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Abstract. For infinitely divisible distributions p on R? the stochastic integral map-
ping ®fp is defined as the distribution of improper stochastic integral

I f(s)dXs(p), where f(s) is a non-random function and {Xs(p)} is a Lévy process
on R with distribution p at time 1. For three families of functions f with parame-
ters, the limits of the nested sequences of the ranges of the iterations @% are shown
to be some subclasses, with explicit description, of the class Lo, of completely self-
decomposable distributions. In the critical case of parameter 1, the notion of weak
mean 0 plays an important role. Examples of f with different limits of the ranges

of ' are also given.

1. Introduction

Let ID = ID(R?) be the class of infinitely divisible distributions on R?, where d
is a fixed finite dimension. For a real-valued locally square-integrable function f(s)

on Ry = [0,00), let
wrp=c( [ raxe),
0

the law of the improper stochastic integral [/~ f (s)dXS(p ) with respect to the
Lévy process {X{”: s > 0} on R? with £(X”) = p. This integral is the limit in
probability of fot f(s)dXS(p) as t — 0o0. The domain of @, denoted by D(®P), is the
class of p € ID such that this limit exists. The range of ®; is denoted by R(D).
If f(s) = 0 for s € (s0,00), then ®;p = L[> f(s)dX{”) and D(®) = ID. For
many choices of f, the description of R(®) is known; they are quite diverse. A
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seminal example is R(®;) = L = L(R?), the class of selfdecomposable distributions
on R%, for f(s) = e~* (Wolfe, 1982, Sato, 1999, Rocha-Arteaga and Sato, 2003).
The iteration ®7 is defined by ®} = ®; and ®}*'p = @ (®}p) with D(®}H!) =
{peD(@}): @4 p € D(Py)}. Then

ID > R(®5) D R(PF) D -+ .
We define the limit class

R (@) = () R(@)).

If f(s) = e™°, then R|(P}) is the class of n times selfdecomposable distribu-
tions and R (Py) is the class Lo, of completely selfdecomposable distributions,
which is the smallest class that is closed under convolution and weak conver-
gence and contains all stable distributions on R%. This sequence and the class
Lo were introduced by Urbanik (1973) and studied by Sato (1980) and others. If
f(s) = (1—=5)1,11(s), then R (Ps) = Lo, which was established by Jurek (2004)
and Maejima and Sato (2009); in this case R(®P ) is the class of s-selfdecomposable
distributions in the terminology of Jurck (1985). The paper of Maejima and Sato
(2009) showed Roo(Pf) = Loo in many cases including (1) f(s) = (—log 5)1[071] (s),
(2) s = f;(c;) ultetdu (0 < s < ), (3) s = f;(os) e du (0 < s < so = /7/2).
The classes R(® ) corresponding to (1)—(3) are the Goldie-Steutel-Bondesson class
B, the Thorin class T (see Barndorfl-Nielsen et al.,; 2006), and the class G of gener-
alized type G distributions, respectively. These results pose a problem what classes
other than L., can appear as R (P ) in general.

For —oo < a < 2, p > 0, and ¢ > 0, we consider the three families of functions
Fp.a(8), lga(s), and fu(s) as in [S] (we refer to Sato 2010 as [S]). We define ®,, ,,
Ag o, and ¥, to be the mappings @y with f(s) equal to these functions, respectively.
In this paper we will prove the following theorem on the classes R (P ) of those
mappings. The case o = 1 is delicate. There the notion of weak mean 0 plays an
important role.

Theorem 1.1. (i) If a« <0, p>1, and ¢ > 0, then
E)‘{OO(i)p,Ot) =R (Aq,a) =NReo(Va) = Lec.
(i) If 0<a<l1,p>1, and g > 0, then
mw(ép,a) = Roc(Aga) = R (V) = ngz)'
(iii) Ifa=1,p>1, and g = 1, then
Reo (Dp1) = Roo(A11) = Roo(¥1) = LED N {p € ID: pu has weak mean 0}.
(iv) If 1<a<2,p>1, and q > 0, then
R (Pp.a) = Roo(Mga) = Roo(Wo) = LD N {u € ID: p has mean 0}.

Let us explain the concepts used in the statement of Theorem 1.1. A distribution
w € ID belongs to Lo if and only if its Lévy measure v, is represented as

vu(B) = /( ) [0 [ 1n6gr i

for Borel sets B in RY, where I',, is a measure on the open interval (0, 2) satisfying
f(o 2) (671 + (2= B)""Tu(dB) < oo and {Nj: § € (0,2)} is a measurable family of
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probability measures on S = {¢ € R?: [¢| = 1}. This I',, is uniquely determined
by v, and {\j} is determined by v, up to 8 of I';-measure 0 (see [S] and Sato,
1980). For a Borel subset E of the interval (0,2), the class L denotes, as in [9],
the totality of u € Lo such that I', is concentrated on E. The classes ng"’z) and
L& appearing in Theorem 1.1 are for £ = («,2) and (1,2), respectively. Let
Cu(2) (z € RY), A,, and v, be the cumulant function, the Gaussian covariance
matrix, and the Lévy measure of p € ID. A distribution p € ID is said to have
weak mean m, if limg_ o f1<|m|<a zv,(dr) exists in R? and if

Cu(z) = —3(z,Auz) + lim (=™ —1 —i(z, 2))v,(dx) + i{my, 2).
This concept was introduced by [S] recently. If p € ID has mean m, (that is,
Jga lzlp(de) < oo and [, xp(dr) = my,), then p has weak mean m,, (Remark 3.8
of [S]).

Section 2 begins with exact definitions of f., fp.a, and [, and expounds existing
results concerning Moo (Ps). Then, in Section 3, we will prove Theorem 1.1. In
Section 4 we will give examples of ®; for which R (Py) is different from those
appearing in Theorem 1.1. Section 5 gives some concluding remarks.

2. Known results

Let —oo << 2,p>0, and ¢ > 0 and let

1 1
gp)a(t) - m/t (1 - u)p—lu—a—ldu7 0<t S 17

p

1 /1 1 —a
— —logu)? tum tdu, 0<t<1,
I'(q) t( )

o0
Jga(t) = / u e du, 0<t< oo,
t

jq,a(t) =

Let t = fpal(s) for 0 < s < Gpa(0+), t = lga(s) for 0 < 5 < j,4(0+), and
t = fao(s) for 0 < s < go(0+) be the inverse functions of s = gy o(t), s = jg.a(t),
and s = g,(t), respectively. They are continuous, strictly decreasing functions. If
a < 0, then g, o (0+), jga(0+), and g, (0+) are finite and we define f, o(s), lg.a(s),
and f,(s) to be zero for s > g, o (0+), jg.a(0+), and g, (0+), respectively. Let @, ,,
Ag o, and ¥, denote @ with f = fpﬁa, lg,a, and fq, respectively. Let Kp o, Lq,a,
and K o be the ranges of i)pya, Ag o, and V¥, respectively. These mappings and
classes were systematically studied in Sato (2006) and [S]. In the following cases we
have explicit expressions:

~ (1—lals) /1 1jg 1 jjap(s)  for o <0,
J1,0(8) =l1a(s) = g e ® for a =0,
(14 as)~ Ve for o > 0,
fom1(s) ={1—= (T +1) )"} 1o 1/rpr1y(s), p>0,
exp(—(F(g +1)s)"/9), ¢>0,
f-1(s) = (—log s) 1[0,1](5)-
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In the case p = ¢ = 1 we have @170[ = Ay o and Ky o = L1, which are in essence
treated earlier by Jurek (1988, 1989); &)170[ = Ay o were studied by Maejima et al.
(2010), and Maejima and Ueda (2010b) with the notation ®,. The mapping Ao
and the class L, o with ¢ = 1,2, ... coincide with those introduced by Jurek (1983)
in a different form. A variant of ¥, is found in Grigelionis (2007).

A related family is

oo
Gap(t) = / w e du, 0 <t < oo,
t

for —oo <a <2and 3> 0. Let t = G}, 4(s) for 0 < s < Gqa,p(0+) be the inverse
function of s = Gq,5(t). If @ <0, then G4 (0+) is finite and we define G, 5(s) =0
for s > Ga,3(04). Let Wq g denote @y with f = Gy, ;. This was introduced by
Maejima and Nakahara (2009) and studied by Maejima and Ueda (2010b) and, in
the level of Lévy measures, by Maejima et al. (2011b). Clearly, ¥, 1 = ¥,. We
have

Gtﬁ,ﬂ(s) = (— logﬁs)l/ﬁ 1[0,1/5](8), ﬁ > 0.

Earlier the mappings W o and ¥_g 3 were treated in Aoyama et al. (2008) and
Aoyama et al. (2010), respectively; U_s 5 appeared also in Arizmendi et al. (2010).
Maejima and Sato (2009) proved the following two results.

Proposition 2.1. Let 0 < ty < co. Let h(u) be a positive decreasing function on
(0,t0) such that fgo(l +u?)h(u)du < co. Let g(t ft u)du for 0 <t <ty. Let
t=f(s), 0<s < g(0+), be the inverse functwn of s = g( ) and let f(s) =0 for
s> g(0+). Then Reo(Pf) = Lo

Proposition 2.2. R (¥y) = L

It follows from Proposition 2.1 that R (Pf) = Lo for f = f_p,a with p > 1 and
-1 <a<0,f=lgowthg>1land -1 <a <0, f=f,with -1 <a <0,
and f = G}, 5 with =1 < a <0 and § > 0. The function fo for Vo = @y, does
not satisfy the condition in Proposition 2.1 but Proposition 2.2 is proved using the
1dent1ty \IJO = ALO\IJ,1 = ,1A1’0.

In November 2007-January 2008, Sato wrote four memos, showing the part
related to ¥, in (ii), (iii), and (iv) of Theorem 1.1. But assertion (iii) for ¥; was
shown with the set {x € ID: p has weak mean 0} replaced by the set of u € Ly
satisfying some condition related to (4.6) of Sato (2006). At that time the concept
of weak mean was not yet introduced. Those memos showed that some proper
subclasses of Lo, appear as limit classes Roo (P ).

Sato’s memos were referred to by a series of papers Maejima and Ueda (2009a,b,
2010b,c) and Ichifuji et al. (2010). In Macjima and Ueda (2010a,c) they character-
ized R(AT,), —00 < a < 2, forn =1,2,..., in relation to a decomposability which
they called a-selfdecomposability, and found Roo(A1,4) for —oco < o < 2. But the
description of Moo (A1 1) was similar to Sato’s memos. In Maejima and Ueda (2010Db)
they showed that ¥, g with —oco < @ < 2 and 8 > 0 satisfies Roo (V0. 8) = Roo(Va),
under the condition that a # 1+ ng for n = 0,1,2,.... For Wy and ¥_g g with
£ > 0, this result was earlier obtained by Aoyama et al. (2010). Further it was
shown in Maejima and Ueda (2009a) that Reo (V) = Roo(A1,4) for —co < o < 2.
An application of the result in Maejima and Ueda (2010c) was given in Ichifuji
et al. (2010).
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If f(s) = bljg,q(s) for some a > 0 and b # 0, then it is clear that R (Py) =
R(Py) = ID. A first example of R (Py) satisfying Loo G Reo(Py) & ID was
given by Maejima and Ueda (2009b); they showed that if f(s) = b~[ for a given
b > 1 with [s] being the largest integer not exceeding s, then R (P ) = Loo (D), the
smallest class that is closed under convolution and weak convergence and contains
all semi-stable distributions on R? with b as a span; in this case R(®;) is the
class L(b) of semi-selfdecomposable distributions on R? with b as a span. See Sato
(1999) for the definitions of semi-stability, semi-selfdecomposability, and span. See
Maejima et al. (2000) for characterization of Ly (b) as the limit of the class L, (b)
of n times b-semi-selfdecomposable distributions and for description of the Lévy
measures of distributions in Lo (b). Recall that Loo & Loo(b).

The following result is deduced easily from [S].

Proposition 2.3. The assertions related to Ag . in (i), (ii), and (iv) of Theorem 1.1
are true.

Indeed, in [S], Theorem 7.3 says that Agi ¢/ 0 = Mg/ .aAg,a for a € (—o0,1)U(1,2),
q >0, and ¢" > 0, and hence A} , = Apgqa, and further, Theorem 7.11 combined
with Proposition 6.8 describes, for a € (—oo, 1) U (1,2), the class (), Lg,a, Which

equals (,_, 5 Lg,a-
3. Proof of Theorem 1.1

We prepare some lemmas. We use the terminology in [S] such as radial decom-
position, monotonicity of order p, and complete monotonicity. In particular, our
complete monotonicity implies vanishing at infinity. The location parameter v, of
w € ID is defined by

Culz) = —3(z, Ay2) + /Rd(eﬂz’ﬂﬂ> —1— iz, )Lz <1y (@) (d) + (v, 2).
Let K, , [resp. Kg, ,] denote the class of distributions 1 € I.D for which there exist
p € ID and a function ¢; from [0, 00) into R? such that fg Fra(8)dX? — g, [resp.
fot Fa(s)dX P — ¢] converges in probability as t — oo and the limit has distribution
I

Lemma 3.1. Let —o0 < a < 2 and p > 0. The domains of i)p@ and VY, are as
follows:

D(Pp.a) =D(Va)

ID for a <0,
{peID: [, loglz|v,(dz) < oo} for a =0,
{p€ID: [,o, 121" v,(dz) < oo} for 0 < a <1,

{peID: f|m|>1 2| vy (da) < 0o, [paxp(dr) =0,
limg—oo [; 57 ds flm|>sscup(d:c) exists in R4} for a =1,

{peID: flw|>1 |2|* v, (de) < 00, [paxp(dx) =0} forl<a<2.

This is found in Sato (2006) or Theorems 4.2, 4.4 and Propositions 4.6, 5.1 of [S].

00,

totality of w € ID for which v, has a radial decomposition (A, (d€),u "1 kg (u)du)

Lemma 3.2. Let —oo < a < 2 and p > 0. The class K, [resp. K, ,] is the
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such that kg(u) is measurable in (§,u) and, for \,-a.e. & monotone of order p
[resp. completely monotone] on RS = (0,00) in u. The classes Kp o and Koo o,
that is, the ranges of ®, o and Y, are as follows:

K . for —oco < a <1,
Kpa=q{pe K} 1t p has weak mean 0} fora=1,

{n € K+ p has mean 0} forl<a<2,

K& o for —x<a<l,
Koo = ¢ {n € KS, 11 pv has weak mean 0} for a =1,

{ne K, o 1 has mean 0} forl<a<2.

See Theorems 4.18, 5.8, and 5.10 of [S]. Note that if y is in Kg, , or K} , with

0 < a < 2, then [p,|z[’u(dr) < oo for B € (0,a) (Propositions 4.16 and 5.13
of [S]). It follows from the lemma above that K , D K, , and Kp o D Ky o for
p <p' and that K5, , = (,~ K} o and Koo .o = (1,50 Kp,a- The notation of K, ,
and K o comes from this property.

Lemma 3.3. Let p € L.

(i) Let 0 < o < 2. Then [p |x|*p(dz) < oo if and only if T,((0,a]) = 0 and
Jioy (B — @) Tp(d5) < oo,

(i) Ji,j>1 loglz] p(dz) < oo if and only if [, 4 B72T,(dB) < occ.

Proof: Assertion (i) is shown in Proposition 7.15 of [S]. Since

e 14 ° 7(.}71
/|x|>llog|x|up(d:v) /(012) Pp(dﬂ)/s)\ﬁ(dg)/l (log |r€|)r—*1dr
:/ L'y (dp) /Oo(logr)r_ﬁ_ldr: 5_2I‘p(dﬂ),
(0,2) 1 (0,2)

assertion (ii) follows. O

Lemma 3.4. Let yu and p be in L. Suppose that L,(dB) = (8 — 1)b(B)TL(dB)
and )\g = )\g with a nonnegative measurable function b(3) such that (3—1)~1(b(3)—

1) is bounded on (1,2). Then, [ s 'ds f\m\>s zv,(dz) is convergent in R? as a — oo
if and only if u has weak mean m,, for some m,,.

Proof: Notice that b(3) is bounded on (1,2) and that flw|>1 |z|v,(dz) < oo by
Lemma 3.3. We have

/1a s /m““’”ﬂ(d‘”’“’) = /1 s~1ds /(172) I,(df) /S £X5 (dg) / ¥ har
B /(172) b(ﬁ)F”(dﬁ)/Sg/\g(d@ /1a s Pds =1 (say)

and

= “w “ -3 _
/nga:cuu(dx) /(172)Fu(dﬁ)/s§)\ﬁ(d§)/l rPdr =1y (say).

Hence

— = — K ar_ﬁ T.
L1 /(172)(17(6) Oru(a9) [ exe) [
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Since

‘(b(ﬁ) -y | | < (5 1) pB) - 1)

and fla r~Pdr tends to (8 — 1)~1, I} — I is convergent in R? as a — co. Hence I;
is convergent if and only if I is convergent. O

Lemma 3.5. Let f and h be locally square-integrable functions on Ry. Assume
that there is so € (0,00) such that h(s) = 0 for s > so and that Oy, is one-to-one.
Then (I)fq)h = ‘I)h(l)f~

Proof: Let fi(s) = f(s) 1jo,q(s). Then @y, &) = &5y, by Lemma 3.6 of Macjima
and Sato (2009). Let p € ®(®y). Then ®5,p — Pyp as t — oo by the definition
of ®;. Hence ©,P,p — @3, Pp by (3.1) of Maejima and Sato (2009). It follows
that @7, ®p — ®,Psp. Since the convergence of fot £(5)dX{*" in law implies
its convergence in probability, ®pp is in D(®s) and @ ;Ppp = @, Prp. Conversely,
suppose that p € ID satisfies ®,p € D(®s). Then @,P5,p = @5, Ppp — @5Ppp
as t — co. Looking at (3.8) of Macjima and Sato (2009), we see that [;° h(s) # 0
from the one-to-one property of ®,. Hence {®,p: t > 0} is precompact by the
argument in pp. 138-139 of Maejima and Sato (2009). Hence, again from the one-
to-one property of @y, @y, p is convergent as t — oo, that is, p € D(Dy). O

Lemma 3.6. Let f be locally square-integrable on Ry. Suppose that there is 3 > 0
such that any p € R(Py) has Lévy measure v, with a radial decomposition (X, (dE),
uﬁlg(u)du) where I (u) is measurable in (§,u) and decreasing on RS in u. Then

i}ioo(fbf) C %W(Al,,g,l) = L.

Proof: Clearly lg > 0 for A-a.e. & Since flml>1 vu(dx) < oo, we have
limy oo I (u) = 0 for Ay-a.e. & Hence we can modify If(u) in such a way that
I¢ (u) is monotone of order 1 in u € RS. Recall that a function is monotone of order

1 on RS if and only if it is decreasing, right-continuous, and vanishing at infinity
(Proposition 2.11 of [S]). Then it follows from Theorem 4.18 or 6.12 of [S] that

%(@f) C 9‘{(A1,_5_1). (3.1)

Let us write A = Ay _g—1 for simplicity. We have ®;A = A®; by virtue of
Lemma 3.5, since A is one-to-one (Theorem 6.14 of [S]). If ®;A™ = A"®, for
some integer n > 1, then

QAT = B pAN" = ADFA" = AN D = A" D,
Hence @A™ = A"®; for n =1,2,.... Now we claim that
R(PF) C R(A™) (3.2)
for n = 1,2,.... Indeed, this is true for n = 1 by (3.1); if (3.2) is true for n, then
any /i € 9‘%(@?“) has expression
p=0 " p=pdhp=pA"p = AOpp = A"Ap" = AT

for some p € ’D(‘I)?H), Pl € D(A") with ®%p = A"p’, and p"” € D(A) with ®pp" =
Ap”, which means (3.2) for n 4+ 1. It follows from (3.2) that R (Pf) C Roo(A).
The equality R (A) = Lo is from Proposition 2.3. O
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Proof of the part related to Roo(Vy) in Theorem 1.1. The result for —1 < o < 0
is already known (see Propositions 2.1 and 2.2). But the proof below also includes
this case. First, using Lemma 3.2, notice that Lemma 3.6 is applicable to @ = ¥,
and f = (—a—1) V0.

Case 1 (—oo0 < a < 0). We have D(V¥,) = ID in Lemma 3.1. Let us show that

\Ija(Loo) = Loo (33)

Let p € Lo and p1 = ¥, p. Then for B € B(R?), where B(R?) is the class of Borel
sets in R?,

vu(B) = /0°° ds /Rd 1B(fal(s)z)vy(dz) = /OOO p—a—lo=t gy /Rd 1 p(t2)w (d2)
= /OOO t e tat 0o Fp(dﬁ)/s)\g(dg) /OOO Lp(tré)r—=Vdr

= —« o - uéu P du.
- /() N3 = a)ly(d8) [ () [ 1a(ueua
Hence p € Lo with
I',(dp) =T(8 —a)T',(dF) and )\g = )\g. (3.4)

Let us show the converse. Let i € L. In order to find p € L satisfying ¥, p = p,
it suffices to choose I',, )\g, A,, and v, such that (3.4) holds and

A, = /0 fa(s)?dsA,, (3.5)

Vu :/0 _fa(S)ds (”Yp"‘/Rdx(l{fa(S)wﬁl} - 1{ws1})Vp(dfC)) (3.6)

(see Proposition 3.18 of [S]). This choice is possible, because inf g¢(g,2) I'(8—a) > 0,
IS fals)ds = [Tt tdt =T(1 — ), [, fa(s)?ds = [ t1 7%~ dt = (2 — a),
and

/0 fa(s)ds /R 2| [1¢)u(s)z1<1} — L{jzi<1y| vo(de)

= / t_ae_tdt/ |$| |1{|tz\§1} — 1{\1\S1}| I/p(dl')
0 R4
1 00
:/ tfo‘e*tdt/ |z| v,(dx) +/ tfo‘eftdt/ |z| v,(dx)
0 1<|z|<1/t 1 1/t<]z|<1

1/|z| 0o
:/ |:1:|Vp(d:c)/ t_ae_tdt—F/ |3:|Vp(d:1:)/ t~ e tdt < oo,
|z[>1 0 |lo|<1 /x|

since fol/m t=%tdt ~ (1—a)~tax|* ! as|z| — oo and flo/o‘z‘ t=etdt ~ |z|*e~ /1wl
as |x| | 0. Therefore (3.3) is true. It follows that ¥" (L) = Lo for n=1,2... ..
Hence R (V) D Loo. On the other hand, R (V) C Lo by virtue of Lemma 3.6.

Case 2 (0 < aw < 1). Since D(¥,,) is as in Lemma 3.1, it follows from Lemma 3.3
that

LN D(T,) = {{p € Luct Jp BT, (d5) < o0}, az0

{peL&?: f(w)(ﬂ —a)7IT,(dB) < o}, 0<a<l.
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We have
Vo (Loo ND(W,)) = L), (3.7)
where ng’m = L. Indeed, if p € Loo N D(V,) and u = W,p, then we have

pe L and (3.4), using T(B—a) = (B—a) ' T(B-a+1)for 0 < a < 1.
Conversely, if u € ng"Q), then we can find p € Lo, N D(¥,) satisfying u = Uup
in the same way as in Case 1; when o = 0, we have f(o 2) 72T ,(df) < oo since
I,(dp) = B(T(B+1)) T, (dB) and f(o,z) BT, (dB) < co. Hence (3.7) holds. Now

we have

U2 (Lo ND(VR)) = L&Y (3.8)
forn =1,2,.... Indeed, it is true for n = 1 by (3.7) and, if (3.8) is true for n, then
L@ = U (Lo ND(UD)) = (L N D(WD))
= V3 (Va (Lo ND(Va)) ND(T7))
= Wo(Va (Lo ND(U5H) = Wo (Lo ND(WLH)).
It follows from (3.8) that L ¢ Roo(Pq). Next we claim that
R(Vy) N Log © LY, (3.9)

Let 4 € R(¥,) N Loo. Then g has a radial decomposition (A, (d€),r= ! k¢ (r)dr)
with the property stated in Lemma 3.2. On the other hand,

vu(B) = /( T [ 6000 [ 1n6gr i

:/SXu(dé“) /(0)2) T%(dB) /OOO L p(rE)r=F-dr

for B € B(R?), as there are a probability measure A, on S and a measurable family
{T¢} of measures on (0, 2) satisfying f(072) (67" +(2-0)"")TE(dB) = const such that
L (dB)N5(d€) = N\ (d€)TE (dB). Hence, by the uniqueness in Proposition 3.1 of [S],
there is a positive, finite, measurable function c(¢) such that A, (d€) = c(&)A,(d€)
and, for \,-a.e. &, r= "k (r)dr = ¢(€)7! (f(o,z) r‘ﬁ_lf‘g(dﬁ)) dr. Hence k¢ (1) =
c(&)~! f(0)2) ro‘_ﬁfg(dﬁ), a.e. r. Since kf (r) is completely monotone, it vanishes
as 7 goes to infinity. Hence I'{((0,a]) = 0 for A -a.e. & Hence T',((0,a]) = 0,
that is, p € L&:*?), proving (3.9). Now, using Lemma 3.6, we obtain R (¥,) C
R(T,) N Lo € LY,
Case 8 (a =1). Let us show that
U1 (Loo ND (1)) = LE?Y 0 {p € ID: weak mean 0}. (3.10)

Let p € LooND(W1), that is, p € L&), [}, (8—1)71T,(dB) < 00, [pu wp(dz) =0,

and limg,_ o0 fla sildsf‘

xz|>s
Case 1, u € L&’m and (3.4) holds with @« = 1. By Lemma 3.2, u has weak

mean 0. Conversely, let u € L 0 {p € ID: weak mean 0}. Choose p €
L&Y such that Ty(df) = (I(8 — 1)) 'Tu(dB), Ny = X, A, = A, and 7, =
_f\z\>1‘ryp(d$) (note that f(1,2)(ﬁ_1 ~1T',(dB) < oo and hence flwl>1 |z|v, (dx) <
oo by Lemma 3.3). Then [, zp(dz) =0 (see Lemma 4.3 of [S]). Since p has weak

zv,(dr) exists in RY. Let pu = Wip. Then, as in

~— —
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mean, fla s~ lds f\m\>s xv,(dx) is convergent as a — oo by application of Lemma 3.4
with b(5) = 1/T'(5). Hence p € (V). We have vy,, = vy, Aw,, = Ay, and Uqp
has weak mean 0. Among distributions p/ € ID having v,y = v, and A,y = A,
only one distribution has weak mean 0. Hence ¥yp = u. This proves (3.10). We

have
U (Lo ND(UM)) = LEPD N {p € ID: weak mean 0}, n=1,2,... (3.11)

from (3.10) by the same argument as in Case 2. Hence

L3 N {p e ID: weak mean 0} C Roo (V). (3.12)
Next
R(V1) N Lo € L2 N {p € ID: weak mean 0}. (3.13)

Indeed, R(¥1) N Lo C L& by the same argument as in Case 2. Any p € R(¥q)
has weak mean 0 by Lemma 3.2. Now it follows from Lemma 3.6 that

Roo(U1) € LD N {p € ID: weak mean 0}. (3.14)
Case 4 (1 < a < 2). We show that
Uy (Loo ND(V,)) = L) N {p € ID: mean 0}. (3.15)

Let p € Lo N D(W,), that is, p € L&, f(a (B = a)7'Tp(df) < oo, and

Jpa zp(dz) = 0 (Lemmas 3.1 and 3.3). Let u = ¥op. Then p € L2 and (3.4)
holds. Hence [p, |z|u(dz) < co by Lemma 3.3 and g has mean 0 by Lemma 3.2.

Conversely, if p € L n {p € ID: mean 0}, then we can find p € Looc N D(Vy)
satisfying W,p = p, similarly to Case 3. Hence (3.15) is true. It follows that

U (Loo ND(UN)) = LD N {p e ID: mean 0}, n=1,2,...
similarly to Cases 2 and 3. Hence
LD N {p e ID: mean 0} C Reo (V). (3.16)
We can also prove
R(Vo) N Lo € L N {p € ID: mean 0}

similarly to Cases 2 and 3. Hence the reverse inclusion of (3.16) follows from
Lemma 3.6. g

Proof of the part related to Roo(Pp o) in Theorem 1.1. We assume p > 1. Since
monotonicity of order p € [1,00) implies monotonicity of order 1 (Corollary 2.6
of [S]), it follows from Lemma 3.2 that Lemma 3.6 is applicable with § = (—a—1)VO0.

Hence Roo(Ppa) C Loo: If p € Lo ND(Pp0) and @, 0p = p, then p € ng"Q)
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(understand that Le? = oo for a < 0) and, noting that

/ dS/Rd 15(fp.a(s)z)v,(dz)

_w/o 1 — )P~ 1dt/Rd 1g(tx)v,(dx)
_L ' —a—=1/1 _ 4\p—1 P - —B-1
- /0 pa=1(1 — -t /(0)2) T, (dg) /S X (de) /O 1 (tr€)r—dr

(B—a+p
and recalling Lemmas 3.1 and 3.3, we obtain u € ng) with
F(ﬁ —a)
r,(dg) = =——TI,(d d Mg =)\ 3.17

Now the proof of assertions (i), (ii), and (iv) can be given in parallel to the
corresponding assertions for ¥,. Note that, if —oo < o < 1, then

/ fpa / || |1{\fp a(s)z|<1} — 1{|m|<1}| Vp(dfﬂ) <00

similarly. We also use the fact that kf (r) vanishes at infinity if it is monotone of
order p € [1, c0).

For assertion (iii) in the case a = 1, we have to find another way, as Lemma 3.4
is not applicable if 3 > 1. Let us show

By 1 (Lo ND(P®p1)) = LY N {u € ID: weak mean 0}. (3.18)

Suppose that p € Lo, N D(®p1) and ®,1p = p. Then p € L8P, f(172)(6 -
1)7Ir,(dB) < oo, p € L? with (3.17), and p has weak mean 0 by Lemma 3.2.
Conversely, suppose that p € ng’z) with weak mean 0. As in [S], let 9L be the
class of Lévy measures of infinitely divisible distributions on R? and let @571 be
the transformation of Lévy measures associated with the mapping ®, ;. Define
To(dB) = T, (dB). Then [, , (2= 8)7'To(dB) < oo. Define

v = B - r&)r B dr
o(B) /(Lmro(dﬁ)/SAB(ds)/o 1p(r€)r1d

for B € B(R?). We have vy € M. We see
wB)= | FFL”)P(W) [0 [ 1ntugt

B—-1+p

/ dS/Rd 1(fpa(s)z)vo(dz)

from the calculation above. Since v, € ML, we have vy € @(@571) and (1)571V0 =
vy,. Then it follows from Theorem 4.10 of [S] that v, has a radial decomposition
(A (d€), u™?k{ (u)du) such that kf(u) is measurable in (€,u) and, for A\ -a.e. &,
monotone of order p in v € R}. Hence u € R(Pp1) from Lemma 3.2. Since
®L vy = v, and ®L is one-to-one (Theorem 4.9 of [S]), we have p = @, 1p for

(I)L
D1 -
some p € D(P, 1) with v, = 1. It follows that p € Lo,. This finishes the proof of
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(3.18). Now we can show (3.11)—(3.14) with ®,, ;1 in place of ¥; similarly to Case 3
in the preceding proof. O

Proof of the part related to Roo(Ag,a) tn Theorem 1.1. Since we have Proposi-
tion 2.3, it remains only to consider Aj ;. But the assertion for Roo(A1,1) is obvi-
ously true, since Aj 1 = @ ;. O

4. Some examples of R (Py)

We present some examples of ®; for which the class R (®y) is different from
those appearing in Theorem 1.1.

Define T,, the dilation by a € R\{0}, as (Top)(B) = [ 1p(az)p(dx) = p((1/a)B),
B € B(R?), for measures on R?. Define P;, the raising to the convolution power
t > 0, in such a way that, for p € ID, P,p is an infinitely divisible distribution with
characteristic function 16;1(2) = Ji(z)!. The mappings T, (restricted to ID), P,
and ®; are commutative with each other. A measure ;1 on R? is called symmetric
if T_1p = p. A distribution 1 on R? is called shifted symmetric if p = p * 0, with
some symmetric distribution p and some ¢-distribution 0. Let I Dgyry = 1 Dsym(Rd)
[resp. IDEM = ID5PIE(R?)] denote the class of symmetric [resp. shifted symmetric]
infinitely divisible distributions on R?.

Erample 4.1. Let f(s) = bligq)(s) — bl(a,24(5) with @ > 0 and b # 0. Then

Roo(Pf) = I Dsym.
Indeed, for p € ID,

a 2a
Co,p(2) = /0 Op(bz)ds—l—/ Cp(—bz)ds = aC,(bz)+aC,(—bz) = Cp, 1, (ps1_,p)(?)

for z € R%, and hence ®;p = P,T,(p*T-1p). Define Up = Pyjop*xT_1P;j5p. Then
Up € IDgyy, for any p € ID. If p € I Dgyry, then Up = p. Hence U"p = Up for
n=1,2,.... Since ®; = P, T, LU = P,,T,U, we have <I>? = P10 U = UPT)
and U = Y P 50y Ty, Hence Roo(Pf) = R(U) = I Dsy.

Ezample 4.2. Let f(s) = bl q(s) — bl(q,at¢(s) with a > 0, ¢ > 0, a # ¢, and
b# 0. Then R (Pf) = ID:;’S}.

To see this, notice that
Ca,p(2) = aC)y(bz) + cCp(=bz) = (a + ¢)(a1Cr,p(2) + (1 — a1)Cr, p(—2))

for p € ID, where a1 = a/(a+ c¢). That is, ®yp = Py Tp(Poyp * Pi_g,T-1p). Let
us define Vp = P, p* Pi_q,T_1p. Note that V is the stochastic integral mapping
® in the case a+c=1and b = 1. We have

V=P, p*Pi_q,T-1p (4.1)
forn =1,2,..., where a, is given by a, =1 —a; + an—1(2a1 — 1). Indeed, if (4.1)

is true for n, then it is true for n + 1 in place of n, since
Vil =P, VpxPi_o, T 1\Vp=P, VpxP_o,,VT_1p
= Pan (Pa1p * Pl—a1T—lp) * Pl—an (PalT—lp * Pl—alp)
= P ai+(1-an)(1—a1)P * Pa,(1—a)+(1—an)ar L-1p

=Py, p*Piq, T 1p.
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We see that 0 < a, <1 for all n. We have ®} = P2, T;"'V" = V" PR T and
V= P o ®F = PP 0T Therefore R(P}) = R(V") and hence
Roo(Pf) = Roo (V). Next let us show that

Roo (V) = IDRI. (4.2)
If p € IDgym, then Vp = p. Hence IDgym C Ro(V). If p = 6, then Vp =
Sary * 0_(1—a1)y = O2a1—1)y- Now 0y = V(1/(2a, 1)), Since a; # 1/2. Hence
all é-distributions are in (V™) and hence in R (V). Since Roo(V) is closed
under convolution, we obtain ID3H C R (V). To show the converse, assume
that p € Roo(V). Then pu = V"p, for some p, € ID. It follows from (4.1)
that v, = a,v,, + (1 —a,)T-1v,,. Let 0, € ID be such that (As,, Vs, ;%) =
(0,vp,,0). It follows from a, = 1 — a1 + an—1(2a1 — 1) and from 0 < a, < 1
that a, — 1/2 as n — oo. Hence a, > 1/3 for all large n. We see that the
set {o,:n = 1,2,...} is precompact, since v,, < a,'v, < 3y, for all large n.
Thus we can choose a subsequence {on, } convergent to some ' € ID. Since
[z Wao,, (dz) — [ ¢(z)v (dz) for any bounded continuous function ¢ which
vanishes on a nelghborhood of the origin and since a,, — 1/2, we obtain v, =
(1/2)v + (1/2)T-1v,r. Hence v, is symmetric. Hence p* ¢_,, is symmetric. It
follows that € ID50E. This proves (4.2) and therefore Roo (®) = ID5.
Ezample 4.3. Let a < 0. Let h(s) be one of fu(s), fp.a(s), and l,4(s) (p > 1,
q>0). Let so = sup{s: h(s) > 0}. Then 0 < s¢9 < co. Define

h(s), 0 <s < s,
f(s) =< —h(2s0 — s), 50 < s < 28,
07 s > 280.

Then Roo (Pr) = Loo N I Dgym.
Proof is as follows. First, recall that ©(®;) = ©(®;,) = ID. We have, for
peID,

25[)
Co,p(2) / C,(h(s)z)ds + Cy(—h(2s0 — s)z)ds

S0

/ C,(h(s)z)ds + " C,(—h(s)z)ds

0
- C<1>hp( ) + C¢}LT—1P(Z>'

It follows that ®p = ®p(pxT_1p) = P PoUp = UP,®y,p, where U is the mapping
used in Example 4.1. It follows that ®% = ®pPU = UP;'®) for n = 1,2,....
Hence R(®%}) C R(P};) N IDsym. Conversely, assume that p € R(P}) N I Dgym.
Then p = @} p for some p and T_p = ®}T_1p. Since Py, is one-to-one (see [S]),
we have p = T_1p. Hence ®%p = ®pP;Up = PpP'p = P'p and thus p =
P50 € R(®}). In conclusion, R(P}) = R(P}) N I Dy and hence Roo () =
% @MQH%W_LMQHQW
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Ezample 4.4. Let h(s) and sg be as in Example 4.3. Define

h(so — s), 0 < s < s,

h(s — sg), so < s < 25,
flo) =~ 0)

—h(3s0 — 3), 250 < s < 3sq,

Oa S > 350.

Then Roo (B 5) = Loo N IDE

sym
To see this, notice that

250
Co,p(2) / C,(h(so — s)z)ds + C,(h(s —s0)z)ds

S0

3s0
/2 Cyo(—h(3s0 — s)z)ds

S0

/ C,(h(s)2)ds + OSOCp(h(s)z)ds—i- /OSOC,,(—

- 2Cq>hp( ) + Cq)hp(_z)

= 3(%0‘1%17(2) + %C‘I’hp(_z))'
Hence ®yp = P3V®yp, where Vp = Py 3p Py 3T_1p. This mapping V' is a special
case of V in Example 4.2 with a; = 2/3. Hence (4.1) holds with a,, = 27%(1 +
3™ and 1 —a, =271 —37"). Now % = PIVTOR = PPV = VPP,
Hence (%) C R(P}) NR(V™). It follows that Reo(Pf) C Roo(Ph) N Reo(V) =

LoonNI D;];;ff from Theorem 1.1 and (4.2). Let us also show the converse inclusion

Loo NIDENY C Roo (D). It is enough to show
R(P}) NIDRI C R(DY). (4.3)

For any v € R? we have
S0
C<I>h6 / 06 dS = Z‘/ <’77 h(S)Z)dS = iC<’}/, Z> = Cﬁm (Z)u
0

where ¢ = fo (s)ds > 0. That is, ®,0, = d.,. Hence ®so, = P3P,V6, =
Pg@h(5(2/3)7 * 5_(1/3”) = (I)h(S»Y = 5cfy. Hence (I)?(S,Y = 5c"’y and 57 = ‘I)?(Scfn,y.
Hence all 0-distributions are in R(®%). Similarly all J-distributions are in R(®7}).
Let u € R(®P) N IDM Then p* 6, € R(PP) N I Dgym for some 5. Letting

sym
W= p=*d,, we have pf/ = ®}p’ for some p'. Since p' = T_1p' = @PT_1p/,
we have p/ = T_1p from the one-to-one property of ®;,. Thus V"p' = p’ and
Php' = Oy Py’ = PPy, Hence p' = P1"/3<I>fp oL Py /3p € R(P%}). It follows

that p = p' + 6_, € R(P7}). This proves (4.3). Hence 9‘{ (®f) = Loo N IDSHE,

sym

Erample 4.5. Let b > 1. Let f(s) = bljg1j(s) + 1(1,2)(s). Let Loo(b) be the class
mentioned in Section 2. Then Lo (b) C Roo(Ps) & ID. We do not know whether
Roo (D) equals Lo ().

Let us show that Loo(b) C Roo(®y). For 0 < o < 2 define S, () = S,(b,RY) as
follows: p € G,(b) if and only if p is a d-distribution or a non-trivial a-semi-stable
distribution with b as a span, that is,

Go(b) ={p € ID: Pyap = Typ* 5., for some v € R},
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We have Cy,,(2) = C,(bz) +Cy(2) for p € ID, that is, ®sp = Typ*p. If p € &(b)
with Pyep = Tpp * 04, then p = ®yp satisfies p = Tppx p = Prap*x 6_y x p =
Pyojip*d_y and p € S4(b). If p € S4(b) with Ppopr = Ty * d7, then g = ypp
for P = Pl/(ba_,_l)(,u * 5(1/(1,_,_1)”/) S Ga(b) Therefore ‘I)f(Ga(b)) = Ga(b) Hence
Ga(b) C R(P}) for 0 < o < 2 and n = 1,2,.... It follows from Proposition
3.2 of Maejima and Sato (2009) that :/(®%) is closed under convolution and weak
convergence. Hence Loo(b) C R(®7}) and thus Lo (b) C Reo(P ). In order to show
Roo(®f) S ID, let p be such that v, = §, with a # 0. Suppose that p = ®p for
some p € ID. Then v, = Tyv, + v,. If v, # 0, then the support of v, contains
at least one point a’ # 0 and hence the support of v, contains at least two points
{a’,ba’}, which is absurd. If v, = 0, then v, = 0, which is also absurd. Therefore
& R(Py) and hence p & Roo (D).

5. Concluding remarks

The limit class Roo (P ) is not known in many cases. For instance it is not known
for the following choices of f(s): l,1(s) with ¢ € (0,1) U (1,00) in [S]; fp.a(s)
with p € (0,1) and a € (—00,2) in [S]; cos(27tms) in Maejima et al. (2011a);
e 1jo,¢(s) with ¢ € (0,00) in Pedersen and Sato (2005); G}, 5(s) with a € [1,2)
and 8 > 0 satisfying & = 14n/ for some n =0, 1, ... in Maejima and Ueda (2010D).
Another instance is @5 = T with « € (0, 1) related to the Mittag-LefHer function,
introduced in Barndorff-Nielsen and Thorbjgrnsen (2006).

Consider, as in Sato (2007), a stochastic integral mapping

wpome ([ oaxs)

with 0 < a < oo for a function f(s) locally square-integrable on the interval (0, a]
and study Reo(®y) = N, R(@%). Under appropriate choices of f we obtain
Roo (P 7) equal to LYY NID, with a € (1,2), LY NIDyn{u € ID: p has drift 0}
with a € (0,1), or a certain subclass of LY n IDy. This will be shown in a

forthcoming paper.
It is an interesting problem what other classes can appear as Roo (Py).
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