statement (D) in Lemma 8.16 holds. That completes the proof.

Lemma 8.17.
(A) For every n ∈ N and every nonempty set S ⊂ Z with cardS ≤ 5, one has

that (see (2.4) and section 2.5(A))

L(X
(n)
S ) = L(X

(0)
S ).

(B) If m and N are positive integers such that m ≥ 6 · 16N , then for every
n ≥ N ,

E

(
m∑

k=1

X
(n)
k

)6

≤ 15m3 − 360 · 46(N−1).

Proof. Statement (A) follows from Lemma 8.16(A)(B) and induction.
Proof of (B). Suppose m and N are as in statement (B). Refer to Construc-

tion 7.4(A). Obviously E(X
(0)
0 )ℓ = 1 resp. 0 if ℓ is an even resp. odd integer. Hence

by a well known, elementary calculation (the “6th moment” analog of the argu-
ment, involving 4th moments, in Billingsley, 1995, proof of Theorem 6.1), one that

E(
∑m

k=1X
(0)
k )6 ≤ 15m3. Also, by Lemma 8.16 (A)(C), the sequence of numbers

E(
∑m

k=1X
(n)
k )6, n ∈ {0, 1, 2, . . .} is nonincreasing. Also, by Lemma 8.16(A)(D),

E

(
m∑

k=1

X
(N)
k

)6

≤ E

(
m∑

k=1

X
(N−1)
k

)6

− 360 · 46(N−1).

Combining these three preceding sentences, one obtains statement (B) in
Lemma 8.17.

9. Proof of properties (A), (B), (E), and (F) in Theorem 1.1

This section contains arguments somewhat reminiscent of ones in Bradley and
Pruss (2009); but because of some nontrivial differences, the arguments here will
be given in full.
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By Lemma 7.6 and Remark 7.7, the random sequence X := (Xk, k ∈ Z) defined
in (7.14) satisfies strict stationarity and Property (C) in Theorem 1.1 Here in Sec-
tion 9, it will be shown that the sequence X satisfies properties (A), (B), (E), and
(F) in Theorem 1.1. Finally in Section 10, property (D) (the triviality of the double
tail σ-field) will be verified, and the proof of Theorem 1.1 will then be complete.

We start with some preliminary arguments. By (7.14), (8.36), (8.37), and Con-

structions 7.3 and 7.4, the random variables Xk, X
(0)
k , X

(n)
k , Y

(n)
k , k ∈ Z, n ∈ N

all take their values in the set {−1, 1}.
For each k ∈ Z, P (Nk = ∞) = 0 by Lemma 7.8. For each k ∈ Z and each ω ∈ Ω

such that Nk(ω) < ∞, one has by (7.14) and (8.37) that Xk(ω) = X
(n)
k (ω) for all

n ≥ Nk(ω). Thus trivially,

∀ k ∈ Z, X
(n)
k → Xk a.s. as n→ ∞. (9.1)

Now let us prove properties (A), (B), (E), and (F) in Theorem 1.1.
Proof of (A) and (B). Suppose S is any nonempty subset of Z such that cardS ≤
5. By (9.1) (see also (2.4)), X

(n)
S → XS a.s. as n → ∞. As an elementary

consequence, X
(n)
S ⇒ XS (convergence in distribution) as n → ∞. Hence by

Lemma 8.17(A) (see also Section 2.5(A)), L(XS) = L(X
(0)
S ).

That last equality has two consequences: First, taking S = {k} for an arbitrary
k ∈ Z and applying (7.12), one obtains property (A) in Theorem 1.1. Second,
taking arbitrary subsets S ⊂ Z with cardS = 5, and applying the independence of

the X
(0)
k ’s in Construction 7.4(A), one obtains property (B) in Theorem 1.1.

Proof of property (E). We shall now use the notations in (1.1). Let M be an
arbitrary but fixed integer such that M ≥ 96. To prove property (E), it suffices to
show that

E
[
M−1/2S(X,M)

]6
≤ 15 − 16−6. (9.2)

Let N be the positive integer such that

6 · 16N ≤M < 6 · 16N+1. (9.3)

By (9.3) and Lemma 8.17(B),

∀ n ≥ N, E
[
S(X(n),M)

]6
≤ 15M3 − 360 · 46(N−1). (9.4)

Now for each n ∈ N, [S(X(n),M)]6 ≤ M6 (since each X
(n)
k takes its values in

{−1, 1}). Also, as a trivial consequence of (9.1), [S(X(n),M)]6 → [S(X,M)]6 a.s.
as n → ∞. Hence by dominated convergence, E[S(X(n),M)]6 → E[S(X,M)]6 as
n→ ∞. Hence by (9.4), E[S(X,M)]6 ≤ [RHS of (9.4)]. Dividing both sides of this
by M3 and then applying the second inequality in (9.3) and simple arithmetic, one
obtains

[LHS of (9.2)] ≤ 15 − 360 · 46(N−1)/M3

≤ 15 − [360 · 163(N−1)]/[216 · 163(N+1)]

= 15 − (360/216) · 16−6.

Thus (9.2) holds, and property (E) is proved.
Proof of property (F). This is analogous to a corresponding argument in Bradley
and Pruss (2009). However, it is short and is also at the core of this construction.
It will be given in full here.
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By property (A) (proved above), EX0 = 0 and EX2
0 = EX4

0 = 1. Hence by strict
stationarity, property (B), and the well known, elementary calculation in Billingsley
(1995, proof of Theorem 6.1) (which requires only 4–tuplewise independence), one
has that for each n ∈ N (again see (1.1)),

E
(
n−1/2Sn

)
= 0, (9.5)

E
(
n−1/2Sn

)2

= 1, and (9.6)

E
(
n−1/2Sn

)4

≤ 3. (9.7)

By (say) (9.6) and Chebyshev’s inequality, the family of distributions of the nor-
malized partial sums (n−1/2Sn, n ∈ N) is tight.

Now for the proof of property (F), suppose Q is an infinite subset of N. Because
of tightness, there exists an infinite set T ⊂ Q and a probability measure µ on
(R,R) (both T and µ henceforth fixed) such that

n−1/2Sn ⇒ µ as n→ ∞, n ∈ T. (9.8)

To complete the proof of property (F), our task is to show that µ is neither degen-
erate nor normal.

Because of (9.7), (9.8), and Billingsley (1995, p. 338, the Corollary), one has
by (9.5) and (9.6) that

∫

x∈R

xµ(dx) = 0 and

∫

x∈R

x2µ(dx) = 1. (9.9)

Hence the probability measure µ has positive variance and is therefore nondegen-
erate. Our task now is to prove that µ is not normal.

If µ were normal, then by (9.9) it would have to be the N(0, 1) distribution, and
hence by a well known calculation (e.g. Billingsley, 1995, p. 275, Example 21.1) one
would have

∫
x∈R

x6µ(dx) = 15. By (9.8) and Billingsley (1995, p. 334, Corollary

1, and p. 338, Theorem 25.11), one would then have

lim inf
n→∞

E
(
n−1/2Sn

)6

≥ 15.

But that contradicts property (E) (proved above). Hence µ cannot be normal.
That completes the proof of property (F).

10. Proof of property (D) in Theorem 1.1

This is the final piece in the proof of Theorem 1.1. This argument will be divided
into thirteen “steps” (including some “lemmas”), numbered 10.1, 10.2, etc.

Step 10.1. Let F ′ be an arbitrary but fixed event such that

F ′ ∈ Tdouble(X). (10.1)

To prove property (D), i.e. to show that Tdouble(X) is trivial, our task is to show
that P (F ′) = 0 or 1.

Suppose instead that

0 < P (F ′) < 1. (10.2)

Our task is to produce a contradiction. That task will consume the rest of Section 10
here.
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Step 10.2. By the assumption of (10.2), one has that [P (F ′)]2 < P (F ′). Let
ε ∈ (0, 1) be fixed such that

[P (F ′) + ε] · [P (F ′) + 3ε] < P (F ′) − 4ε. (10.3)

By (10.1), (7.13) (and its entire paragraph), (7.14), Lemma 7.6, and Defini-
tion 2.6, one trivially has that F ′ ∈ σ(X) ⊂̇ σ(η). (One can do better, but this
will suffice.) Hence from Constructions 6.1, 7.3, and 7.4 and a standard measure–
theoretic argument (again see (7.13)), there exists a positive integer N ′ and an
event

F ′′ ∈ σ
(
X

(0)
k , −N ′ ≤ k ≤ N ′

)

∨ σ
(
ξ
(n)
k , 1 ≤ n ≤ N ′, −N ′ ≤ k ≤ N ′

)

∨ σ
(
ζ
(n)
k , 1 ≤ n ≤ N ′, −N ′ ≤ k ≤ N ′

)
(10.4)

(see (7.9)) such that

P (F ′′ △ F ′) ≤ ε (10.5)

(where ∆ denotes symmetric difference).
By (10.5) and a trivial argument,

P (F ′′) ≤ P (F ′) + ε. (10.6)

Increasing N ′ if necessary, assume further that

N ′ ≥ 1 + 6 · (8/5)30 · (8/3)6. (10.7)

(The positive integer N ′ and the event F ′′, satisfying (10.4)–(10.7), are now taken
as “fixed.”)

Step 10.3. Refer to section 6.3(A). Random variables defined in this step will be
defined on Ω0 and left undefined on Ωc

0.
For each n ∈ N, we shall define a random positive integer Ln and a sequence

(H(n, 1), H(n, 2), H(n, 3), . . . ) of random positive integers such that for each ω ∈
Ω0,

Ln(ω) < H(n, 1)(ω) < H(n, 2)(ω) < H(n, 3)(ω) < . . . (10.8)

and
{
k ∈ Z : k > Ln(ω) and W

(n)
k (ω) = 1

}

= {H(n, 1)(ω), H(n, 2)(ω), H(n, 3)(ω), . . .},
(10.9)

and also (see section 6.1(C))

σ(Ln, H(n, 1), H(N, 2), H(n, 3), . . . ) ⊂̇ σ
(
ξ
(n)
)
. (10.10)

This will be done in such a way that

EL1 ≤ N ′ + 6 · (8/5)30 · (8/3)6. (10.11)

Also, for each n ≥ 2, we shall define a random positive integer Φn, satisfying

σ(Φn) ⊂̇ σ
(
ξ
(n)
)

and EΦn ≤ 6 · (8/5)30 · (8/3)6. (10.12)

The definition will be recursive, and is as follows:
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To start with n = 1, refer to Statement 6.3(A)(ii) (and Section 2.4(A)(B)(C)(D)).
Define the positive integer-valued random variable L1 as follows: For every ω ∈ Ω0,

L1(ω) := min
{
k ∈ Z : k ≥ N ′ + 6 and

[
ξ
(1)t
k−5(ω) | ξ(1)tk−4(ω) |

· · · | ξ(1)tk (ω)
]

= I6
} (10.13)

(where as usual, the superscript t denotes transpose). By Lemma 5.2(C) (see Sec-
tion 6.1(B)), equation (10.11) holds. Now define the random positive integers
H(1, i), i ∈ N uniquely by (10.8) and (10.9) (for n = 1) for ω ∈ Ω0. Trivially
by (10.13), (10.8)–(10.9), and (6.5) (and Remark 2.6(B)), equation (10.10) holds
for n = 1.

Now suppose n ≥ 2, and the positive integer–valued random variables Ln−1 and
H(n− 1, i), i ∈ N are already defined, satisfying (10.8), (10.9), and (10.10) with n
replaced by n− 1.

Referring to (10.8) – (10.9) and Statement 6.3(A)(iii) (with n replaced by n−1),
define the positive integer-valued random variable Φn as follows: For each ω ∈ Ω0,

Φn(ω) := min
{
k ≥ 6 :

[
ξ
(n)t
H(n−1,k−5)(ω)(ω) | ξ(n)t

H(n−1,k−4)(ω)(ω) |

· · · | ξ(n)t
H(n−1,k)(ω)(ω)

]
= I6

}
.

(10.14)

Next, define the positive integer-valued random variable Ln as follows: For all
ω ∈ Ω0,

Ln(ω) := H(n− 1,Φn(ω))(ω). (10.15)

Now define the random positive integers H(n, i), i ∈ N (uniquely) by (10.8)
and (10.9) (for the given n) for ω ∈ Ω0.

By (10.10) (with n replaced by n−1) and (10.14) (for the given n), the first part

(σ(Φn) ⊂̇ σ(ξ
(n)

)) of (10.12) holds; hence by (10.10) (with n replaced by n − 1)

and (10.15) (for the given n), σ(Ln) ⊂̇ σ(ξ
(n)

); and hence (10.10) holds for the
given n by (10.8)–(10.9) and (6.5). To complete this recursive definition, all that
remains is to verify the second part (EΦn ≤ . . . ) in (10.12).

For that purpose, we shall apply Lemma 5.2(D), with the random integers κ(j),
j ∈ Z there defined by κ(j) := H(n−1, j) for j ≥ 1 and (just as a frivolous formality)
κ(j) := j (a constant random variable) for j ≤ 0 (see (10.8)). Then σ(κ(j)),

j ∈ Z) ⊂̇ σ(ξ
(n−1)

) by (10.10) with n replaced by n−1. Since the sequences ξ(n) and

ξ
(n−1)

are independent (and ξ(n) has the appropriate distribution), all conclusions

of Lemma 5.2(D) apply to the sequence (ξ
(n)
κ(j), j ∈ Z). Applying Lemma 5.2(D)(iv)

to that sequence, one obtains that the random variable Φn (see (10.14)) satisfies
the second part of (10.12). That completes this recursive definition.

By (10.13), (10.8), (10.14) (which gives Φn(ω) ≥ 6 for n ≥ 2 and ω ∈ Ω0), (10.15),
and induction, one has that for all ω ∈ Ω0,

N ′ + 6 ≤ L1(ω) < H(1, 1)(ω) < L2(ω) < H(2, 1)(ω)

< L3(ω) < H(3, 1)(ω) < . . . .
(10.16)

Step 10.4. The “universe” of “scaffolding” in Sections 6, 7, and 8 was based on
the following array of independent random variables from Constructions 6.1, 7.3
(recall (7.9)), and 7.4:

X
(0)
k , k ∈ Z; and ξ

(n)
k , ζ

(n,ord)
k , ζ

(n,cen)
k , ζ

(n,fri)
k , (n, k) ∈ N× Z. (10.17)
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Here in Step 10.4, we shall construct an “alternate universe” based on an array

X
∗(0)
k , k ∈ Z; and ξ

∗(n)
k , ζ

∗(n,ord)
k , ζ

∗(n,cen)
k , ζ

∗(n,fri)
k , (n, k) ∈ N× Z. (10.18)

To create this “alternate universe,” we shall keep the “original” random variables in
the array (10.17), except that the random variables in (10.17) that are mentioned
in the right hand side of (10.4) will be replaced by “independent copies.”

(A) Refer to the positive integer N ′ in (10.4) and (10.7). Let

X
∗(0)
k , k ∈ {−N ′,−N ′ + 1,−N ′ + 2, . . . , N ′} and

ξ
∗(n)
k , ζ

∗(n,ord)
k , ζ

∗(n,cen)
k , ζ

∗(n,fri)
k ,

n ∈ {1, 2, . . . , N ′}, k ∈ {−N ′,−N ′ + 1, . . . , N ′}
(10.19)

be an array of independent random variables, with this array being inde-
pendent of the entire array (10.17) (and hence independent of the entire
collection of random variables studied in sections 6, 7, 8, and 9), such that
for each k ∈ {−N ′,−N ′ + 1, . . . , N ′} and n ∈ {1, 2, . . . , N ′}, the random

variable X
∗(0)
k resp. ξ

∗(n)
k resp. ζ

∗(n,ord)
k resp. ζ

∗(n,cen)
k resp. ζ

∗(n,fri)
k takes

its values in the space {−1, 1} resp. {0, 1}6 resp. {−1, 1}sxtp(n) (see (2.1)
again) resp. {−1, 1}sxtp(n) resp. {−1, 1}sxtp(n) and has the same distribu-

tion as the random variable X
(0)
k resp. ξ

(n)
k resp. ζ

(n,ord)
k resp. ζ

(n,cen)
k resp.

ζ
(n,fri)
k .

(B) For each k ∈ Z − {−N ′,−N ′ + 1, . . . , N ′}, define the {−1, 1}–valued ran-

dom variable X
∗(0)
k by X

∗(0)
k := X

(0)
k (that is, for all ω ∈ Ω, X

∗(0)
k (ω) :=

X
(0)
k (ω)).

(C) For each (n, k) ∈ (N×Z)−({1, 2, . . . , N ′}×{−N ′,−N ′+1, . . . , N ′}), define

the {0, 1}6–valued random variable ξ
∗(n)
k by ξ

∗(n)
k := ξ

(n)
k , and define the

{−1, 1}sxtp(n)–valued random variables (see (2.1)) ζ
∗(n,ord)
k , ζ

∗(n,cen)
k , and

ζ
∗(n,fri)
k by ζ

∗(n,ord)
k := ζ

(n,ord)
k , ζ

∗(n,cen)
k := ζ

(n,cen)
k , and ζ

∗(n,fri)
k := ζ

(n,fri)
k .

That completes the definition of the array (10.18).
(D) Recall from Constructions 6.1, 7.3, and 7.4 that the random variables in the

array (10.17) are independent of each other. It follows from the conditions
in (A), (B), and (C) above that the random variables in the array (10.18)
are independent of each other, and that in fact the two arrays (10.17)
and (10.18) have the same distribution (on the appropriate space).

(E) Further, the array (10.18) is independent of the entire σ–field in the right
hand side of (10.4). Hence by (10.4) itself,

the event F ′′ is independent of the array (10.18). (10.20)

(F) Starting with (A), (B), (C), and (D) above, we construct analogs of all of the
random variables constructed in Sections 6, 7, and 8, using the array (10.18)
in place of the array (10.17). The notations will be the same except that
(as in (10.18)) an asterisk will be inserted after each “main symbol.” The
general pattern is that for a given random variable Z of the form Z :=
f(the array (10.17)), where f is an appropriate measurable function, the
analogous random variable Z∗ will be given by Z∗ = f(the array (10.18))
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(with the same function f). Thus the analog of (6.3) is

ξ
∗(n)

k :=
(
ξ
∗(1)
k , ξ

∗(2)
k , . . . , ξ

∗(n)
k

)
,

the analog of (6.9) is

W
∗(1)
k := gspaced

(
ξ
∗(1)
k , ξ

∗(1)
k−1 , ξ

∗(1)
k−2, . . .

)
,

the analog of (6.10) is

Ψ∗(n, k, j) := ψj

(
W

∗(n)
k ,W

∗(n)
k−1 ,W

∗(n)
k−2 , . . .

)
,

and so on. Along the way, corresponding analogs of the events Ω
(n)
good and

Ω0 in Section 6.2 and equation (6.20) are defined and denoted Ω
∗(n)
good and

Ω∗
0.
Of course because of (B) and (C) above, some of the new (“asterisk”)

random variables defined in this way will be exactly the same as the original
counterparts in Sections 6, 7, and 8.

(G) Now define the event

Ω′ := Ω0 ∩ Ω∗
0. (10.21)

By (6.21) and its “asterisk” counterpart (P (Ω∗
0) = 1), one has that

P (Ω′) = 1. (10.22)

Also (for example), for every ω ∈ Ω′, Statements 6.3(A)(i)(ii)(iii) and their
“asterisk” counterparts all hold.

(H) The random variables formulated in Step 10.3 (Ln and H(n, i) for n, i ∈ N,
and Φn for n ≥ 2), are defined (and positive integer-valued) at every ω ∈ Ω′,
by (10.21) and the second sentence in Step 10.3 itself. For those random
variables, we will not need to refer to, and will therefore not formally define,
“asterisk” counterparts.

Step 10.5.
(A) Refer to Step 10.4(B)(C). The portion of the array (10.18) involving indices

k ≤ −N ′ − 1 (and any n ∈ N) coincides with the corresponding portion of
the array (10.17).

(B) In particular, for any k ≤ −N ′ − 1, ξ
∗(1)
k = ξ

(1)
k (that is, ξ

∗(1)
k (ω) = ξ

(1)
k (ω)

for all ω ∈ Ω). Hence W
∗(1)
k = W

(1)
k for every k ≤ −N ′ − 1, since by (6.9)

(in both arrays (10.17) and (10.18)), for any k ≤ −N ′ − 1 and any ω ∈ Ω,

W
∗(1)
k (ω) = gspaced

(
ξ
∗(1)
k (ω), ξ

∗(1)
k−1(ω), ξ

∗(1)
k−2(ω), . . .

)

= gspaced

(
ξ
(1)
k (ω), ξ

(1)
k−1(ω), ξ

(1)
k−2(ω), . . .

)
= W

(1)
k (ω).

(10.23)

By the same type of argument, using (6.10) and (6.11) (in both arrays
(10.17) and (10.18)) together with induction on n, one can show the follow-
ing two facts together: that Ψ∗(n, k, j) = Ψ(n, k, j) for each n ∈ N, each
k ≤ −N ′ − 1, and each j ≥ 0, and that

∀n ∈ N, ∀ k ≤ −N ′ − 1, W
∗(n)
k = W

(n)
k . (10.24)
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(C) Continuing to apply (A) above in the same way as in (B), one obtains for
any k ≤ −N ′ − 1 and n ∈ N the following equalities of random variables:

ξ
∗(n)

k = ξ
(n)

k (see (6.3)), W
∗(n)

k = W
(n)

k (see (6.25)), δ
∗(n)
k = δ

(n)
k (see (7.1)

and (7.2)), N∗
k = Nk (see (7.4)), J∗(n, k) = J(n, k) (see (7.7)), ζ

∗(n)
k = ζ

(n)
k

(see (7.9)), ζ
∗(n)

k = ζ
(n)

k (see (7.10)), and finally, from (7.14),

∀ k ≤ −N ′ − 1, X∗
k = Xk. (10.25)

Lemma 10.6. Refer to Step 10.3 (including equation (10.16)). Refer also
to (10.21)–(10.22) and Step 10.4(H). Suppose n ∈ N. Then for every ω ∈ Ω′,
the following statements hold:

∀ k ≥ Ln(ω) + 1, W
∗(n)
k (ω) = W

(n)
k (ω); (10.26)

∀ k ≥ H(n, 1)(ω), δ
∗(n)
k (ω) = δ

(n)
k (ω); (10.27)

∀ k ≥ H(n, 1)(ω), Ψ∗(n, k, 0)(ω) = Ψ(n, k, 0)(ω); and (10.28)

∀ k ≥ H(n, 1)(ω), k − Ψ∗(n, k, 0)(ω) = k − Ψ(n, k, 0)(ω) ≥ H(n, 1)(ω). (10.29)

Proof. Throughout this proof, let ω ∈ Ω′ be arbitrary but fixed. (Again recall
Step 10.4(G)(H).)

For each n ∈ N, let the function ϕn : ({0, 1}6)n → {0, 1, 2, 3, 4, 5, 6} be as in
Lemma 4.7.

We shall first verify (10.26) and (10.27) for n = 1. For each i ≥ L1(ω) −
5, one has that ξ

∗(1)
i (ω) = ξ

(1)
i (ω) by (10.16) and Step 10.4(C). Hence for each

integer k ≥ L1(ω)+1, by the “asterisk” counterpart of (6.9), then two applications
of (10.13) and Lemma 4.7 together, followed by (6.9) itself, with L1(ω) written here
as L(1)(ω),

W
∗(1)
k (ω) = gspaced

(
ξ
∗(1)
k (ω), ξ

∗(1)
k−1(ω), ξ

∗(1)
k−2(ω), . . .

)

= ϕk−L(1)(ω)

(
ξ
∗(1)
L(1)(ω)+1(ω), ξ

∗(1)
L(1)(ω)+2(ω), . . . , ξ

∗(1)
k (ω)

)

= ϕk−L(1)(ω)

(
ξ
(1)
L(1)(ω)+1(ω), ξ

(1)
L(1)(ω)+2(ω), . . . , ξ

(1)
k (ω)

)

= gspaced

(
ξ
(1)
k (ω), ξ

(1)
k−1(ω), ξ

(1)
k−2(ω), . . .

)

= W
(1)
k (ω).

Thus (10.26) holds for n = 1. By (10.26) (for n = 1) and (7.1) (and its “asterisk”

counterpart), δ
∗(1)
k (ω) = δ

(1)
k (ω) for all k ≥ L1(ω) + 1 (and in particular for all

k ≥ H(1, 1)(ω) by (10.16)). Thus (10.27) holds for n = 1.
Now we use induction. Suppose N ∈ N, and suppose (for the given ω ∈ Ω′)

that (10.26) and (10.27) hold for n = N . For the induction step, we shall show
(for the given ω ∈ Ω′) that (10.28) and (10.29) hold for n = N , and then show
that (10.26) and (10.27) hold for n = N + 1. This actually suffices to prove
Lemma 10.6 by induction.

Verification of (10.28)–(10.29) for n = N . Suppose k ≥ H(N, 1)(ω). Referring
to (10.8) and (10.9), let m denote the positive integer such that H(N,m)(ω) ≤ k <
H(N,m+1)(ω). By the inductive assumption of (10.26) for n = N , equation (10.9)
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holds for n = N with W
(N)
k (ω) replaced by W

∗(N)
k (ω). Hence by (6.10) and its

“asterisk” analog (and Definition 2.2(A)), together with (10.8) and (10.9),

Ψ∗(N, k, 0)(ω) = ψ0

(
W

∗(N)
k (ω),W

∗(N)
k−1 (ω),W

∗(N)
k−2 (ω), . . .

)

= k −H(N,m)(ω)

= ψ0

(
W

(N)
k (ω),W

(N)
k−1(ω),W

(N)
k−2(ω), . . .

)

= Ψ(N, k, 0)(ω),

and hence also (see (10.8) again)

k − Ψ∗(N, k, 0)(ω) = k − Ψ(N, k, 0)(ω) = H(N,m)(ω) ≥ H(N, 1)(ω).

Thus (10.28) and (10.29) hold for n = N .
Verification of (10.26) for n = N + 1. By (10.15) (see (10.14)) LN+1(ω) =

H(N,ΦN+1(ω))(ω). If k ≥ LN+1(ω)+1 but k is not one of the integersH(N,m)(ω),

m ≥ ΦN+1(ω) + 1, then W
(N)
k (ω) 6= 1 by ((10.8) and) (10.9) for n = N , hence

W
∗(N)
k = W

(N)
k 6= 1 by ((10.16) and) the inductive assumption of (10.26) for

n = N , and hence W
∗(N+1)
k (ω) = W

(N+1)
k (ω) = 0 by both Remark 6.3(B) and its

“ asterisk” counterpart. Hence (see (10.8) again) to complete the proof of (10.26)
for n = N + 1, what remains is to show that for each integer m ≥ ΦN+1(ω) + 1,

one has that W
∗(N+1)
H(N,m)(ω)(ω) = W

(N+1)
H(N,m)(ω)(ω).

Suppose m ≥ ΦN+1(ω) + 1. To obtain the desired equality, using the function
ϕu in Lemma 4.7 for the positive integer u := m− ΦN+1(ω), using the convention
in Notation 2.1(G), and writing the positive integer ΦN+1(ω) as Φ(N + 1)(ω), we
shall show that

W
∗(N+1)
H(N,m)(ω)(ω)

= gspaced

(
ξ
∗(N+1)
j , j ∈ {i ≤ H(N,m)(ω) : W

∗(N)
i (ω) = 1}

)

= ϕu

(
ξ
∗(N+1)
H(N,Φ(N+1)(ω)+1)(ω)(ω), ξ

∗(N+1)
H(N,Φ(N+1)(ω)+2)(ω)(ω), . . . , ξ

∗(N+1)
H(N,m)(ω)(ω)

)

= ϕu

(
ξ
(N+1)
H(N,Φ(N+1)(ω)+1)(ω)(ω), ξ

(N+1)
H(N,Φ(N+1)(ω)+2)(ω)(ω), . . . , ξ

(N+1)
H(N,m)(ω)(ω)

)

= gspaced

(
ξ
(N+1)
j , j ∈ {i ≤ H(N,m)(ω) : W

(N)
i (ω) = 1}

)

= W
(N+1)
H(N,m)(ω)(ω).

(10.30)

To verify this, first note that by (10.16) and Step 10.4(C), the equality ξ
∗(N+1)
k (ω) =

ξ
(N+1)
k (ω) holds for each k ≥ H(N, 1)(ω), and in particular it holds for each k of the

form k = H(N, ℓ)(ω) for ℓ ≥ ΦN+1(ω)−5 by (10.8) (with n = N) and (10.14) (with
n = N+1). That trivially yields the third equality in (10.30). Next, by (10.8)–(10.9)

and the inductive assumption of (10.26) for n = N , W
∗(N)
k (ω) = W

(N)
k (ω) = 1 for

k ∈ {H(N, 1)(ω), H(N, 2)(ω), H(N, 3)(ω), . . . }, and W
∗(N)
k (ω) = W

(N)
k (ω) 6= 1

for all other k ≥ H(N, 1)(ω). This fact has a couple of consequences: First (just
consider that fact for k = H(N,m)(ω)), by (6.18) and (6.13)–(6.14) and their
“asterisk” counterparts (for n = N), the first and fifth (i.e. last) equalities in (10.30)
hold. Then, by (10.14) with n = N + 1 (combined with the observation in italics



“Causal,” 5-tuplewise independent counterexample to CLT 441

in the first sentence after (10.30)), one has from Lemma 4.7 that the second and
fourth equalities in (10.30) also hold. Thus (10.30) holds. That completes the proof
of (10.26) for n = N + 1.

Verification of (10.27) for n = N + 1. Now suppose k ≥ H(N + 1, 1)(ω). Re-
ferring to (10.8) for n = N + 1, let m ∈ N be such that H(N + 1,m)(ω) ≤ k <

H(N + 1,m + 1)(ω). Now W
∗(N+1)
H(N+1,m)(ω)(ω) = W

(N+1)
H(N+1,m)(ω)(ω) = 1 by (10.9)

(for n = N + 1) and (10.26) for n = N + 1 (just verified above), and hence

W
∗(N)
H(N+1,m)(ω)(ω) = 1 and W

(N)
H(N+1,m)(ω)(ω) = 1 by Remark 6.3(B) (and its “as-

terisk” counterpart). Hence Ψ(N, k, 0)(ω) ≤ k − H(N + 1,m)(ω) by (6.10) (and
Definition 2.2(A)), hence k − Ψ(N, k, 0)(ω) ≥ H(N + 1,m)(ω) ≥ LN+1(ω) + 1
(see (10.9) with n = N + 1), hence

W
∗(N+1)
k−Ψ(N,k,0)(ω)(ω) = W

(N+1)
k−Ψ(N,k,0)(ω)(ω) (10.31)

by (10.26) for n = N+1 (verified above). Also (since k ≥ H(N+1,m)(ω) ≥ H(N+
1, 1)(ω) > H(N, 1)(ω) by (10.16)) Ψ∗(N, k, 0)(ω) = Ψ(N, k, 0)(ω) by (10.28) for
n = N (verified above). Substituting that into the left hand side of (10.31) and then

applying (7.2) and its “asterisk” counterpart, one obtains δ
∗(N+1)
k (ω) = δ

(N+1)
k (ω).

Thus (10.27) has been verified for n = N + 1. That completes the induction step
and the proof of Lemma 10.6.

Step 10.7. For each n ∈ N, each ω ∈ Ω′ (see Step 10.4(G)), and each set S ⊂ R,
define the sets

G(n)(S)(ω) :=
{
k ∈ Z : k ∈ S and W

(n)
k (ω) = 1

}
(10.32)

and

G∗(n)(S)(ω) :=
{
k ∈ Z : k ∈ S and W

∗(n)
k (ω) = 1

}
. (10.33)

For each n ∈ N, define the random sets Γn and Γ∗
n as follows: For each ω ∈ Ω′ (see

Step 10.4(G) again),

Γn(ω) :=G(n)([−N ′, Ln(ω)])(ω)

=
{
k ∈ Z : −N ′ ≤ k ≤ Ln(ω) and W

(n)
k (ω) = 1

} (10.34)

and

Γ∗
n(ω) :=G∗(n)([−N ′, Ln(ω)])(ω)

=
{
k ∈ Z : −N ′ ≤ k ≤ Ln(ω) and W

∗(n)
k (ω) = 1

}
.

(10.35)

For each n ∈ N, by (10.34), (10.35), (10.10), and (6.5) and its “asterisk” coun-
terpart, one has that

σ (Γn,Γ
∗
n) ⊂̇ σ

(
ξ
(n)
, ξ

∗(n)
)
. (10.36)

Also, for n ∈ N and ω ∈ Ω′, by (6.13) and (6.14), one has (see (10.32)) the
following reformulation of (6.18) in the convention of Notation 2.1(G):

If k ∈ Z is such that W
(n)
k (ω) = 1,

then W
(n+1)
k (ω) = gspaced

(
ξ
(n+1)
j (ω), j ∈ G(n)((−∞, k])(ω)

)
.

(10.37)
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Analogously (see (10.33)), for n ∈ N and ω ∈ Ω′,

If k ∈ Z is such that W
∗(n)
k (ω) = 1,

then W
∗(n+1)
k (ω) = gspaced

(
ξ
∗(n+1)
j (ω), j ∈ G∗(n)((−∞, k])(ω)

)
.

(10.38)

Lemma 10.8. For each n ∈ N,

E(cardΓn) ≤ 3N ′ and (10.39)

E(cardΓ∗
n) ≤ 3N ′. (10.40)

Proof. It suffices to give the argument for (10.39). The argument for (10.40) is
exactly analogous (using also Lemma 10.6).

First, for each ω ∈ Ω′, by (10.34), Γ1(ω) ⊂ {−N ′,−N ′+1, . . . , L1(ω)} and hence
cardΓ1(ω) ≤ 1 +N ′ + L1(ω). Hence by (10.11) and (10.7),

E(cardΓ1) ≤ 1 +N ′ + EL1

≤ 1 +N ′ +N ′ + 6 · (8/5)30 · (8/3)6

≤ 3N ′.

(10.41)

Next, for each n ≥ 2 and each ω ∈ Ω′, by (10.34), (10.32), Remark 6.3(C),
(10.16), (10.8), (10.9), and (10.15),

cardΓn(ω) ≤ 1 + (1/6) · cardG(n−1)([−N ′, Ln(ω)])(ω)

= 1 + (1/6) · cardG(n−1)([−N ′, Ln−1(ω)])(ω)

+ (1/6) · cardG(n−1)((Ln−1(ω), Ln(ω)])(ω)

= 1 + (1/6) · cardΓn−1(ω)

+ (1/6) · card
{
H(n− 1, 1)(ω), H(n− 1, 2)(ω),

. . . , H(n− 1,Φn(ω))(ω)
}

= 1 + (1/6) · cardΓn−1(ω) + (1/6) · Φn(ω).

Hence for each n ≥ 2, by (10.12) and (10.7),

E(cardΓn) ≤ 1 + (1/6) · E(cardΓn−1) + (1/6) ·EΦn

≤ 1 + (1/6) · E(cardΓn−1) +N ′.

Hence for any n ∈ N such that E(cardΓn−1) ≤ 3N ′, one trivially has that
E(cardΓn) ≤ 3N ′. Hence by (10.41) and induction, (10.39) holds for all n ∈ N.
That completes the proof of Lemma 10.8.

Step 10.9. Recall the number ε ∈ (0, 1) fixed in the sentence containing (10.3).
Let M be a positive integer sufficiently large that

6N ′/M ≤ ε. (10.42)

By Lemma 10.8, E(card(Γn ∪ Γ∗
n)) ≤ 6N ′ for each positive integer n. Hence by

Fatou’s Lemma,

E
(
lim inf
n→∞

card(Γn ∪ Γ∗
n)
)
≤ 6N ′.

Hence by Markov’s inequality and (10.42),

P
(
lim inf
n→∞

card(Γn ∪ Γ∗
n) ≥M

)
≤ 6N ′/M ≤ ε. (10.43)
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Next, define the number θ ∈ (0, 1) by

θ := (5/8)6M . (10.44)

Also, for each n ≥ N ′, define the event

Bn := {card(Γn ∪ Γ∗
n) ≤M} ; (10.45)

and for each n ≥ N ′ + 1, define the event

Dn :=
{
ω ∈ Ω′ : ξ

(n)
k (ω) = (0, 0, 0, 0, 0, 0) for all k ∈ Γn−1(ω) ∪ Γ∗

n−1(ω)
}
.

(10.46)
(That event includes “by default” such sample points for which the specified set of
k’s is empty.) By (10.36), (10.45), and (10.46),

∀ n ≥ N ′, Bn ∈̇σ
(
ξ
(n)
, ξ

∗(n)
)

; and (10.47)

∀ n ≥ N ′ + 1, Dn ∈̇σ
(
ξ
(n)
, ξ

∗(n)
)
. (10.48)

Lemma 10.10. Refer to (10.44), (10.45), and (10.46). Suppose n ≥ N ′, A ∈
σ(ξ

(n)
, ξ

∗(n)
), and P (A ∩Bn) > 0. Then P (Dn+1 | A ∩Bn) ≥ θ.

Proof. By (10.45), the event Bn can be partitioned into an at most countable
collection of events of the form {Γn∪Γ∗

n = S} for sets S ⊂ Z such that cardS ≤M
(including the empty set). Accordingly, the event A∩Bn is partitioned into events
A ∩ {Γn ∪ Γ∗

n = S} for such S.
For any such S such that P (A ∩ {Γn ∪ Γ∗

n = S}) > 0, one has by (10.36) (and

the hypothesis of Lemma 10.10 here) that A ∩ {Γn ∪ Γ∗
n = S}∈̇σ(ξ

n
, ξ

∗(n)
) and is

therefore independent of the sequence ξ(n+1) (recall again Construction 6.1(A)(C)),
and hence by (10.46), Construction 6.1(A) (including (6.1) there), and (10.44),

P (Dn+1 | A ∩ {Γn ∪ Γ∗
n = S})

= P
(
ξ
(n+1)
k = (0, 0, 0, 0, 0, 0) ∀ k ∈ S | A ∩ {Γn ∪ Γ∗

n = S}
)

= P
(
ξ
(n+1)
k = (0, 0, 0, 0, 0, 0) ∀ k ∈ S

)

= ((5/8)6)card S

≥ (5/8)6M = θ.

Lemma 10.10 now follows from Remark 2.8.

Lemma 10.11. P
(⋃∞

n=N ′+1Dn

)
≥ 1 − 2ε.

Here again of course the number ε ∈ (0, 1) is as fixed in the sentence contain-
ing (10.3). One can do better than Lemma 10.11, but that will not be necessary.
Proof. Suppose Lemma 10.11 is false. That is, suppose instead that

s := P
( ∞⋂

n=N ′+1

Dc
n

)
> 2ε. (10.49)

We shall aim for a contradiction.
Referring to (10.44) and (10.49), let Θ be an integer such that

Θ ≥ N ′ + 1 and P
( Θ⋂

n=N ′+1

Dc
n

)
≤ s+ εθ/2. (10.50)
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In the arguments below, we shall use more compact notations for the events
in (10.49) and (10.50):

E :=

∞⋂

n=N ′+1

Dc
n and E′ :=

Θ⋂

n=N ′+1

Dc
n. (10.51)

Referring to (10.50), (10.45) and (10.46), define the events Aj , j ∈ {Θ + 1,Θ +
2,Θ + 3, . . . } ∪ {∞} as follows:

AΘ+1 := BΘ+1;

∀j ∈ {Θ + 2,Θ + 3,Θ + 4, . . . }, Aj := Bj

⋂( j−1⋂

i=Θ+1

Bc
i

)
; and

A∞ :=
( ∞⋂

i=Θ+1

Bc
i

)
.

(10.52)

These events AΘ+1, AΘ+2, AΘ+3, . . . and A∞ form a partition of Ω. Also, by (10.52)
and (10.45), A∞ ⊂̇ {lim infn→∞ card(Γn ∪ Γ∗

n) ≥ M + 1}, and hence by (10.43),
P (A∞) ≤ ε. Hence P (E′ ∩ A∞) ≤ ε. Now P (E′) ≥ P (E) > 2ε by (10.51)
and (10.49). Hence

P (E′ ∩Ac
∞) > ε. (10.53)

Now suppose j ∈ {Θ + 1,Θ + 2,Θ + 3, . . . } is such that P (E′ ∩Aj) > 0. (Then
j ≥ N ′ + 2 by (10.50).) By (10.47), (10.48), (10.51), and (10.52) (and Construc-
tions 6.1(A)(C)), E′ ∩ Aj ∩ Bj = E′ ∩ Aj ∈̇σ(ξ̄(j), ξ̄∗(j)). Hence by Lemma 10.10,
P (Dj+1|E′ ∩Aj) ≥ θ. Of course by (10.51) the events Dj+1 and E are disjoint. It
follows that P (E|E′ ∩Aj) ≤ 1 − θ.

Now by the sentence right after (10.52), the events E′ ∩ Aj , j ∈ {Θ + 1,Θ +
2,Θ+3, . . .} form a partition of the event E′∩Ac

∞. Hence by the calculations in the
preceding paragraph, together with Remark 2.8, one has that P (E|E′∩Ac

∞) ≤ 1−θ.
Since E ⊂ E′ (recall (10.51)), this can be rewritten as P (E ∩Ac

∞) ≤ (1− θ)P (E′ ∩
Ac

∞). Combining that with (10.53), one now has

P (E′ ∩Ac
∞) − P (E ∩Ac

∞) ≥ θ · P (E′ ∩Ac
∞) ≥ θε. (10.54)

Since (again) E ⊂ E′, one also has that P (E′ ∩A∞)−P (E ∩A∞) ≥ 0. Combining
that with (10.54), one obtains

P (E′) − P (E) ≥ θε. (10.55)

However, by (10.49). (10.50). and (10.51), P (E′)−P (E) ≤ s+ εθ/2− s = εθ/2,
which contradicts (10.55). Hence Lemma 10.11 must hold after all.

Lemma 10.12. For every integer N ≥ N ′ and every ω ∈ DN+1, there exists a
positive integer K = K(ω) such that X∗

k(ω) = Xk(ω) for all k ≥ K.

Proof. Throughout this proof, let N and ω be fixed such that

N ≥ N ′ and ω ∈ DN+1. (10.56)

Of course ω ∈ Ω′ by (10.46); and all properties of ω mentioned in the last sentence
of Step 10.4(G) will be tacitly taken for granted here.

Suppose k ∈ {−N ′,−N ′ + 1, . . . , LN(ω)} is such that W
∗(N)
k (ω) = 1. Then

k ∈ Γ∗
N (ω) by (10.35), hence ξ

(N+1)
k (ω) = (0, 0, 0, 0, 0, 0) by (10.56) and (10.46),

and hence also ξ
∗(N+1)
k (ω) = (0, 0, 0, 0, 0, 0) by (10.56) and Step 10.4(C). Also
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(trivially) by (10.33), k = maxG∗(N)((−∞, k])(ω), and hence (in the convention of
Notation 2.1(G))

W
∗(N+1)
k (ω) = gspaced

(
ξ
∗(N+1)
j (ω), j ∈ G∗(N)((−∞, k])(ω)

)
= 0

by (10.38) and Lemma 4.8 (equation (4.26)).

We have shown that (under the hypothesis of Lemma 10.12)W
∗(N+1)
k (ω) = 0 for

every k ∈ {−N ′,−N ′+1, . . . , LN (ω)} such that W
∗(N)
k (ω) = 1. For all other values

of k ∈ {−N ′,−N ′ + 1, . . . , LN (ω)}, W ∗(N+1)
k (ω) = 0 by (the “asterisk” analog of)

Remark 6.3(B). Hence W
∗(N+1)
k (ω) = 0 for all k ∈ Z such that −N ′ ≤ k ≤ LN(ω).

By an exactly analogous argument (using (10.34) and (10.32) instead of (10.35)

and (10.33)), W
(N+1)
k (ω) = 0 for all such k. That is,

∀ k ∈ {−N ′,−N ′ + 1, . . . , LN (ω)}, W
∗(N+1)
k (ω) = W

(N+1)
k (ω) = 0. (10.57)

Next, suppose u ∈ N. ThenW
∗(N)
H(N,u)(ω)(ω) = W

(N)
H(N,u)(ω)(ω) = 1 by Lemma 10.6

(equation (10.26)), (10.8), and (10.9); and hence by (10.38),

W
∗(N+1)
H(N,u)(ω)(ω) = gspaced

(
ξ
∗(N+1)
j (ω), j ∈ G∗(N)((−∞, H(N, u)(ω)])(ω)

)
.

(10.58)
Again, for every k ∈ G∗(N)((−∞, H(N, u)(ω)])(ω) such that −N ′ ≤ k ≤ LN(ω),

one has that ξ
∗(N+1)
k (ω) = (0, 0, 0, 0, 0, 0), by (10.33) and the arguments in the

paragraph after that of (10.56). Referring to (10.8)–(10.9) and applying Lemma 4.8
(equation (4.27)), one can delete those particular elements k from the set
G∗(N)((−∞, H(N, u)(ω)])(ω) without changing the right hand side of (10.58). That
is, one obtains (see (10.33) and (10.8)–(10.9) again)

W
∗(N+1)
H(N,u) (ω) = gspaced

(
ξ
∗(N+1)
j (ω), j ∈ G∗(N)((−∞,−N ′ − 1])(ω)

∪G∗(N)([LN (ω) + 1, H(N, u)(ω)])(ω)
)

= gspaced

(
ξ
∗(N+1)
j (ω), j ∈ G∗(N)((−∞,−N ′ − 1])(ω)

∪ {H(N, 1)(ω), H(N, 2)(ω), . . . , H(N, u)(ω)}
)

(10.59)

Now by (10.56) and Step 10.4(C), ξ
∗(N+1)
j (ω) = ξ

(N+1)
j (ω) for every j ∈ Z. Also,

G∗(N)((−∞,−N ′ − 1])(ω) = G(N)((−∞,−N ′ − 1])(ω)

by (10.32), (10.33), and (10.24). Hence by (10.59),

W
∗(N+1)
H(N,u)(ω)(ω) = gspaced

(
ξ
(N+1)
j (ω), j ∈ G(N)((−∞,−N ′ − 1])(ω)

∪ {H(N, 1)(ω), H(N, 2)(ω), . . . , H(N, u)(ω)}
)
.

(10.60)

By an exactly analogous argument, one obtains

W
(N+1)
H(N,u)(ω)(ω) = [RHS of (10.60)],

and hence by (10.60) itself,

W
∗(N+1)
H(N,u)(ω)(ω) = W

(N+1)
H(N,u)(ω)(ω). (10.61)
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Equation (10.61) was obtained for arbitrary u ∈ N. For all other k ≥ LN (ω)+1

besides {H(N, 1)(ω), H(N, 2)(ω), . . . , }, one has that W
∗(N)
k (ω) = W

(N)
k (ω) 6= 1 by

Lemma 10.6 (equation (10.26)) and (10.9), and hence W
∗(N+1)
k (ω) = W

(N+1)
k (ω) =

0 by Remark 6.3(B) and its “asterisk” counterpart. Combining that with (10.61),
one now has that

∀ k ≥ LN (ω) + 1, W
∗(N+1)
k (ω) = W

(N+1)
k (ω). (10.62)

Now by (10.57), (10.62), and (10.24), one now has that

∀ k ∈ Z, W
∗(N+1)
k (ω) = W

(N+1)
k (ω). (10.63)

Now recall from Step 10.4(C) that ξ
∗(n)
k (ω) = ξ

(n)
k (ω) for all n ≥ N ′ + 1 and all

k ∈ Z. Recall (10.56) again. Starting with (10.63) and using (6.10) and (6.11) (and
their “asterisk” counterparts) and induction on n, one has that

∀n ≥ N + 1, ∀ k ∈ Z, W
∗(n)
k (ω) = W

(n)
k (ω); and (10.64)

∀n ≥ N + 1, ∀ k ∈ Z, ∀ j ≥ 0, Ψ∗(n, k, j)(ω) = Ψ(n, k, j)(ω). (10.65)

Now recall (10.16). Our candidate for the integer K = K(ω) in Lemma 10.12
will be H(N, 1)(ω).

By (10.16) and Step 10.4(B), one has that

∀ k ≥ H(N, 1)(ω), X
∗(0)
k (ω) = X

(0)
k (ω). (10.66)

Now keep in mind that H(N, 1)(ω) ≥ H(n, 1)(ω) for all n ∈ {1, . . . , N}
by (10.16). By (6.24) and Lemma 10.6 (equation (10.29), applied twice), one has
that

∀n ∈ {1, . . . , N}, ∀ k ≥ H(N, 1)(ω),

k − Ψ∗(n, k, 0)(ω) = k − Ψ(n, k, 0)(ω) ≥ k − Ψ(N, k, 0)(ω)

≥ H(N, 1)(ω).

(10.67)

By Lemma 10.6 (equation (10.27)),

∀n ∈ {1, . . . , N}, ∀ k ≥ H(N, 1)(ω), δ
∗(n)
k (ω) = δ

(n)
k (ω). (10.68)

Also, by (7.2) and its “asterisk” counterpart, equation (10.67) for n = N , and
equation (10.63),

∀ k ≥ H(N, 1)(ω), δ
∗(N+1)
k (ω) = δ

(N+1)
k (ω). (10.69)

Next, recall from Step 10.4(C) (and (7.9) and its “asterisk” counterpart) that

ζ
∗(n)
k (ω) = ζ

(n)
k (ω) for all n ∈ N and all k ≥ N ′ + 1. Since H(N, 1)(ω) ≥ N ′ + 1

by (10.16), one has by (10.67) that

∀n ∈ {1, . . . , N}, ∀ k ≥ H(N, 1)(ω),

ζ
∗(n)
k−Ψ∗(n,k,0)(ω)(ω) = ζ

∗(n)
k−Ψ(n,k,0)(ω)(ω) = ζ

(n)
k−Ψ(n,k,0)(ω)(ω).

(10.70)

Next by Step 10.4(C) and (10.56), one has that for every n ≥ N + 1 (in fact

every n ≥ N ′ + 1) and every k ∈ Z, ζ
∗(n)
k (ω) = ζ

(n)
k (ω). Hence by (10.65), for

every n ≥ N + 1 and every k ∈ Z, ζ
∗(n)
k−Ψ∗(n,k,0)(ω)(ω) = ζ

(n)
k−Ψ(n,k,0)(ω)(ω). Also,

by (10.64), (10.65), and (7.2) and its “asterisk” counterpart, for every n ≥ N + 2
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and every k ∈ Z, δ
∗(n)
k (ω) = δ

(n)
k (ω). Combining these facts with (10.68), (10.69),

and (10.70), one now has that

∀n ∈ N, ∀ k ≥ H(N, 1)(ω), δ
∗(n)
k (ω) = δ

(n)
k (ω); and (10.71)

∀n ∈ N, ∀ k ≥ H(N, 1)(ω), ζ
∗(n)
k−Ψ∗(n,k,0)(ω)(ω) = ζ

(n)
k−Ψ(n,k,0)(ω)(ω). (10.72)

By (7.7) and (7.4) and their “asterisk” counterparts, together with (10.71), one
obtains

∀n ∈ N, ∀ k ≥ H(N, 1)(ω), J∗(n, k)(ω) = J(n, k)(ω); and (10.73)

∀ k ≥ H(N, 1)(ω), N∗
k (ω) = Nk(ω). (10.74)

Now by (7.14) (and its “asterisk” counterpart), (10.66), (10.72) (recall (7.9) and
its “asterisk” counterpart), (10.73), and (10.74), one has that X∗

k (ω) = Xk(ω) for
all k ≥ H(N, 1)(ω). Thus Lemma 10.12 holds with K = K(ω) = H(N, 1)(ω).

Step 10.13. By Lemma 10.12 and Lemma 10.11,

P

(
⋃

J∈N

{X∗
k = Xk ∀ k ≥ J}

)
≥ P

(
∞⋃

n=N ′+1

Dn

)
≥ 1 − 2ε. (10.75)

Also (trivially) for each J ∈ N,
{
X∗

k = Xk ∀ k ≥ J
}
⊂
{
X∗

k = Xk ∀ k ≥ J + 1
}
.

Hence by (10.75), limJ→∞ P (X∗
k = Xk ∀ k ≥ J) ≥ 1 − 2ε. Accordingly, let J ′ be a

positive integer such that

J ′ ≥ N ′ + 1 and (10.76)

P (X∗
k = Xk ∀ k ≥ J ′) ≥ 1 − 3ε. (10.77)

Now recall (10.1). One has that F ′ ∈ σ(Xk, |k| ≥ J ′). Thus (see e.g. Billingsley,
1995, Theorem 20.1(i), trivially extended, and recall property (A) in Theorem 1.1)
there exists a Borel set B′ ⊂ {−1, 1}N such that

F ′ = {(XJ′ , X−J′ , XJ′+1, X−J′−1, XJ′+2, X−J′−2, . . . ) ∈ B′} (10.78)

Define the (“asterisk counterpart”) event

F ′′′ :=
{
(X∗

J′ , X∗
−J′ , X∗

J′+1, X
∗
−J′−1, X

∗
J′+2, X

∗
−J′−2, . . . ) ∈ B′

}
(10.79)

By (10.76), (10.77), and (10.25),

P (X∗
k = Xk for all k ∈ Z such that |k| ≥ J ′) ≥ 1 − 3ε.

Hence by (10.78), (10.79), and a simple argument,

P (F ′ △F ′′′) ≤ 3ε (10.80)

(where △ denotes symmetric difference). Hence by a simple standard argument,

P (F ′′′) ≤ P (F ′) + 3ε. (10.81)

Refer to Construction 7.4(B). By Lemma 7.6 (and Remark 2.6(B)), one has that
σ(X)⊂̇σ(η), the σ-field generated by the array (10.17). The “asterisk” counterpart
is σ(X∗)⊂̇σ(η∗), the σ-field generated by the array (10.18). Hence by (10.20)
and (10.79),

the events F ′′ and F ′′′ are independent. (10.82)
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Now by (10.5), (10.80), and a standard elementary argument (see e.g.Bradley,
2007a, Vol. 1, Appendix, Section A053(V)),

P ((F ′′ ∩ F ′′′)△F ′) = P ((F ′′ ∩ F ′′′)△ (F ′ ∩ F ′))

≤ P (F ′′ △F ′) + P (F ′′′ △F ′) ≤ 4ε.

Hence by a standard simple argument, P (F ′′∩F ′′′) ≥ P (F ′)−4ε. Hence by (10.82),
(10.6), and (10.81),

P (F ′) − 4ε ≤ P (F ′′ ∩ F ′′′) = P (F ′′) · P (F ′′′)

≤ [P (F ′) + ε] · [P (F ′) + 3ε].

However, that contradicts (10.3). Hence (10.2) must be false, and Tdouble(X) is
trivial after all. That completes the proof of Property (D) in Theorem 1.1, and of
Theorem 1.1 itself.
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V. A. Volkonskĭı and Y. A. Rozanov. Some limit theorems for random functions.
I. Theor. Probability Appl. 4, 178–197 (1959). MR0121856.

http://www.ams.org/mathscinet-getitem?mr=MR0166839
http://www.ams.org/mathscinet-getitem?mr=MR1400225
http://www.ams.org/mathscinet-getitem?mr=MR0297971
http://www.ams.org/mathscinet-getitem?mr=MR0121856

	1. Introduction
	2. Notations and conventions
	3. Some key probability measures
	4. Some particular functions
	5. A Markov chain and a related process
	6. Scaffolding (part 1)
	7. Scaffolding (part 2)
	8. Scaffolding (part 3)
	9. Proof of properties (A), (B), (E), and (F) in Theorem 1.1
	10. Proof of property (D) in Theorem 1.1
	Acknowledgements.
	References

